

17 December 2024

Cerro Bayo Silver-Gold Project, Chile

Cristal and Pegaso 7 discoveries continue to grow with broad outstanding results

Latest assays also include deep thick intercepts such as 13.1m at 332g/t AgEq from Pegaso 7; Both the Cristal and Pegaso 7 discoveries remain outside the Mineral Resource; Resource update planned for the coming quarter

- Drilling continues to expand the Cristal discovery within the Cerro Bayo project revealing a previously unknown mineralised zone in the footwall along with more high-grade veins
- >> Significant intercepts at Cristal include:
 - o 42.2m @ 122g/t AgEq (67g/t Ag & 0.7g/t Au) CBD164
 - Incl. 4.5m @ 584g/t AgEq (380g/t Ag & 2.5g/t Au) (previously reported)
 - Incl. 0.8m @ 809g/t AgEq (600g/t Ag & 2.5g/t Au)
 - o **1.2m @ 1,150g/t AgEq** (442g/t Ag & 8.5g/t Au) CBD160A
 - 1.3m @ 325g/t AgEq (121g/t Ag & 2.5g/t Au) CBD160A
 - o **4.5m @ 206g/t AgEq** (4g/t Ag & 2.4g/t Au) CBD162
- Significant intercepts at Pegaso 7 include:
 - o **13.1m @ 332g/t AgEq** (179g/t Ag & 1.8g/t Au) CBD168
 - Incl. 0.9m @ 2,326g/t AgEq (1,579g/t Ag & 9.0g/t Au)
 - Incl. 1.9m @ 710g/t AgEq (238g/t Ag & 5.7g/t Au)
 - o **1.4m @ 318g/t AgEq** (226g/t Ag & 1.1g/t Au) CBD163
- >> Drilling also continues to define a large halo surrounding the Cristal veins with results of:
 - o 82.4m @ 53g/t AgEq (13g/t Ag & 0.51g/t Au) CBD160A
 - 25m.0 @ 62g/t AgEq (7g/t Ag & 0.7g/t Au) CBD162
- Andean has expanded its tenement holding at Cerro Bayo to cover extensions to two major structural corridors within the central and eastern project areas
- These new tenement areas have not been historically drill tested and contain key visual and geochemical characteristics in similar aged volcanic rocks to that of Cerro Bayo that indicate prospectivity
- A third drill rig has arrived onsite and has commenced resource extension drilling at the Coyita North project area

2

Andean Silver Limited (ASX: ASL) is pleased to announce more spectacular drilling results which will form part of the next Mineral Resource update at its Cerro Bayo Silver-Gold Project in Chile.

Andean Chief Executive Tim Laneyrie said: "The continued drilling success at both Pegaso 7 and Cristal supports our view of the immense scope to keep growing the Cerro Bayo Resource.

"Our drilling at Cristal has already defined a mineralised area of 180m long and 100m deep. The information we have gained from this initial drilling campaign will be used to design the second phase of drilling with the aim of extending the strike beyond the known 700m corridor.

"The third drill rig has arrived on site and has commenced drilling at the Coyita North project area targeting extensional drilling of that resource lode. The campaign will aim to increase the depth of the lode as well as joining up Coyita North and South lodes.

"Our belief in the broader system potential is reflected in our decision to secure additional tenements to the south and east of the existing mine leases. These areas contain extensions of structures of mineralised zones on our existing ground, while displaying key indicators that we would be looking for in identifying these systems in their own right".

Drilling and Exploration Update

The drilling at Pegaso 7 and Cristal continues to expand and refine the key mineralising controls within the broader systems. The current Cristal drill campaign continues to extend the known mineralised trends on multiple lodes. Pegaso 7 drilling is targeting the main central lode structure that extends over 600m of strike and to a 250m vertical extent.

Cristal Prospect

The Cristal drilling continues to deliver results in multiple structures along the trend (Figure 1). Drilling shows good continuity both along strike and elevation (Figure 2) with further step out drilling planned to continue to grow the new Cristal Central prospect vein mineralisation.

The broad stockwork zone discovered in the footwall of the Cristal west lode and below the historic workings shows the potential of the belt to continue to yield impressive results within areas that have already had +20yrs of mining history. The evolving geological knowledge from the drilling will be used to guide an expanded Cristal belt scale drilling program in 2025.

Significant Cristal drilling (all true width) intercepts include:

- **42.2m @122/t AgEq** (67g/t Ag & 0.7g/t Au, ~1.5g/t AuEq), including:
 - 4.5m @ 584g/t AgEq (380g/t Ag & 2.5g/t Au, ~7g/t AuEq); and
 - 0.9m @ 818g/t AgEq (600g/t Ag & 2.5g/t Au, ~9.9g/t AuEq);
- 1.2m @ 1,150g/t AgEq (442g/t Ag & 8.5g/t Au, ~13.9g/t AuEq); and
- 1.3m @ 325g/t AgEq (121g/t Ag & 2.5g/t Au, ~3.9g/t AuEq).

