

ASX Release 24th September 2025

Priority drill targets identified along new mineralised corridors at West Wyalong Copper-Gold Project

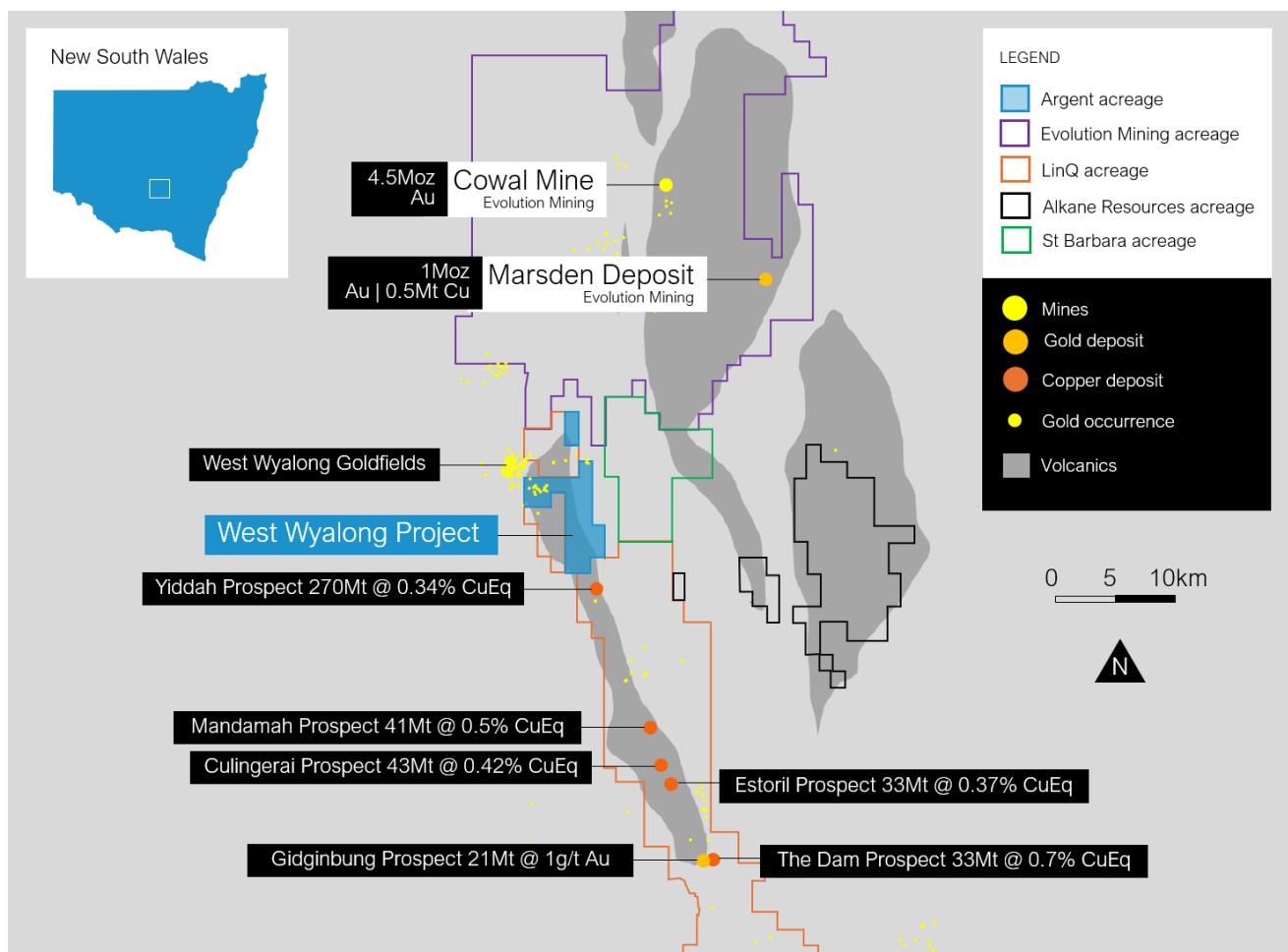
Highlights

- Priority drill targets identified at West Wyalong across two mineralisation models – **orogenic gold** and **porphyry copper-gold**.
 - Orogenic gold potential** in the north-west project area with three outcropping quartz vein systems, each up to 1.25 km long.
 - Porphyry copper-gold potential** in the south-east project area multiple large-scale targets within a 6 km trend.
- Project strategically located **37 km from Cowal (4.5 Moz Au)¹** and 3km southeast of the historic West Wyalong Goldfields which reported total gold production of 445,700 oz (average grade 1.31 oz/t or 40 g/t Au)². They are situated within the same volcanic belt as world-class deposits Cadia and Northparkes.
- Targets are located **2.8 km north of LinQ Minerals' (ASX:LNQ) Yiddah Porphyry Deposit** which hosts a Mineral Resource of **279 Mt @ 0.25% Cu and 0.12 g/t Au.³**
- Next steps: **land access negotiations and geophysics (IP/EM surveys)** ahead of drilling to refine target areas.

Argent Minerals Limited (**ASX: ARD**) (“**Argent**” or “**the Company**”), the Australian-focused silver and precious metals developer, has identified new priority drill targets at its West Wyalong Cu-Au Project in New South Wales after conducting a high-level exploration and geophysical desktop review.

Argent Managing Director Mr Pedro Kastellorizos said:

“The identification of multiple priority drill targets across both orogenic gold and porphyry copper-gold systems is a highly encouraging outcome for West Wyalong.


The project sits within a prolific volcanic belt that already hosts world-class operations such as Newmont’s (ASX:NEM) Cadia and Evolution’s (ASX:EVN) Northparkes mines, as well as LinQ Minerals’ (ASX:LNQ) nearby Yiddah Porphyry Deposit.

These results highlight the clear potential for a large mineralised system within our ground. Our immediate focus is to secure land access agreements and roll out geophysical programs, including induced polarisation (IP) and electromagnetic (EM) surveys, to refine targets ahead of drilling. We are very excited to take the next steps towards unlocking the scale potential of West Wyalong.”

¹ Refer <https://evolutionmining.com.au/reservesresources>

² GS1928/007 Geological Survey of New South Wales (1975) Annual Report Compilation, West Wyalong Division – Forbes Sheet R0018585 Table of Historic Production Figures p.41/p42.

³ Refer <https://linqminerals.com/wp-content/uploads/LinQMineralsPresentation02Jun25.pdf>

Figure 1 – Location map showing the West Wyalong Project in relation to the surrounding Cu-Au deposits⁴.

Strong geological prospectivity

The West Wyalong Project is in close proximity to large intrusion and volcanic-related hydrothermal systems, including the Cowal Mine (4.5 Moz Au - ASX:EVN) and the Marsden Deposit (>1 Moz Au and 0.5 Mt Cu), 37km and 20km to the northeast respectively.

Together with the world-class Cadia and Northparkes deposits which lie on the same volcanic belt as the West Wyalong Project, the region's potential for large copper–gold systems is clearly demonstrated.

The exploration licence is host to a magnetic, magmatic complex of Ordovician age located on the Gilmore Suture within the Lachlan Fold Belt. Geological and geophysical interpretations indicate three domains:

1. the Gidginbung Volcanic domain (comprising highly sheared andesitic rocks);
2. the Gidginbung Intrusive domain (comprising a variety of dioritic intrusions with Gidginbung volcanics); and the
3. Bland Diorite domain (where diorite bodies intrude basaltic volcanic rocks).

⁴ Refer <https://evolutionmining.com.au/reservesresources> and <https://linqminerals.com/wp-content/uploads/LinQMineralsPresentation02Jun25.pdf>


Orogenic gold potential in the north-western area of EL8430

A number of significant gold and copper-gold deposits have been identified regionally along the Gilmore Suture.

Rock chips from within the NW of the West Wyalong project area include **40 samples of greater than 1 g/t Au, with 14 samples above 10 g/t Au**, within a 2 km x 2 km area.

