

27 August 2021

World Class Rubidium Potential at Niobe

- Aldoro defines an initial Exploration Target over part of the Niobe Pegmatite 1
- The Niobe Tantalum prospect has been re-evaluated for Rubidium potential with historical Rubidium oxide (Rb₂O) up to 1.09% from mid-1980's RC drill holes
- The majority of the mapped Pegmatite 1 remains untested for Rubidium
- Drilling at the Niobe Project to commence in late September and will also target the Lithium potential of the mapped pegmatites.

Aldoro is pleased to announce that it has defined an initial Exploration Target of approximately 33,000-150 ,000 tonnes at grades ranging 696-1457ppm Rubidium Oxide (Rb_2O) over an area bound by 80m by 65m of detailed drilling. The area represents less than half the mapped section of the Niobe pegmatite (Pegmatite No.1). The potential quantity and grade of the Exploration Target is conceptual in nature and therefore is an approximation. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The Exploration Target has been prepared and reported in accordance with the 2012 edition of the JORC Code.

Figure 1: Location Map showing the location of the Exploration Target, mapped pegmatites, and proposed areas for drilling. Also shown are the few rock samples with Rb analyses available.

The results are based on historical (1984-1986) drilling by Pancontinental Mining Limited from 31 close interval (top to tail) holes, ~10m spacing East-West and ~15m spacing north-south over an area of 80m (E-W) by 65m (N-S). RC hole depths ranged from 13 to 48m (average 29m) with 26 inclined holes at 60-70° at azimuths of 180° (south) and 5 vertical holes.

Down hole sampling was conducted at 1m intervals with assays available for the pegmatite intervals and contact zones, resulting in 809 samples. Sub-samples were analysed for the lithium suite (Li, Rb, Cs, Nb, Ta, Sn, K & Na) by combined XRF and total acid digest and AAS finish.

Drilling indicated a shallow dipping pegmatite northly dipping sheet that plunges to the northwest, flares at surface and gently tappers with depth and in drill profile ranges from 25 to 35m in true thickness, but tappers off to the NE (strike). The pegmatite is zoned with a wall zone, intermediate zone and quartz rich core. The inclined quartz core is also zoned towards the base and most of the mineralisation occurs in the intermediate zone contact zone with the lithium rich zinnwaldite mineral dominate along the lower zone and is associated the enriched rubidium.

Apart from the Niobe pit area, where trial mining of tantalum was conducted, and 9 holes reconnaissance holes into Pegmatite 2, the pegmatite field with tenement P59/2173 has not been tested for Rubidium, Lithium and Caesium.

Tantalum was mined in 1996 with 20t of Tantalum heavy mineral concentrate produced onsite from a small shallow pit with the tailings left onsite, the Rubidium appears to be in the micas pertaining to the Zinnwaldite. The drill geochemical assays show that there is no association between Ta and Li/Rb/Cs so it is implied that the majority of the Exploration Target remains onsite.

Aldoro chairman, Mr Joshua Letcher notes to commercial potential of the historical grades and quotes Dr Minlu Fu:

"based on the News of the Mining Association of Guangdong Province of China, a major Rubidium deposit called the Tiantangshan Rb deposit, was discovered in Guangdong province in 2019. It was reported that the Tiantangshan Rubidium deposit with the resources of Rb_2O over 100,000 tonnes at the average grade 0.109% Rb_2O , is the biggest Rb deposit in the world. On 8 May 2019, the Guangdong Provincial Government made an announcement saying that, as the project will be very profitable, the Provincial Government will invest multibillion RMB to exploit this Rb project in the next five years.

It seems that the potential resources of the Niobe Rb project of Aldoro Resources Limited may be in the same order with the Tiantongshan Rb deposit with analyses of $Rb_2O>1.5\%$ and is associated with other valuable elements, such as Lithium, Caesium and Tantalum "

Forward Plan

The forward programme involves expanding the Exploration Target area encompassing the mapped pegmatite on the western side of Niobe (Pegmatite No.1), the high interest Rb bearing sections of Niobe East (Pegmatite No.2), the Breakaway pegmatites and Niobe South Pegmatites (figure 1). Pending the approval of a Programme of Works (POW) it is anticipated that an RC programme will commence at the end of September.

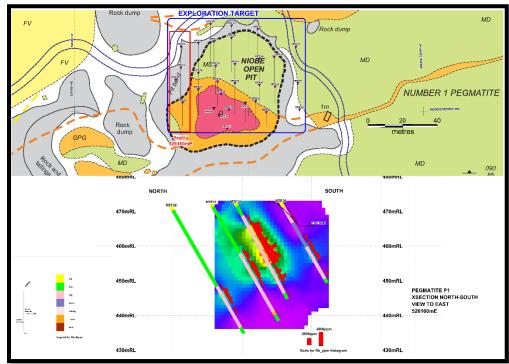


Figure 2: Westerly section (526160mE) across the Exploration Target showing the down hole Rubidium assays in both histogram and thematic image as modelled for the Exploration Target. Key Col- Colluvium, Gab-Gabbro, Peg - Pegmatite, Qcore – quartz core, NaPeg – Sodium Pegmatite, Trans – Transitional lithology, VQZ – massive vein quartz

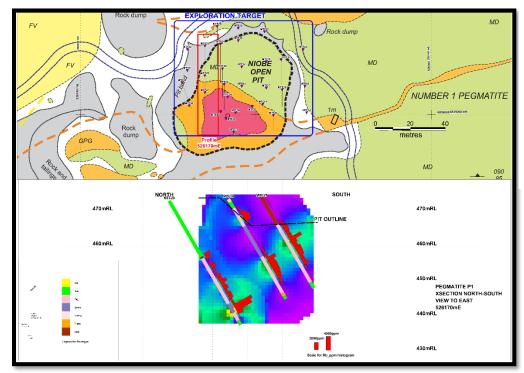


Figure 3: Section 526170mE across the Exploration Target showing the down hole Rubidium assays in both histogram and thematic image as modelled for the Exploration Target

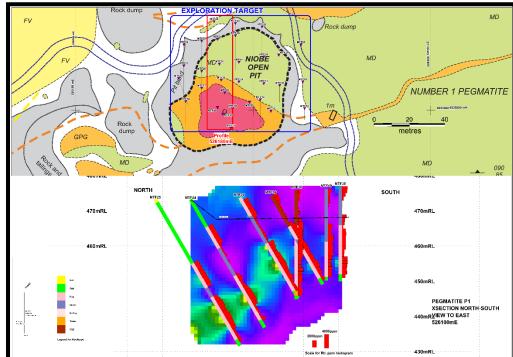


Figure 4: Section 526180mE across the Exploration Target showing the down hole Rubidium assays in both histogram and thematic image as modelled for the Exploration Target

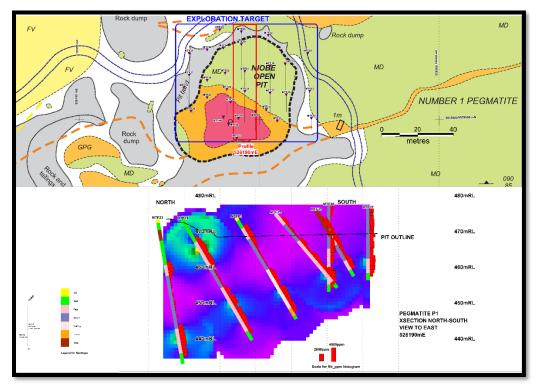


Figure 5: Section 526190mE across the Exploration Target showing the down hole Rubidium assays in both histogram and thematic image as modelled for the Exploration Target

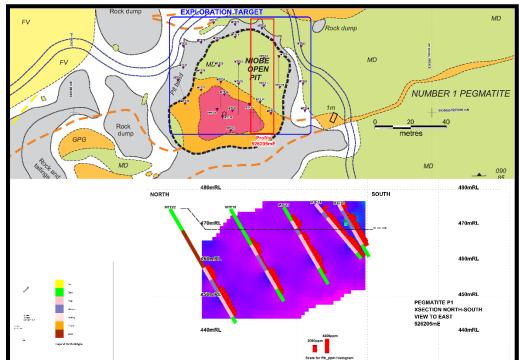


Figure 6: Section 526205mE across the Exploration Target showing the down hole Rubidium assays in both histogram and thematic image as modelled for the Exploration Target

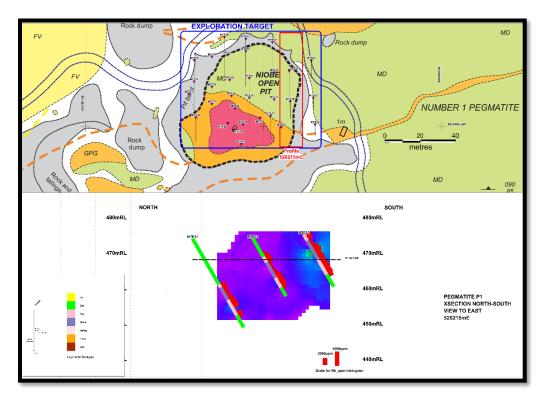


Figure 7: Section 526215mE across the Exploration Target showing the down hole Rubidium assays in both histogram and thematic image as modelled for the Exploration Target

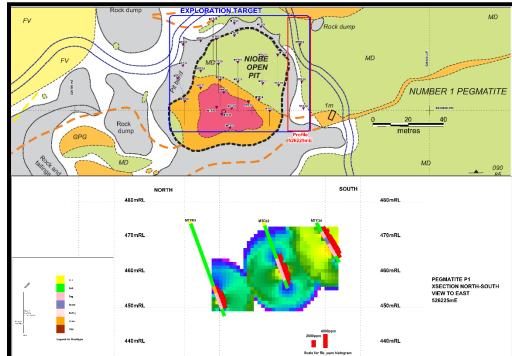


Figure 8: Section 526225mE across the Exploration Target showing the down hole Rubidium assays in both histogram and thematic image as modelled for the Exploration Target.

This Announcement has been approved for release by the Board of Aldoro Resources Ltd

About Aldoro Resources

Aldoro Resources Ltd is an ASX-listed (ASX:ARN) mineral exploration and development company. Aldoro has a collection of gold, nickel and lithium focused advanced exploration projects all located in Western Australia. The Company's flagship project is the Narndee Igneous Complex, highly prospective for Ni- Cu-PGE mineralisation. Aldoro is also currently exploring the Penny South Gold Project, which is contiguous to Ramelius Resources (ASX:RMS) Penny West Project in the Youanmi Gold Mining District, as well as Unaly Hill South (Au) and Kiabye Well (Au). The Company's other projects include the Cathedrals Belt Nickel Project, with a significant tenement holding surround St George Mining's (ASX:SGQ) Mt Alexander Project, the Leinster Nickel Project(Ni), Windimurra Igneous Complex (Ni-Cu-PGE, Li) and Ryans Find (Au, Ni-Cu-PGE).

Disclaimer

Some of the statements appearing in this announcement may be in the nature of forward-looking statements. You should be aware that such statements are only predictions and are subject to inherent risks and uncertainties. Those risks and uncertainties include factors and risks specific to the industries in which Aldoro operates and proposes to operate as well as general economic conditions, prevailing exchange rates and interest rates and conditions in the financial markets, among other things. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement. No forward-looking statement is a guarantee or representation as to future performance or any other future matters, which will be influenced by several factors and subject to various uncertainties and contingencies, many of which will be outside Aldoro's control.

Aldoro does not undertake any obligation to update publicly or release any revisions to these forward-looking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions or conclusions contained in this announcement. To the maximum extent permitted by law, none of Aldoro, its Directors, employees, advisors, or agents, nor any other person, accepts any liability for any loss arising from the use of the information contained in this announcement. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as at the date of this announcement.

This announcement is not an offer, invitation or recommendation to subscribe for, or purchase securities by Aldoro. Nor does this announcement constitute investment or financial product advice (nor tax, accounting, or legal advice) and is not intended to be used for the basis of making an investment decision. Investors should obtain their own advice before making any investment decision.

Competent Persons Statement

The information in this announcement that relates to exploration data and results derived from open file reports and information supplied by the current licence holder has been prepared in accordance with the 2012 Edition of the Australian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC). The data was reviewed and compiled by Mr Mark Mitchell, a geological consultant to Aldoro Resources Ltd. Mr Mitchell is a Registered Professional Geoscientist (No.10049) with the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Mitchell consents to the inclusion in the release of the statements based on his information in the form and context in which it appears.

Appendix 1: List of Pancontinental's drill holes used in the Exploration Target

Hole_ID	Easting	Northing	Elevation (m)	Datum	Dip	Azm	ЕОН
MTF01	526332	6935179	474	GDA94z50	-59	180	33
MTF02	526368	6935168	474	GDA94z50	-70	180	20
MTF03	526367	6935189	475	GDA94z50	-70	180	29
MTF10	526298	6935170	473	GDA94z50	-60	160	32
MTF14	526344	6935158	476	GDA94z50	-50	180	20
MTF15	526332	6935168	475	GDA94z50	-50	180	27
MTF16	526355	6935166	475	GDA94z50	-60	180	19
MTF17	526346	6935167	475	GDA94z50	-60	180	25
MTF18	526346	6935182	475	GDA94z50	-60	180	30
MTF19	526330	6935194	474	GDA94z50	-60	180	39
MTF20	526321	6935178	474	GDA94z50	-60	180	33
MTF21	526355	6935183	475	GDA94z50	-60	180	29
MTF22	526345	6935199	475	GDA94z50	-60	180	37
MTF23	526330	6935201	474	GDA94z50	-80	180	41
MTF24	526320	6935192	473	GDA94z50	-60	180	42
MTF25	526318	6935202	473	GDA94z50	-60	180	48
MTF26	526322	6935169	474	GDA94z50	-60	180	29
MTF27	526311	6935164	474	GDA94z50	-60	180	30
MTF28	526311	6935174	473	GDA94z50	-60	180	33
MTF29	526311	6935191	473	GDA94z50	-60	180	41
MTF30	526302	6935157	473	GDA94z50	-60	180	27
MTF31	526301	6935177	472	GDA94z50	-60	180	39
MTF32	526301	6935189	472	GDA94z50	-60	180	43
MTF33	526350	6935151	476	GDA94z50	-60	180	17
MTF34	526369	6935153	474	GDA94z50	-60	180	13
MTF35	526338	6935156	476	GDA94z50	-60	180	21
MTF36	526324	6935162	476	GDA94z50	-90	0	31
MTF37	526328	6935142	477	GDA94z50	-90	0	20
MTF38	526329	6935153	478	GDA94z50	-90	0	24
MTF39	526323	6935149	477	GDA94z50	-90	0	27
MTF40	526320	6935153	476	GDA94z50	-90	0	26

Appendix 2: Down Hole Intersections

Hole_ID	DN_from	DH_to	Rocktype
MTF01	0	1	Colluvium
MTF01	1	3.5	Gabbro
MTF01	3.5	7	Pegmatite
MTF01	7	17	Quartz core
MTF01	17	29.5	Sodium Pegmatite
MTF01	29.5	32	Transition zone
MTF01	32	33	Gabbro