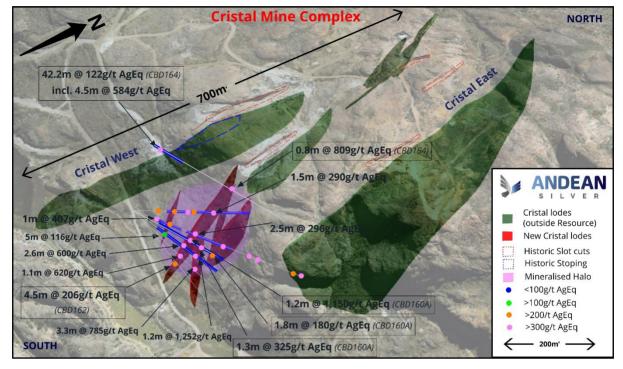


Figure 1. Cristal drilling looking North West. Current drilling is located proximal to the historic Cristal Adit.

For new drilling results (in boxes), refer to Appendix B of this release. For previous results, refer to ASX releases dated

26 March 2024, 16 September 2024 and 31 October 2024.

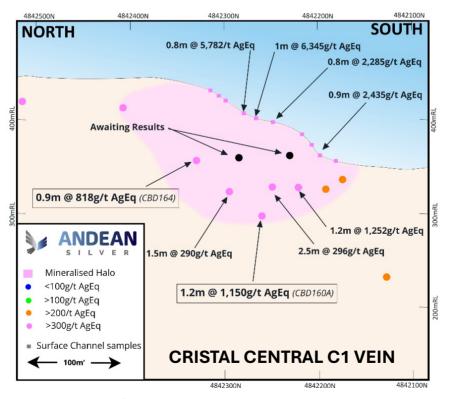


Figure 2. Long Section looking East of the Cristal Central C1 vein showing Andean Drilling and Saw Channel Samples.

For new drilling results (in boxes), refer to Appendix B of this release. For previous results, refer to ASX releases dated

26 March, 16 September and 31 October 2024.

Pegaso 7 Prospect

The drilling at Pegaso 7 continues to define the principal mineralised vein-breccia structure titled P7_01 vein (Figure 3). Recent mapping of the surface exposure has increased the confidence in the broader system mineralisation potential and allowed more defined targeting of the multiple structures within the corridor. Evaluation is continuing on the overlapping low/intermediate sulphidation nature of the system.

Significant Pegaso 7 intercepts include:

- 13.1m @ 332g/t AgEq (179g/t Ag & 1.8g/t Au) (~4.0g/t AuEq) including:
 - 0.9m @ 2,326g/t AgEq (1,579g/t Ag & 9g/t Au) (~28g/t AuEq);
 - o **0.3m @ 1,856 g/t AgEq** (1,140g/t Ag & 8.6g/t Au) (~22.4g/t AuEq); and
 - o 1.9m @ 710g/t AgEq (238g/t Ag & 5.7g/t Au) (~8.6g/t AuEq); and
- 1.4m @ 318g/t AgEq (226g/t Ag & 1.1g/t Au) (~3.8g/t AuEq).

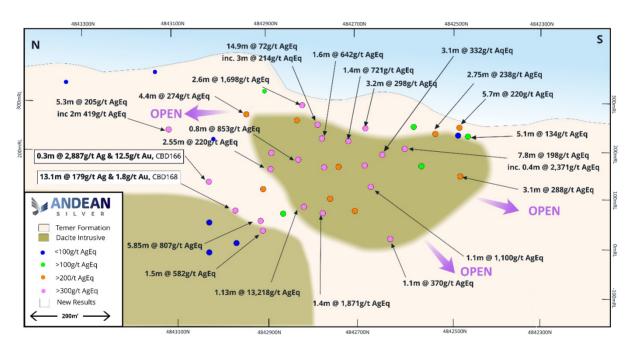


Figure 3. Pegaso 7 long section showing NW trending high-grade silver veining with drill intercepts along the intrusive dacite dome footwall contact referred to as the P7_1 structure. For new drilling results (in boxes), refer to Appendix B of this release. For previous results, refer to ASX releases dated 18 July, 16 September and 31 October 2024.

Tenement expansion

Andean has applied for a number of new exploration tenements (Figure 4) abutting the existing Cerro Bayo leases. Geology throughout these new leases shows similarities to the existing tenure that will be the focus of future work programs.

