

ASX Announcement

5 December 2023

Drilling at Mallina identifies mineralised spodumene

Highlights

Grades up to 3.03% Li₂O identified at Pegmatite 2

66 RC drill holes for 3,754m completed at the Mallina Project

Pegmatite 2 remains open along strike to both the North and South

Next phase to include testing extensions to known mineralisation and development of new targets

Overview

Global Lithium explorer Morella Corporation Limited (**ASX: 1MC** "Morella" or "the Company"), is pleased to announce drilling assay results from the Mallina Project (tenement E47/2983) in Western Australia. Mallina is included in the JV portfolio between Morella and Sayona Mining Limited.

The drilling results have confirmed and improved the Company's understanding of the mineralisation previously identified within the Pegmatite 2 area¹. These results will be integral in advancing the development schedule of the project.

Forty-two (42) holes intercepted significant mineralisation (>0.5% Li_2O) with highlights included in Table 1, pushing the Mallina project forward and expanding the value of Morella's Pilbara assets.

Hole ID	Easting	Northing	From (m)	To (m)	Intercepts
MRC084	610381	7669999	6	12	6m @ 1.06% Li₂O
MRC090	610360	7670079	1	12	11m @ 0.88% Li ₂ O
		inc.	9	12	3m @ 1.33% Li₂O
MRC097	610320	7670159	28	30	2m @ 1.44% Li₂O
MRC098	610301	7670159	45	48	3m @ 1.13% Li₂O
MRC113	610302	7670400	25	28	3m @ 1.22% Li₂O
MRC114	610279	7670400	43	50	7m @ 1.15% Li₂O
MRC127	610278	7670720	6	8	2m @ 1.22% Li ₂ O
MRC128	610257	7670720	24	30	6m @ 1.53% Li₂O
		inc.	28	29	1m @ 3.03% Li₂O
MRC130	610216	7670719	63	68	5m @ 1.26% Li ₂ O
MRC138	610210	7670797	65	68	3m @ 1.02% Li₂O
MRC146	610219	7670960	38	41	3m @ 1.26% Li₂O
MRC147	610203	7670960	50	54	4m @ 1.22% Li₂O
MRC148	610219	7670877	47	53	6m @ 1.1% Li₂O

Table 1: Highlighted grade intercepts

Morella Managing Director James Brown said:

"Morella is extremely pleased with the results of the Mallina drilling program. Coupled with the positive results from the Tabba Tabba and Wodgina soil sampling programs announced recently, we believe we have the beginnings of an exciting suite of projects in the Pilbara – an area that has continued to deliver significant projects."

"The Pegmatite 2 area is just a small part of the Mallina licence, that from previous work we know includes numerous zones of pegmatite. The team will continue to review and interpret the results, so that the next phase of exploration can be undertaken as soon as possible."

The Drilling Program Results

During September 2023 a 66-hole drilling program was executed with the goal of developing the understanding of the Pegmatite 2 area at the Mallina Lithium Project. (See **Figure 1**).

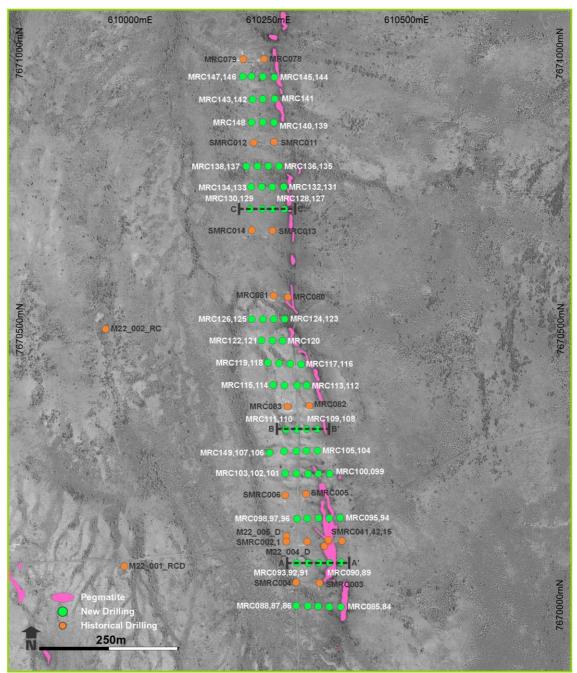


Figure 1: Mapped pegmatite outcrop with drillholes at Pegmatite 2 Area.

