

ASX / Media Announcement

30 April 2018

HIGH GRADE NICKEL AT RADIO HILL - Karratha, Western Australia-

Highlights:

- Drilling at the top of the Radio Hill ore body intersects shallow highgrade nickel over significant widths.
- Best intercepts include:
 - > 15m @ 2.05% Ni, 1.94% Cu, 0.09% Co from 27m (ARH066)
 - Incl. 3m @ 3.37% Ni, 2.05% Cu, 0.14% Co from 27m
 - Incl. 2m @2.53% Ni, 1.35% Cu, 0.11% Co from 32m
 - Incl. 5m @2.46% Ni, 2.26% Cu, 0.10% Co from37m
 - > 7m @ 1.9% Ni, 1.07% Cu, 0.08% Co from 18m (ARH015)
 - > 8m @ 1.14% Ni, 0.96% Cu, 0.06% Co from 75m (ARH007)
 - within 17m @ 0.81% Ni, 0.83% Cu, 0.04% Co from 67m
 - 3m @ 1.35% Ni, 1.27% Cu, 0.07% Co from 88m (ARH046)
 within 16m @ 0.89% Ni, 0.99% Cu, 0.05% Co from 75m
 - 3m @ 1.24% Ni, 2.42% Cu, 0.07% Co from 123m (ARH019)
 - within 26m @ 0.57% Ni, 0.92% Cu, 0.03% Co from 106m
 - > 2m @2.93% Ni, 2.90% Cu, 0.12% Co from 19m (ARH020)
 - > 25m @ 0.71% Ni, 0.89% Cu, 0.03% Co from 50m (ARH004)
 - 19m @ 0.57% Ni, 0.99% Cu, 0.02% Co from 26 m (ARH062).
- 5 diamond drill holes just completed. Results pending.
- Resource estimation targeted for the end of May 2018.
- Open pit designs targeted for the end of June 2018.

David Lenigas, Artemis's Executive Chairman, commented;

"Artemis has now received all of the RC drilling results from the top of the Radio Hill deposit, which is located only 400m from our Radio Hill plant crushing circuit. These are excellent shallow Ni/Cu/Co grades and our focus on this deposit is now to calculate the new near surface mineral resource estimates and produce optimised open pit shells. With today's nickel, copper and cobalt prices, we will be working with our independent consultants to assess Radio Hill's near term open pit potential."

Artemis Resources Limited ('Artemis' or 'the Company') (ASX: ARV) is pleased to provide the drilling results from the drilling of the top of the Radio Hill deposit.

Radio Hill (Nickel/Copper/Cobalt):

Artemis has completed an 80 hole Reverse Circulation (RC) drilling programme at Radio Hill (totalling 7,052 m), designed to delineate the unmined shallow nickel/copper/cobalt mineralisation at of the Radio Hill deposit. Drilling results have been shown in Table 1. Hole locations and co-ordinates are shown in Table 2. (Note: the intercepts are not truth width and are based on 1 metre samples. Refer to Table 2).

Artemis Resources Limited ARBN: 80 107 051 749

Suite 1, 11 Ventnor Avenue, West Perth, WA Australia, 6006

Phone: +61 8 6319 0000 Email: info@artemisresources.com.au Website: artemisresources.com.au

Directors:

Executive Chairman David Lenigas

Executive Directors Edward Mead Alex Duncan-Kemp

Non-Executive Director: Sheikh Maktoum Hasher al Maktoum

Company Secretary: Guy Robertson

Corporate Information ASX Code: ARV

The Radio Hill orebody comes very close to surface near the metallurgical Test Pit area (shown to the right of the RED circle in Figure 1), originally excavated by AGIP in 1985.

This Test Pit was originally mined to evaluate the metallurgical characteristics of the Radio Hill Ni/Cu/Co sulphide ores to provide data for the design of the original milling circuit and on-site smelter complex which has been removed.

Figure 1: Location of the RC drilling programme at Radio Hill mine site.

Figure 2: Location of the RC drilling programme at Radio Hill mine site.

Due to the success of the RC drilling programme, 5 diamond drill holes (460m) have recently been drilled for metallurgical testing and geotechnical design purposes. The results from this recent diamond drilling are pending. Artemis is now targeting to upgrade the Radio Hill Mineral Resource estimate by the end of May 2018.