Highlights include the following samples of greater than 1 g/t Au are shown in the below table

Sample ID	Easting MGA55	Northing MGA55	Au (g/t)
77158	523813	6243765	47.3
7777	523825	6243787	22
7894	522613	6243185	20
77131	522741	6244124	17.4
77140	523032	6243993	16.9
77129	522741	6244124	15.6
PR14	523351	6243566	13.7
LU08	523813	6243765	12.7
PR21	522724	6243139	12.4
7799	522706	6244108	12.3
LU04	523813	6243765	11.9
77130	522741	6244124	11.1
77128	522741	6244124	10.4
WR08	522764	6244220	10.2
7959	523182	6243858	8.6
77132	522741	6244124	7.92
77149	523813	6243765	7.87
WR09	522764	6244220	6
PR25	522163	6244866	5.44
77133	522741	6244124	4.98
77154	523813	6243765	4.91
7255	523152	6243945	4.3
7820	522823	6243671	4.3
PR19	523073	6244123	3.91
77179	524102	6244246	3.65
7794	522722	6244134	3.1
LU02	523813	6243765	3.07
PR22	522715	6243150	2.92
77161	523930	6244054	2.82
LU09	523813	6243765	2.6
77159	523813	6243765	2.51
LU05	523813	6243765	2.47
7774	523847	6243851	2.2
GPR 6359	528843	6246865	2.15
GPR 6361	528763	6247005	1.4
7797	522715	6244115	1.1
7812	522873	6243777	1.1
7813	522868	6243770	1.1
77155	523813	6243765	1.08
7814	522867	6243761	1

Figure 2 – Location Map highlighting Orogenic Gold and Porphyry Gold-Copper Zones

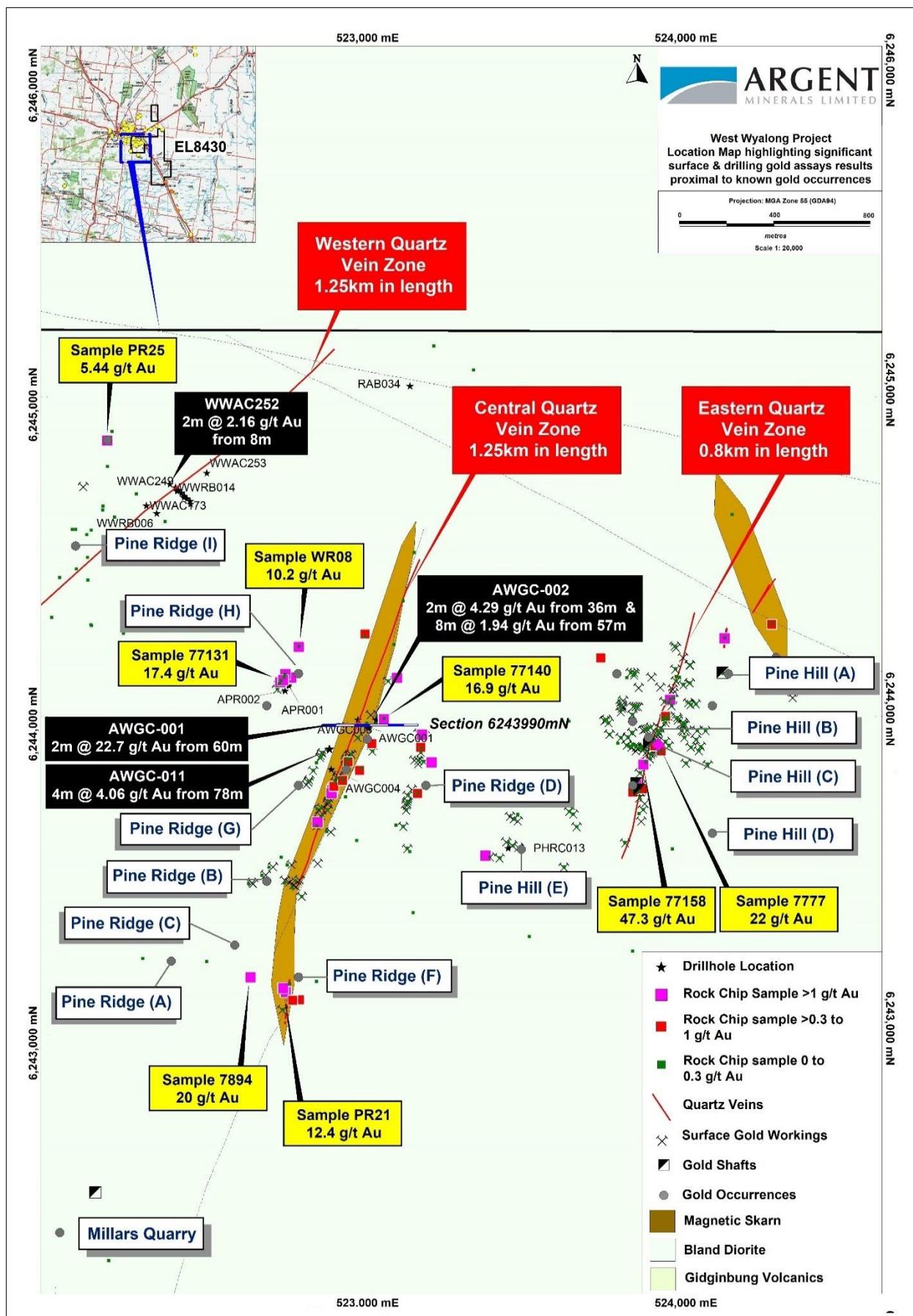
Historic Gold Focused Exploration

Historical gold production has been reported in the north-western area of EL8430 which lies 3km east of the West Wyalong Goldfields where high-grade gold production exceeded 440,000oz prior to 1920.

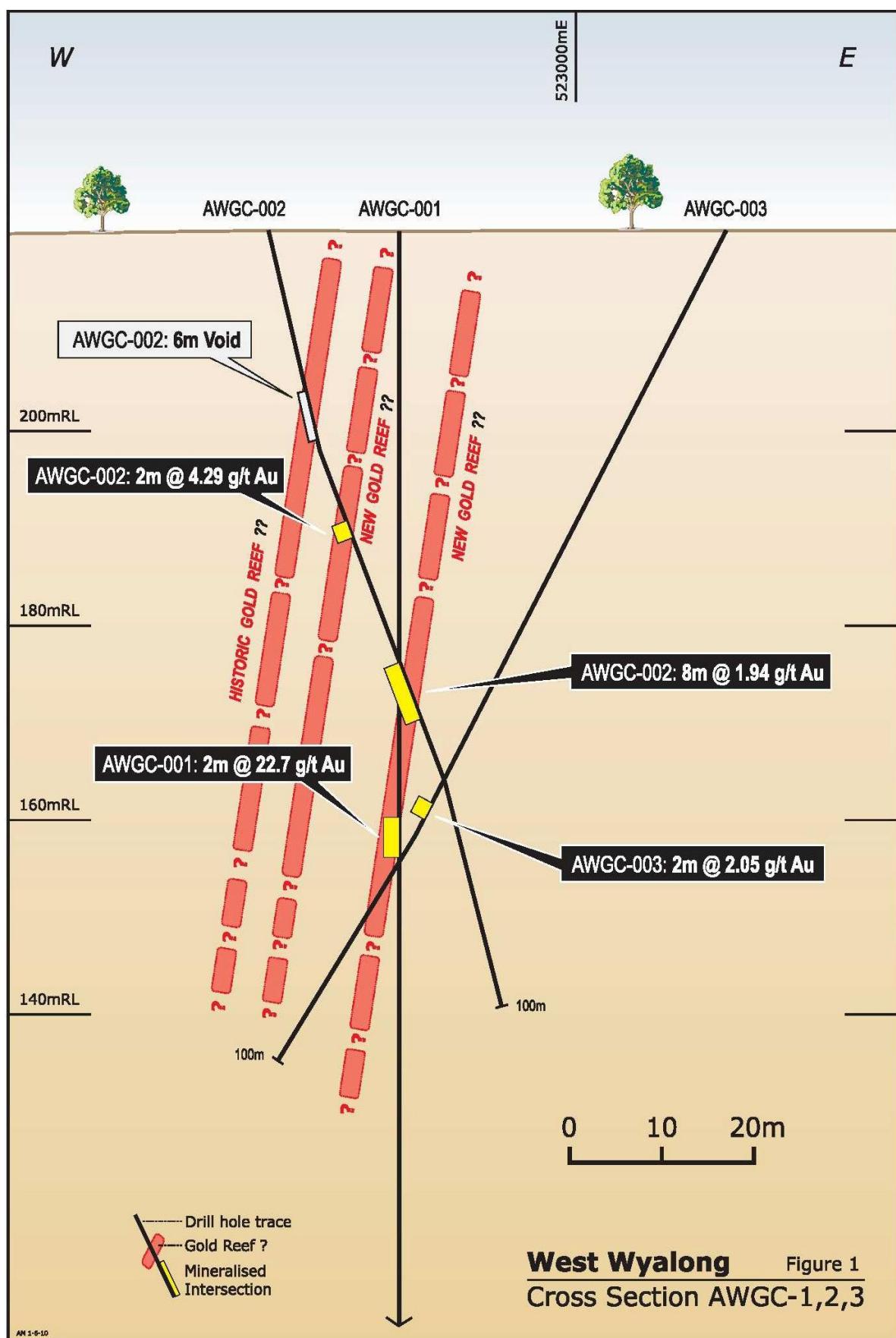
During the peak mining period (1894–1907), approximately 371,000oz were mined at an average grade of 44g/t gold⁵.