The 66 drill holes, totalling 3,754m, were completed in September 2023 by Topdrill using a Schramm C685 and a 5 $\frac{1}{2}$ hammer, (See Figure 2)

Figure 2: Top Drill Schramm C685

All pegmatite intervals were submitted for assay to ALS Global Laboratories Perth for peroxide fusion followed by ICP-MS analysis. Significant lithium assay results from the drilling are shown in Table 2. The significant intercepts are also presented in Figure 3 showing the drill collar locations.

Hole ID	Easting	Northing	From (m)	To (m)	Intercept
MRC084	610381	7669999	6	12	6m @ 1.06% Li ₂ O
MRC085	610360	7669999	27	32	5m @ 0.96% Li₂O
MRC086	610340	7670000	52	53	1m @ 0.9% Li ₂ O
MRC087	610321	7670000			NSI
MRC088	610300	7670001			NSI
MRC089	610381	7670079			NSI
MRC090	610360	7670079	1	12	11m @ 0.88% Li₂O
		inc.	9	12	3m @ 1.33% Li₂O
MRC091	610342	7670078	24	25	1m @ 0.74% Li ₂ O
MRC092	610322	7670078			NSI
MRC093	610301	7670078	53	55	2m @ 0.69% Li ₂ O
MRC094	610380	7670160			NSI
MRC095	610359	7670160	6	8	2m @ 1.05% Li₂O
MRC096	610341	7670160	20	24	4m @ 0.82% Li ₂ O
MRC097	610320	7670159	28	30	2m @ 1.44% Li₂O
		and	34	36	2m @ 0.63% Li ₂ O
MRC098	610301	7670159	45	48	3m @ 1.13% Li₂O
MRC099	610361	7670240			NSI
MRC100	610340	7670240			NSI
MRC101	610322	7670240	38	40	2m @ 0.92% Li ₂ O
MRC102	610300	7670240	33	34	1m @ 0.65% Li ₂ O
MRC103	610280	7670240	77	81	4m @ 0.77% Li₂O