Hole ID		From (m)	To (m)	Interval (m)	Ni (%)	Cu (%)	Co (%)
ARH001		()	()	NSI	(70)	(70)	(70)
ARH002		102	114	12	0.58	0.90	0.03
7441002	Including	103	106	3	0.91	0.78	0.05
ARH003	literation			NSI	0.01	0.1.0	0.00
ARH004		50	75	25	0.71	0.89	0.03
	including	51	53	2	1.28	0.93	0.06
	including	63	66	3	0.97	0.93	0.04
ARH005				NSI			
ARH006				NSI			
ARH007		67	84	17	0.81	0.83	0.04
	Including	75	83	8	1.14	0.96	0.06
ARH008		104	112	8	0.49	0.68	0.03
ARH009				NSI			
ARH010				NSI			
ARH011				NSI			
ARH012				NSI			
ARH013		66	67	1	0.68	1.05	0.04
ARH014				NSI			
ARH015		17	25	7	1.80	1.18	0.07
	Including	21	22	1	4.26	0.57	0.17
ARH016		42	58	16	0.57	0.79	0.02
	Including	46	47	1	1.05	0.76	0.05
ARH017				NSI			
ARH018				NSI			
ARH019		106	132	26	0.57	0.92	0.03
	Including	123	126	3	1.24	2.42	0.07
ARH020		19	21	2	2.92	2.90	0.12
ARH021		49	52	3	0.28	0.77	0.01
ARH022				NSI			
ARH023		113	121	8	0.54	0.77	0.03
ARH024				NSI			
ARH025				NSI			
ARH026				NSI			
ARH027				NSI			
ARH028				NSI			
ARH029		33	50	17	0.54	0.93	0.03
ARH030				NSI			
ARH031				NSI			
ARH032				NSI			
ARH033				NSI			
ARH034		56	58	2	0.44	1.9	0.02
ARH035		50	83	33	0.64	0.81	0.03

Table 1: Intercepts (nickel >0.5%) from Radio Hill RC drilling program.

A	Artem	nis
(RESOURCE	s

Hole ID		From	To	Interval	Ni	Cu	Co
	la shudin n	(m)	(m)	(m)	(%)	(%)	(%)
	Including	60	68	8	0.93	0.91	0.05
ARH036		76	83.5	7.5	0.78	0.85	0.05
1.5110.07		80	82	2	1.32	0.55	0.07
ARH037		103	114	11	0.51	0.90	0.03
ARH038		120	138	18	0.59	0.99	0.03
ARH039		123	135	12	0.56	0.88	0.03
ARH040		40	42	2	0.91	0.33	0.03
ARH041		77	78	1	0.52	0.48	0.03
ARH042		65	66	1	2.40	4.44	0.09
ARH043		79	82	3	0.42	0.68	0.02
ARH044				NSI			
ARH045		81	82	1	0.5	1.72	0.02
ARH046		75	91	16	0.89	0.99	0.05
	including	88	91	3	1.35	1.27	0.07
ARH046		100	105	5	0.41	1.47	0.02
ARH047				NSI			
ARH048				NSI			
ARH049				NSI			
ARH050				NSI			
ARH051				NSI			
ARH052				NSI			
ARH053				NSI			
ARH054				NSI			
ARH055				NSI			
ARH056		8	12	4	0.86	0.08	0.04
		17	21	4	0.55	0.92	0.02
ARH057				NSI			
ARH058				NSI			
ARH059				NSI			
ARH060				NSI			
ARH061				NSI			
ARH062		16	17	1	1.59	0.32	0.06
		26	45	19	0.57	0.99	0.02
ARH063				NSI			
ARH064				NSI			
ARH065		20	21	1	1.83	5.57	0.09
ARH066		27	42	15	2.05	1.94	0.09
	Including	27	30	3	3.37	2.05	0.14
	Including	32	34	2	2.53	1.35	0.11
	Including	37	42	5	2.46	2.26	0.10
ARH066		58	69	11	0.37	0.75	0.02
ARH067		61	75	14	0.82	1.18	0.04
ARH067		80	86	6	0.58	1.06	0.02
ARH068		58	67	9	0.79	1.63	0.03
ARH068		72	77	5	0.61	1.62	0.02
ARH069		31	41	10	0.49	0.94	0.02
ARH069		51	75	24	0.59	1.07	0.02
	Including	60	63	3	0.95	1.63	0.03