Within EL8430, the lodes were worked intermittently between 1895 and 1900, yielding 112oz of gold at an average grade of 34 g/t Au⁶. Mineralisation occurs in a thin lens of foliated, slightly hornfelsed slates and siltstones surrounded by Bland Diorite. Numerous shafts, pits, and small open cuts define a strike length of approximately 400m.

Argent's geological review indicates that historical drilling did not consistently test the vein system, with most holes drilled at unfavourable orientations.


In 2010, the company reported results from three drill holes which supported the presence of three narrow, steeply dipping, sub-parallel gold reefs trending north–northeast, consistent with the style of mineralisation historically mined in the district:

- AWGC001 intersected **2m @ 22.7 g/t Au** from 60m.
- AWGC002, collared to test this intersection, cut a 6m void from 20m depth (interpreted as old workings) that returned **0.48 g/t Au** at the base. Beneath this, the hole intersected **2m @ 4.29 g/t Au** from 36m (a possible sub-parallel reef), followed by **8m @ 1.94 g/t Au from 57m** (interpreted as the targeted reef).
- **AWGC003**, drilled at right angles to AWGC002, intersected **2m @ 2.05 g/t Au** from 65m but was terminated at 100m before testing additional westerly reefs.



⁵ GS1928/007 Geological Survey of New South Wales (1975) Annual Report Compilation, West Wyalong Division – Forbes Sheet R0018585 Table of Historic Production Figures p.41/p42.

⁶ McLean, G & Edwards, A., 1997. EL 4615 West Wyalong Annual Report 7 November 1997, Golden Cross Operations Pty. Ltd. Unpublished Report No. GCO060.

Figure 3 – Location map showing all significant gold assays to the known gold occurrences and workings

Figure 4 – Pine Ridge Cross Section 6243990mN highlighting mineralised intervals

Porphyry Copper-Gold potential in the south-eastern area of EL8430.

Past exploration at West Wyalong has largely focused on the Gilmore Suture structural zone, which is host to significant copper–gold deposits. Previous work identified porphyry copper–gold systems along this corridor at the Narragudgil and Yiddah North Prospects.

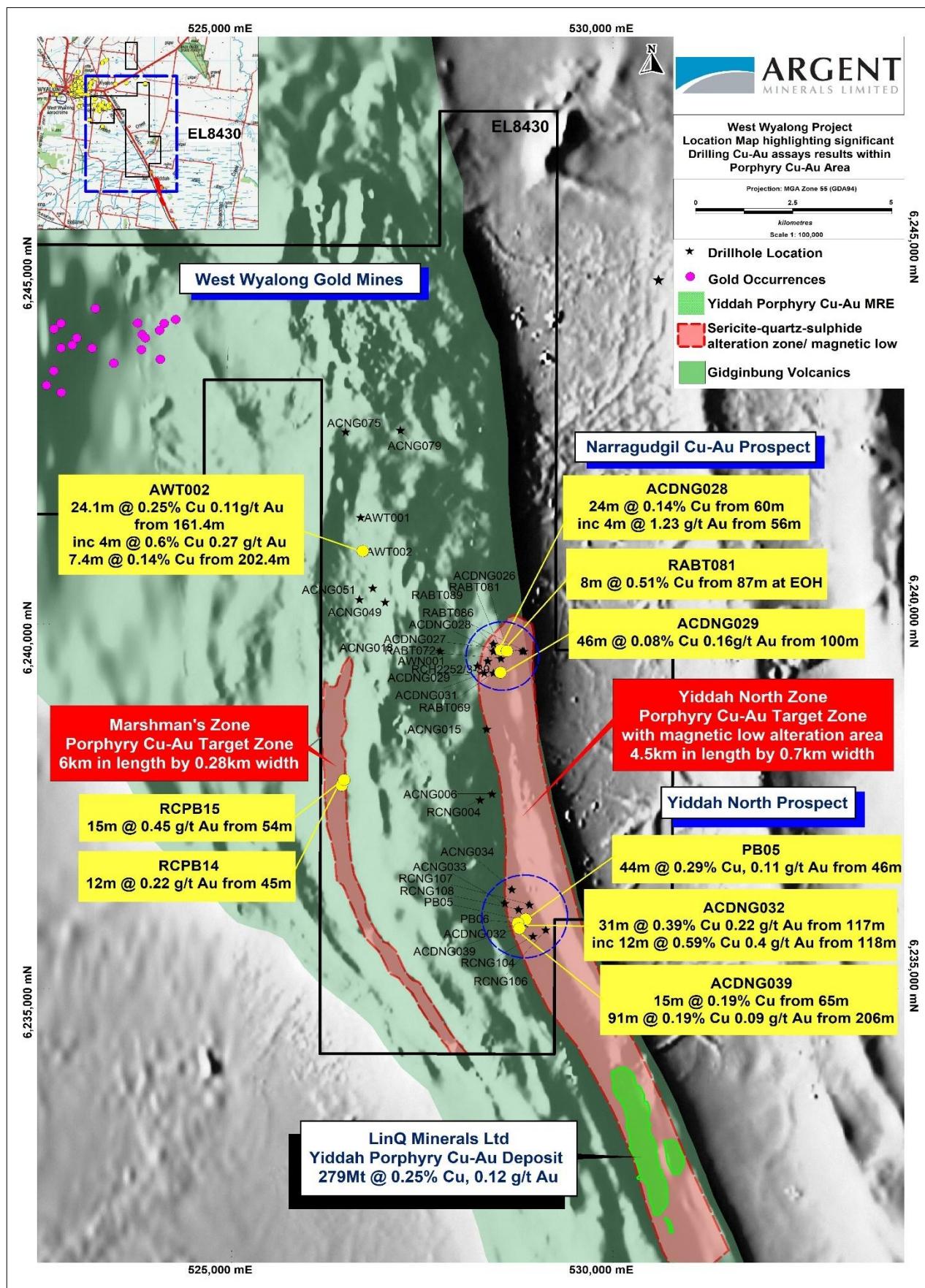
The area encompasses the northern portion of the Ordovician-aged Gidginbung Volcanics, considered highly prospective as they host several major deposits in the district, including the Gidginbung high-sulphidation gold deposit, the Mandamah and Yiddah Cu–Au porphyry systems, and the Dam Cu–Au deposit south-east of EL8430.

Within Argent's Narragudgil and Yiddah North target areas, **coincident magnetic lows and sericite–quartz–sulphide alteration zones have been identified, consistent with the geological indicators observed at the nearby Yiddah Porphyry Deposit**. These features are interpreted as potential markers of extensive alteration systems associated with intrusive-related hydrothermal activity.

Narragudgil Porphyry Cu–Au Target Zone

Drilling at Narragudgil has defined a broad zone of hydrothermal alteration with patchy, low-level copper–gold mineralisation. The alteration is characterised by chlorite–sericite overprinted volcanic sediments containing abundant pyrite and remains open to the north and west, highlighting potential for further mineralised extensions. Significant intersections include:

- **ACDNG028:** 24m @ 0.14% Cu from 60m, including **4m @ 1.23 g/t Au** from 56m
- **RABT081:** **8m @ 0.51% Cu** from 87m (EOH)


Yiddah North Porphyry Cu–Au Target Zone

At Yiddah North, the mineralisation is hosted within sheeted quartz–chalcocite–pyrite veins that crosscut chlorite–magnetite–epidote altered volcanics. The vein package dips 50° southwest and remains open at depth and along strike. Mineralisation is interpreted as porphyry-related, distal to a yet-to-be-discovered intrusive source. Significant intersections include:

- **PB05:** **44m @ 0.29% Cu, 0.11 g/t Au** from 46m
- **ACDNG032:** **31m @ 0.39% Cu, 0.22 g/t Au** from 117m, including **12m @ 0.59% Cu, 0.40 g/t Au** from 118m
- **ACDNG039:** **15m @ 0.19% Cu** from 65m, and **91m @ 0.19% Cu, 0.09 g/t Au** from 206m

Marshman's Zone Porphyry Cu–Au Target Zone

Exploration at the Marshman's Trend remains at an early stage. The zone is defined by a local magnetic low with characteristics similar to the Yiddah–Narragudgil Trend, bounded by magnetic volcanics and potentially skarns (refer to Figure 5). Northeast-trending faults are evident in the northern portion of the feature, where the magnetic low also broadens — this area is considered the most prospective.

Figure 5 – Location Map showing all significant Cu-Au assays along Glimore Suture Fault Zone

This ASX announcement has been authorised for release by the Board of Argent Minerals Limited.