MRC104 610338 7670282 NSI MRC105 610318 7670281 36 37 1m @ 0.68% Li ₂ O MRC106 610300 7670281 53 55 2m @ 1.15% Li ₂ O MRC107 610278 7670281 6 12 6m @ 0.95% Li ₂ O MRC108 610338 7670321 6 12 6m @ 0.95% Li ₂ O MRC109 610319 7670321 30 31 1m @ 0.64% Li ₂ O MRC110 610301 7670320 44 46 2m @ 1.05% Li ₂ O MRC111 610282 7670320 44 46 2m @ 1.05% Li ₂ O MRC112 610319 7670400 25 28 3m @ 1.22% Li ₂ O MRC113 610229 7670400 43 50 7m @ 1.15% Li ₂ O MRC115 610259 7670401 43 50 7m @ 1.15% Li ₂ O MRC116 610309 7670438 NSI NSI MRC117 610289 7670440 34 35)	7670282	10338		MRC104
MRC106 610300 7670281 53 55 2m @ 1.15% Li ₂ O MRC107 610278 7670281 NSI MRC108 610338 7670321 6 12 6m @ 0.95% Li ₂ O MRC109 610319 7670321 30 31 1m @ 0.64% Li ₂ O MRC109 610301 7670320 44 46 2m @ 1.05% Li ₂ O MRC110 610301 7670320 44 46 2m @ 1.05% Li ₂ O MRC111 610282 7670320 NSI NSI MRC112 610319 7670400 25 28 3m @ 1.22% Li ₂ O MRC113 610279 7670400 43 50 7m @ 1.15% Li ₂ O MRC114 610279 7670401 NSI NSI MRC115 610259 7670401 NSI NSI MRC116 610309 7670438 NSI NSI MRC117 610289 7670439 NSI NSI MRC118 610269 7670440 <td< th=""><th>27</th><th>26</th><th></th><th></th><th></th><th></th><th></th></td<>	27	26					
MRC107 610278 7670281 NSI MRC108 610338 7670321 6 12 6m @ 0.95% Li ₂ O MRC109 610319 7670321 30 31 1m @ 0.64% Li ₂ O MRC110 610301 7670320 44 46 2m @ 1.05% Li ₂ O MRC111 610282 7670320 44 46 2m @ 1.05% Li ₂ O MRC111 610282 7670320 28 3m @ 1.05% Li ₂ O MRC113 610302 7670400 25 28 3m @ 1.22% Li ₂ O MRC113 610302 7670400 43 50 7m @ 1.15% Li ₂ O MRC115 610259 7670401 NSI NSI MRC116 610309 7670438 NSI NSI MRC117 610289 7670439 NSI NSI MRC118 610269 7670440 34 35 1m @ 0.54% Li ₂ O						-	
MRC108 610338 7670321 6 12 6m @ 0.95% Li ₂ O MRC109 610319 7670321 30 31 1m @ 0.64% Li ₂ O MRC110 610301 7670320 44 46 2m @ 1.05% Li ₂ O MRC111 610282 7670320 44 46 2m @ 1.05% Li ₂ O MRC112 610319 7670400 25 28 3m @ 1.22% Li ₂ O MRC113 610302 7670400 25 28 3m @ 1.22% Li ₂ O MRC114 610279 7670400 43 50 7m @ 1.15% Li ₂ O MRC115 610259 7670401 NSI NSI MRC116 610309 7670438 NSI NSI MRC117 610289 7670439 NSI NSI MRC118 610269 7670440 34 35 1m @ 0.54% Li ₂ O		55					
MRC109 610319 7670321 30 31 1m @ 0.64% Li ₂ O MRC110 610301 7670320 44 46 2m @ 1.05% Li ₂ O MRC111 610282 7670320 44 46 2m @ 1.05% Li ₂ O MRC112 610319 7670400 25 28 3m @ 1.22% Li ₂ O MRC113 610279 7670400 43 50 7m @ 1.15% Li ₂ O MRC114 610279 7670401 NSI NSI MRC115 610259 7670401 NSI MRC116 610309 7670438 NSI MRC117 610289 7670440 34 35 1m @ 0.54% Li ₂ O	12	6					
MRC110 610301 7670320 44 46 2m @ 1.05% Li ₂ O MRC111 610282 7670320 NSI MRC112 610319 7670400 NSI MRC113 610302 7670400 25 28 3m @ 1.22% Li ₂ O MRC114 610279 7670400 43 50 7m @ 1.15% Li ₂ O MRC115 610259 7670401 NSI NSI MRC116 610309 7670438 NSI MRC117 610289 7670440 34 35 MRC118 610269 7670440 34 35		-					
WRC111 610282 7670320 NSI WRC112 610319 7670400 25 28 3m @ 1.22% Li ₂ O MRC113 610279 7670400 43 50 7m @ 1.15% Li ₂ O MRC114 610279 7670401 NSI WRC115 610259 7670401 NSI WRC116 610309 7670438 NSI WRC117 610289 7670439 NSI MRC118 610269 7670440 34 35	-						
MRC112 610319 7670400 NSI MRC113 610302 7670400 25 28 3m@1.22% Li2O MRC114 610279 7670400 43 50 7m@1.15% Li2O MRC115 610259 7670401 NSI MRC116 610309 7670438 NSI MRC117 610289 7670439 NSI MRC118 610269 7670440 34 35 1m@ 0.54% Li2O	40	44					
MRC113 610302 7670400 25 28 3m @ 1.22% Li ₂ O MRC114 610279 7670400 43 50 7m @ 1.15% Li ₂ O MRC115 610259 7670401 NSI MRC116 610309 7670438 NSI MRC117 610289 7670440 34 35 MRC118 610269 7670440 34 35							
MRC114 610279 7670400 43 50 7m @ 1.15% Li ₂ O MRC115 610259 7670401 NSI MRC116 610309 7670438 NSI MRC117 610289 7670439 NSI MRC118 610269 7670440 34 35 1m @ 0.54% Li ₂ O	20	25					
MRC115 610259 7670401 NSI MRC116 610309 7670438 NSI MRC117 610289 7670439 NSI MRC118 610269 7670440 34 35 1m @ 0.54% Li ₂ O		-					
MRC116 610309 7670438 NSI MRC117 610289 7670439 NSI MRC118 610269 7670440 34 35 1m@ 0.54% Li ₂ O	50	43					
MRC117 610289 7670439 NSI MRC118 610269 7670440 34 35 1m @ 0.54% Li ₂ O							
MRC118 610269 7670440 34 35 1m @ 0.54% Li ₂ O							
	25	24					
ידעוענע פווער איז פווער איזער פווער פו							
ADC130 610376 7670491	59	58					
							MRC120
							MRC121
							MRC122
	25	24					MRC123
	35	34					MRC124
							MRC125
C 1 11 21							MRC126
	-						MRC127
					10257	\$	MRC128
inc. 28 29 1m @ 3.03% Li₂O		-		-	40000		
C		-					MRC129
							MRC130
							MRC131
							MRC132
							MRC133
							MRC134
							MRC135
							MRC136
C · · · · 1-							MRC137
							MRC138
C · · · 2-	14	12					MRC139
	 						MRC140
							MRC141
							MRC142
· · · · · · · · · · · · · · · · · · ·	46	41					MRC143
			5				MRC144
		-			10220		MRC145
	22	21					
	41	38)	7670960	10219	5	MRC146
MRC148610219767087747536m @ 1.1% Li2OTable 2: Significant Intercepts from the recent drilling campaign (>0.5 Li2O%)	41 54	38 50)	7670960 7670960	10219 10203	5 7	MRC146 MRC147