Hole ID	From (m)	To (m)	Interval (m)	Ni (%)	Cu (%)	Co (%)
ARH070	29	40	11	0.54	0.90	0.02
ARH071			NSI			
ARH072	34	38	4	0.64	0.99	0.02
ARH073	10	12	2	0.59	0.36	0.04
ARH073	16	18	2	0.65	0.94	0.03
ARH074			NSI			
ARH075			NSI			
ARH076			NSI			
ARH077	28	33	5	0.31	0.65	0.02
ARH078			NSI			
ARH079	14	36	22	0.43	0.85	0.02
ARH080			NSI			

CONTACTS:

For further information on this update or the Company generally, please visit our website at www.artemisresources.com.au or contact:

Investors / Shareholders

Edward Mead Executive Director Telephone: +61 407 445 351 Email: Ed.Mead@artemisresources.com.au

Media Advisor / Chapter One Advisors David Tasker

Telephone: +61 433 112 936 Email: dtasker@chapteroneadvisors.com.au

Figure 3: Artemis's Tenements in the Karratha Area

COMPETENT PERSONS STATEMENT:

The information in this document that relates to Exploration Results and Exploration Targets is based on information compiled or reviewed by Allan Younger, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Younger is a consultant to the Company; and is employed by Indigo Geochemistry Pty Ltd. Mr Younger has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Younger consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

BACKGROUND INFORMATION ON ARTEMIS RESOURCES:

Artemis Resources Limited is a resources exploration and development company with a focus on its prospective Karratha (gold, cobalt, base metals, platinum group elements and iron ore) and the Mt Clement Paulsens (gold) project in Western Australia.

Artemis owns the ~500,000 tpa Radio Hill nickel, copper and cobalt mine and processing plant located 25km south of Karratha. JORC 2004 compliant resources of gold, nickel, copper, PGEs and zinc, all situated within a 40 km radius of the Radio Hill plant and on 1,838 km² form the newly consolidated assets of Artemis Resources.

Artemis has signed Definitive Agreements with Novo Resources Corp. ('Novo'), and pursuant to the Definitive Agreements, Novo has satisfied its expenditure commitment, and earned in to 50% of gold (and other minerals necessarily mined with gold) in conglomerate and/or paleoplacer style mineralisation in Artemis' tenements within 100 km of the city of Karratha, including at Purdy's Reward ('the Gold Rights'). The Gold Rights do not include (i) gold disclosed in Artemis' existing (at 18 May 2017) Mineral Resources and Reserves reported in compliance with the JORC Code (2012), or (ii) gold which is not within conglomerate and/or paleoplacer style mineralisation or (iii) minerals other than gold. Artemis' Mt Oscar tenement is excluded from the Definitive Agreements.

The Definitive Agreements cover 38 tenements/tenement applications that are 100% owned by Artemis. Pursuant to Novo's successful earn-in, three 50:50 joint ventures have been formed between Novo's subsidiary, Karratha Gold Pty Ltd ('Karratha Gold') and three subsidiaries of Artemis (KML No 2 Pty Ltd, Fox Radio Hill Pty Ltd, and Armada Mining Pty Ltd). The joint ventures are managed as one by Karratha Gold. Artemis and Novo will contribute to further exploration and any mining of the Gold Rights on a 50:50 basis.

FORWARD LOOKING STATEMENTS AND IMPORTANT NOTICE:

This report contains forecasts, projections and forward-looking information. Although the Company believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions it can give no assurance that these will be achieved. Expectations, estimates and projections and information provided by the Company are not a guarantee of future performance and involve unknown risks and uncertainties, many of which are out of Artemis' control. Actual results and developments will almost certainly differ materially from those expressed or implied. Artemis has not audited or investigated the accuracy or completeness of the information, statements and opinions contained in this presentation. To the maximum extent permitted by applicable laws, Artemis makes no representation and can give no assurance, guarantee or warranty, express or implied, as to, and takes no responsibility and assumes no liability for (1) the authenticity, validity, accuracy, suitability or completeness of, or any errors in or omission from, any information, statement or opinion contained in

this report and (2) without prejudice to the generality of the foregoing, the achievement or accuracy of any forecasts, projections or other forward looking information contained or referred to in this report.