For further information, please contact:

Pedro Kastellorizos
Managing Director/Chief Executive Officer
Argent Minerals Limited
info@argentminerals.com.au

About Argent Minerals Ltd (ASX: ARD)

Argent Minerals is a natural resources company focused on the development of five projects in New South Wales and one in Western Australia.

The company's flagship 100%-owned Kempfield Project in New South Wales is located near Orange within the prolific Lachlan Fold Belt, host to some of Australia's largest gold and copper mines including Northparkes and Cadia. Kempfield hosts Australia's second largest undeveloped silver deposit which has the scale and quality to support a clear pathway to early production via a heap leach starter (oxide) to fund a carbon-in-leach (CIL)/flotation hub (sulphide).

The company's nearby Trunkey Creek, Mt Dudley and Pine Ridge projects offer major gold upside and the opportunity to establish a scalable, multi-deposit mine at Kempfield.

Argent's Copperfield Project is located north-east of Carnarvon in Western Australia's Gascoyne region. Geophysical targeting, structural mapping and shallow-to-intermediate geochemical programs to date have been aimed at defining near-surface Cu-Ag resources.

Competent Persons Statement

The information in this report that relates to Exploration Targets and Exploration Results is based on information compiled by Pedro Kastellorizos. Mr. Kastellorizos is the Managing Director/CEO of Argent Minerals Limited and is a Member of the AusIMM of whom have sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Kastellorizos has verified the data disclosed in this release and consent to the inclusion in this release of the matters based on the information in the form and context in which it appears.

Forward Statement

This news release contains "forward-looking information" within the meaning of applicable securities laws. Generally, any statements that are not historical facts may contain forward-looking information, and forward looking information can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget" "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or indicates that certain actions, events or results "may", "could", "would", "might" or "will be" taken, "occur" or "be achieved." Forward-looking information is based on certain factors and assumptions management believes to be reasonable at the time such statements are made, including but not limited to, continued exploration activities, commodity prices, the estimation of initial and sustaining capital requirements, the estimation of labour costs, the estimation of mineral reserves and resources, assumptions with respect to currency fluctuations, the timing and amount of future exploration and development expenditures, receipt of required regulatory approvals, the availability of necessary financing for the project, permitting and such other assumptions and factors as set out herein.

Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of the Company to be materially different from those expressed or implied by such forward-looking information, including but not limited to: risks related to changes in commodity prices; sources and cost of power and water for the Project; the estimation of initial capital requirements; the lack of historical operations; the estimation of labour costs; general global markets and economic conditions; risks associated with exploration of mineral deposits; the estimation of initial targeted mineral resource tonnage and grade for the project; risks associated with uninsurable risks arising during the course of exploration; risks associated with currency fluctuations; environmental risks; competition faced in securing experienced personnel; access to adequate

infrastructure to support exploration activities; risks associated with changes in the mining regulatory regime governing the Company and the Project; completion of the environmental assessment process; risks related to regulatory and permitting delays; risks related to potential conflicts of interest; the reliance on key personnel; financing, capitalisation and liquidity risks including the risk that the financing necessary to fund continued exploration and development activities at the project may not be available on satisfactory terms, or at all; the risk of potential dilution through the issuance of additional common shares of the Company; the risk of litigation.

Although the Company has attempted to identify important factors that cause results not to be as anticipated, estimated or intended, there can be no assurance that such forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. Accordingly, readers should not place undue reliance on forward-looking information. Forward looking information is made as of the date of this announcement and the Company does not undertake to update or revise any forward-looking information this is included herein, except in accordance with applicable securities laws.

References

For further information please refer to previous ASX announcement from Argent Minerals Ltd

ASX Announcement 2009: *Drilling Results from Kempfield and West Wyalong*
 ASX Announcement 2014: *Mag survey reveals large copper gold target at West Wyalong*
 ASX Announcement 2015: *IP survey confirms large copper gold target at West Wyalong*.
 ASX Announcement 2016: *Argent Strategic Update – West Wyalong*
 ASX Announcement 2016: *IP survey confirms large copper gold target at West Wyalong*
 ASX Announcement 2017: *Approved West Wyalong copper-gold target drill-test plan*
 ASX Announcement 2016: *West Wyalong drilling confirms mineralised porphyry system*
 ASX Announcement 2017: *2nd Set of Assays – Increased gold in West Wyalong*
 ASX Announcement 2017: *Copper and gold in West Wyalong Porphyry – Final Assays*
 ASX Announcement 2017: *Copper and Gold in West Wyalong Porphyry Final Assays*
 ASX Announcement 2019: *Compelling West Wyalong Targets Identified*

ASX Announcement: LNQ dated 28 July 2025 "Drilling Commences at Gilmore Gold-Copper Project"

David, V. 2010. EL5915 West Wyalong Annual Report to 9 January 2010.
 David, V. 2009. EL5915 West Wyalong Annual Report to 9 January 2009.
 David, V., 2014. EL 5915 West Wyalong Annual Report to 9 January 2014.
 David, V., 2013. EL 8001 West Wyalong Annual Report to 29 October 2013.
 David, V., 2012. EL 5915 West Wyalong Annual Report to 9 January 2012.
 David, V., 2011. EL 5915 West Wyalong Annual Report to 9 January 2011.
 Fitzpatrick, K.R. 1979; Cootamundra 1:250,000 metallogenetic map SI/55-11:mine data sheets and metallogenetic study. Geological Survey of New South Wales, Sydney.
 Lawrie, K.C., Mernagh, T. P., Ellis, P. 1997; Geology of the Gidginbung Au Deposit, Lachlan Fold Belt, West New South Wales. IN, Lawrie, K.C., 1997 Porphyry & Epithermal Deposits of the Lachlan Fold Belt, NSW Geol. Soc. of Australia pre-conference field trip 27-29 January, 1997.
 Lessman, J. L., 1983. Sixth Annual report EL 1819, Barmedman Project Reporting period 14th October 1985.BP Minerals Australia Pty Limited GS1983-419
 Lyons, P. et al 2000; Geology of the Forbes 1:250000 map Sheet. NSW Dept of Mineral Resources, Sydney.
 Marlow, A., 1996. Report on Geological Mapping at West Wyalong E.L. 4615, Alan G. Marlow unpubl. Report in Dawe, J. 1996
 McLean, G & Edwards, A.,1997. EL 4615 West Wyalong Annual Report 7 November 1997, Golden Cross Operations Pty. Ltd. Unpublished Report No. GCO060.
 McLean, G, 1998. EL 4615 West Wyalong Annual Report 7 November 1998, Golden Cross Operations Pty. Ltd. Unpublished Report No. GCO116.
 McLean, G, 1999. EL 4615 West Wyalong Annual Report 7 November 1999, Golden Cross Operations Pty. Ltd. Unpublished Report No. GCO157.
 McLean, G, 2004. EL 5915 West Wyalong Annual Report 7 November 1999, Golden Cross Operations Pty. Ltd. Unpublished Report No. GCO330.
 McLean, G, 2005. EL 5915 West Wyalong Annual Report 9 January 2005, Golden Cross Operations Pty. Ltd. Unpublished Report No. GCO391.
 MacCorquodale, C., 1999. First Annual Report EL 4615, Narragudgil Joint Venture Area Reporting period 14th October 1985. Newcrest MiningPty Limited GS1983-419
 Schifano, J. 2007. EL5915 West Wyalong Annual Report to 9 January 2007. GCO 484.
 Schifano, J. 2008. EL5915 West Wyalong Annual Report to 9 January 2008. GCO 513.
 A & A Crawford Geological Research Consultants Report 2017. Petrographic report 23 rocks from the West Wyalong porphyry Cu-Au Project, NSW.
 Corbett Geological Services Pty Ltd Report 2017. Comments on the potential exploration potential of Argent Minerals Project at West Wyalong and south of Broken Hill.
 McGilvray C.T., 2019. Research and Development submission to AusIndustry – Industry Capability and Research 2016-2018
 McLean, G. and Edwards, A., 1997. EL 4615 West Wyalong Annual Report 7 November 1997, Golden Cross Operations Pty. Ltd. Unpublished Report No. GCO060.
 McLean, G., 1998. EL 4615 West Wyalong Annual Report 7 November 1998, Golden Cross Operations Pty. Ltd. Unpublished Report No. GCO116.
 McLean, G., 1999. EL 4615 West Wyalong Annual Report 7 November 1999, Golden Cross Operations Pty. Ltd. Unpublished Report No. GCO157.
 McLean, G., 2004. EL 5915 West Wyalong Annual Report 7 November 1999, Golden Cross Operations Pty. Ltd. Unpublished Report No. GCO330.
 McLean, G., 2005. EL 5915 West Wyalong Annual Report 9 January 2005, Golden Cross Operations Pty. Ltd. Unpublished Report No. GCO391.
 Mischler, P. and David, V., 2013 EL 5915 West Wyalong Annual Report to 9 January 2013.
 Steadman, J., 2017. Final report on pyrite samples from Theia and Narragudgil, West Wyalong, NSW