Table 2: Significant Intercepts from the recent drilling campaign (>0.5 Li2O%)

The Pegmatite 2 area constitutes a 1.5km long pegmatite swarm with multiple individual pegmatites, stacked in many areas, which now have been proven in both mapping and drilling.

The recent drill program confirmed mineralisation along most of the length of the pegmatite swarm (Figure 3) with pegmatite thicknesses up to 20m.

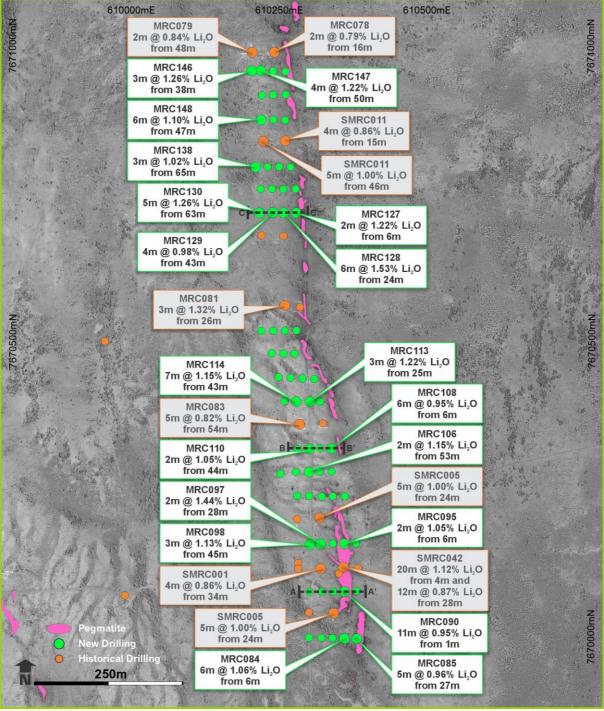


Figure 3: Pegmatite 2 hole plan showing significant grade intercepts

With mineralisation confirmed along 1km of strike length and open both along strike and at depth along a significant portion of the total strike, the Pegmatite 2 area is a prime target for further extensional drilling in conjunction with the development of additional prime targets within the Mallina project.