Investors should make and rely upon their own enquiries before deciding to acquire or deal in the Company's securities.

Hole ID	MGA East	MGA North	RL (m)	Depth (m)	Dip	Azimuth
ARH001	486447	7679791	71.41	80	-60	305.8
ARH002	486514	7679746	72.22	132	-60	302.4
ARH003	486424	7679754	71.09	80	-60	304.1
ARH004	486458	7679737	71.59	120	-60	307
ARH005	486493	7679715	71.93	103	-60	304.4
ARH006	486401	7679728	70.42	78	-60	302.4
ARH007	486436	7679703	71.10	84	-60	306.4
ARH008	486467	7679683	71.37	123	-60	303.1
ARH009	486377	7679694	70.78	78	-60	304.5
ARH010	486444	7679649	71.16	63	-60	303.1
ARH011	486516	7679824	70.72	120	-60	311.6
ARH012	486550	7679798	71.22	132	-60	297.6
ARH013	486411	7679670	70.68	120	-60	305.5
ARH014	486436	7679779	71.24	78	-60	306.1
ARH015	486451	7679767	71.53	95	-60	305.5
ARH016	486468	7679756	71.70	120	-60	306.3
ARH017	486486	7679742	71.77	130	-60	308.3
ARH018	486501	7679731	72.22	130	-60	304
ARH019	486518	7679718	72.20	144	-60	311.2
ARH020	486466	7679780	71.66	100	-60	304.2
ARH021	486481	7679769	71.76	120	-60	305
ARH022	486497	7679756	72.01	130	-60	305.5
ARH023	486532	7679736	72.25	144	-60	307.6
ARH024	486478	7679872	70.32	80	-60	306.1
ARH025	486495	7679859	70.31	100	-60	303.2
ARH026	486512	7679846	70.29	96	-60	307.1
ARH027	486467	7679854	70.62	140	-60	304.5
ARH028	486573	7679802	71.32	100	-60	306.8
ARH029	486535	7679808	71.05	96	-60	307.9
ARH030	486529	7679836	70.49	102	-60	306.4
ARH031	486546	7679823	70.65	102	-60	306.4
ARH032	486559	7679810	71.01	96	-60	306.3
ARH033	486415	7679746	70.80	102	-60	307.1
ARH034	486432	7679735	71.08	120	-60	304.9
ARH035	486448	7679722	71.49	84	-60	306.9
ARH036	486462	7679711	71.75	132	-60	303.8
ARH037	486479	7679699	71.92	138	-60	304.9
ARH038	486497	7679687	71.96	142	-60	338.5
ARH039	486509	7679704	72.04	102	-60	305.8
ARH040	486441	7679748	71.25	114	-60	305.3
ARH041	486475	7679727	71.98	90	-60	306.9
ARH042	486418	7679717	70.67	83	-60	306.3
ARH043	486450	7679692	71.40	72	-60	300.6
ARH044	486392	7679713	70.69	204	-60	308.3

Table 2: Radio Hill Reverse Circulation Collar Locations.