Appendix 1: West Wyalong Project rock chip locations and results

Sample ID	Easting MGA55	Northing MGA55	Au (ppm)
77158	523813	6243765	47.3
7777	523825	6243787	22
7894	522613	6243185	20
77131	522741	6244124	17.4
77140	523032	6243993	16.9
77129	522741	6244124	15.6
PR14	523351	6243566	13.7
LU08	523813	6243765	12.7
PR21	522724	6243139	12.4
7799	522706	6244108	12.3
LU04	523813	6243765	11.9
77130	522741	6244124	11.1
77128	522741	6244124	10.4
WR08	522764	6244220	10.2
7959	523182	6243858	8.6
77132	522741	6244124	7.92
77149	523813	6243765	7.87
WR09	522764	6244220	6
PR25	522163	6244866	5.44
77133	522741	6244124	4.98
77154	523813	6243765	4.91
7255	523152	6243945	4.3
7820	522823	6243671	4.3
PR19	523073	6244123	3.91
77179	524102	6244246	3.65
7794	522722	6244134	3.1
LU02	523813	6243765	3.07
PR22	522715	6243150	2.92
77161	523930	6244054	2.82
LU09	523813	6243765	2.6
77159	523813	6243765	2.51
LU05	523813	6243765	2.47
7774	523847	6243851	2.2
GPR 6359	528843	6246865	2.15
GPR 6361	528763	6247005	1.4
7797	522715	6244115	1.1
7812	522873	6243777	1.1
7813	522868	6243770	1.1
77155	523813	6243765	1.08
7814	522867	6243761	1
77141	522993	6243917	0.98
77173	522766	6243114	0.97
WR30	522412	6243495	0.95
77171	522745	6243113	0.88
77160	523916	6244002	0.825
WR18	523137	6243760	0.82

Sample ID	Easting MGA55	Northing MGA55	Au (ppm)
77150	523813	6243765	0.68
77151	523813	6243765	0.64
77157	523813	6243765	0.64
77183	524249	6244290	0.59
7256	523147	6243905	0.56
WR21	523902	6243894	0.56
WR25	523902	6243894	0.52
GPR 6364	528713	6246865	0.49
PR18	522972	6244260	0.48
5301	523713	6244185	0.47
7811	522874	6243782	0.41
7877	521688	6245035	0.37
7752	523882	6243910	0.35
7779	523843	6243775	0.35
WR16	523137	6243760	0.35
WR15	522902	6243801	0.33
LU01	523813	6243765	0.32
7807	522919	6243860	0.31
77142	522955	6243832	0.31
WR14	522902	6243801	0.31
77180	524102	6244246	0.26
7796	522718	6244123	0.25
7800	522703	6244102	0.25
7815	522857	6243734	0.24
7773	523853	6243856	0.222
LU03	523813	6243765	0.22
7810	522879	6243796	0.211
WR17	523137	6243760	0.21
7748	523902	6243963	0.209
7743	523925	6244001	0.19
7712	523942	6244057	0.184
7802	522950	6243933	0.181
6465	522065	6244462	0.18
77223	522177	6244893	0.173
7825	522743	6243464	0.167
7753	523865	6243911	0.155
7829	522796	6243797	0.15
LU06	523813	6243765	0.15
77162	523930	6244054	0.14
7896	523613	6243985	0.13
WR13	522902	6243801	0.12
WR20	523770	6244049	0.12
7819	522834	6243688	0.115
WR29	521846	6243556	0.11
7825	522743	6243464	0.167
7753	523865	6243911	0.155

Appendix 2: West Wyalong Project drillhole locations and gold results

Hole ID	Hole Type	East MGA55	North MGA55	RL	Azimuth	Dip	Depth	Company	Date Drilled	Significant Gold Intersection Summary
APR001	RC	522732	6244098	800	290	-60	60	Golden Cross Operations	2017	1m @ 0.71 g/t Au from 31m
APR002	RC	522721	6244081	800	290	-60	60	Golden Cross Operations	2007	1m @ 4.79 g/t Au from 37m
AWGC001	RC	522981	6243964	800	0	-90	533	Argent Minerals	2009	4m @ 11.45 g/t Au from 60m incl. 1m @ 43.1 g/t Au from 60m
AWGC002	RC	522950	6243990	800	135	-60	100	Argent Minerals	2009	20m @ 0.66 g/t Au from 20m incl. 2m @ 4.29 g/t Au from 36m, 6m @ 1.87 g/t Au from 57m incl. 1m @ 4.18 g/t Au from 57m
AWGC003	RC	523007	6243990	800	225	-60	100	Argent Minerals	2009	2m @ 2.05 g/t Au from 68m
RAB034	RC	523113	6245035	800	0	-90	78	Geopeko/Lachlan	2009	3m @ 0.4 g/t Au from 75m at EOH
RCNG105	RC	529040	6235767	800	61.5	-60	150	Newcrest Mining	2000	14m @ 0.43 g/t Au from 48m including 2m @ 1.71 g/t Au from 60m
RCPB14	RC	526433	6237805	800	0	-90	72	Paragon	1998	12m @ 0.22 g/t Au from 45m
RCPB15	RC	526493	6237885	800	0	-90	75	Paragon	1998	15m @ 0.45 g/t Au from 54m
RCPB18	RC	528113	6234385	800	0	-90	99	Paragon	1998	6m @ 0.25 g/t Au from 78m
WWAC173	Aircore	522285	6244661	800	0	-90	45	Golden Cross Operations	1997	12m @ 0.1 g/t Au from 24m
WWAC180	Aircore	522046	6243906	800	0	-90	30	Golden Cross Operations	1997	4m @ 0.45 g/t Au from 21m
WWAC182	Aircore	521831	6243535	800	0	-90	42	Golden Cross Operations	1997	3m @ 0.2 g/t Au from 33m
WWAC187	Aircore	521894	6244351	800	0	-90	27	Golden Cross Operations	1997	3m @ 0.17 g/t Au from 18m
WWAC210	Aircore	522775	6242137	800	0	-90	24	Golden Cross Operations	1997	3m @ 0.23 g/t Au from 21m at EOH
WWAC249	Aircore	522381	6244707	800	315	-55	66	Golden Cross Operations	1999	3m @ 0.35 g/t Au from 0m, 6m @ 0.26 g/t Au from 20m
WWAC250	Aircore	522403	6244686	800	315	-55	58	Golden Cross Operations	1999	26m @ 0.33 g/t Au from 16m incl. 4m @ 0.69 g/t Au from 20m
WWAC251	Aircore	522424	6244666	800	315	-55	63	Golden Cross Operations	1999	24m @ 0.18 g/t Au from 18m
WWAC252	Aircore	522359	6244727	800	315	-55	68	Golden Cross Operations	1999	2m @ 2.16 g/t Au from 8m
WWAC253	Aircore	522475	6244762	800	315	-55	71	Golden Cross Operations	1999	10m @ 0.29 g/t Au from 28m
WWRB014	Aircore	522377	6244717	800	315	-60	15	Golden Cross Operations	1999	6m @ 0.21 g/t Au from 0m
WWRB015	Aircore	522386	6244709	800	315	-60	18	Golden Cross Operations	1999	6m @ 0.62 g/t Au from 0m
WWRB016	Aircore	522395	6244700	800	315	-60	15	Golden Cross Operations	1999	6m @ 0.20 g/t Au from 0m
WWRB017	Aircore	522404	6244692	800	315	-60	19.5	Golden Cross Operations	1999	6m @ 0.16 g/t Au from 0m, 1m @ 2.16m from 18m at EOH
WWRB018	Aircore	522413	6244683	800	315	-60	15	Golden Cross Operations	1999	3m @ 0.24 g/t Au from 0m

Hole ID	Hole Type	East		North		RL	Azimuth	Dip	Depth	Company	Date Drilled	Significant Gold Intersection Summary
		MGA55	MGA55									
WWRB019	Aircore	522422	6244674	800	315	-60	21	Golden Cross Operations	1999	3m @ 0.31 g/t Au from 18m at EOH		
WWRB006	Aircore	522317	6244636	800	315	-60	15	Golden Cross Operations	1999	3m @ 0.39 g/t Au from 12m at EOH		
AWGC004	RC	522866	6243835	800	120	-70	82	Argent Minerals	2011	4m @ 0.39 g/t Au from 62m		
AWGC011	RC	522859	6243899	800	120	-60	100	Argent Minerals	2011	4m @ 4.06 g/t Au from 78m incl. 2m @ 7.13 g/t Au from 80m		