RESOURCES	JRU		
Hole_ID	DN_from	DH_to	Rocktype
MTF02	0	1	Colluvium
MTF02	1	11	Gabbro
MTF02	11	17.6	Pegmatite
MTF02	17.6	20	Gabbro
MTF03	0	1	Colluvium
MTF03	1	20	Gabbro
MTF03	20	22	Transition zone
MTF03	22	26.8	Pegmatite
MTF03	26.8	29	Gabbro
MTF10	0		Colluvium
MTF10	1	4.3	Gabbro
MTF10	4.3	30	Pegmatite
MTF10	30	32	Gabbro
MTF14	0		Pegmatite
MTF14	3	5	Quartz core
MTF14	5	17.9	Pegmatite
MTF14	17.9	20	Gabbro
MTF15	0	4	Pegmatite
MTF15	4		Quartz core
MTF15	10	24.8	Pegmatite
MTF15	24.8	27	Gabbro
MTF16	0	6.2	Gabbro
MTF16	6.2	8	Pegmatite
MTF16	8	13	Quartz core
MTF16	13	16.1	Pegmatite
MTF16	16.1	19	Gabbro
MTF17	0	4.5	Gabbro
MTF17	4.5	7	Pegmatite
MTF17	7	9	Quartz core
MTF17	9	19.8	Pegmatite
MTF17	19.8	25	
MTF18	0	11.7	Gabbro
MTF18	11.7	15	Pegmatite
MTF18	15	20	Quartz core
MTF18	20	26	Pegmatite
MTF18	26	30	
MTF19	0	7.3	
MTF19	7.3	16	
MTF19	16	22	
MTF19	22	36.1	
MTF19	36.1	39	Gabbro
MTF20	0	6	Pegmatite
MTF20	6	15	-
MTF20	15	30.5	Pegmatite
MTF20	30.5	33	Gabbro

RESOURCES	5110		
Hole_ID	DN_from	DH_to	Rocktype
MTF21	0	15	Gabbro
MTF21	15	16	Pegmatite
MTF21	16	20	Quartz core
MTF21	20	25	Pegmatite
MTF21	25	29	Gabbro
MTF22	0	7	Gabbro
MTF22	7	18	Vein Quartz Massive
MTF22	18	19	Vein Quartz Massive
MTF22	19	23	Pegmatite
MTF22	23	27	Quartz core
MTF22	27	35	Pegmatite
MTF22	35	37	Gabbro
MTF23	0	1	Colluvium
MTF23	1	3	Gabbro
MTF23	3	6	Vein Quartz Massive
MTF23	6	12.9	Gabbro
MTF23	12.9	16	Pegmatite
MTF23	16	31	Quartz core
MTF23	31	38	Pegmatite
MTF23	38	41	Gabbro
MTF24	0	9	Gabbro
MTF24	9	16	Pegmatite
MTF24	16	25	Quartz core
MTF24	25	30	Pegmatite
MTF24	30	35	Pegmatite
MTF24	35	39.5	Pegmatite
MTF24	39.5	42	Gabbro
MTF25	0	1	Colluvium
MTF25	1	21	Gabbro
MTF25	21	29	Pegmatite
MTF25	29	32	Quartz core
MTF25	32	42	Pegmatite
MTF25	42	43	Pegmatite
MTF25	43	46	Pegmatite
MTF25	46	48	Gabbro
MTF26	0	10	Vein Quartz Massive
MTF26	10	14	Pegmatite
MTF26	14	17	Quartz core
MTF26	17	27	Pegmatite
MTF26	27	29	Gabbro
MTF27	0	9	Vein Quartz Massive
MTF27	9	16	Pegmatite
MTF27	16	19	Pegmatite
MTF27	19	28	Pegmatite
MTF27	28	30	Gabbro

RESOURCES			
Hole_ID	DN_from	DH_to	Rocktype
MTF28	0		Colluvium
MTF28	1		
MTF28	3		Pegmatite
MTF28	9	19	Quartz core
MTF28	19	31	Pegmatite
MTF28	31	32	Transition zone
MTF28	32	33	Gabbro
MTF29	0	18.5	Gabbro
MTF29	18.5	19	Vein Quartz Massive
MTF29	19	34	Pegmatite
MTF29	34	37	Quartz core
MTF29	37	39.5	Pegmatite
MTF29	39.5	41	Gabbro
MTF30	0	2	Colluvium
MTF30	2		Pegmatite
MTF30	7	15	Quartz core
MTF30	15		Pegmatite
MTF30	25.6		Gabbro
MTF31	0		Colluvium
MTF31	1		
MTF31	2		Gabbro
MTF31	16.5		Pegmatite
MTF31	29		Pegmatite
MTF31	36	37	Transition zone
MTF31	37		Gabbro
MTF32	0		Colluvium
MTF32	2		Gabbro
MTF32	27.4		Pegmatite
MTF32	36		Pegmatite
MTF32	41		Gabbro
MTF33	0	2	Pegmatite
MTF33	2		Quartz core
MTF33	8		
MTF33	13		Pegmatite Gabbro
MTF34	0		Gabbro
MTF34	3		Pegmatite
MTF34	5	7	Quartz core
MTF34	7		Pegmatite
MTF34	11	13	
MTF35	0		Vein Quartz Massive
MTF35	8		Pegmatite
MTF35	11		Quartz core
MTF35	16		Pegmatite
MTF35	19	21	Gabbro

RESOURCES			
Hole_ID	DN_from	DH_to	Rocktype
MTF36	0	10	Vein Quartz Massive
MTF36	10	14	Pegmatite
MTF36	14	21	Pegmatite
MTF36	21	27.5	Pegmatite
MTF36	27.5	30	Transition zone
MTF36	30	31	Gabbro
MTF37	0	14	Quartz core
MTF37	14	18	Pegmatite
MTF37	18	20	Gabbro
MTF38	0	12	Quartz core
MTF38	12	18	Pegmatite
MTF38	18	22	Pegmatite
MTF38	22	24	Gabbro
MTF39	0	11	Quartz core
MTF39	11	19	Pegmatite
MTF39	19	21	Pegmatite
MTF39	21	25	Pegmatite
MTF39	25	27	Gabbro
MTF40	0	15	Quartz core
MTF40	15	25	Pegmatite
MTF40	25	26	Gabbro

Appendix 3: Down hole Geology and Assays.

Key: Col- Colluvium, Gab- Gabbro, Peg - Pegmatite, QtzCore - quartz core, NaPeg - Sodium Pegmatite, Trans - Transitional lithology, VQZ - massive vein quartz

RESOU	RCES													
Hole	From	О	Lithology	Li_ppm	Li2O_ppm	LI2O_%	Rb_ppm	Cs_ppm	Na_%	K_%	Ta_ppm	Ta2O5_ppm	Sn_ppm	Nb_ppm
MTF01	3	4	Gab/Peg	136	293	0.029	440	90	2.92	0.460	18	22	15	20
MTF01	4		Peg	61	131	0.013	480	60	4.73		55	67	25	40
MTF01	5	6	Peg	209	450	0.045	740	65	4.11	0.680	50	61	60	50
MTF01	6	7	Peg	165	355	0.036	630	55	5.25	0.650	40	49	50	50
MTF01	7	8	QtzCore	55	118	0.012	330	45	5.81	0.290	45	55	0	30
MTF01	8		QtzCore	70	151	0.015	180	100		0.130	35	43	0	7
MTF01	9		QtzCore	292	629	0.063	65	2500		0.000	15	18	0	5
MTF01	10	11	QtzCore	65	140	0.014	5	30		0.000	0	6	0	3
MTF01	11		QtzCore	79	170	0.017	6	15		0.040	0	6	0	4
MTF01	12		QtzCore	59	127	0.013	4	0		0.020	0	6	0	4
MTF01	13		QtzCore	44	95	0.009	5	15		0.010	0	6	0	3
MTF01	14		QtzCore	52	112	0.011	4	12		0.000	15	18	0	3
MTF01	15		QtzCore	50	108	0.011	3	19		0.000	0	6	0	3
MTF01	16	17	QtzCore	34	73	0.007	3	20		0.010	10	12	0	4
MTF01 MTF01	17 18		NaPeg NaPeg	33 22	71 47	0.007	55 270	15 25	1.25	0.130	3600 6100	4396 7448	18 55	200 400
MTF01	19		NaPeg	14	30	0.003	160	0	7.07	0.520	13000	15873	110	820
MTF01	20		NaPeg	17	37	0.003	150	30	7.11	0.330	5200	6349	65	300
MTF01	21	_	NaPeg	12	26	0.003	55	10	7.67	0.140	2300	2808	30	130
MTF01	22		NaPeg	7	15	0.002	12	0	7.87	0.080	1100	1343	10	50
MTF01	23		NaPeg	680	1464	0.146	1200	160	3.13		180	220	30	18
MTF01	24		NaPeg	248	534	0.053	1300	150	3.29		50	61	75	35
MTF01	25		NaPeg	107	230	0.023	720	65	5.36	1.000	140	171	90	180
MTF01	26		NaPeg	66	142	0.014	630	45	5.66		80	98	40	75
MTF01	27	28	NaPeg	39	84	0.008	180	17	6.44	0.350	60	73	13	45
MTF01	28		NaPeg	50	108	0.011	470	50		0.580	20	24	40	50
MTF01			Peg/Trans	64	138	0.014	600	50	2.76	0.990	35	43	70	80
MTF01			Trans	44	95	0.009	80	10	1.41		0	6	0	3
MTF02	10	11	Gab	273	588	0.059	310	40	3.08		10	12	25	25
MTF02	11		Peg	139	299	0.030	320	70	5.28		65	79	30	65
MTF02	12	_	Peg	86	185	0.019	55	25	2.75		60	73	0	6
MTF02 MTF02	13 14	_	Peg Peg	970 940	2088 2024	0.209	1200 1800	210 160		0.700	40	49 31	50 150	18 60
MTF02	15	_	Peg	630	1356	0.202 0.136	1100	230	1.55	1.500 0.930	25 75	92	75	70
MTF02	16	_	Peg	970	2088	0.130	1500	330	4.59		95	116	100	60
MTF02	17		Peg/Gab	286	616	0.062	400	70		0.590	35	43	30	65
MTF02	18		Peg/Gab	122	263	0.026	65	10		0.330	0	6	0	5
MTF03		_	Trans	51	110	0.011	8	0		0.030	0	6	0	4
MTF03	21		Trans	102	220	0.022	95	35	2.27	0.220	0	6	0	14
MTF03		_	Peg	377	812	0.081	990	230		0.920	260	317	110	370
MTF03	23	24	Peg	285	614	0.061	930	170	6.48	0.710	120	147	50	80
MTF03	24	25	Peg	590	1270	0.127	1400	210	3.87	1.000	140	171	140	60
MTF03	25	26	Peg	210	452	0.045	520	75	2.54	0.710	65	79	55	70
MTF03	26	27	Peg/Gab	138	297	0.030	190	30	1.18	0.430	0	6	12	7
MTF10	4	5	Peg	24	52	0.005	230	25	3.31	0.660	12	15	20	20
MTF10	5		Peg	113	243	0.024	650	110	4.05		45	55	40	20
MTF10	6		Peg	222	478	0.048	560	95		0.700	40	49	30	40
MTF10	7		Peg	620	1335	0.133		100		0.890	30	37	75	55
MTF10	8		Peg	1690	3639	0.364		220		2.200	35	43	240	90
MTF10			Peg	1490	3208	0.321	2000	220		2.050	40	49	190	80
MTF10 MTF10	10 11		Peg Peg	1660 900	3574 1938	0.357 0.194	2300 1500	220 180		2.050 1.050	45 0	55 6	210 100	80 20
MTF10			Peg	1880	4048	0.194		290		1.350	25	31	90	18
MTF10	14		Peg	1210	2605	0.403	1700	200		0.990	60	73	95	20
MTF10	15		Peg	1550	3337	0.201		250		1.050	40	49	95	18
MTF10	16		Peg	3200	6890	0.689	3700	460		1.800	13	16	130	18
MTF10	17		Peg	1670	3596	0.360	2200	240		1.400	40	49	160	50
MTF10			Peg	1990	4284	0.428	2700	270		1.700	55	67	190	45
MTF10		20	Peg	2800	6028	0.603		280		2.560	25	31	260	90
MTF10			Peg	1660	3574	0.357	2100	230		1.400	50	61	160	60
MTF10	21	22	Peg	210	452	0.045	410	55		0.410	12	15	25	12
MTF10	22		Peg	50	108	0.011	860	85		0.650	60	73	40	15
MTF10			Peg	79	170	0.017		130		1.050	50	61	100	35
MTF10			Peg	471	1014	0.101	830	100		0.730	20	24	80	40
MTF10			Peg	540	1163	0.116		200		1.950	55	67	190	110
MTF10			Peg	139	299	0.030	810	95		0.890	55	67	80	85
MTF10	27		Peg	34	73	0.007	95 65	11		0.210	45	55 73	20	60
MTF10 MTF10	28 29		Peg Peg	37 17	80 37	0.008	65 200	10 17	7.72	0.130	60 50	73 61	35 35	90 85
MTF10			Gab	35	75	0.004	180	12		0.820	0	6	13	5
MTF10	31		Gab	45	97	0.008		15		0.760	0	6	11	7
MTF13	31		Gab/Peg	250	538	0.010		60		0.720	20	24	8	24
MTF13	4		Peg	580	1249	0.125		110		0.640	20	24	34	38
MTF13	5		Peg/Gab	380	818	0.082		140		0.590	10	12	16	22
			-5		0.0	J.002		0		2.300				