The sections included at Figures 4, 5 and 6 below represent the lines of drilling recorded in Figure 3 above at A, B and C.

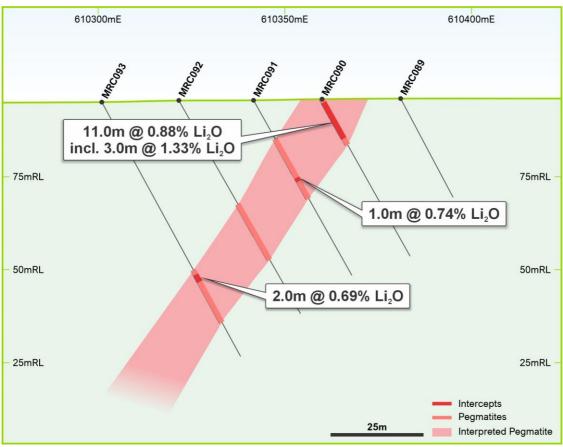


Figure 4: Section A - A' 7670080

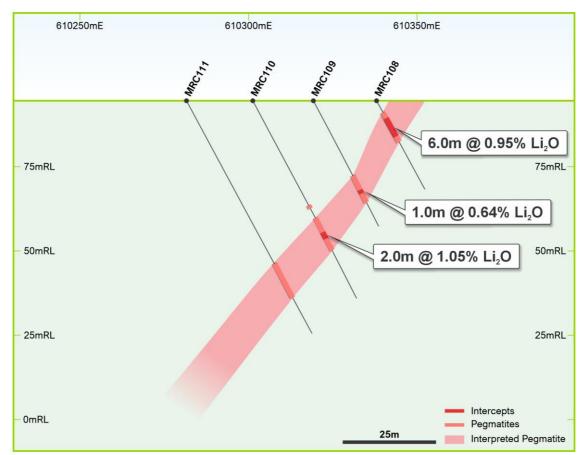


Figure 5: Section B - B' 7670320

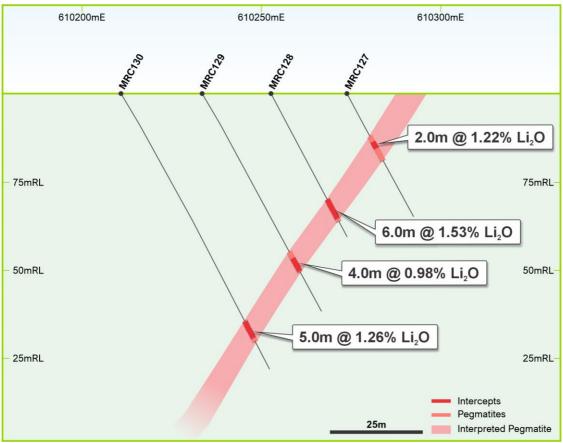


Figure 6: Section C - C' 7670720

Conclusions and next steps

The completed drill program at Mallina resulted in 66 holes totalling 3,754 metres, showing significant grade intercepts in 42 holes along the entire length of the tested strike of the Pegmatite 2 area.

Future work includes planning and executing additional drilling to test extensions to the identified mineralisation, as well as locate and develop new targets within the Mallina lease.