-		
11	Irtan	nic
	FI LOI I	
	RESOURCE	ES

ARH045	486409	7679701	70.57	120	-60	305.5
ARH046	486424	7679690	70.82	77	-60	305.5
ARH047	486442	7679680	71.05	94	-60	302.8
ARH048	486460	7679671	71.45	65	-60	305.9
ARH049	486428	7679660	70.85	100	-50	301.8
ARH050	486404	7679671	70.63	25	-50	296.3
ARH051	486509	7679876	70.55	48	-60	305.4
ARH052	486523	7679866	70.24	48	-60	304.8
ARH053	486541	7679858	70.42	48	-60	303.4
ARH054	486557	7679846	70.28	48	-60	305.5
ARH055	486573	7679836	70.19	48	-60	310.2
ARH056	486505	7679837	70.26	60	-60	304.5
ARH057	486397	7679994	70.24	102	-90	0
ARH058	486404	7679975	70.33	192	-90	0
ARH059	486408	7679940	70.21	103	-90	0
ARH060	486457	7679787	71.70	25	-90	0
ARH061	486451	7679779	71.49	25	-90	0
ARH062	486447	7679771	71.51	48	-90	0
ARH063	486446	7679792	71.48	24	-90	0
ARH064	486443	7679783	71.60	24	-90	0
ARH065	486439	7679776	71.29	30	-90	0
ARH066	486452	7679812	70.88	78	-50	114.7
ARH067	486457	7679821	70.90	96	-50	115
ARH068	486463	7679831	70.58	90	-50	122.5
ARH069	486470	7679836	70.49	90	-50	124.1
ARH070	486522	7679818	70.63	48	-90	0
ARH071	486530	7679812	70.84	24	-90	0
ARH072	486500	7679836	70.19	60	-50	211.7
ARH073	486498	7679839	70.15	30	-90	0
ARH074	486492	7679842	70.08	60	-50	206.5
ARH075	486488	7679846	70.25	30	-90	0
ARH076	486524	7679829	70.53	25	-90	0
ARH077	486516	7679834	70.37	25	-90	0
ARH078	486508	7679839	70.27	36	-90	0
ARH079	486519	7679825	70.52	25	-90	0
ARH080	486467	7679774	71.71	80	-60	32.8

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

This Table applies to Exploration Results reported in this news release for Radio Hill RC drilling. (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. 	 Reverse Circulation (RC) drilling was carried out on the Radio Hill Ni-Cu Project. This drilling was designed to obtain drill chip samples from one metre intervals, from which a 2-4 kilogram sub-sample was collected for laboratory multi-element analysis including: Ni, Cu, Co

Criteria	JORC Code explanation	Commentary		
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All samples were analysed using a portable XRF instrument (Innovex). Initial methodology has been to make a single randomly placed measurement on the drill sample bag. For more intensive evaluation a minimum of 4 measurements at regular intervals around the sample bag will be required. Optimum sampling time appears to be 90 seconds per measurement. The results from this were used to prioritised samples through the assay laboratory. Mineralised zones were identified visually during field logging, and sample intervals selected by the supervising geologist. Samples from each metre were collected through a rig-mounted static cone splitter. To ensure representivity, field duplicates were taken and submitted for analysis. 		
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	• Reverse Circulation drilling at Radio Hill was completed by a truck- mounted Schramm 685 RC drilling rig using a 5¼ inch diameter face sampling hammer.		
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recoveries are recorded by the geologist in the field during logging and sampling. Measures taken to maximise sample recovery include SOPs to keep holes dry and pressurised and to minimise dust loss. Visual assessments are made for recovery, moisture, and possible contamination. Sample recoveries during drilling completed by Artemis were high, and all samples were dry. Insufficient data exists at present to determine whether a relationship exists between grade and recovery. This will be assessed once a statistically representative amount of data is available. 		
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, 	 All drill chip samples are geologically logged at 1m intervals from surface to the bottom of each drill hole. It is considered that geological logging is completed at an adequate level to allow appropriate future Mineral Resource estimation. 		

Criteria	JORC Code explanation	Commentary		
	 channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging is considered semi-quantitative due to the limited geological information available from the Reverse Circulation method of drilling. All RC drill holes completed by Artemis during the current program have been logged in full. 		
Sub-sampling technique and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 A cyclone and static cone splitter were used to ensure representative sampling and were routinely inspected and cleaned. The RC drilling rig was equipped with a rig-mounted cyclone and static cone splitter, which provided one bulk sample of approximately 20-30 kilograms, and a representative subsample of approximately 2-4 kilograms for every metre drilled. The sample size of 2-4 kilograms is considered to be appropriate and representative of the grain size and mineralisation style of the deposit. The majority of samples were dry. Where wet sample was encountered, the cleanliness of the cyclone and splitter were closely monitored by the supervising geologist and maintained to a satisfactory level to avoid contamination and ensure representative samples were being collected. Duplicate samples were collected and submitted for analysis. Reference standards inserted during drilling. 		
Quality of assay data an laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 ALS (Perth) were used for all analysis of drill samples submitted by Artemis. The laboratory techniques below are for all samples submitted to ALS and are considered appropriate for the style of mineralisation defined within the Radio Hill Project area: Samples above 3Kg riffle split. Pulverise to 95% passing 75 microns 50-gram Fire Assay (Au-AA26) with ICP finish - Au. 4 Acid Digest ICP-AES Finish (ME-ICP61) –Cu, Ni, Co. Ore Grade 4 Acid Digest ICP-AES Finish (ME-OG62) Standards were used for external laboratory checks by Artemis. Duplicates were used for external 		