RESOU		U	'AU											
	From	То	Lithology	Li_ppm	Li2O_ppm	LI2O_%	Rb_ppm	Cs_ppm	Na_%	K_%	Ta_ppm	Ta2O5_ppm	Sn_ppm	Nb_ppm
MTF13	6	_	Gab	230	495	0.050	620	100		0.540	20	24	28	
MTF13	7	_	Gab/Peg	55	118	0.012	680	50		1.110	185	226	20	
MTF13	8	_	Peg	220	474	0.047	1950	1150		5.150	17	21	18	
MTF13	9	-	Peg	590	1270	0.127	2050	160	2.40	3.300	25	31	38	
MTF13	10	_	Peg/Gab	900	1938	0.194	1750	170	2.90		25	31	46	
MTF13	11 12	_	Gab/Peg	250 420	538 904	0.054	460 670	60 220	2.05	0.690	10 5	12 6	18 10	
MTF13	13		Peg	95	205	0.020	370	30	5.30	0.730	330	403	18	
MTF13	14	_	Peg	125	269	0.027	740	50	6.20	0.090	520	635	32	
MTF13	15		Peg	65	140	0.014	340	30	5.50	0.510	30	37	20	
MTF13	16	17	Peg	32	69	0.007	210	30	6.00	0.250	25	31	16	30
MTF13	17		Peg	37	80	0.008	135	25	5.15	0.210	43	53	12	
MTF13	18		Peg	32	69	0.007	185	30	6.10		20	24	12	
MTF13	19		Peg	40	86	0.009	190	40	5.60		15	18	12	
MTF13	20 21		Peg/Gab Gab	200 280	431 603	0.043	630 370	80 190	1.96	0.920	20 20	24 24	40 14	
MTF14	2		Peg	2100	4521	0.452	1650	120	3.80	0.420	25	31	48	
MTF14	3	-	QtzCore	120	258	0.026	20	20	0.08		5	6	2	
MTF14	4	_	QtzCore	75	161	0.016	270	50	3.80	0.520	55	67	12	
MTF14	5	6	Peg	60	129	0.013	470	40	6.10	0.790	380	464	16	60
MTF14	6		Peg	50	108	0.011	520	30	6.20		350	427	32	
MTF14	7	_	Peg	60	129	0.013	280	30		0.480	960	1172	14	
MTF14	8		Peg	14	30	0.003	320	30		0.540	1100	1343	18	
MTF14 MTF14	9 10		Peg Peg	6 9	13 19	0.001	155 185	30 30	7.60	0.280	540 2000	659 2442	20 24	
MTF14	11		Peg Peg	14	30	0.002	240	30	7.15		2800	3419	35	
MTF14	12	_	Peg	14	30	0.003	65	30	0.40		190	232	12	18
MTF14	13		Peg	270	581	0.058	530	40	5.00		240	293	14	
MTF14	14	15	Peg	2200	4737	0.474	1950	160	1.98	1.000	30	37	38	22
MTF14	15		Peg	1500	3230	0.323	1750	110			55	67	85	
MTF14	16	_	Peg	650	1399	0.140	1150	130	5.00		40	49	60	
MTF14	17 18		Peg/Gab	210	452	0.045	430	40		0.580	30 5	37 6	28 2	
MTF14 MTF14	19		Gab Gab	170 110	366 237	0.037 0.024	100 110	20 30		0.460	5	6	8	
MTF15	2	_	Peg	70	151	0.015	100	40			5	6	6	
MTF15	3		Peg	100	215	0.022	115	50		0.100	5	6	6	
MTF15	4	_	QtzCore	80	172	0.017	40	30		0.040	5	6	2	
MTF15	5	6	QtzCore	100	215	0.022	6	20	0.06	0.005	5	6	2	1
MTF15	6		QtzCore	110	237	0.024	26	30			5	6	8	
MTF15	7		QtzCore	85	183	0.018	7	20			5	6	2	
MTF15 MTF15	8 9		QtzCore QtzCore	70 60	151 129	0.015	5 6	20 30		0.005	5 5	6	6	
MTF15	10		Peg	26	56	0.013	85	30		0.130	1050	1282	10	
MTF15	11		Peg	9	19	0.002	178	45		0.180	13700	16728	85	
MTF15	12		Peg	16	34	0.003	40	20		0.050	8500	10379	55	
MTF15	13	14	Peg	34	73	0.007	14	20	0.06	0.020	30	37	8	6
MTF15	14	15	Peg	40	86	0.009	16	30	0.25	0.010	45	55	2	2
MTF15		16		20	43	0.004	165	30		0.250	450		24	
MTF15		17		12	26	0.003	290	30		0.810	1050	1282	42	
MTF15 MTF15		18 19		18 9	39 19	0.004	160 55	40 30		0.240	2450 590	2991 720	24 36	
MTF15		20		3	6	0.002	48	20		0.170	2500		40	
MTF15	20	_	Peg	2	4	0.000	90	20		0.230	480	586	38	
MTF15	21		Peg	1025	2207	0.221	1625	155		0.930	140		58	
MTF15	22	_		640	1378	0.138	1500	90		1.190	40	49	90	
MTF15		24		85	183	0.018	820	80		0.620	80		55	
MTF15	24	_	Peg/Gab	28	60	0.006	70	30	_	0.130	75	92	18	_
MTF16	5	_	Gab/Dog	240	517	0.052	70 1050	20		0.330	5		20	
MTF16 MTF16	6 7		Gab/Peg Peg	990 1500	2131 3230	0.213	1050 1650	110 110		0.870	20 50	24 61	65 85	
MTF16	8		QtzCore	200	431	0.043	42	30		0.040	50		2	
MTF16			QtzCore	125	269	0.027	10	30		0.005	5		4	
MTF16			QtzCore	125	269	0.027	12	20		0.005	5		4	
MTF16	11	_	QtzCore	270	581	0.058	63	120		0.020	5		4	2
MTF16	12		QtzCore	2400	5167	0.517	1450	180		0.660	40	49	34	
MTF16	13		Peg	950	2045	0.205	1450	170		0.790	15	18	70	
MTF16 MTF16	14 15		Peg Peg	2100 850	4521 1830	0.452 0.183	1850 880	120 120		1.540 0.620	25 40	31 49	85 55	
MTF16	16	_	Peg/Gab	180	388	0.183	85	20		0.620	5		4	
MTF17	3	_	Gab	165	355	0.036	95	20		0.330	5		16	
MTF17	4	_	Gab/Peg	165	355	0.036	250	70		0.450	10	12	6	
MTF17	5		Peg	1950	4198	0.420	1650	110		1.410	80		100	
MTF17	6	_	Peg	1300	2799	0.280	1200	130		0.610	20		44	
MTF17	7		QtzCore	170	366	0.037	12	30		0.005	5		6	
MTF17	8	9	QtzCore	110	237	0.024	12	20	0.19	0.020	5	6	2	3

RESOU		U												
	From	То	Lithology	Li ppm	Li2O_ppm	LI2O %	Rb ppm	Cs ppm	Na %	K_%	Ta ppm	Ta2O5_ppm	Sn ppm	Nb ppm
MTF17	9		Peq	40	86	0.009	420	60	4.90		70	85	6	18
MTF17	10		Peg	60	129	0.013	510	80	4.20		250	305	28	65
MTF17	11	_	Peg	42	90	0.009	290	30	3.80	0.460	180	220	18	30
MTF17	12	_	Peg	65	140	0.014	58	35	0.41	0.060	0	0	3	5
MTF17	13 14		Peg	44 160	95 344	0.009	320 230	50	3.10		340 770	415 940	20 14	40 45
MTF17 MTF17	15		Peg Peg	1100	2368	0.034	1300	30 130	4.30 3.40		65	79	34	22
MTF17	16		Peg	540	1163	0.116	960	90	3.80		50	61	34	22
MTF17	17		Peg	470	1012	0.101	1650	180	2.80		45	55	100	60
MTF17	18	_	Peg	420	904	0.090	1050	130		0.780	40	49	65	65
MTF17	19	_	Peg/Gab	42	90	0.009	75	20		0.090	40	49	16	90
MTF17		_	Gab	65	140	0.014	24	20	0.43		5	6	12	10
MTF17 MTF18	21 10	22 11	Gab Gab	50 185	108 398	0.011	55 90	30 40		0.190	5 10	6 12	12 34	3 8
MTF18	11	12	Gab/Peg	180	388	0.039	160	40		0.260	5	6	10	16
MTF18	12		Peg	1250	2691	0.269	1700	120	3.70		50	61	95	70
MTF18	13	14	Peg	570	1227	0.123	630	40	6.40	0.500	25	31	26	28
MTF18	14	15	Peg	155	334	0.033	250	80		0.230	5	6	8	6
MTF18	15		QtzCore	170	366	0.037	10	20		0.005	5	6	4	2
MTF18	16	17	QtzCore	200	431	0.043	8	30			5	6	2	2
MTF18 MTF18	17 18	18 19	QtzCore QtzCore	50 85	108 183	0.011 0.018	6	20 30	0.02		5 5	6	2	2
MTF18	19	20	QtzCore	90	194	0.018	12	30	0.02		10	12	6	3
MTF18	20	_	Peg	600	1292	0.129	1275	105		2.750	1300	1587	26	63
MTF18	21	_	Peg	1450	3122	0.312	2250	180		1.010	855	1044	46	16
MTF18	22	_	Peg	210	452	0.045	980	100	2.35	0.550	15	18	32	18
MTF18	23	_	Peg	430	926	0.093	1450	140	3.10		30	37	95	65
MTF18	24		Peg	60	129	0.013	300	20		0.500	40	49	36	70
MTF18	25		Peg	36	78	0.008	195	30		0.420	25	31	24	70
MTF18 MTF18	26 27	27 28	Gab Gab	105 70	226 151	0.023	145 85	10 10	1.02	0.670	5 10	6 12	10 2	12 3
MTF19	6	7	Gab	170	366	0.013	90	30		0.440	5	6	2	6
MTF19	7	8	Gab/Peg	230	495	0.050	350	90		0.360	5	6	24	14
MTF19	8		Peg	960	2067	0.207	1100	80		0.950	25	31	60	42
MTF19	9	10	Peg	2000	4306	0.431	3500	165	2.95	3.480	28	34	108	70
MTF19	10		Peg	630	1356	0.136	1050	80		0.700	20	24	50	28
MTF19	11		Peg	125	269	0.027	370	30		0.310	35	43	16	28
MTF19	12		Peg	660	1421	0.142	1050	80		0.840	60	73	65	75
MTF19 MTF19	13 14		Peg Peg	580 95	1249 205	0.125 0.020	1200 710	90 60	2.45	0.960	60 35	73 43	65 26	120 20
MTF19	15		Peg	130	280	0.020	190	70		0.440	5	6	4	7
MTF19	16	17	QtzCore	135	291	0.029	9	30			5	6	2	2
MTF19	17	18	QtzCore	80	172	0.017	5	20	0.02		5	6	10	3
MTF19	18	19	QtzCore	90	194	0.019	8	30	0.02	0.005	10	12	4	1
MTF19	19	20	QtzCore	63	136	0.014	9	15	0.04		5	6	2	4
MTF19	20	21	QtzCore	60	129	0.013	4	20	0.01	0.005	5	6	6	2
MTF19	21	22	QtzCore	65	140	0.014	5	20	0.04		5	6	8	2
MTF19 MTF19			Peg Peg	36	78	0.010	550	30 100		0.100	11800	6 14408	10 50	310
MTF19			Peg	4	9	0.001	30	20		0.110	1700	2076	32	90
MTF19			Peg	560	1206	0.121	900	80		0.810	290	354	28	22
MTF19	26	27	Peg	670	1443	0.144		130		0.400	40	49	42	14
MTF19	27	28	Peg	730	1572	0.157	1400	90		1.230	150	183	85	80
MTF19			Peg	24	52	0.005	40	30		0.100	80	98	6	200
MTF19			Peg	60	129	0.013		85		1.140	310	379	68	85
MTF19 MTF19			Peg Peg	18 32	39 69	0.004	300 730	40 50		0.340	170 90	208 110	22 60	230 105
MTF19	32		Peg	44	95	0.007	700	60		0.790	70	85	42	90
MTF19			Peg	10	22	0.003	230	30		0.280	50	61	22	75
MTF19	34		Peg	1	2		65	20		0.240	50	61	16	36
MTF19	35		Peg/Gab	1	2	0.000	55	20		0.180	80	98	8	
MTF19		_	Gab	44	95	0.009	120	10		0.450	5	6	10	18
MTF20	1		Peg	570	1227	0.123	920	60		0.690	25	31	50	40
MTF20	2		Peg	270	581	0.058		70		0.380	25	31	18	
MTF20 MTF20	3 4		Peg Peg	330 280	710 603	0.071	540 450	140 40		0.440	15 35	18 43	14 32	46 80
MTF20	5		Peg	410	883	0.088	1050	60		0.390	35 20	24	46	
MTF20	6		QtzCore	230	495	0.050	520	50		0.280	10	12	22	8
MTF20	7		QtzCore	85	183	0.018		30		0.010	5	6	6	3
MTF20	8		QtzCore	100	215	0.022		30		0.005	5	6	6	2
MTF20	9		QtzCore	170	366	0.037	6	25		0.005	10	12	4	4
MTF20	10		QtzCore	80	172	0.017	6	20		0.005	5	6	6	2
MTF20			QtzCore	14	30	0.003		20		0.010	5	6	2	3
MTF20				55	118	0.012		30		0.040	5	6	2	2
MTF20	13	14	QtzCore	90	194	0.019	7	20	0.04	0.005	5	6	4	2

RESOU														
Hole	From		Lithology	li nom	Li2O_ppm	1120 %	Rb_ppm	Cs nnm	Na %	K_%	Ta_ppm	Ta2O5 ppm	Sn ppm	Nb_ppm
MTF20	14		QtzCore	120	258	0.026	4	30	0.03	0.005	та_ррпі 5	6	2 ppin	145_ppi11
MTF20	15		Peg	155	334	0.020	3000	840	1.47	3.800	75	92	90	32
MTF20	16	_	Peg	65	140	0.014	910	150		0.980	380	464	30	42
MTF20	17	18	Peg	12	26	0.003	230	40	5.20	0.300	520	635	20	30
MTF20	18	19	Peg	14	30	0.003	280	40	7.60	0.370	28200	34432	140	1200
MTF20			Peg	75	161	0.016	1300	195	6.00		52000	63492	320	2425
MTF20	20	_	Peg	390	840	0.084	1200	100	6.10		590	720	36	38
MTF20	21		Peg	1800	3875	0.388	2000	150	1.95	0.910	85	104	46	20
MTF20 MTF20	22		Peg Peg	1550 300	3337 646	0.334	2300 900	220 70		0.770	85 70	104 85	130 50	55 48
MTF20	24		Peg	42	90	0.009	550	40	5.30		70	85	36	80
MTF20	25		Peq	8	17	0.002	140	30		0.330	80	98	22	60
MTF20	26		Peg	10	22	0.002	1400	20	4.70	0.410	90	110	28	34
MTF20	27		Peg	6	13	0.001	135	20	6.50	0.510	25	31	12	55
MTF20			Peg	2	4	0.000	24	20	7.30	0.090	100	122	10	65
MTF20	29		Peg	3	6	0.001	55	10	6.90		75	92	14	85
MTF20	30	_	Peg/Gab	32	69	0.007	70	20		0.330	45	55	36	48
MTF21			Peg	352	758	0.076	740	35	3.61		40	49		
MTF21	16 17		QtzCore QtzCore	105 38	226 82	0.023	280 120	65 16	7.65 5.45		5 5	6		
MTF21	18		QtzCore	105	226	0.003	190	20	0.69		35	43		
MTF21	20		Peg	1350	2907	0.291	1900	130	2.93		40	49		
MTF21	21		Peg	1190	2562	0.256	1600	120	3.83		5	6		
MTF21	22	23	Peg	1380	2971	0.297	2000	120	1.86		55	67		
MTF21	23		Peg		0	0.000								
MTF21	24		Peg	459	988	0.099	710	110	4.59		40	49		
MTF21	25		Gab	82	177	0.018	150	17	2.00		5	6		
MTF22			Peg	146	314	0.031	360	35	4.42		50	61		
MTF22 MTF22	21		Peg Peg	730 830	1572 1787	0.157 0.179	1900 1800	110 130	3.38		16 290	20 354		-
MTF22	22		Peg	148	319	0.179	510	160	2.88		250	31		
MTF22	23		QtzCore	68	146	0.015	40	13	0.12		19	23		
MTF22			QtzCore	38	82	0.008	9	10	0.06		16	20		
MTF22	25	26	QtzCore	38	82	0.008	9	5	0.02		5	6		
MTF22			QtzCore	88	189	0.019	720	60	6.55		490	598		
MTF22	27		Peg	530	1141	0.114	1400	100	4.30		35	43		
MTF22			Peg	890	1916	0.192	1700	110	1.40		5	6		
MTF22	29 30	_	Peg Peg	740 412	1593 887	0.159 0.089	1500 850	95 55	3.63 1.54		25 55	31 67		
MTF22	31		Peg	140	301	0.030	520	55	5.52		60	73		
MTF22	32		Peg	45	97	0.010	330	30	5.67		80	98		
MTF22	33		Peg	68	146	0.015	560	45	4.82		30	37		
MTF22	34	35	Peg	34	73	0.007	170	19	3.45		30	37		
MTF23	12	13	Gab/Peg	117	252	0.025	190	40	1.81		5	6		
MTF23			Peg	550	1184	0.118	880	65	4.77		35	43		
MTF23	14		Peg	67	144	0.014	1800	130	3.93		5	6		
MTF23	15		Peg	1240	2670	0.267	220	60	2.87		12	15		
MTF23	16	_	QtzCore QtzCore	66 121	142 261	0.014	25 3	20 5	0.12		5 20	6 24		
MTF23			QtzCore	116	250	0.025	3	5	0.01		5	6		
MTF23			QtzCore	128	276	0.028	3	5	0.02		5	6		
MTF23			QtzCore	104	224	0.022	1	11	0.01		5	6		
MTF23	21	22	QtzCore	42	90	0.009	4	11	0.01		20	24		
MTF23	22		QtzCore	51	110	0.011	1	5	0.02		30	37		
MTF23	23		QtzCore	38	82	0.008	10	5	0.01		5	6		1
MTF23			QtzCore	29	62	0.006	3	17	0.03		5	6		
MTF23		_	QtzCore QtzCore	81 51	174 110	0.017 0.011	3 1	11 10	0.01		5 5	6		
MTF23	27		QtzCore	31	67	0.011	5	11	0.03		11	13		
MTF23	28		QtzCore	47	101	0.007	1	5	0.02		5	6		
MTF23	29	_	QtzCore	20	43	0.004	1	5	0.04		5	6		
MTF23	30		QtzCore	23	50	0.005	610	110	6.25		270	330		
MTF23	31		Peg	550	1184	0.118	870	80	3.06		11	13		
MTF23	32		Peg	690	1486	0.149	1300	130	1.89		40	49		
MTF23	33		Peg	760	1636	0.164	1600	120	3.55		55	67		ļ
MTF23	34		Peg	182	392	0.039	1300	120	4.53		65	79		
MTF23	35		Peg	338 8	728	0.073	1300	140	4.02		30 60	37 73		
MTF23	37		Peg Peg	17	17 37	0.002	180 760	13 50	5.35 6.00		25	31		
MTF23			Gab	29	62	0.004	220	5	2.20		5	6		
MTF24		_	Peg	130	280	0.028	530	80	4.57		50	61		
MTF24			Peg	101	217	0.022	470	45	5.07		70	85		
MTF24			Peg	151	325	0.033	540	45	4.75		5	6		
MTF24			Peg	39	84	0.008	480	45	6.18		400	488		
MTF24	13	14	Peg	51	110	0.011	510	40	6.44		1100	1343		<u> </u>