The Mallina Lithium Project

The Mallina Lithium Project is located 110 kilometres southwest of Port Hedland in WA's highly prospective Pilbara region (Figure 7). In 2021, Morella executed an earn-in agreement with ASX-listed Sayona Mining Limited (ASX:SYA) (Sayona), for the right to earn a 51% interest in the lithium rights of Sayona's Pilbara and Gascoyne lithium portfolio. Morella satisfied the requirements of the earn-in December 2022 and is currently finalising the Joint Venture Agreement with Sayona.²

² Refer ASX Announcement Completion of earn-in requirements for Pilbara Lithium Asset - 20 December 2022

Figure 7: Mallina Lithium Project

Contact for further information

Investors Shareholders	<u>Media</u>
James Brown	Michael Weir
Managing Director	Citadel Magnus
E: <u>info@morellacorp.com</u>	M: 0402 347 032

This announcement has been authorised for release by the Board of Morella Corporation Limited.

About Morella Corporation Limited Morella (ASX:1MC) is an exploration and resource development company focused on lithium and battery minerals. Morella is currently engaged in exploration activities on multiple lithium project opportunities, strategically located, in Tier 1 mining jurisdictions in both Australia and the United States of America. Morella will secure and develop raw materials to support surging demand for battery minerals, critical in enabling the global transition to green energy.

Forward Looking Statements and Important Notice This announcement may contain references to forecasts, estimates, assumptions and other forward-looking statements. Although Morella believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions, it can give no assurance that they will be achieved where matters lay beyond the control of Morella and its Officers. Forward looking statements may be affected by a variety of variables and changes in underlying assumptions that are subject to risk factors associated with the nature of the business, which could cause actual results to differ materially from those expressed herein.

Competent Person's Statement The information in this report that relates to Exploration Results is based on information compiled by Mr Henry Thomas, who is a Member of the Australasian Institute of Mining and Metallurgy and is the Exploration Manager employed by Morella. Mr Thomas has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Mineral Resources'. Mr Thomas consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

APPENDIX 1

MALLINA - COMPLETED DRILL HOLES

Hole ID	Easting	Northing	RL	DIP	AZIMUTH	Drilled Depth
MRC084	610381	7669999	95.78	-60	90	30
MRC085	610360	7669999	95.54	-60	90	48
MRC086	610340	7670000	95.51	-60	90	66
MRC087	610321	7670000	95.41	-60	90	78
MRC088	610300	7670001	95.30	-60	90	80
MRC089	610381	7670079	95.99	-60	90	30
MRC090	610360	7670079	95.82	-60	90	48
MRC091	610342	7670078	95.52	-60	90	54
MRC092	610322	7670078	95.50	-60	90	66
MRC093	610301	7670078	95.09	-60	90	78
MRC094	610380	7670160	95.80	-60	90	30
MRC095	610359	7670160	95.57	-60	90	48
MRC096	610341	7670160	95.17	-60	90	48
MRC097	610320	7670159	95.00	-60	90	60
MRC098	610301	7670159	94.83	-60	90	78
MRC099	610361	7670240	95.11	-60	90	30
MRC100	610340	7670240	95.09	-60	90	48
MRC101	610322	7670240	94.73	-60	90	60
MRC102	610300	7670240	94.51	-60	90	78
MRC103	610280	7670240	94.21	-60	90	90
MRC104	610338	7670282	94.85	-60	90	36
MRC105	610318	7670281	94.81	-60	90	60
MRC106	610300	7670281	94.58	-60	90	78
MRC107	610278	7670281	94.34	-60	90	90
MRC108	610338	7670321	94.64	-60	90	30
MRC109	610319	7670321	94.52	-60	90	42
MRC110	610301	7670320	94.29	-60	90	66
MRC111	610282	7670320	94.03	-60	90	78
MRC112	610319	7670400	93.58	-60	90	30
MRC113	610302	7670400	93.49	-60	90	48
MRC114	610279	7670400	93.61	-60	90	66
MRC115	610259	7670401	93.20	-60	90	78
MRC116	610309	7670438	93.54	-60	90	30
MRC117	610289	7670439	93.22	-60	90	48
MRC118	610269	7670440	93.06	-60	90	66
MRC119	610249	7670441	92.91	-60	90	78
MRC120	610276	7670481	93.10	-60	90	36
MRC121	610257	7670481	92.76	-60	90	54
MRC122	610237	7670481	92.63	-60	90	78
MRC123	610279	7670520	92.60	-60	90	30
MRC124	610259	7670520	92.70	-60	90	48