Appendix 3: West Wyalong Project drillhole locations and copper-gold results

Hole ID	Hole Type	East MGA55	North MGA55	RL	Azimuth	Dip	Depth	Company	Significant Cu-Au Intersection Summary
ACDNG026	Diamond	528613	6239635	800	271	-60	202.39	Newcrest	74-186 several 1m zones ~0.1% Cu
ACDNG027	Diamond	528813	6239635	800	271	-60	193.6	Newcrest	122-153m several 1m zones 0.1% Cu
ACDNG028	Diamond	528433	6239633	800	271	-60	164.39	Newcrest	4m @ 1.23 g/t Au from 56m, 24m @ 0.14% Cu from 60m, 4m @ 0.13% Cu from 119m,
ACDNG029	Diamond	528513	6239335	800	271	-60	190.5	Newcrest	46m @ 0.08% Cu 0.16g/t Au,
ACDNG031	Diamond	528313	6239335	800	271	-60	166.6	Newcrest	1m @ 0.37% Cu from 138m, 2m @ 0.38% from 162m near EOH
ACDNG032	Diamond	528849	6235897	800	52	-60	193.1	Newcrest	40-104 several 1-2m zones ~0.1% - 0.3% Cu, 31m @ 0.39% Cu, 0.22 g/t Au from 117m incl. 12m @ 0.59% Cu 0.4g/t Au from 118m
ACDNG039	Diamond	528763	6235832	800	56.5	-62	402.75	Newcrest	14m @ 0.21% Cu from 65m, 91m @ 0.19% Cu 0.09g/t Au from 206m incl. 1m @ 1.09% Cu 0.56 g/t Au from 277m
ACNG006	Diamond	528413	6237675	800	241.5	-60	80.9	Newcrest	16m @ 0.15% Cu from 38m
ACNG015	Diamond	528343	6238565	800	236.5	-60	77.5	Newcrest	1m @ 0.12% Cu from 58m, 1m @ 0.11% from 73m near EOH
ACNG018	Diamond	527733	6239635	800	271	-60	115.59	Newcrest	13m @ 0.16% Cu from 52m
ACNG033	Diamond	528583	6236175	800	241.5	-60	89.69	Newcrest	2m @ 0.13% Cu 0.21g/t Au from 48m
ACNG034	Diamond	528674	6236367	800	241.5	-60	58.4	Newcrest	1.4m @ 0.11% Cu from 57m at EOH
ACNG049	Diamond	527013	6240305	800	0	-90	113.6	Newcrest	30m @ 0.1% Zn from 50m
ACNG051	Diamond	526673	6240345	800	0	-90	73.3	Newcrest	2m @ 0.24% Cu from 70m near EOH
ACNG075	Diamond	526493	6242645	800	0	-90	119.8	Newcrest	2m @ 0.16% Cu from 88m
ACNG079	Diamond	527213	6242665	800	0	-90	109	Newcrest	2m @ 0.14% Cu from 48m
AWN001	Diamond	528360	6239500	800	280	-70	401.8	Argent	12m @ 0.1% Cu from 85.8m, 1m @ 3.27% Cu from 311.7
AWT001	Diamond	526690	6241470	800	290	-70	351.6	Argent	95m - 109m three 1m @ 0.1% - 0.3% Cu, 4m @ 0.23% Cu from 223.6m,
AWT002	Diamond	526720	6241000	800	280	-70	374.5	Argent	24.1m @ 0.25% Cu 0.11g/t Au from 161.4 including 4m @ 0.6% Cu 0.27 g/t Au, 7.4m @ 0.14% Cu from 202.4m, 0.3m @ 0.32% Mo from 210.9m
AWT003	Diamond	526850	6240500	800	280	-70	449.8	Argent	3.8m @ 0.18% Cu from 253m
PB05	Diamond	528853	6235935	800	253	-60	81	BP	44m @ 0.29% Cu, 0.11 g/t Au from 46m
PB06	Diamond	528753	6235900	800	253	-60	81	BP	6m @ 0.15% Cu from 26m
RABT069	Diamond	528433	6239335	800	0	-90	99	Geopeko\Thor	3m @ 0.15% Cu from 96m at EOH
RABT072	Diamond	528533	6239535	800	0	-90	81	Geopeko\Thor	1m @ 0.1% Cu from 80m at EOH
RABT081	Diamond	528533	6239635	800	0	-90	95	Geopeko\Thor	8m @ 0.51% Cu from 87m at EOH

Hole ID	Hole Type	East MGA55	North MGA55	RL	Azimuth	Dip	Depth	Company	Significant Cu-Au Intersection Summary
RABT086	Diamond	528833	6239635	800	0	-90	85	Geopeko\Thor	1m @ 0.12% Cu from 85m at EOH
RABT089	Diamond	528433	6239735	800	0	-90	93	Geopeko\Thor	3m @ 0.15% Cu from 90m at EOH
RCH2252/3-39	Diamond	528223	6239435	800	0	-90	77.5	BHP\Geopeko	6m @ 0.14% Cu from 51m
RCNG004	RC	528258	6237595	800	241.5	-60	138	Newcrest	1m @ 0.19% Cu from 126m near EOH
RCNG104	RC	528952	6235725	800	61.5	-60	200	Newcrest	2m @ 0.12% Cu from 146m
RCNG106	RC	529120	6235811	800	61.5	-60	200	Newcrest	2m @ 0.33% Cu from 194m near EOH
RCNG107	RC	528908	6236157	800	61.5	-60	187	Newcrest	2m @ 0.16% Cu from 168m
RCNG108	RC	528764	6236090	800	61.5	-65	131	Newcrest	2m @ 0.13% Cu from 70m

JORC Code, 2012 Edition – Table 1 report
Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<p><i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i></p> <p><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i></p> <p><i>Aspects of the determination of mineralisation that are Material to the Public Report.</i></p> <p><i>In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.</i></p>	<p><u>Rock Chip Sampling</u></p> <p>Historically, a total of 83 rock chip samples has been collected within EL8430.</p> <p>Rock chip samples representative of mined mullock dumps and some outcrops representing mineralised and non-mineralised rocks. All rock chip samples weight varies from 1 kg to 2 kg based on various outcrops.</p> <p>Aqua Regia digest method was used to analyse for gold. All samples were collected by geologists on site</p> <p><u>Drilling</u></p> <p>Aircore, RC and Diamond were completed totalling 7,622.8m. Sample type was drilling cutting and core from AC/RC and diamond drilling, sampled between 1m in the barren zones and between 0.8 to 1 metre within the ore zones. Every sample weighted between 1 and 3 kgs.</p> <p>Industry standard practices will be used to ensure sample representation. ComLab, BPMA Laboratories in Perth applied QA-QC for sample preparation and appropriate instrument calibration.</p> <p>Individual samples were collected into calico bags for analysis.</p>