Hose Them Top Unbodge U.ppm U.D.pm U.D.pm U.D.pm U.D.pm Them U.D.pm Them U.D.pm Them U.D.pm Them U.D.pm U.D.pm	RESOU														
MITP24 15 Peg			То	Lithology	Li_ppm	Li2O_ppm	LI2O_%	Rb_ppm	Cs_ppm	Na_%	K_%	Ta_ppm	Ta2O5_ppm	Sn_ppm	Nb_ppm
MITP24 15 16 Pog	MTF24	14	15												
MITF24 18 16 17 17 17 17 18 19 19															
MITP24 18 19 OttoCore	MTF24	16	17	QtzCore	38	82	0.008	5	18	0.51		5	6		
MITP24	MTF24	17	18	QtzCore	102	220	0.022	4	5	0.11		5	6		
MITP24 20 21 Oscoro 28 60 0.006 4 5 0.06 5 6							0.018						17		
MITP24 22 22 DecCore															
MITE24 22 22 Octoore															
MITE24 23 24 QueCore															-
MIF24 24 25 DeCore 23 50 0.005															
MIFE44 25 26 Peg															
MITE24 26 27 Peg			_												
MIF24 28 29 Peg															
MITE24 28 28 Peg		_													
MITP24 30 31 Peg	MTF24	28	29	Peg	4	9	0.001	80	17	6.17		25	31		
MITP24 31 32 Peg	MTF24	29	30	Peg	17	37	0.004	550	25	7.45		140	171		
MITE24 32 33 Peg 680 1464 0.146 2400 180 2.34 30 37 MITE24 33 35 Peg 74 159 0.016 580 50 4.52 65 79 MITE24 35 36 Peg 1 2 0.000 13 5 8.61 0.00 98 MITE24 35 37 Peg 1 2 0.000 19 5 8.52 65 79 MITE24 33 38 Peg 1 2 0.000 19 5 8.52 65 79 MITE24 33 39 Peg 4 9 0.001 6 5 7.08 130 159 MITE24 33 39 Peg 4 9 0.001 6 5 7.08 130 159 MITE24 33 39 Peg 4 9 0.001 6 5 7.08 130 159 MITE25 21 22 Peg 85 183 0.001 6 5 7.08 130 159 MITE25 22 22 Peg 85 183 0.001 6 5 7.08 130 159 MITE25 22 22 Peg 85 183 0.001 6 50 3.19 25 31 MITE25 22 22 Peg 85 183 0.001 6 50 3.39 20 24 MITE25 22 22 Peg 85 183 0.001 6 50 3.39 20 24 MITE25 22 22 Peg 85 183 0.001 6 50 3.39 20 24 MITE25 22 22 Peg 91 196 0.020 490 35 3.34 20 24 MITE25 22 22 Peg 236 508 0.051 720 55 2.240 70 85 MITE25 22 22 Peg 36 508 0.029 980 80 61 66 579 MITE25 28 29 Peg 108 233 0.023 830 70 5.70 55 67 MITE25 28 29 Peg 52 112 0.011 330 35 5.68 5 6 MITE25 28 29 Peg 52 112 0.011 330 35 5.68 5 6 MITE25 20 20 Peg 52 112 0.011 330 35 5.68 5 6 MITE25 30 31 O.020 32 69 0.007 1 50 0.04 5 6 MITE25 30 31 O.020 32 69 0.007 1 50 0.04 5 6 MITE25 30 31 O.020 32 69 0.007 1 50 0.04 5 6 MITE25 30 31 O.020 32 69 0.007 1 50 0.04 5 6 MITE25 30 31 O.020 32 69 0.007 1 50 0.04 5 6 MITE25 30 31 O.020 32 60 0.007 1 50 0.04 5 6 MITE25 30 31 O.020 32 0.003 31 50 0.04 5 6 MITE25 30 33 Peg 314 676 0.086 10 0.000 30 30 30 30 30 30							0.008			2.46					
MITE24 33 34 Peg															
MITE24															
MITP24 35 36 Peg															-
MITP24 36 37 Peg		_													
MITP24 37 38 Peg															
MITP24															
MITF25															
MITP25 221 22 Peg 85 183 0.018 450 50 3.19 5 6															
MITE25 22 23 Peg 91 196 0.020 490 35 3.94 20 24 MITE25 23 24 Peg 145 312 0.031 540 35 3.96 50 61 MITE25 24 25 Peg 236 508 0.051 720 50 2.40 70 85 MITE25 25 26 Peg 134 289 0.029 980 80 6.16 65 79 MITE25 27 28 Peg 376 810 0.081 1100 100 4.03 50 61 MITE25 27 28 Peg 376 810 0.081 1100 100 4.03 50 61 MITE25 29 29 20 52 112 0.011 330 35 5.69 5 6 MITE25 29 20 0.020 57 123 0.012 11 15 0.29 5 6 MITE25 29 20 0.020 29 80 80 1 5 0.06 5 6 MITE25 29 20 0.020 20 20 11 15 0.29 5 6 MITE25 23 33 Peg 15 32 0.003 150 18 5.77 600 733 MITE25 33 34 Peg 299 644 0.064 880 75 6.13 180 220 MITE25 34 35 Peg 1020 2196 0.220 2500 210 4.66 50 61 MITE25 36 37 Peg 314 676 0.068 700 85 1.98 30 37 MITE25 39 39 Peg 1030 2218 0.222 2400 220 2.17 35 43 43 MITE25 39 39 Peg 1030 2218 0.222 2400 220 2.17 35 43 MITE25 39 39 Peg 1030 2218 0.222 2400 220 2.17 35 43 MITE25 39 39 Peg 650 1399 0.140 1600 190 4.52 75 52 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 43 44 Peg 550 1399 0.140 1600 190 4.52 75 52 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 41 42 Peg 365 43 43 44 Peg 55 41 45 Peg 44 9 0.001 55 6.67 240 233 MITE25 40 47															
MITE25 23 24 Peg 145 312 0.031 540 35 3.36 50 61 MITE35 24 25 Peg 236 508 0.051 720 50 2.40 70 85 MITE36 25 26 Peg 134 289 0.029 980 80 6.16 65 79 MITE36 26 27 Peg 108 233 0.023 830 70 5.70 55 67 MITE35 27 28 Peg 376 810 0.081 1100 100 4.03 50 61 MITE35 28 29 Peg 52 112 0.011 330 35 5.69 5 6 MITE35 29 30 (acCore 39 84 0.08 1 5 0.06 5 6 MITE35 30 31 CacCore 39 84 0.008 1 5 0.06 5 6 MITE35 33 34 Peg 29 644 0.064 880 75 6.13 180 220 MITE35 33 34 Peg 299 644 0.064 880 75 6.13 180 220 MITE35 33 35 Peg 1020 2196 0.220 2500 210 4.56 50 61 MITE35 33 36 Peg 760 1636 0.164 1600 120 1.20 30 37 MITE35 33 37 Peg 314 676 0.086 776 88 1.98 30 37 MITE35 35 37 Peg 314 676 0.086 776 88 1.98 30 37 MITE35 36 37 Peg 360 0.096 610 775 3.24 600 73 MITE35 34 39 Peg 260 560 0.096 610 775 3.24 600 73 MITE35 34 34 Peg 369 0.097 1200 130 3.83 50 61 MITE25 35 36 Peg 650 1399 0.140 1600 190 4.32 75 92 MITE25 34 34 Peg 449 967 0.097 1200 130 3.83 50 61 MITE25 40 41 Peg 449 967 0.097 1200 130 3.83 50 61 MITE25 43 44 Peg 44 99 600 0.97 1200 130 3.85 35 43 MITE25 40 44 Peg 44 99 67 0.097 1200 130 3.85 35 43 MITE25 40 44 Peg 44 99 600 0.097 1200 130 3.85 35 43 MITE25 40 44 Peg 44 99 0.001 19 5 667 240 293 MITE25 40 44 Peg 44 99 0.001 19 5 667 240 293 MITE25 40 44 Peg 44 99 0.000 19 4.32 40 40 MITE25 40 44 Peg 44 99 0.000 19 5 667 240 240 240 MITE26 5															
MITE25 25 26 Peg															
MITE25 26 27 Peg 108 233 0.023 830 70 5.70 5.56 67 MITE25 27 28 Peg 376 810 0.081 1100 100 4.03 50 611 MITE25 28 29 Peg 52 112 0.011 330 35 5.69 5 6 MITE25 29 30 OlizCore 57 123 0.012 1 15 0.29 5 6 MITE25 29 30 OlizCore 33 84 0.008 1 5 0.06 5 6 MITE25 31 32 OlizCore 33 84 0.008 1 5 0.04 5 6 MITE25 31 32 OlizCore 32 69 0.007 1 5 0.04 5 6 MITE25 31 32 OlizCore 32 69 0.007 1 5 0.04 5 6 MITE25 31 32 OlizCore 32 69 0.007 1 5 0.04 5 6 MITE25 31 33 Peg 15 32 0.003 150 18 5.57 600 733 MITE25 33 34 Peg 299 644 0.064 880 75 6.13 180 220 MITE25 34 35 Peg 1020 2196 0.220 2500 210 4.56 50 61 MITE25 35 36 Peg 760 1636 0.164 1600 120 120 30 37 MITE25 36 37 Peg 314 676 0.068 700 85 1.98 30 37 MITE25 36 37 Peg 314 676 0.068 700 85 1.98 30 37 MITE25 39 39 Peg 650 560 0.056 610 75 3.24 60 73 MITE25 39 40 Peg 650 1399 0.140 1600 190 4.32 75 92 MITE25 31 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 41 44 Peg 4 9 0.001 30 3.38 50 61 MITE25 41 44 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 41 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 41 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 41 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 41 45 Peg 4 9 0	MTF25	24	25	Peg	236	508	0.051	720	50	2.40		70	85		
MITE25 27 28 Peg 376 810 0.081 1100 100 4.03 50 61 MITE25 28 29 Peg 52 112 0.011 330 35 5.68 5 6 MITE25 29 30 OtzCore 57 123 0.012 1 15 0.29 5 6 MITE25 30 31 OtzCore 39 84 0.008 1 5 0.06 5 6 MITE25 31 32 OtzCore 32 69 0.007 1 5 0.04 5 6 MITE25 31 32 OtzCore 32 69 0.007 1 5 0.04 5 6 MITE25 31 32 OtzCore 32 69 0.007 1 5 0.04 5 6 MITE25 32 33 Peg 15 32 0.003 150 18 5.57 600 733 MITE25 33 34 Peg 299 644 0.084 880 75 6.13 180 220 MITE25 33 36 Peg 760 1636 0.164 1600 120 1.20 30 37 MITE25 35 36 Peg 760 1636 0.164 1600 120 1.20 30 37 MITE25 37 38 Peg 260 560 0.056 610 75 3.24 60 73 MITE25 37 38 Peg 260 560 0.056 610 75 3.24 60 73 MITE25 38 39 Peg 650 1399 0.140 1600 190 4.32 75 92 MITE25 40 41 Peg 449 967 0.097 1200 130 3.83 50 61 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 42 43 Peg 64 138 0.014 620 130 3.85 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 40 41 Peg 49 0.001 30 12 8.47 35 43 MITE25 40 41 Peg 449 967 0.097 130 3.36 35 43 MITE25 40 41 Peg 449 967 0.097 130 3.05 45 55 MITE25 40 40 40 40 40 40 40 MITE25 40 40 40 40 40 40 40 MITE25 40 40 40 40 40 40 40 MITE25 40 40 40 40 40 40 40 4	MTF25	25	26	Peg	134	289	0.029	980	80	6.16		65	79		
MITP25 28 29 Peg 52 1112 0.011 330 35 5.69 5 6 MITP25 29 30 OtzCore 57 123 0.012 1 15 0.29 5 6 MITP25 30 31 OtzCore 39 84 0.008 1 5 0.06 5 6 MITP25 31 32 OtzCore 32 69 0.007 1 5 0.04 5 6 MITP25 31 32 OtzCore 32 69 0.007 1 5 0.04 5 6 MITP25 32 33 Peg 15 32 0.003 150 18 5.57 600 733 MITP25 33 34 Peg 2.99 644 0.064 880 75 6.13 180 220 MITP25 33 34 Peg 2.99 644 0.064 880 75 6.13 180 220 MITP25 35 36 Peg 760 1636 0.164 1600 120 1.20 30 37 MITP25 35 36 Peg 760 1636 0.164 1600 120 1.20 30 37 MITP25 36 37 Peg 314 676 0.068 700 85 1.98 30 37 MITP25 37 38 Peg 260 560 0.056 610 75 3.24 60 73 MITP25 38 39 Peg 1030 2218 0.222 2400 220 2.17 35 43 MITP25 39 40 Peg 650 1399 0.140 1600 190 4.32 75 92 MITP25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITP25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITP25 44 45 Peg 49 9.001 25 10 6.35 45 55 MITP25 44 45 Peg 4 9 0.001 25 10 6.35 45 55 MITP25 44 45 Peg 4 9 0.001 25 10 6.35 45 55 MITP25 44 45 Peg 4 9 0.001 25 10 6.35 45 55 MITP25 44 45 Peg 4 9 0.001 25 10 6.35 45 55 MITP25 44 45 Peg 4 9 0.001 25 10 6.35 45 55 MITP25 44 45 Peg 4 9 0.001 25 10 6.35 45 55 MITP25 46 47 Gab 9 19 0.002 65 5 2.77 5 6 MITP26 47 48 MITP26 48 49 MITP26 MITP26 48 49 MITP26 MITP26 MITP26 MITP26 MITP26 MITP26	MTF25	26	27	Peg	108	233	0.023	830	70	5.70		55	67		
MITP25 29 30 DicCore 57 123 0.012 1 15 0.29 5 6 MITP25 30 31 DicCore 39 84 0.008 1 5 0.06 5 6 MITP25 31 32 DicCore 32 69 0.007 1 5 0.04 5 6 MITP25 32 33 Peg 15 32 0.003 150 18 5.57 600 7.73 MITP25 33 34 Peg 299 644 0.064 880 75 6.13 180 220 MITP25 33 34 Peg 1020 2196 0.220 2500 210 4.56 50 61 MITP25 35 36 Peg 760 1636 0.164 1600 120 1.20 30 37 MITP25 37 38 Peg 260 560 0.068 700 85 1.98 30 37 MITP25 37 38 Peg 260 560 0.056 610 75 3.24 60 73 MITP25 37 38 Peg 260 560 0.056 610 75 3.24 60 73 MITP25 37 38 Peg 660 1399 0.140 1600 190 4.32 75 92 MITP25 40 41 Peg 449 967 0.097 1200 130 3.83 50 61 MITP25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITP25 43 44 Peg 5 11 0.001 25 10 6.35 43 MITP25 44 45 Peg 4 9 0.001 30 3.85 35 43 MITP25 43 44 Peg 5 11 0.001 25 10 6.35 45 55 MITP25 46 47 Gab 9 19 0.002 65 5 2.77 5 6 6 MITP25 47 48 Peg 4 9 0.001 30 12 8.47 35 43 MITP25 46 47 Gab 9 19 0.002 65 5 2.77 5 6 6 MITP26 47 Gab 9 19 0.002 65 5 2.77 5 6 6 MITP26 47 Gab 9 19 0.002 65 5 2.77 5 6 6 MITP26 47 Gab 9 19 0.002 65 5 2.77 5 6 6 MITP26 47 Gab 9 19 0.002 65 5 2.77 5 6 6 MITP26 47 Gab 9 19 0.002 65 5 2.77 5 6 6 MITP26 47 Gab 9 19 0.002 65 5 2.77 5 6 6 MITP26 47 Gab 9 47 Gab 9 19 0.002 65 5 2.77 5 6 6 MITP26 47 67 67 67 67 67 67 6															
MITE25 30 31 CircCore 39 84 0.008 1 5 0.06 5 6 6 MITE25 31 32 CircCore 32 69 0.007 1 5 0.04 5 6 6 MITE25 32 33 Peg 15 32 0.003 150 18 5.57 6000 733 MITE25 33 34 Peg 299 644 0.064 880 75 6.13 180 220 MITE25 33 35 Peg 1020 2196 0.220 2500 210 4.56 50 61 MITE25 35 36 Peg 760 1636 0.164 1600 120 1.20 30 37 MITE25 36 37 Peg 314 676 0.068 700 85 1.98 30 37 MITE25 36 37 Peg 314 676 0.066 700 85 1.98 30 37 MITE25 38 39 Peg 1030 2218 0.222 2400 220 2.17 35 43 MITE25 39 40 Peg 650 1399 0.140 1600 190 4.32 75 92 MITE25 34 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 44 45 Peg 4 9 0.001 30 3.85 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 45 46 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 5 6.67 240 293 MITE26 0 10 VOZ 142 306 0.031 230 35 1.00 15 18 MITE26 0 10 VOZ 142 306 0.031 230 35 1.00 15 18 MITE26 0 10 VOZ 144 267 0.027 3 5															
MITE25		_													
MITE25 32 33 Peg 15 32 0.003 150 18 5.57 600 733 MITE25 33 35 Peg 299 644 0.064 880 75 6.13 180 220 MITE25 33 35 Peg 1020 2196 0.220 2500 210 4.56 50 61 MITE25 35 36 Peg 760 1536 0.164 1600 120 1.20 30 37 MITE25 36 37 Peg 314 676 0.068 700 85 1.98 30 37 MITE25 37 38 Peg 260 560 0.056 610 75 3.24 60 73 MITE25 38 39 Peg 1030 2218 0.222 2400 220 2.17 35 43 MITE25 39 30 Peg 650 1399 0.140 1600 190 4.32 75 92 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITE25 42 43 Peg 64 138 0.014 620 130 3.85 35 43 MITE25 43 44 Peg 5 11 0.001 25 10 6.35 45 55 MITE25 44 45 Peg 4 9 0.001 30 32 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 32 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITE25 44 45 Peg 4 9 0.001 30 35 1.30 15 18 MITE25 46 47 Gab 9 19 0.002 65 5 2.77 5 6 MITE26 40 47 Gab 9 19 0.002 65 5 2.77 5 6 MITE26 40 47 Gab 9 19 0.002 65 5 2.77 5 6 MITE26 40 47 Gab 9 19 0.002 65 5 2.77 5 6 MITE26 40 47 Gab 9 19 0.002 65 5 2.77 5 6 MITE26 40 47 Gab 9 19 0.002 65 5 2.77 5 6 MITE26 40 47 Gab 9 19 0.002 65 5 2.77 5 6 MITE26 40 47 Gab 9 47 47 47 47 47 47 47															-
MIF25 33 34 Peg 299 644 0.064 880 75 6.13 180 220 MIF25 34 35 Peg 1020 2196 0.220 2500 210 4.56 50 61 MIF25 35 36 Peg 760 1636 0.164 1600 120 1.20 30 37 MIF25 36 37 Peg 314 676 0.068 700 85 1.98 30 37 MIF25 37 38 Peg 260 560 0.056 610 75 3.24 60 73 MIF25 33 39 Peg 1030 2218 0.222 2400 220 2.17 35 43 43 MIF25 39 30 Peg 650 1399 0.140 1600 190 4.32 75 92 MIF25 39 40 Peg 449 967 0.097 1200 130 3.83 50 61 MIF25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MIF25 42 43 Peg 64 138 0.014 620 130 3.85 35 43 MIF25 43 44 Peg 5 11 0.001 25 10 6.35 45 55 MIF25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MIF25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MIF25 45 46 Peg 4 9 0.001 30 12 8.47 35 43 MIF25 46 Peg 4 9 0.001 19 5 6.67 240 293 MIF26 41 2 VQZ 139 299 0.030 260 35 1.04 60 73 MIF26 2 3 VQZ 70 151 0.015 35 25 0.13 50 61 MIF26 4 5 VQZ 147 316 0.032 6 18 0.01 5 6 MIF26 6 VQZ 147 316 0.032 6 18 0.01 5 6 MIF26 6 VQZ 124 267 0.027 3 5 0.00 15 18 MIF26 6 7 VQZ 72 155 0.016 5 10 0.00 17 21 MIF26 7 8 VQZ 21 445 0.005 3 50 0.00 15 18 MIF26 10 11 Peg 59 127 0.013 870 130 5.65 630 769 MIF26 11 12 Peg 44 95 0.009 670 60 6.63 470 574 MIF26 11 12 Peg 44 95 0.009 670 60 6.63 470 574 MIF26 11 12 Peg 44 95 0.006 250 45 3.12 860 1050 MIF26 11 12 Peg 44 95 0.006 550 55 5.02 210 256 MIF26 11 12 Peg 44 95 0.006 500 55 5.02 210 256 MIF26 11 12 Peg 44 95 0.006 500 55 5.02 210 256															
MIT25															
MITP25 35 36 Peq 760 1636 0.164 1600 120 1.20 30 37 MITP25 36 37 Peg 314 676 0.088 700 85 1.98 30 37 MITP25 37 38 Peg 260 560 0.056 610 75 3.24 60 73 MITP25 38 39 Peg 1030 2218 0.222 2400 220 2.17 35 43 MITP25 39 40 Peg 650 1399 0.140 1600 190 4.32 75 92 MITP25 34 41 Peg 449 967 0.097 1200 130 3.83 50 61 MITP25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MITP25 42 43 Peg 64 138 0.014 620 130 3.85 35 43 MITP25 43 44 Peg 5 111 0.001 25 10 6.35 45 55 MITP25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITP25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITP25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITP25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITP25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MITP26 0 1 VQZ 142 306 0.031 230 35 1.30 15 18 MITP26 1 2 VQZ 139 299 0.030 260 35 1.04 60 73 MITP26 3 4 VQZ 103 222 0.022 5 19 0.01 5 6 MITP26 4 5 VQZ 147 316 0.032 6 18 0.01 5 6 MITP26 7 8 VQZ 147 316 0.032 6 18 0.01 5 6 MITP26 8 9 VQZ 21 45 0.005 3 5 0.00 15 18 MITP26 9 10 VQZ 24 25 0.005 75 20 1.79 9300 11355 MITP26 10 11 Peg 59 127 0.013 870 130 5.65 630 769 MITP26 13 14 Peg 44 95 0.009 1100 220 6.77 550 708 MITP26 13 14 Peg 21 45 0.005 250 45 3.12 860 1050 MITP26 13 14 Peg 21 45 0.005 250 45 3.12 860 1050 MITP26 13 14 Peg 27 58 0.006 360 25 4.51 5 6 MITP26 13 14 Peg 27 58 0.006 360 25 4.51 5 6 MITP26 17 18 Peg 27 58 0.006 360 25 4.51 5															
MITP25															
MTF25				_											
MTF25 39 40 Peg 650 1399 0.140 1600 190 4.32 75 92 MTF25 40 41 Peg 449 967 0.097 1200 130 3.83 50 61 MTF25 41 42 Peg 363 782 0.078 830 110 4.22 40 449 MTF25 42 43 Peg 64 138 0.014 620 130 3.85 35 43 MTF25 43 44 Peg 5 11 0.001 25 10 6.35 45 55 MTF25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MTF25 46 47 Gab 9 19 0.002 65 5 2.77 5 6 MTF25 46 47 Gab 9 19 0.002 65 5 2.77 5 6 MTF26 1 2 VQZ 139 299 0.030 260 35 1.04 60 73 MTF26 2 3 VQZ 70 151 0.015 35 25 0.13 50 61 MTF26 3 4 VQZ 103 222 0.022 5 19 0.01 5 6 MTF26 5 6 VQZ 147 316 0.032 6 18 0.01 5 6 MTF26 5 6 VQZ 124 267 0.027 3 5 0.00 15 18 MTF26 6 7 VQZ 72 155 0.016 5 10 0.00 17 21 MTF26 10 11 Peg 59 127 0.013 870 130 5.65 630 769 MTF26 10 11 Peg 59 127 0.013 870 130 5.65 630 769 MTF26 11 12 Peg 44 95 0.009 670 60 6.63 470 574 MTF26 14 15 0.0200 220 43 0.004 11 16 0.14 470 574 MTF26 16 17 0.0200 27 58 0.006 300 30															
MTF25	MTF25	38	39	Peg	1030	2218	0.222	2400	220	2.17		35	43		
MTF25 41 42 Peg 363 782 0.078 830 110 4.22 40 49 MTF25 42 43 Peg 64 138 0.014 620 130 3.85 35 43 MTF25 43 44 Peg 5 11 0.001 25 10 6.35 45 55 MTF25 43 44 Peg 4 9 0.001 30 12 8.47 35 43 MTF25 45 46 Peg 4 9 0.001 19 5 6.67 240 293 MTF26 0 1 VQZ 142 306 0.031 230 35 1.30 15 18 MTF26 0 1 VQZ 139 299 0.030 260 35 1.04 60 73 MTF26 1 2 VQZ 103 222 0.022	MTF25	39	40	Peg	650	1399	0.140	1600	190	4.32		75	92		
MTF25 42 43 Peg 64 138 0.014 620 130 3.85 35 43 MTF25 43 44 Peg 5 11 0.001 25 10 6.35 45 55 MTF25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MTF25 46 46 Peg 4 9 0.001 19 5 6.67 240 293 MTF26 46 47 Gab 9 19 0.002 65 5 2.77 5 6 MTF26 0 1 VQZ 142 306 0.031 230 35 1.30 15 18 MTF26 1 2 VQZ 139 299 0.030 260 35 1.04 60 73 MTF26 1 2 VQZ 103 222 0.022 5 </td <td></td> <td>40</td> <td></td> <td></td> <td>449</td> <td>967</td> <td>0.097</td> <td>1200</td> <td>130</td> <td></td> <td></td> <td>50</td> <td>61</td> <td></td> <td></td>		40			449	967	0.097	1200	130			50	61		
MTF25															
MTF25 44 45 Peg 4 9 0.001 30 12 8.47 35 43 MTF25 45 46 Peg 4 9 0.001 19 5 6.67 240 293 MTF26 0 1 VQZ 142 306 0.031 230 35 1.30 15 18 MTF26 0 1 VQZ 142 306 0.031 230 35 1.30 15 18 MTF26 1 2 VQZ 139 299 0.030 260 35 1.04 60 73 MTF26 2 3 VQZ 70 151 0.015 35 25 0.13 50 61 MTF26 3 4 VQZ 103 222 0.022 5 19 0.01 5 6 MTF26 4 5 VQZ 124 267 0.027 3 5 0.00 15 18															
MTF25															-
MTF25 46 47 Gab 9 19 0.002 65 5 2.777 5 6 MTF26 0 1 VQZ 142 306 0.031 230 35 1.30 15 18 MTF26 1 2 VQZ 139 299 0.030 260 35 1.04 60 73 MTF26 2 3 VQZ 70 151 0.015 35 25 0.13 50 61 MTF26 3 4 VQZ 103 222 0.022 5 19 0.01 5 6 MTF26 4 5 VQZ 124 267 0.027 3 5 0.00 15 18 MTF26 5 6 VQZ 124 267 0.027 3 5 0.00 17 21 MTF26 7 8 VQZ 63 136 0.014 1															
MTF26 0 1 VQZ 142 306 0.031 230 35 1.30 15 18 MTF26 1 2 VQZ 139 299 0.030 260 35 1.04 60 73 MTF26 2 3 VQZ 70 151 0.015 35 25 0.13 50 61 MTF26 3 4 VQZ 103 222 0.022 5 19 0.01 5 6 MTF26 4 5 VQZ 147 316 0.032 6 18 0.01 5 6 MTF26 5 6 VQZ 124 267 0.027 3 5 0.00 15 18 MTF26 6 7 VQZ 72 155 0.016 5 10 0.00 17 21 MTF26 7 8 VQZ 21 45 0.005 3															
MTF26 1 2 VQZ 139 299 0.030 260 35 1.04 60 73 MTF26 2 3 VQZ 70 151 0.015 35 25 0.13 50 61 MTF26 3 4 VQZ 103 222 0.022 5 19 0.01 5 6 MTF26 4 5 VQZ 147 316 0.032 6 18 0.01 5 6 MTF26 5 6 VQZ 124 267 0.027 3 5 0.00 15 18 MTF26 6 7 VQZ 72 155 0.016 5 10 0.00 17 21 MTF26 7 8 VQZ 21 45 0.005 3 5 0.00 16 20 MTF26 7 8 VQZ 24 52 0.005 75		_													
MTF26 2 3 VQZ 70 151 0.015 35 25 0.13 50 61 MTF26 3 4 VQZ 103 222 0.022 5 19 0.01 5 6 MTF26 4 5 VQZ 147 316 0.032 6 18 0.01 5 6 MTF26 5 6 VQZ 124 267 0.027 3 5 0.00 15 18 MTF26 6 7 VQZ 72 155 0.016 5 10 0.00 17 21 MTF26 7 8 VQZ 21 45 0.005 3 5 0.00 16 20 MTF26 8 9 VQZ 63 136 0.014 1 15 0.10 5 6 MTF26 9 10 VQZ 24 52 0.005 75 20 1.79 9300 11355 MTF26 10 11 Peg 59 127 0.013 870 130 5.65 630 769 MTF26 11 12 Peg 44 95 0.009 670 60 6.63 470 574 MTF26 13 14 Peg 21 45 0.005 250 45 3.12 860 1050 MTF26 14 15 QtzCore 20 43 0.004 11 16 0.14 470 574 MTF26 15 16 QtzCore 27 58 0.006 120 14 1.23 1500 1832 MTF26 17 18 Peg 41 88 0.009 390 30 3.87 12 15 MTF26 19 20 Peg 11 24 0.002 110 19 6.34 25 31 MTF26 19 20 Peg 78 168 0.017 450 30 6.88 130 159 MTF26 21 22 Peg 9 19 0.002 240 45 7.58 180 220															
MTF26 3 4 VQZ 103 222 0.022 5 19 0.01 5 6 MTF26 4 5 VQZ 147 316 0.032 6 18 0.01 5 6 MTF26 5 6 VQZ 124 267 0.027 3 5 0.00 15 18 MTF26 6 7 VQZ 72 155 0.016 5 10 0.00 17 21 MTF26 7 8 VQZ 21 45 0.005 3 5 0.00 16 20 MTF26 8 9 VQZ 63 136 0.014 1 15 0.10 5 6 MTF26 9 10 VQZ 24 52 0.005 75 20 1.79 9300 11355 MTF26 10 11 Peg 59 127 0.013 870															
MTF26 4 5 VQZ 147 316 0.032 6 18 0.01 5 6 MTF26 5 6 VQZ 124 267 0.027 3 5 0.00 15 18 MTF26 6 7 VQZ 72 155 0.016 5 10 0.00 17 21 MTF26 7 8 VQZ 21 45 0.005 3 5 0.00 16 20 MTF26 8 9 VQZ 63 136 0.014 1 15 0.10 5 6 MTF26 9 10 VQZ 24 52 0.005 75 20 1.79 9300 11355 MTF26 10 11 Peg 59 127 0.013 870 130 5.65 630 769 MTF26 11 12 Peg 44 95 0.009 1100 </td <td></td>															
MTF26 5 6 VQZ 124 267 0.027 3 5 0.00 15 18 MTF26 6 7 VQZ 72 155 0.016 5 10 0.00 17 21 MTF26 7 8 VQZ 21 45 0.005 3 5 0.00 16 20 MTF26 8 9 VQZ 63 136 0.014 1 15 0.10 5 6 MTF26 9 10 VQZ 24 52 0.005 75 20 1.79 9300 11355 MTF26 10 11 Peg 59 127 0.013 870 130 5.65 630 769 MTF26 11 12 Peg 44 95 0.009 670 60 6.63 470 574 MTF26 12 13 Peg 44 95 0.009															
MTF26 6 7 VQZ 72 155 0.016 5 10 0.00 17 21 MTF26 7 8 VQZ 21 45 0.005 3 5 0.00 16 20 MTF26 8 9 VQZ 63 136 0.014 1 15 0.10 5 6 MTF26 9 10 VQZ 24 52 0.005 75 20 1.79 9300 11355 MTF26 10 11 Peg 59 127 0.013 870 130 5.65 630 769 MTF26 11 12 Peg 44 95 0.009 670 60 6.63 470 574 MTF26 12 13 Peg 44 95 0.009 1100 220 6.77 580 708 MTF26 13 14 Peg 21 45 0.005															
MTF26 7 8 VQZ 21 45 0.005 3 5 0.00 16 20 MTF26 8 9 VQZ 63 136 0.014 1 15 0.10 5 6 MTF26 9 10 VQZ 24 52 0.005 75 20 1.79 9300 11355 MTF26 10 11 Peg 59 127 0.013 870 130 5.65 630 769 MTF26 11 12 Peg 44 95 0.009 670 60 6.63 470 574 MTF26 12 13 Peg 44 95 0.009 1100 220 6.77 580 708 MTF26 13 14 Peg 21 45 0.005 250 45 3.12 860 1050 MTF26 14 15 QtzCore 20 43 0.004<				VQZ											
MTF26 9 10 VQZ 24 52 0.005 75 20 1.79 9300 11355 MTF26 10 11 Peg 59 127 0.013 870 130 5.65 630 769 MTF26 11 12 Peg 44 95 0.009 670 60 6.63 470 574 MTF26 12 13 Peg 44 95 0.009 1100 220 6.77 580 708 MTF26 13 14 Peg 21 45 0.005 250 45 3.12 860 1050 MTF26 14 15 QtzCore 20 43 0.004 11 16 0.14 470 574 MTF26 15 16 QtzCore 27 58 0.006 120 14 1.23 1500 1832 MTF26 16 17 QtzCore 214 46			_		21		0.005			0.00					
MTF26 10 11 Peg 59 127 0.013 870 130 5.65 630 769 MTF26 11 12 Peg 44 95 0.009 670 60 6.63 470 574 MTF26 12 13 Peg 44 95 0.009 1100 220 6.77 580 708 MTF26 13 14 Peg 21 45 0.005 250 45 3.12 860 1050 MTF26 14 15 QtzCore 20 43 0.004 11 16 0.14 470 574 MTF26 15 16 QtzCore 27 58 0.006 120 14 1.23 1500 1832 MTF26 16 17 QtzCore 214 461 0.046 550 55 5.02 210 256 MTF26 18 19 Peg 27 58			_												
MTF26 11 12 Peg 44 95 0.009 670 60 6.63 470 574 MTF26 12 13 Peg 44 95 0.009 1100 220 6.77 580 708 MTF26 13 14 Peg 21 45 0.005 250 45 3.12 860 1050 MTF26 14 15 QtzCore 20 43 0.004 11 16 0.14 470 574 MTF26 15 16 QtzCore 27 58 0.006 120 14 1.23 1500 1832 MTF26 16 17 QtzCore 214 461 0.046 550 55 5.02 210 256 MTF26 17 18 Peg 41 88 0.009 390 30 3.87 12 15 MTF26 18 19 Peg 27 58 <td></td>															
MTF26 12 13 Peg 44 95 0.009 1100 220 6.77 580 708 MTF26 13 14 Peg 21 45 0.005 250 45 3.12 860 1050 MTF26 14 15 QtzCore 20 43 0.004 11 16 0.14 470 574 MTF26 15 16 QtzCore 27 58 0.006 120 14 1.23 1500 1832 MTF26 16 17 QtzCore 214 461 0.046 550 55 5.02 210 256 MTF26 17 18 Peg 41 88 0.009 390 30 3.87 12 15 MTF26 18 19 Peg 27 58 0.006 360 25 4.51 5 6 MTF26 19 20 Peg 11 24															
MTF26 13 14 Peg 21 45 0.005 250 45 3.12 860 1050 MTF26 14 15 QtzCore 20 43 0.004 11 16 0.14 470 574 MTF26 15 16 QtzCore 27 58 0.006 120 14 1.23 1500 1832 MTF26 16 17 QtzCore 214 461 0.046 550 55 5.02 210 256 MTF26 17 18 Peg 41 88 0.009 390 30 3.87 12 15 MTF26 18 19 Peg 27 58 0.006 360 25 4.51 5 6 MTF26 19 20 Peg 11 24 0.002 110 19 6.34 25 31 MTF26 20 21 Peg 78 168 0.017 450 30 6.88 130 159 MTF26 21 22 Peg															
MTF26 14 15 QtzCore 20 43 0.004 11 16 0.14 470 574 MTF26 15 16 QtzCore 27 58 0.006 120 14 1.23 1500 1832 MTF26 16 17 QtzCore 214 461 0.046 550 55 5.02 210 256 MTF26 17 18 Peg 41 88 0.009 390 30 3.87 12 15 MTF26 18 19 Peg 27 58 0.006 360 25 4.51 5 6 MTF26 19 20 Peg 11 24 0.002 110 19 6.34 25 31 MTF26 20 21 Peg 78 168 0.017 450 30 6.88 130 159 MTF26 21 22 Peg 9 19															-
MTF26 15 16 QtzCore 27 58 0.006 120 14 1.23 1500 1832 MTF26 16 17 QtzCore 214 461 0.046 550 55 5.02 210 256 MTF26 17 18 Peg 41 88 0.009 390 30 3.87 12 15 MTF26 18 19 Peg 27 58 0.006 360 25 4.51 5 6 MTF26 19 20 Peg 11 24 0.002 110 19 6.34 25 31 MTF26 20 21 Peg 78 168 0.017 450 30 6.88 130 159 MTF26 21 22 Peg 9 19 0.002 240 45 7.58 180 220															
MTF26 16 17 QtzCore 214 461 0.046 550 55 5.02 210 256 MTF26 17 18 Peg 41 88 0.009 390 30 3.87 12 15 MTF26 18 19 Peg 27 58 0.006 360 25 4.51 5 6 MTF26 19 20 Peg 11 24 0.002 110 19 6.34 25 31 MTF26 20 21 Peg 78 168 0.017 450 30 6.88 130 159 MTF26 21 22 Peg 9 19 0.002 240 45 7.58 180 220															
MTF26 17 18 Peg 41 88 0.009 390 30 3.87 12 15 MTF26 18 19 Peg 27 58 0.006 360 25 4.51 5 6 MTF26 19 20 Peg 11 24 0.002 110 19 6.34 25 31 MTF26 20 21 Peg 78 168 0.017 450 30 6.88 130 159 MTF26 21 22 Peg 9 19 0.002 240 45 7.58 180 220															-
MTF26 18 19 Peg 27 58 0.006 360 25 4.51 5 6 MTF26 19 20 Peg 11 24 0.002 110 19 6.34 25 31 MTF26 20 21 Peg 78 168 0.017 450 30 6.88 130 159 MTF26 21 22 Peg 9 19 0.002 240 45 7.58 180 220															
MTF26 19 20 Peg 11 24 0.002 110 19 6.34 25 31 MTF26 20 21 Peg 78 168 0.017 450 30 6.88 130 159 MTF26 21 22 Peg 9 19 0.002 240 45 7.58 180 220															
MTF26 20 21 Peg 78 168 0.017 450 30 6.88 130 159 MTF26 21 22 Peg 9 19 0.002 240 45 7.58 180 220															
MTF26 21 22 Peg 9 19 0.002 240 45 7.58 180 220															
					486	1046			120						