Criteria	JORC Code explanation	Commentary
		 laboratory checks by Artemis. Portable XRF (pXRF) analysis was completed using Innovex units. XRF analysis was completed on the single metre sample bulk drill ample retained on site. Further statistical analysis will be completed to better determine the accuracy and precision of the pXRF unit based on laboratory assay results. Portable XRF results are considered semi-quantitative and act as a guide to mineralised zones and sampling.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 At least two company personnel verify all significant results. All geological logging and sampling information is completed firstly on to paper logs before being transferred to Microsoft Excel spreadsheets. Physical logs and sampling data are returned to the head office for scanning and storage. No adjustments of assay data are considered necessary.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A Garmin GPSMap62 hand-held GPS was used to define the location of the drill hole collars. Standard practice is for the GPS to be left at the site of the collar for a period of 5 minutes to obtain a steady reading. Collar locations are surveyed with a DGPS. Subsequently all drill hole collars have been survey located by a registered surveyor. Downhole surveys were captured at 30 metre intervals for the drill holes completed by Artemis. The grid system used for all Artemis drilling is GDA94 (MGA 94 Zone 50) Topographic control is obtained from surface profiles created by drill hole collar data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Current drill hole spacing is variable and dependent on specific geological, and geophysical targets, and access requirements for each drill hole. No sample compositing has been used for drilling completed by Artemis. All results reported are the result of 1 metre downhole sample intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling 	• Drill holes were located in order to intersect the target at an angle perpendicular to strike direction. As the target structures were considered to be steep to moderately

Criteria	JORC Code explanation	Commentary
	orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	dipping and moderately plunging, most Artemis drill holes were angled at -55 or -60 degrees.
Sample security	The measures taken to ensure sample security.	 The chain of custody is managed by the supervising geologist who places calico sample bags in polyweave sacks. Up to 5 calico sample bags are placed in each sack. Sacks from individual holes were placed into bulk bags, each bulk bag is clearly labelled with: Artemis Resources Ltd Address of laboratory Samples were delivered by Artemis personnel to the transport company in Karratha on pallets. The transport company then delivers the samples directly to the laboratory.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Data is validated upon up-loading into the master database. Any validation issues identified are investigated prior to reporting of results.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)			
Criteria	JORC Code explanation	Commentary	
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 RC drilling by Artemis was carried out on M47/161 – 100% owned by Artemis Resources Ltd. This tenement forms a part of a broader tenement package that comprises the West Pilbara Project. This tenement is in good standing and no known impediments exist (see map provided in this report for location). 	
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The most significant work to have been completed at Radio Hill is by Fox Resources, who mined the deposit from 2004-2008. 	
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Radio Hill project covers the historic Radio Hill Ni-Cu orebody hosted within a layered mafic intrusive body. Sulphide mineralisation predominantly consists of Pyrrhotite, Pentlandite and Chalcopyrite. 	
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	 Collar information for all drill holes reported is provided in the body of this report. 	

Ouitouio		
Criteria	 JORC Code explanation easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All intervals reported are composed of 1 metre down hole intervals and are therefore length weighted. No upper or lower cut-off grades have been used in reporting results. No metal equivalent calculations are used in this report.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 True widths of mineralisation have not been calculated for this report, and as such all intersections reported are down-hole thicknesses. A better understanding of the deposit geometry will be achieved on thorough interpretation of the data. True thicknesses may be reported at a later date if warranted. Due to the moderately to steeply dipping nature of the mineralised zones, it is expected that true thicknesses will be less than the reported down-hole thicknesses.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Appropriate maps and sections are available in the body of this announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Reporting of results in this report is considered balanced.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, 	• Targeting for the RC drilling completed by Artemis was based on compilation of historic mining and exploration data.

Criteria	JORC Code explanation	Commentary
	geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions, depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The results at the Radio Hill Ni-Cu project warrant further drilling and evaluation.