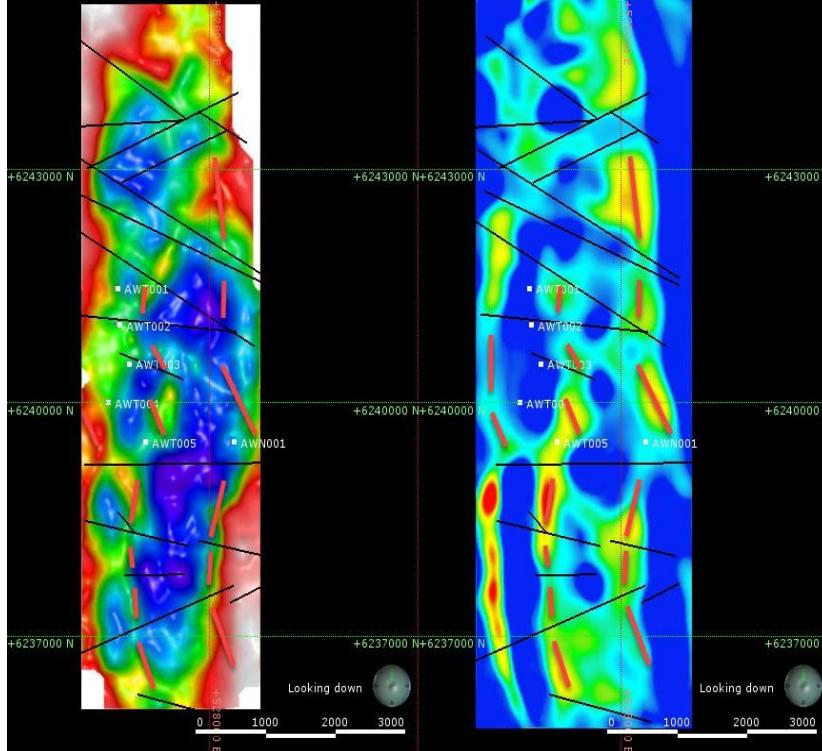
Criteria	JORC Code explanation	Commentary
		<p>Some duplicates were submitted to ensure results are repeatable and accurate. Laboratory comparison checks will also be completed. With no statistically significant lab errors or biasing shown at this stage.</p> <p>Intervals were geologically logged by geologist currently on the drilling programme.</p> <p>Drillholes are sampled based on observed mineralisation or intensity of alteration. Most of the diamond drilling used HQ ½ and NQ ½ core were used for sample submittal. Samples were generally constrained to >0.6 m or <1.4 m interval lengths with an average sample length of 1 m.</p> <p>Argent Minerals Ltd drillholes are sampled based on observed mineralisation or intensity of alteration. Six holes have been drilled. PQ ¼ core, HQ ½ and NQ ½ core were used for sample submittal. Samples were generally constrained to >0.6 m or <1.4 m interval lengths with an average sample length of 1 m. A minimal amount of samples are taken with interval lengths <0.6 m due to rock condition or stratigraphic constraints.</p> <p>Samples completed is appropriate for early-stage exploration.</p>
Drilling techniques	<p><i>Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i></p>	<p>RC drilling was completed by standard RC Drilling techniques. The main rig used was a Schramm drill rig by BP Minerals Australia Pty Ltd.</p> <p>Drill samples are homogenised by riffle splitting prior to sampling and a 1-3kg split sample is submitted for assay only.</p> <p>Diamond drilling utilised PQ collars, HQ drilling to Base of Oxidation (BOO) and NQ to depth. The drill string was configured with a triple tube 3 m barrel and wireline/overshot setup.</p>
Drill sample recovery	<p><i>Method of recording and assessing core and chip sample recoveries and results assessed.</i></p> <p><i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i></p> <p><i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i></p>	<p>All metre intervals were logged, and sample recoveries were estimated by geologist on site based on bag volume estimation and recorded as a percentage.</p> <p>Sample recoveries were classified as satisfactory, and the volume of sample was considered to represent a good composite sample overall.</p> <p>Not all samples were noted as dry, moist or wet in the geological logging sheets.</p> <p>Recovery is recorded by the geologist or field geotechnician. Triple tube is permanently being employed to maintain core integrity</p>

Criteria	JORC Code explanation	Commentary
Logging	<p><i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i></p> <p><i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i></p> <p><i>The total length and percentage of the relevant intersections logged.</i></p>	<p><u>Rock Chip</u></p> <p>All rock chip samples were logged for a combination of geological and geotechnical attributes in their entirety including as appropriate major & minor lithologies, alteration, vein minerals, sulphide type and percentage.</p> <p><u>Drilling</u></p> <p>All drilling is qualitatively and quantitatively logged for a combination of geological and geotechnical attributes in their entirety including as appropriate major & minor lithologies, alteration, vein minerals, vein percentage, sulphide type and percentage, colour, weathering, hardness, grain size.</p> <p>All RC holes were geological logged from the start to the end of hole. All field descriptions are qualitative in nature.</p> <p>Argent's geological logging is conducted to a high standard via graphic and digital logging noting lithology, mineralisation, alteration and structure with associated degrees of intensity. Logging is undertaken using both qualitative and quantitative methods accompanied with wet and dry core photography, and sampling for type section lithogeochemistry. Core was oriented when recovered and will be logged in full.</p>
Sub-sampling techniques and sample preparation	<p><i>If core, whether cut or sawn and whether quarter, half or all core taken.</i></p> <p><i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i></p> <p><i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i></p> <p><i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i></p> <p><i>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</i></p> <p><i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i></p>	<p><u>Rock Chip</u></p> <p>The rock chip samples were collected from outcrop in the field.</p> <p>No field duplicates for rock chip samples were collected during this sampling exercise and no sub-sampling is needed for compositing.</p> <p><u>Drilling</u></p> <p>All holes were sampled and split every 1 metre using a cone splitter to produce a sample between 1 and 3 kgs sub-sample for submission to ALS Labs in Brisbane.</p> <p>All samples submitted to ALS Labs were dried, crushed and pulverised until sample was classified as homogeneous.</p> <p>Approx 7% of submitted samples are in the form of standards, blanks, and duplicates and will be submitted once the drilling programme has been completed.</p> <p>The sample sizes are appropriate to the grain size of the material been sampled.</p>

Criteria	JORC Code explanation	Commentary
		<p>Argent's drillholes were sampled on observed mineralisation or intensity of alteration. PQ ¼ core, HQ ½ core and NQ ½ core was used for sample submittal. Samples were constrained to >0.6 m or <1.4 m interval lengths with an average sample length of 1 m. Assay and preparation will be carried out by ALS Global Orange and ALS Global Brisbane. 2-3 kg samples were crushed using a jaw crusher, riffle split, and pulverized to produce a 250 g sample for various analytical methods.</p> <p>The Project areas is currently classified as early stage of exploration, and no Mineral Resource estimation is applicable.</p>
Quality of assay data and laboratory tests	<p><i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i></p> <p><i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i></p> <p><i>Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.</i></p>	<p>Geochemical Analysis of samples conducted by BPMA laboratory in Perth</p> <p>Elements tested for include Au (aqua regia digest) and (AAS-ICP) for Ag, Al, As, Ba, CaO%, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe%, Ga, Gd, Ge, Hf, Ho, In, K2O%, La, Li, Lu, MgO%, Mn, Mo, Na2O%, Nb, Nd, Ni, P2O%, Pb, Sr, , TiO2%, Zn, Zr. Detection limits for the various elements between 0.005 to 0.1.</p> <p>Argent samples were digested with a 4-acid total digest (hydrochloric, perchloric, nitric and hydrofluoric acids). Samples were assayed using ICP-AES for: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn, Zr. Samples over detection limit will be re-assayed using 4-acid digest with ICP-AES finish. Au will be quantified using a 30g charge with fire assay and AAS finish. Any over-limit samples will be assayed via dilution.</p> <p>Acceptable levels of accuracy for all data referenced in this ASX announcement have been achieved given the purpose of the analysis.</p>
Verification of sampling and assaying	<p><i>The verification of significant intersections by either independent or alternative company personnel.</i></p> <p><i>The use of twinned holes.</i></p> <p><i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i></p> <p><i>Discuss any adjustment to assay data.</i></p>	<p>Rock chip samples areas were documented in the field by qualified geologist with photos taken from each site.</p> <p>All samples were collected by GPS and validated through aerial photography.</p> <p>All field data was collected then transferred into a computer database.</p> <p>Argent and ALS employ independent QAQC assay checks. Argent uses coarse crush, fine crush and pulp duplicates, blanks and 3 types of CRM's inserted at a ratio of 1:25. Alternative company staff have verified the significant results that are listed in this report.</p> <p>No Twinned Holes were used</p> <p>All drillhole information is stored graphically and digitally in MS excel and MS access formats.</p> <p>No adjustments have been made to assay data.</p> <p>Argent and ALS Global employ independent QAQC assay checks. Argent uses coarse crush, fine crush and pulp duplicates, blanks and 2 types of CRM's inserted at a ratio of 1:10.</p> <p>All drillhole information is stored graphically and digitally in excel format.</p> <p>Assay results span low-level, high-level and ore-grade amounts which have been reported in a homogenised format.</p>
Location of data points	<i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i>	<p>Sample positions were recorded by differential GPS (0.1m expected accuracy) which is suitable for this stage of exploration.</p>