		_	KU												
RESOU Hole		То	Lithology	li nom	Li2O_ppm	1120 %	Ph nnm	Ce nnm	Na %	K_%	Ta_ppm	Ta2O5_ppm	Sn nnm	Nh r	nnm
			Peg	Li_ppiii	95	0.009			5.64	Ν_/0	та_ррпі 40	49	Sii_ppiii	IAD_F	рш
MTF26	23 24			14	30	0.009	1300 210	80 16	7.00		40	49			
MTF26	25		Ü	12	26	0.003	170	12	6.63		40	49			
MTF26	26	27	Peg	5	11	0.001	18	17	8.43		40	49			
MTF26	27			30	65	0.006	90	5	3.08		5	6			
MTF27	0	1	VQZ	54	116	0.012	150	18	1.31		20	24			
MTF27	1	2	VQZ	32	69	0.007	170	16	3.83		10	12			
MTF27	2	3	VQZ	27	58	0.006	170	12	5.13		5	6			
MTF27	3	_	VQZ	14	30	0.003	50	16	4.55		5	6			
MTF27	4	_	VQZ	16	34	0.003	55	12	2.99		5	6			
MTF27	5	_	VQZ	30	65	0.006	6	5	0.10		5	6			
MTF27	6	7		54	116	0.012	12	19	0.15		5	6			
MTF27 MTF27	7 8	_	VQZ VQZ	40 28	86 60	0.009	10 460	19 25	0.02		5 5	6			
MTF27	9		Peg	316	680	0.068	940	70	2.41		35	43			
MTF27	10	11	Peg	570	1227	0.123	1600	120	2.35		40	49			
MTF27	11		Peg	196	422	0.042	1300	85	2.16		19	23			
MTF27	12	_	Peg	471	1014	0.101	1100	55	4.03		35	43			
MTF27	13			115	248	0.025	1200	75	5.60		75	92			
MTF27	14	15	Peg	1560	3359	0.336	3700	200	1.61		60	73			
MTF27	15	16	Peg	375	807	0.081	1700	120	4.75		60	73			
MTF27	16		Peg	55	118	0.012	1300	70	5.19		35	43			
MTF27	17		Peg	830	1787	0.179	1900	140	4.68		30	37			
MTF27	18	_	Peg	710	1529	0.153	1800	140	4.79		35	43			
MTF27	19	_	Peg	321	691	0.069	1600	140	5.18		45	55			
MTF27	20	21	Peg	520	1120	0.112	1100	120	5.59		50	61			
MTF27 MTF27	21 22	22 23	Peg Peg	130 116	280 250	0.028 0.025	1100 1600	100 100	5.90 4.67		110 55	134 67			
MTF27	23		Peg	18	39	0.023	390	6	7.04		35	43			
MTF27	24		Peg	16	34	0.004	190	25	7.05		120	147			
MTF27	25			15	32	0.003	95	5	8.85		60	73			
MTF27	26	27	Peg	14	30	0.003	25	5	8.89		25	31			
MTF27	27			18	39	0.004	250	5	6.99		35	43			
MTF28	3	4	Peg	319	687	0.069	410	60	4.90		10	12			
MTF28	4	5	Peg	500	1077	0.108	530	55	4.21		30	37			
MTF28	5	6	Peg	1100	2368	0.237	1600	130	3.93		25	31			
MTF28	6	7	Peg	1740	3746	0.375	2200	190	4.56		50	61			
MTF28	7	_		1650	3552	0.355	1900	170	4.98		5	6			
MTF28	8	9	Peg	300	646	0.065	410	55	3.68		25	31			
MTF28	9 10		QtzCore	85 73	183 157	0.018	55	25 25	0.99		5 5	6			
MTF28	11	11 12	QtzCore QtzCore	64	137	0.016 0.014	8 6	20	0.60		5	6			
MTF28	12	_	QtzCore	66	142	0.014	3	20	0.04		5	6			
MTF28	13		QtzCore	77	166	0.017	9	19	0.06		20	24			
MTF28	14	15		48	103	0.010	90	16	0.05		5	6			
MTF28	15	16		68	146	0.015	30	5	0.90		5	6			
MTF28	16	17	QtzCore	61	131	0.013	210	30	0.75		16	20			
MTF28	17	18	QtzCore	93	200	0.020	620	35	1.05		120	147			
MTF28	18	19	QtzCore	101	217	0.022	560	30	5.68		11	13			
MTF28			Peg	540	1163	0.116		60	6.84		5	6			
MTF28			Peg	2410	5189	0.519	2700	280	3.17		45	55			
MTF28	21			1740	3746	0.375	1900	210	1.58		35	43			
MTF28	22		Peg Peg	1860	4005	0.400	2100	180	1.35		14 60	17			
MTF28	23 24		Peg	1600 201	3445 433	0.344 0.043	2000 1900	150 110	3.22 4.91		40	73 49			
MTF28	25	_	Peg	336	723	0.043	1600	100	5.87		35	49			
MTF28	26		Peg	500	1077	0.108	1300	85	5.37		40	49			
MTF28	27	_	Peg	203	437	0.044	640	45	5.98		55	67			
MTF28	28	_	Peg	115	248	0.025	530	40	6.07		55	67			
MTF28	29		Peg	33	71	0.007	2	10	5.22		25	31			
MTF28	30	31	Peg	18	39	0.004	120	5	6.36		40	49			
MTF28	31	32	Trans	75	161	0.016	33	5	6.25		55	67			
MTF29	18		Gab/VQZ	35	75	0.008	1800	85	2.81		16	20			
MTF29	19		Peg	15	32	0.003	1100	60	4.62		70	85			
MTF29			Peg	14	30	0.003	180	5	6.79		70	85			
MTF29	21	_	Peg	115	248	0.025	970	70	4.93		55	67			
MTF29	22	_	Peg	495	1066	0.107	1400	140	5.14		40	49			
MTF29	23		Peg	61	131	0.013	610	50	4.72		65	79			
MTF29	24	_	Peg	22	47	0.005	520 1300	55	7.58		45	55			
MTF29 MTF29	25 26		Peg Peg	411 710	885 1529	0.088 0.153	1300 1100	110 80	4.71 2.44		25 5	31 6			
MTF29	26	_	Peg	1370	2950	0.153	2000	140	2.44		50	61			
MTF29	28		Peg	790	1701	0.293	1100	130	4.24		45	55			
MTF29			Peg	930	2002	0.200	1400	140	4.59		80	98			
MTF29			Peg	496	1068		740				19	23			
-						-	-		-						