Hole ID	Easting	Northing	RL	DIP	AZIMUTH	Drilled Depth
MRC125	610240	7670520	92.66	-60	90	66
MRC126	610220	7670520	92.49	-60	90	90
MRC127	610278	7670720	91.63	-60	90	30
MRC128	610257	7670720	91.37	-60	90	36
MRC129	610239	7670720	91.37	-60	90	60
MRC130	610216	7670719	91.14	-60	90	78
MRC131	610277	7670759	91.25	-60	90	30
MRC132	610257	7670759	91.31	-60	90	40
MRC133	610238	7670760	91.01	-60	90	60
MRC134	610218	7670759	91.01	-60	90	78
MRC135	610269	7670797	91.35	-60	90	30
MRC136	610250	7670797	90.80	-60	90	40
MRC137	610230	7670797	90.91	-60	90	60
MRC138	610210	7670797	90.62	-60	90	78
MRC139	610260	7670876	90.87	-60	90	30
MRC140	610240	7670877	90.68	-60	90	48
MRC141	610261	7670919	90.48	-60	90	30
MRC142	610239	7670919	90.13	-60	90	36
MRC143	610221	7670918	90.19	-60	90	60
MRC144	610260	7670958	89.98	-60	90	36
MRC145	610239	7670959	89.96	-60	90	36
MRC146	610219	7670960	89.83	-60	90	60
MRC147	610203	7670960	89.84	-60	90	78
MRC148	610219	7670877	90.40	-60	90	66
MRC149	610252	7670278	93.93	-90	0	180

JORC CODE, 2012 EDITION - TABLE 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 RC drill samples were collected at 1m intervals via a rig mounted cone splitter. Visual observation techniques were used for sample collection. RC drill hole chip samples were collected in onemetre intervals from the beginning to the end of each hole. Each sample was split directly using a cone splitter into numbered calico bags. The remaining material for each interval was collected directly into buckets that were placed near the drill rig for geological logging. All potentially mineralised intervals were sampled.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 Drilling method was Reverse Circulation (RC). The drilling contractor was Topdrill Pty Ltd with a Schramm 2 685 track mounted rig using a 5 5/8 inch rod string and RC Hammer. Holes were nominally drilled at -60 degrees
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No loss of sample recovery or quality was noted during drilling. Appropriate use of downhole pressure kept the RC drill cuttings dry. Samples are considered to be representative of the drilled intervals. Sample bias was not introduced during the drilling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 RC holes were geologically logged by rig geologists. Representative drill chips for each one-metre interval in the RC holes were collected by the Rig Geologist. The drill chips from these intervals were dry and wet sieved and the geology/lithology was logged. The lithology logging was undertaken on the one-metre intervals to document the lithology, colour, texture, alteration and mineralisation of each interval using standardised logging codes. A representative washed chip sample for each one-metre interval was placed in chip trays for future reference. The lithology logging was considered quantitative in nature. All recovered RC drill chips were logged.