Criteria	JORC Code explanation	Commentary
	<p><i>Specification of the grid system used.</i></p> <p><i>Quality and adequacy of topographic control.</i></p>	<p>All data used in this report are in:</p> <p>Datum: Geodetic Datum of Australia 94 (GDA94)</p> <p>Projection: Map Grid of Australia (MGA)</p> <p>Zone: Zone 55</p> <p>Topographic control was gained using government DTM data with handheld GPS check.</p>
Data spacing and distribution	<p><i>Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.</i></p>	<p>No Mineral Resource is being considered in this report.</p> <p>Rock Chip data spacing and distribution was dependant on the identification of mineralisation observed in outcrops and historical mullock dump samples. This was not a systematic rock chip sampling program based on a grid.</p> <p>The locations of the samples are provided in Appendix 1 and illustrated in Figure 3.</p> <p>There is not sufficient data to determine any economic parameters or mineral resources.</p> <p>Drillhole data spacing is listed in a text within the body of the report and within Appendix 2 and 3 and illustrated in Figures 3, 4 and 5.</p> <p>There are not enough historic drill holes in the area, thus spacing, and distribution is not considered sufficient to establish geological and grade continuity appropriate to be added to the creation of a JORC 2012 Mineral Resource at this stage.</p>
Orientation of data in relation to geological structure	<p><i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i></p> <p><i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i></p>	<p>Rock Chip sampling has been conducted in selective manner targeting precious mineralisation from outcrops. Based on the early stage of exploration, the surface grab sampling across the mineralisation over the quartz veins, and slates from the Gidginbung Volcanics achieves an unbaises sampling of possible structures.</p> <p>Samples were taken with consideration of stratigraphy and alteration; samples do not straddle geological or stratigraphic boundaries. The immediate local geological sequence and foliation is steeply westerly dipping.</p> <p>Drillholes were targeted to intersect geology on mildly oblique sections to increase intercept potential and also to test the true vertical depth of the various mineralised lens.</p> <p>The relationship between drilling orientation and mineralisation orientation is not considered to have introduce any material sampling bias during the drilling program.</p>
Sample security	<p><i>The measures taken to ensure sample security.</i></p>	<p>The historical drilling reports have no mention of any sample security.</p> <p>Argent's diamond program, the sub-samples were stored on site prior to being transported to the laboratory for analyses. Chain of custody involved graphic and digital sign off sheets onsite, sample transfer protocols onsite, delivery to laboratories by Argent Minerals staff with receipts received from the laboratory.</p> <p>Sample pulps are currently stored at the laboratory and will be returned to the Company and stored in a secure location.</p> <p>Chain of custody involves graphic and digital sign off sheets onsite, sample transfer protocols onsite, delivery to ALS Global Orange by Argent staff, and receipt by assay laboratory</p>

Criteria	JORC Code explanation	Commentary
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	No audits or reviews have been undertaken.


Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<p><i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i></p> <p><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i></p>	<p>The West Wyalong Project (exploration licence EL8430, NSW) is a joint venture between Argent Minerals Limited (79.46% interest) and Golden Cross Operations Pty Ltd (20.54% interest). Golden Cross Operations Pty Ltd is a wholly owned subsidiary of Golden Cross Resources Limited.</p> <p>In addition to the standard government royalties for the relevant minerals, a net smelter return (NSR) royalty of 2.5% is payable to Royal Gold, Inc.</p> <p>EL5195 and EL8001 were consolidated into a single tenement EL8430 effective 20 April 2016 and registered under the name Argent Minerals Limited. EL8430 is adjacent to the West Wyalong township and occupies western lease lands which have historically been employed mostly for crops growth and partly for pastoral usage. Heritage items have not been identified on the property.</p> <p>EL8430 was granted for three terms to 20 April 2028. There are no other material issues affecting the tenements.</p> <p>All granted tenure is in good standing and there are no impediments to operating in the area.</p>
Exploration done by other parties	<i>Acknowledgment and appraisal of exploration by other parties.</i>	<p>The West Wyalong project has a long history of exploration with a strong focus on the Wyalong Goldfield. The Wyalong Goldfield was discovered in 1893 and production peaked in 1897 with 45,000 ounces. Mining ceased in 1920 with a reported total production of 445,700 ounces from 340,000 tonnes (average grade 1.31 oz/t or 40 g/t Au). Post 1920, systematic exploration only commenced in 1981 when Mineral Management and Securities Ltd held EL 1658 over the Wyalong Goldfield and surrounding area (including part of the previous tenement EL 8001) until its relinquishment in January 1989.</p> <p>Previous exploration work by different mineral exploration companies is summarised by historical tenements as follow:</p> <ul style="list-style-type: none"> • EL 2179 Seltrust/Paragon Gold (1984-1986); • EL 2246 Lachlan Resources (1985 – 1988); • EL 3620 North Ltd/Gold Mines of Australia/Cyprus (1990-1998); • EL 4533 CRA (1993-1996); • EL 6515 Golden Cross Resources (1997-2000); and • EL 5915 Golden Cross Operations/Newcrest/MIM Exploration (2000-2006). • Golden Cross Operation on EL4615 over the period 1995 to 2000;

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> During 1998 to 2000, exploration work carried out by Newcrest Operations under a joint venture agreement with Golden Cross Operations in the Narragudgil (south-eastern portion) area - MIMEX withdrew its interest in the joint venture in June 2003. <p>Reviews by Argent Minerals of past exploration including drilling, surface geochemistry and geophysical surveys highlighted two prospects: Narragudgil and Yiddah North Prospects, both directed towards porphyry style base metals (Cu-Au) in the Narragudgil Volcanics. These prospects are located in the south-western portion of the EL8430 tenement area. A wide zone (400m) of principally propylitic alteration was identified during the drilling, extending in a north westerly direction for around 3km through the licence area.</p>
Geology	<i>Deposit type, geological setting, and style of mineralisation.</i>	The Argent Minerals exploration strategy at West Wyalong primarily focuses on the targeting of porphyry style Cu-Au-Mo systems hosted in Ordovician arc rocks, as well as orogenic / structurally controlled quartz vein hosted gold deposits. The occurrences of major epithermal (Cowal), porphyry (Marsden, Yiddah North and Gidginbung) and intrusion related (Hobbs, Adelong) deposits provide encouragement that large intrusion/volcanic-related hydrothermal systems may exist in this part of the Lachlan Orogen. This, in addition to the discoveries at Cadia, near Orange, and Northparkes, near Parkes, shows that Ordovician age magmatic arc complexes in New South Wales are highly prospective for Cu-Au porphyries and associated epithermal deposits
Drill hole Information	<p><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i></p> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level –</i> <i>elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <p><i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i></p>	<p>Rock chip locations and assay results are presented in Appendix 1 and Figure 3.</p> <p>The drill hole information has been inserted and tabulated within the document for the drill holes reported with drill assay results. These are presented in Appendix 2 & 3 and illustrated in Figures 3 & 5.</p> <p>Easting and Northing coordinates are all referenced to Geodetic Datum of Australia 94 (GDA94), Map Grid of Australia (MGA) projection, Zone 55.</p>
Data aggregation methods	<i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations</i>	No averaging or aggregating of rock chip results was undertaken. All individual results have been reported.

Criteria	JORC Code explanation	Commentary
	<p>(e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.</p> <p>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</p> <p>The assumptions used for any reporting of metal equivalent values should be clearly stated.</p>	
Relationship between mineralisation widths and intercept lengths	<p>These relationships are particularly important in the reporting of Exploration Results.</p> <p>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</p> <p>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').</p>	All reported rock chip and drill assay values are not true width as this is considered grass roots exploration. The nature and dip of the mineralisation are still being evaluated and is currently unknown.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figures 3 to 5 and Appendix 1, 2 and 3 have been presented within the announcement outlining locations of rock chip samples and significant drilled intersections sites.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All Exploration Results are reported in Appendix 1 to 3 of the announcement contains significant intersections. All assays result for significant economic elements for samples are included in Appendix 1 to 3 of the announcement. The reporting balances is considered as early exploration results.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The gravity survey consisted of 2,200 new stations on a 100 m spaced grid and measured the precision gravity signature over an area of 9.0 km x 2.5 km. The data produced was combined with high resolution airborne magnetic data and IP data to produce high resolution 3D inversion models of each data set. Gravity base stations were established with Leica GX1230 differential GNSS and monitored by a Scintrex CG-5 autograv meter. Coordinates of the base station were established using three days of static GNSS data recorded at 5 second intervals connected to the Australian based International GPS Service Gravity readings were acquired using a Scintrex CG-5 autograv meter which took two observations per point at 20-second stacking time. Interpretation of airborne magnetic and radiometric images with 10m x 10m cell size produced with by-cubic spline gridding method with bilinear interpolation. The gravity survey was completed at West Wyalong this year to refine existing target zones and generate new targets. Gravity low or high features have specific magnetic responses typically associated with them as a result of mineral

Criteria	JORC Code explanation	Commentary
		<p>association. The variable magnetic responses previously identified have now been refined for more efficient targeting. Six new drill areas have been generated and these will be prioritised ahead of future drilling. Targets will be prioritised to focus the drill program on preferred targets within the most compelling areas of interest. The Company is investigating further options to modernise systems and facilitate timely data-capture during real-time exploration.</p> <p>Total Bouguer (TB) Gravity image (left) and Total Magnetic Intensity (TMI) image (right) with interpreted fault lines (black) and TMI trend lines (red)</p>

Criteria	JORC Code explanation	Commentary
Further work	<p><i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i></p> <p><i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i></p>	<p>Current exploration programmes are been designed for the purposes of surface geochemistry and drilling</p>