RESOU	RCES													
Hole	From		Lithology	Li ppm	Li2O ppm	LI2O %	Rb ppm	Cs ppm	Na %	K %	Ta ppm	Ta2O5_ppm	Sn ppm	Nb ppm
MTF29	31		Peg	650	1399	0.140	1300	130	4.57		80	98		
MTF29	32		Peg	710	1529	0.153	1200	90	4.51		40	49		
MTF29	33			216	465	0.133	570	50	6.50		50	61		
MTF29	34			101	217	0.022	670	50	5.69		75	92		
MTF29	35	36		920	1981	0.198	5800	970	2.61		550	672		
MTF29	36	37	QtzCore	190	409	0.041	5100	520	3.38		660	806		
MTF29	37		Peq	19	41	0.004	1600	120	5.68		360	440		
MTF29	38		Peg	5	11	0.001	90	5	6.20		95	116		
MTF29	39		Peg/Gab	4	9	0.001	100	5	6.71		170	208		
MTF30	0	1	Col	41	88	0.009	380	20	3.02		40	49		
MTF30	1	2		14	30	0.003	45	5	4.80		16	20		
MTF30	2		Peg	36	78	0.008	180	5	3.64		5	6		
MTF30	3		Peg	22	47	0.005	230	11	3.25		110	134		
MTF30	4	5	Peq	12	26	0.003	150	5	4.14		16	20		
MTF30	5		Peg	26	56	0.006	280	20	3.43		17	21		
MTF30	6	7	Peg	25	54	0.005	350	5	3.23		15	18		
MTF30	7	8	QtzCore	21	45	0.005	30	5	0.38		5	6		
MTF30	8	9	QtzCore	18	39	0.004	1	5	0.04		5	6		
MTF30	9	10	QtzCore	19	41	0.004	1	5	0.04		5	6		
MTF30	10	11	QtzCore	19	41	0.004	1	5	0.05		5	6		
MTF30	11	12	QtzCore	18	39	0.004	110	5	1.84		14	17		
MTF30	12	13	QtzCore	148	319	0.032	750	150	5.07		190	232		
MTF30	13	14	QtzCore	36	78	0.008	330	25	6.91		370	452		
MTF30	14		QtzCore	45	97	0.008	880	55	4.56		50	61		
MTF30	15		Peg	19	41	0.010	980	70	4.97		30	37		
MTF30	16		Pea	26	56	0.004	690	70 75	2.70		20	24		
MTF30	17	-	Peg	20	43	0.004	720	45	4.23		25	31		
MTF30	18	_	Peg	26	<u>43</u> 56	0.004	1200	95	3.42		35	43		
MTF30	19		Peg	19	41	0.004	1100	85	4.24		20	24		
												85		
MTF30 MTF30	20 21	21 22	Peg Peg	5 1	11 2	0.001	25 65	5 5	6.08 8.10		70 40	49		-
MTF30	22	23	Peg	1	2	0.000	120	5	8.23		30	37		
MTF30	23		_	4	9	0.001	130	5	5.50		50	61		
MTF30	24	25	Peg	23	50	0.005	710	40	4.55		160	195		
MTF30	25		Peg/Gab	19	41	0.004	95	5	3.00		5	6		
MTF31	16	17	Gab/Peg	82	177	0.018	760	30			5	6		
MTF31	17		Peg	59	127	0.013	1300	110			80	98		
MTF31	18		Peg	51	110	0.011	1100	65			20	24		
MTF31	19		Peg	92	198	0.020	460	35			5	6		
MTF31	20	21	Peg	550	1184	0.118	1100	70			30	37		
MTF31	21		Peg	920	1981	0.198	1400	120			150	183		
MTF31	22	23	Peg	890	1916	0.192	1400	100			50	61		
MTF31	23	24	_	790	1701	0.170	1200	85			45	55		
MTF31	24		Peg	810	1744	0.174	1200	100			35	43		
MTF31	25	26	Peg	540	1163	0.116	820	60			25	31		
MTF31	26	27	Peg	279	601	0.060	520	55			40	49		
MTF31	27		Peg	143	308	0.031	600	60			25	31		
MTF31			Peg	17	37	0.004		5			60	73		
MTF31			Peg	5	11	0.001	9	5			25	31		
MTF31			Peg	9	19	0.002	30	5			90	110		
MTF31	31	32	Peg	4	9	0.001	25	5			5	6		
MTF31	32	33	Peg	5	11	0.001	16	5			25	31		
MTF31	33	34	Peg	7	15	0.002	5	5			70	85		
MTF31	34	35	Peg	17	37	0.004	30	5			80	98		
MTF31	35	36	Peg	4	9	0.001	10	5			40	49		
MTF31	36	37	Trans	13	28	0.003	200	5			5	6	<u> </u>	
MTF32	27	28	Gab/Peg	77	166	0.017	280	40			5	6		
MTF32	28		Peg	269	579	0.058	440	50			30	37		
MTF32	29		Peg	520	1120	0.112	1300	120			1100	1343		
MTF32			Peg	482	1038	0.104	990	120			55	67		
MTF32	31		Peg	560	1206	0.121	910	90			25	31		
MTF32	32		Peg	320	689	0.069	1100	100			60	73		
MTF32	33		Peg	260	560	0.056	710	55			20	24		
MTF32	34		Peg	190	409	0.041	1.0	80			30	37		
MTF32	35		Peg	85	183	0.041	630	55			65	79		
MTF32	36		Peg	50	108	0.011	310	25			25	31		
MTF32	37		Peg	7	15	0.002	30	5			15	18		
MTF32	38		Peg	5	11	0.002	9	5			35	43		-
MTF32	39		Peg	9	19	0.001	10	<u>5</u>			5	6		
MTF32	40		Peg	12	26	0.002	55	<u>5</u>			11	13		
	40				1722								-	
MTF33			- 3	800		0.172	1200	75			5	6		
MTF33	1		Peg	282	607	0.061	410	40			5	6		
MTF33	2		QtzCore	79	170	0.017	11	12			13	16		
MTF33	3		QtzCore	99	213	0.021	65	45			5	6		
MTF33	4	5	QtzCore	710	1529	0.153	2700	360			480	586	l	<u> </u>