Criteria	JORC Code explanation	Commentary
Criteria Sub-sampling techniques and sample preparation	 JORC Code explanation If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Commentary RC Drill samples were collected at the time of drilling via a cone splitter. Sampling of cuttings was carried out following industry standards. RC samples were normally dry. If water was present, it was expelled from the hole before a sample was collected. Sixty six (66) Duplicate samples for analyses were collected from selected intervals to assist QA/QC assessment work. The sample size is considered appropriate given the grain size of the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and precision have been established. 	 Mineralogical and geochemical assay samples were dispatched to ALS Global in Perth, a certified laboratory. Appropriate sampling methods were adopted. No handheld tools were used. Sample duplicates, and Certified Reference Material (CRM) are inserted into the sample sequence for QA/QC purposes. Field CRMs, field duplicates, Lab duplicates, and Lab inserted CRM all performed within acceptable limits No external laboratory checks have been completed at this stage.
Verification of sampling and assaying Location of data points	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and above locations used in Minard Dacument 	 No external verification has yet been completed. No twinned holes were drilled. All completed RC holes were logged. Assay data was provided by the laboratory as certified data files, once completed. Data listing survey, lithology & sample numbers were recorded. Data validation was completed. The drill hole collars were surveyed by Wireline Services Group personnel using a DGPS unit (with an arran of 1/200mm)
Data spacing	 workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 (with an error of +/- 300mm). The Grid System used was Australian Geodetic MGA Zone 50 (GDA94). The level of topographic control offered by a DGPS was considered sufficient for the work undertaken. The drilling spacing is considered appropriate
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The drilling spacing is considered appropriate for the reporting of the exploration results No Mineral Resource or Ore Reserve Estimates have been completed. Normally one-metre RC drill hole chip samples were prepared for sample submission. No sample compositing was applied.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling was generally orthogonal to the orientation of the pegmatites, minimising potential sample bias. The drilling of understood pegmatite units was targeted to drill across dip as is industry standard practice.
Sample security	• The measures taken to ensure sample security.	 The chain of custody for sampling procedures and sample analysis was managed by the rig geologists during drilling. Industry standard sample security and storage was undertaken.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits or reviews of the data have been conducted at this stage.

Section 2 Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The project lies within the E47/2983 exploration tenement which was granted on 13 August 2014. The tenement is owned 100% by Sayona Lithium Pty Ltd (a wholly owned subsidiary of Sayona Addining Limited). Sayona and Morella have entered into a Joint Venture agreement with the right to a 51% interest in the Lithium rights over E47/2983 (and other tenements). Sayona has granted Morella the right to access and conduct exploration on the tenement. The tenement is in good standing and there is no known impediment to obtaining a licence to operate.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Lithium was discovered on the tenement (including the collection of 23 rock samples) in late 2016. An initial 47 hole RC drill program was conducted by Sayona in 2017. A series of drill programs (RC and Diamond) have been carried out by Morella Corp since 2022 including 35 RC drill holes and 5 Diamond holes.
Geology	• Deposit type, geological setting and style of mineralisation.	 The spodumene-bearing dykes at Mallina are recognised as composite or hybrid intrusions of early monzogranite and latter aplite phases. The various phases are typical components of the Split Rock Supersuite, which is considered the fundamental control on the formation of rare-metal spodumene-

Criteria	JORC Code explanation	Commentary
		 bearing pegmatite systems across the region from Pilgangoora through to Wodgina, and northwards to the Mallina Basin. Fine spodumene in the hybrid intrusions at Mallina is contained within a distinct aplite phase, that can be geochemically differentiated in the existing rock-chip and drill-hole assay datasets. The presence of fine spodumene in an aplite is not without regional precedence within the rocks of the Split Rock Supersuite, as this association has been recognised in the Pilgangoora district.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case 	 Morella completed RC drilling at Mallina. Sixty six (66) RC drill holes were drilled, totalling 3,754m. Relevant drill hole information has been provided in this release. No information has been excluded.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated 	 No metal equivalent values have been included. The aggregate intercepts are representative and do not contain large lengths of low-grade results.
Relationship between mineralisation widths and intercept length	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. • If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 There is insufficient data for a relationship between mineralisation widths and intercept lengths to be reported. The true width of the mineralisation is not known, only down hole length is reported.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate information has been included in this release.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of 	Balanced reporting has been completed.

Criteria	JORC Code explanation	Commentary
	both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• No other exploration data to report.
Further work	• The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Mineralogical studies and geochemical assay work is planned to be completed once the samples are returned to Perth.
	• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Further work will be planned once the mineralogical study and geochemical assay results are evaluated.