RESOU		U												
Hole	From	То	Lithology	Li ppm	Li2O_ppm	LI2O %	Rb ppm	Cs ppm	Na %	K_%	Ta ppm	Ta2O5_ppm	Sn ppm	Nb_ppm
MTF33	5		QtzCore	5900	12703	1.270	10000	1900	110_70	1,_70	230	281	оп_ррпп	. ш_рр
MTF33	6		QtzCore	271	583	0.058	750	45			550	672		
MTF33	7		QtzCore	880	1895	0.189	1700	140			45	55		
MTF33	8	9	Peg	540	1163	0.116	920	90			35	43		
MTF33	9		Peg	1050	2261	0.226	2000	140			5	6		
MTF33	10		Peg	920	1981	0.198	2600	150			5	6		
MTF33	11		Peg	450	969	0.097	1100	80			30	37		
MTF33 MTF33	12 13		Peg Gab	570 151	1227 325	0.123	1500 340	140 40			45 5	55 6		
MTF34	2		Gab	119	256	0.033	190	14			5	6		
MTF34	3		Peg	1120	2411	0.020	2000	100			100	122		
MTF34	4		Peg	147	316	0.032	270	35			55	67		
MTF34	5	6	QtzCore	219	472	0.047	980	60			50	61		
MTF34	6	7	QtzCore	960	2067	0.207	1200	150			65	79		
MTF34	7		Peg	1160	2497	0.250	1600	130			20	24		
MTF34	8		Peg	1190	2562	0.256	1200	160			70	85		
MTF34	9		Peg	1510	3251	0.325	1700	380			95	116		
MTF34	10		Peg Cob	810	1744	0.174	860 80	150 14			40	49 24		
MTF34 MTF35	11		Gab VQZ	111 68	239 146	0.024	9	25			20 10	12		
MTF35	3		VQZ VQZ	53	114	0.013	270	45			5	6		
MTF35	4		VQZ	45	97	0.010	360	55			80	98		
MTF35	5		VQZ	40	86	0.009	290	35			120	147		
MTF35	6	7	VQZ	37	80	0.008	360	45			220	269		
MTF35	7		VQZ	19	41	0.004	190	16			1000	1221		
MTF35	8		Peg	9	19	0.002	210	18			790	965		
MTF35	9		Peg	15	32	0.003	230	15			280	342		
MTF35	10 11		Peg Ot-Coro	39 18	84	0.008	520 110	20 14			320 420	391 513		
MTF35 MTF35	12		QtzCore QtzCore	14	39 30	0.004	80	5	_		940	1148		
MTF35	13		QtzCore	12	26	0.003	25	5	_		450	549		
MTF35	14		QtzCore	7	15	0.002	25	10			660	806		
MTF35	15		QtzCore	15	32	0.003	380	20			130	159		
MTF35	16	17	Peg	94	202	0.020	1200	70			35	43		
MTF35	17		Peg	22	47	0.005	260	15			55	67		
MTF35	18		Peg	57	123	0.012	370	45			40	49		
MTF36	0		VQZ	45	97	0.010	40	5			20	24		
MTF36	1 2		VQZ VQZ	68 86	146 185	0.015	8 15	5			19	23		
MTF36	3		VQZ VQZ	120	258	0.019 0.026	15	5 5			5 5	6		
MTF36	4		VQZ	110	237	0.024	1	5			5	6		
MTF36	5		VQZ	85	183	0.018	4	5			5	6		
MTF36	6	7	VQZ	126	271	0.027	9	5			25	31		
MTF36	7		VQZ	70	151	0.015		5			15	18		
MTF36	8	-	VQZ	54	116	0.012	65	14			210	256		
MTF36	9		VQZ	58	125	0.012	750	65			310	379		
MTF36	10		Peg	60	129	0.013	640	60			340	415		
MTF36			Peg Peg	51 39	110 84	0.011	570 550	40 35			250 360	305 440		
MTF36			Peg	31	67	0.008	470	25			460	562		
MTF36	14		Peg	23	50	0.005	140	11			130	159		
MTF36	15		Peg	28	60	0.006	310	55			16000	19536		
MTF36	16	17	Peg	60	129	0.013	1000	110			5600	6838		
MTF36	17		Peg	53	114	0.011	410	25			260	317		
MTF36	18		Peg	338	728	0.073	870	70			80	98		<u> </u>
MTF36			Peg	24	52	0.005	170	5			5			
MTF36	20		Peg	11 g	24	0.002	40 80	5			5 160			
MTF36	21 22		Peg Peg	56	17 121	0.002 0.012	930	5 40			160 45	195 55		\vdash
MTF36			Peg	10	22	0.012	130	5	_		840			
MTF36			Peg	18	39	0.002	250	5			670	818		
MTF36			Peg	13	28	0.003	310	13			120	147		
MTF36	26	27	Peg	7	15	0.002	50	5	_		55	67		
MTF36			Peg/Trans	50	108	0.011	50	5			16			
MTF36			Trans	34	73	0.007	430	5			45	55		
MTF36			Trans	14	30	0.003	130	5			80	98		<u> </u>
MTF37	0		QtzCore OtzCore	60	129	0.013	150	5			25	31		
MTF37 MTF37	1 2		QtzCore QtzCore	44 17	95 37	0.009	120 160	5 5			75 210	92 256		\vdash
MTF37	3		QtzCore	41	88	0.004	370	30			250	305		
MTF37	4		QtzCore	29	62	0.003	290	18			400	488		
MTF37	5	_	QtzCore	19	41	0.004	180	12			350	427		
MTF37	6		QtzCore	17	37	0.004	220	5	_		500	611		
MTF37	7		QtzCore	53	114	0.011	910	150			330			
MTF37	8	9	QtzCore	26	56	0.006	120	5			190	232		

RESOU			'AU											
	From	То	Lithology	Li ppm	Li2O_ppm	LI2O %	Rb ppm	Cs ppm	Na %	K %	Ta ppm	Ta2O5_ppm	Sn ppm	Mag dN
MTF37			QtzCore	22	47	0.005	350	45	110_70	1,_70	1600	1954	оп_ррпп	. то_рр
MTF37	10		QtzCore	16	34	0.003	310	30			1300	1587		
MTF37	11		QtzCore	11	24	0.002	130	18			2500	3053		
MTF37	12	-	QtzCore	10	22	0.002	90	5			290	354		
MTF37	13	-	QtzCore	368	792	0.079	860	75			60	73		
MTF37	14	_	Peg	1340	2885	0.289	2000	190			110	134		
MTF37	15	_	Peg	580	1249	0.125	1100	160			100	122		
MTF37 MTF37	16 17	_	Peg Peg	319 34	687 73	0.069	1000 380	140 40			60 12	73 15		
MTF37	18	_	Gab	63	136	0.007	70	5			5	6		
MTF38	0	-	QtzCore	64	138	0.014	35	20			5	6		
MTF38	1	_	QtzCore	97	209	0.021	25	13			5	6		
MTF38	2	-	QtzCore	111	239	0.024	16	16			14	17		
MTF38	3	4	QtzCore	120	258	0.026	3	10			5	6		
MTF38	4		QtzCore	89	192	0.019	3	14			15	18		
MTF38	5		QtzCore	28	60	0.006	4	5			5	6		
MTF38	6 7		QtzCore	56 103	121 222	0.012	3	5 5			5 5	6		
MTF38	8		QtzCore QtzCore	41	88	0.022	8	5			5	6		
MTF38	9	_	QtzCore	38	82	0.003	160	40			5	6		
MTF38	10		QtzCore	32	69	0.007	240	35			35	43		
MTF38	11	12	QtzCore	28	60	0.006	300	33			12	15		
MTF38	12	13	Peg	24	52	0.005	310	3			280	342		
MTF38	13	_	Peg	7	15	0.002	80				6100	7448		
MTF38	14	_	Peg	13	28	0.003	130	14			16000	19536		
MTF38	15	_	Peg	16	34	0.003	85	12			790	965		
MTF38	16	_	Peg	11	24	0.002		5			2000	2442		
MTF38	17 18	_	Peg Peg	7 455	15 980	0.002	55 920	5 70			620 75	757 92		
MTF38			Peg	780	1679	0.098	1900	140			55	67		
MTF38	20		Peg	58	125	0.012	650	40			45	55		
MTF38	21		Peg	53	114	0.011	210	25			60	73		
MTF38	22		Gab	31	67	0.007	130	5			5	6		
MTF39	0	1	QtzCore	36	78	0.008	1100	20			14	17		
MTF39	1	2	QtzCore	28	60	0.006	660	19			5	6		
MTF39	2		QtzCore	26	56	0.006	55	5			20	24		
MTF39	3		QtzCore	8	17	0.002	7	5			5	6		
MTF39	4 5		QtzCore QtzCore	5 73	11 157	0.001 0.016	1	5 5			5 5	6 6		
MTF39	6	7	QtzCore	71	153	0.015	1	5			5	6		
MTF39	7	-	QtzCore	60	129	0.013	1	5			20	24		
MTF39	8		QtzCore	46	99	0.010	290	55			19	23		
MTF39	9	10	QtzCore	23	50	0.005	50	12			50	61		
MTF39	10	11	QtzCore	27	58	0.006	18	5			110	134		
MTF39	11		Peg	31	67	0.007	5	5			12	15		
MTF39	12		Peg	27	58	0.006	130	5			110	134		
MTF39	13		Peg	39	84	0.008	240 130	5			820	1001		
MTF39			Peg Peg	10 13	22 28	0.002	140	5 5			1200 3600	1465 4396		
MTF39		_	Peg	14	30	0.003	140	5			22000	26862		
MTF39		_	Peg	13	28	0.003	130	5			18000	21978		
MTF39	18	19	Peg	4	9	0.001	16	5			1600	1954		
MTF39	19	20	Peg	4	9	0.001	15	5			840	1026		
MTF39		_	Peg	49	105	0.011	1100	45			180	220		
MTF39			Peg	481	1036	0.104	1600	80			45	55		
MTF39			Peg	166	357	0.036		35			70 50	85 61		
MTF39	23		Peg Peg	79 109	170 235	0.017 0.023		25 35			50 100	61 122		
MTF39			Gab	30	65	0.023		5			25	31		
MTF40	0	-	QtzCore	53	114	0.011	70	5			45	55		
MTF40	1		QtzCore	56	121	0.012	18	5			5	6		
MTF40	2	3	QtzCore	37	80	0.008	7	5			10	12		
MTF40	3		QtzCore	37	80	0.008	13	5			5	6		
MTF40	4		QtzCore	76	164	0.016		5			5	6		
MTF40	5		QtzCore	45	97	0.010		5			10	12		
MTF40	6		QtzCore	48	103	0.010		5			20	24		
MTF40 MTF40	7 8		QtzCore QtzCore	26 22	56 47	0.006		5 5			13 35	16 43		
MTF40			QtzCore	41	88	0.005		5			15	18		
MTF40		_	QtzCore	29	62	0.009		10			40	49		
MTF40			QtzCore	28	60	0.006		5			14	17		
MTF40		_	QtzCore	32	69	0.007	55	15			16	20		
MTF40		-	QtzCore	96	207	0.021	1100	50			80	98		
MTF40		-	QtzCore	99	213	0.021	810	45			5	6		
MTF40	15	16	Peg	42	90	0.009	260	16			20	24		

ALDORO RESOURCES LIMITED | ABN 31 622 990 809 | +61 8 6559 1792

From To Lithology Li_ppm Li2O_ppm Li2O_y Rb_ppm Cs_ppm Na_% K_% Ta_ppm Ta2O5_ppm Sn_ppm Nb_ppm

MTF40	16	17	Peg	107	230	0.023	820	25		15	18	
MTF40	17	18	Peg	128	276	0.028	550	30		55	67	
MTF40	18	19	Peg	111	239	0.024	790	40		45	55	
MTF40	19	20	Peg	15	32	0.003	220	5		50	61	
MTF40	20	21	Peg	7	15	0.002	45	5		65	79	
MTF40	21	22	Peg	13	28	0.003	65	5		60	73	
MTF40	22	23	Peg	15	32	0.003	260	5		50	61	
MTF40	23	24	Peg	9	19	0.002	85	5		60	73	
MTF40	24	25	Peg	10	22	0.002	130	5		30	37	

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 No details provided from Pancontinental's report other than samples were collected at 1m intervals It is unknown how representative these samples are, given they are historical in nature with limited data provided. Pancontinental reported taking 3kg splits from the RC drill chips The mineralisation of the Pegmatite at Niobe is based on the analytical results by successive explorers including Tantalum Australia who conducted extensive drilling to define a tantalum resource (not the target commodity of the Exploration Target). Petrology did identify zinnwaldite micas as the main source of Li and presumably Rb and Cs. Pancontinental conducted RC drilling collecting 1m interval samples, one cannot comment on sampling procedures as none were documented. Judging by the lack of documentation no consideration was taken into account of the coarseness of the pegmatite. The main lithium mineral was zinnwaldite, in micaceous cluster form, which may have influence on sampling methodology if not considered.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Reverse Circulation using a Scham universal rig and a NQ face sampling hammer and NQ 4" rods. The holes were angle by compass and clinometer (rig). No down hole orientation tools were reported probably due to shallow nature of the drilling.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential 	 No reporting of drill chip recoveries was mentioned on the logs It is unknown what measures were taken to maximise sample recovery. It is unknown any relationship between recovery and grade, as recovery was not reported.

ESOURCES Criteria	JORC Code explanation	Commentary
	loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The detailed logs provide fair geological descriptions but no geotechnical information and would not support Mineral Resource estimation, mining studies or metallurgical studies. The logging is qualitative but no quantative The RC chips have been logged on a lithological rather than a metreage basis. No volume comparisons were made between sample intervals.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 It is not known what method the RC chips were subsampled other than they were split, collecting a 3kg split per metre. They did not mention how the sample was spilt then this methodology is not a representative sub sampling technique Sample control duplicates were taken in all mineralised zones with 84 samples collected at 3-5m intervals. These were analysed, also at SGS separately, and results compared their counterparts, four were found outside acceptable limits. Investigation found one due to interval error and the other 3 were due to grind issues with coarse micas in the charge residue. It is not known whether grain size was a consideration in the subsampling technique.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The samples were analysed at SGS with the same preparation (dry pulverised to -80mesh, split pulverised to -200mesh in Cr steel mill) but 3 different analytical methods XRF-1 (Nb, Rb) pressed powder XRF method XRF-1 (Ta, Sn, Cs, K) low dilution fusion D3(a) (Li, Na) mixed acid total digest with AAS finish By today's standards these techniques are not ideal and have low sensitivity given the refractory nature of some elements with sodium peroxide fusion and ICP-MS being the recommended method. No geophysical tools used It is unknown what control procedures were adopted

RESOURCES Criteria	JORC Code explanation	Commentary
	•	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No verification techniques were reported. No twinned holes were drilled Full documentation procedures were reported, presumably dur to the age of the historical drilling the data collection would have been manually, including the laboratory except for the final analytical data Assay data was presented as raw lab data with not assay adjustments.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The hole collars were established on a surveyed grid system with no GPS data given. The local grid was converted to eastings and northings by georeferencing maps with key landmark identifiers then comparing to located satellite images, giving confidence to location data The converted data used GDA94 zone 50 datum The topographic control was limited to STRM data, with the relative topographic error minimized due to the generally flat topography and close collar spacing
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The drill hole spacing was generally 10m (E-W) and 15m (N-S) with angle holes drilled in along N-S lines with offline vertical holes. The 31 holes are confined to an area approximately 80m (E-W) by 65m (N-S) and therefore considered constricted enough for Exploration Target status Sample compositing has not been applied with results on a 1m down hole interval basis.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The holes were generally drilled to an azimuth of 170-180 degrees at dips of -70 degrees. The Niobe pegmatite sheet strikes to the NE and dips 30-40 degrees to the northwest. The holes are therefore off perpendicular with true width thickness not the same as down hole thickness. True width varies from 25 to 35m, with flaring noted at surface. The mineralisation is in the style of a LCT pegmatite, zoned with a quartz rich core and mineralisation found in the intermediate and

AL DODO	
ALDORO\	
DECOLIDEES	

Criteria	JORC Code explanation	Commentary
		walled zones but not consistent across these zones. The drilling cuts across either part of the zone or across all zones depending upon if the holes start in the pegmatite or not but do start and/or finish in the host gabbro. The orientation of the angle holes while not perpendicular to the strike does add some sampling bias, it is not considered substantial for an Exploration Target status when ranges are given but no resource defined.
Sample security	The measures taken to ensure sample security.	It is unknown what sample measures were taken to ensure sample security
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No audits or reviews were reported on the the sampling technique or data generated.

Section 2 Reporting of Exploration Results

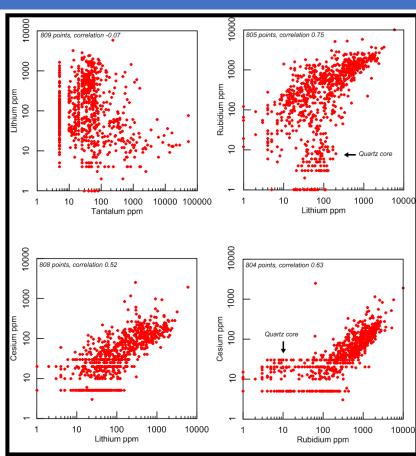
(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Niobe Project consists of a single prospecting licence P59/2137 held by Meridian 120 Mining Ltd located 70km of Mout Magnet that Aldoro Resources entered a binding agreement sale agreement. The prospecting licence is granted and expires on the 25/3/2022 unless an extension is applied. There are no impediments to accessing the licence to conduct exploration other than standard approval for ground disturbing techniques of Programme of Works (POWs).
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historical exploration was initially for beryl by prospectors then primarily for tantalum with the development of the Niobe resource. There has been no systematic exploration for Rubidium, lithium or Caesium despite the presence of LCT type pegmatites. e Late 1950's to 1984. Exploration was conducted by prospectors who located the main mineralised zones of

Criteria JORC Code explanation	Commentary	
		the pegmatites and quarried these for beryl and include limited exploitation of eluvial tantalite and cassiterite. 1984 to 1999. Systematic exploration by Pancontinenta Mining Ltd included geological mapping, rock chi sampling, drilling (RC, RAB, Diamond), costeaning petrography, metallurgy, resource definition, trial minin and rehabilitation. Their focus was tantalum but include some lithium analysis. Geochemical analysis from 4 holes predominantly into the main Niobe pegmatit dilation but also into the northeast Niobe lobe wer analysed for Li and included Cs, Ta, Rb, Nb, Sn, Na, an K. A total of 13 surface rock samples and 3 semicontinuous costean samples were also analyse with the same suite of elements. A total of 15 RC chi samples were petrographically described, 4 of whice contained zinnwaldite. 1999-2003 Australian Gold Mines NL and Keme Corporation formed Tantalum Australia and undertoon assessment of the Dalgaranga and Warda Warr pegmatite fields with the view to exploit the tantalum mineralisation. Work included new geological mapping conducted further drilling and resource investigation. They processed stockpile and tailings through the Dalgaranga tantalum plant. 2007-2017 Diversity Resources Pty Ltd acquired the ground and operator Meridian 120 Mining Pty Lt conducted a detailed review, undertaking new geological mapping, orientation soil sampling and compilation of digital database. 2018-Present. Meridian acquired the project an undertook further geological mapping, rock chip samplin and consolidation of the projects database. A total of rock chip samples and 2 drill chip resamples wer collected and analysed for Li, Cs, Nb, Rb, Sn and Ta.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	• The Niobe project lies in the east-north-easterly trending Archaean Dalgaranga Greenstone Belt, a synclinal belt some 50km long and 20km wide consisting dominantly of metasediments, felsic volcanics and lesser basalts within the Murchison Terrane. Seven known intrusive thick gabbroic sills display differentiation with defined layering from ultramafic bases grading into mafic rocks. The NE-NNE trending synclinal axis has been interpreted to lie to the NW of the project area. Pegmatite swarms are found in the northerly part of the belt as late-stage fluidisation events from the local granitoids, which lie to the north, and are hosted in metagabbro and pelitic schists. The swarm generally trends in a north-easterly orientated parallel to the Big Bell Shear Zone. Tantalum, beryllium, tin, tungsten, lithium and molybdenum mineralisation are found associated with the pegmatites. Niobe Project pegmatites fit the style of mineralisation associated with Lithium-Caesium-Tantalum (LCT) pegmatites as they are hosted in a greenstone belt, fractionated with enrichments in enriched Li, Cs, Ta, Rb, Be and Nb and exhibit zoning as wall rock, intermediate and core zones are defined. The lithium minerals reported are zinnwaldite, lepidolite, elbaite and possibly spodumene supporting a level of zonation and fractionation while other minerals reported are cassiterite (Sn),
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the 	 tantalite-columbite (Ta), microlite (pyrochlore Nb), beryl (Be) See the tables attached after this section which provide collar, geology and assay information. No relevant information has been excluded. All seven profiles have been provided as examples of the down hole mineralisation.

Criteria	JORC Code explanation	Commentary
	information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No data aggregation methods have been adopted, however for the purposes of obtain Exploration Target tonnage and grade ranges, cut off grade have been used for the lower tonnage – higher grade figures. Rb cut off grade was 200ppm. The high tonnage figure and lower grade was obtained juts using the pegmatite intersections as the mineralized interval. To obtain the tonnages and grade ranges MapInfo Discover resource calculation programme was used. Key parameters were 1m cell size (as the assays were on a 1m basis), the ellipse parameters were 10m radius based on the E-W spacing of 10m with N-S slices used as control. A pegmatite density of 2.6 was used based on the weathered pegmatite in the pit being 2.5 and assuming the pegmatite below will be fresher and less pore space. Also 2.6 is the standard pegmatite value in rock density tables. No metal equivalents were used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The mineralisation is contained to the pegmatite with the intercept length exhibiting zoning which is also reflected the changes in lithological zoning of the pegmatite. The quartz core is generally low in mineralisation but the upper and lower intermediate and transition zones contain higher levels of mineralisation The geometry of the mineralisation is dictated by the zoning and fractionation of the pegmatite and is restricted to the inclined tabular morphology of the pegmatite. The north south drill holes are drilled perpendicular to the direction of the dip, although the plunge is the northwest. Down hole lengths have been reported, and have not been converted to true width
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of	 All seven relevant sections have been provided with an overview plan, see diagrams as examples.



Criteria	JORC Code explanation	Commentary
	drill hole collar locations and appropriate sectional views.	
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Attached are a complete set of collar, geology and assay results for all 31 holes in the Exploration target.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 While other substantial exploration data sets are available, these pertain to Tantalum and therefore are not relevant to this announcement. Plots of the analytical data reveal

Criteria JORC Code explanation Commentary

• **Li-Ta Plot**. There appears to be no direct association between these elements other that it appears that the low to high Li values tend to have a higher frequency with the low (<100ppm) Ta values.

Criteria	JORC Code explanation	Commentary
		 Rb-Li Plot. Shows a direct normal relationship with good correlation, especially if the quartz core samples are removed. Note quite a few samples have >1000ppm Rb possibly coming from lepidolite or zinnwaldite. Cs-Li Plot Also shows a reasonable normal correlation Cs-Rb Plot. Displays a good normal correlation, especially if the quartz core samples were removed.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 An RC drilling programme is currently being planned to test expand the Exploration Target with holes planned along Pegmatite 1 & 2, Breakaway (to the west) and Niobe South (to the south). A rig has been booked for end of September 2021, subject to POW approval. See Map of planned drill areas
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 For the lower tonnage/higher grade a 200ppm cut-off was used, based on independent advise and being a statistical nick point in the spread of Rb ranges, see Rb-Li diagram above.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 No mining factors or assumptions have been considered for this Exploration Target as these are considered outside the scope of this stage of exploration.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous.	No metallurgical factors or assumptions have been considered for this Exploration Target as these are considered outside the scope of this stage of exploration

Criteria	JORC Code explanation	Commentary
	Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 No environmental factors or assumptions have been considered for this Exploration Target as these are considered outside the scope of this stage of exploration. It must be noted that the area has be subject to trial mining in several locations in the past, with pits, ROM dumps and tailings.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Trial mining determined a bulk density of 2.5 for the weather surficial pegmatite due to increased porosity. However for the purposes of the assessment fresh rock was assumed with 2.6 used, which is the standard for pegmatite used in modelling. Tantalum Australia trial mined the Tantalum at Niobe used 2.5 but did not detail how this figure was determined. The mineralisation is restricted to the pegmatite, generally the intermediate zone. No attempt has been made to differentiate the bulk density of each zone with the pegmatite
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	No Mineral resource is considered, the project is purely an exploration play.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No Mineral Resource defined
Discussion of relative	Where appropriate a statement of the relative accuracy and	No Mineral Resource defined

Criteria	JORC Code explanation	Commentary
accuracy/ confidence	 confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	
Study status	 The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered. 	No Mineral Resource defined
Cut-off parameters	The basis of the cut-off grade(s) or quality parameters applied.	No Mineral Resource defined
Mining factors or assumptions	 The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design). The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc. The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade control and pre-production drilling. The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate). The mining dilution factors used. 	No Mineral Resource defined

Criteria	JORC Code explanation	Commentary
	 The mining recovery factors used. Any minimum mining widths used. The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion. The infrastructure requirements of the selected mining methods. 	
Metallurgical factors or assumptions	 The metallurgical process proposed and the appropriateness of that process to the style of mineralisation. Whether the metallurgical process is well-tested technology or novel in nature. The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied. Any assumptions or allowances made for deleterious elements. The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole. For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications? 	No Mineral Resource defined
Environmen- tal	 The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported. 	No Mineral Resource defined
Infrastructure	 The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed. 	No Mineral Resource defined
Costs	 The derivation of, or assumptions made, regarding projected capital costs in the study. The methodology used to estimate operating costs. Allowances made for the content of deleterious elements. The source of exchange rates used in the study. Derivation of transportation charges. 	No Mineral Resource defined

Criteria	JORC Code explanation	Commentary
	 The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. The allowances made for royalties payable, both Government and private. 	
Revenue factors	 The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products. 	No Mineral Resource defined
Market assessment	 The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. A customer and competitor analysis along with the identification of likely market windows for the product. Price and volume forecasts and the basis for these forecasts. For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract. 	No Mineral Resource defined
Economic	 The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs. 	No Mineral Resource defined
Social	 The status of agreements with key stakeholders and matters leading to social licence to operate. 	No Mineral Resource defined
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or 	No Mineral Resource defined

Criteria	JORC Code explanation	Commentary
	Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent.	
Classification	 The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any). 	No Mineral Resource defined
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	No Mineral Resource defined
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage. It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	No Mineral Resource defined