Central tenure addition was previously held by Goldcorp (subsequently acquired by Newmont in 2019) and is situated along the trend of a district scale, north-south vein corridor. The area hosts a similar style of alteration and veining that typically occurs in higher levels of the epithermal system, at similar elevations to the high priority Sinter Hill Target, located approximately 12km to the east.

The eastern expanded tenure sits within the continuous geological package that hosts the broader Cerro Bayo project. The new project area is proximal to the Sinter Hill and Meseta project areas and will be evaluated for extensions of those systems.

A program including scout mapping, geochemical sampling and hyperspectral work will be initially undertaken to advance the understanding of the area's potential.

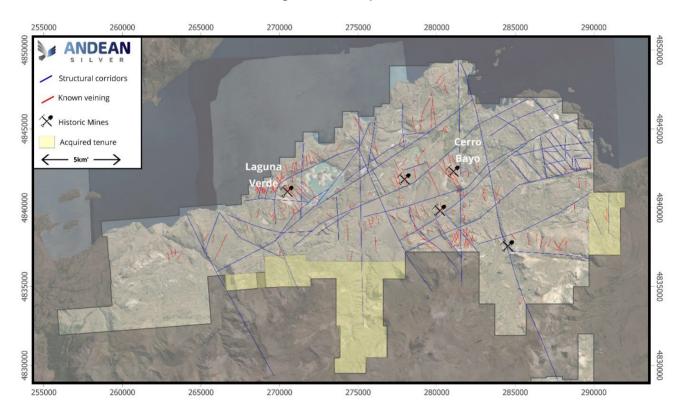


Figure 4. Newly acquired tenure that will be investigated to assess whether there is a continuation of major structural corridors at Cerro Bayo.

Twelve Month Strategy and News Flow

The Company is effectively applying "boots on the ground" geology work together with proven geophysical techniques to aggressively explore the over 300km² of granted tenure to generate a robust project pipeline that has seen multiple major discoveries over the previous 6 months.

Andean has set itself an increased drilling schedule to support an expected phase of strong growth over the coming year. The Company strategy will be targeting existing brownfields targets and greenfields discoveries proximal to the Laguna Verde mill complex. A drilling fleet of 3 rigs has been deployed onsite, as well as one of the largest geophysical campaigns conducted at Cerro Bayo that will assist in defining a multi-year, district scale pipeline of targets for drill testing.

Q3 2024 Q4 2024 Q1 2025 Q2 2025

Evaluation of Historic Data

Resource Growth Drilling

Resource Update

Cerro Bayo Project Exploration

Regional Exploration

Table 1: News flow over coming 12 months.

The above timetable is indicative only and is subject to change.

-ENDS-

This announcement has been approved for release by the Board of Directors.

For further information:

Tim Laneyrie
Chief Executive Officer
Andean Silver Limited
info@andeansilver.com

Media: Paul Armstrong Read Corporate +61 8 9388 1474

About Andean Silver

Andean Silver Limited (ASX:ASL) (formerly Mitre Mining Corporation Ltd) is an Australian mineral exploration and development company focused on advancing its 100% owned Cerro Bayo Silver-Gold project in the Aysen region of Southern Chile. The Cerro Bayo Silver-Gold Project currently hosts Indicated and Inferred Mineral Resources of 8.2Mt at a grade of 342g/t for 91Moz of contained AgEq (refer Appendix A). Andean Silver intends to rapidly advance the project and grow the existing silver-gold resource to demonstrate a globally significant silver-gold asset. For further information regarding Andean Silver Limited, please visit the ASX platform (ASX:ASL) or the Company's website at www.andeansilver.com

Competent Persons Statement and Compliance Statements

The information in this release that relates to new Exploration Results for the Cerro Bayo Project is based on and fairly represents information and supporting documentation compiled by Mr Tim Laneyrie, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Tim Laneyrie is employed full-time by the Company as Chief Executive Officer and holds performance rights and shares in the Company. Mr Laneyrie has sufficient experience that is relevant to the styles of mineralisation and the types of deposits under consideration, and to the activities being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Laneyrie consents to the inclusion in this release of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to previously announced Exploration Results has been extracted from Andean's ASX releases as noted in the text.

The Mineral Resource Estimate for the Cerro Bayo Project referred to in this announcement was first reported in the Company's ASX release dated 16 September 2024, titled "Clarification - Resource soars more than 80% to 91Moz AgEq".

Andean confirms that it is not aware of any new information or data that materially affects the information included in the original announcements and that the material assumptions and technical parameters underpinning the mineral resource estimate continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Metal equivalents have been calculated at a silver price of US\$23/oz and gold price of US\$1,900/oz. Individual grades for the metals are set out at Appendices A and B of this announcement. Silver equivalent was calculated based on the formula $AgEq(g/t) = Ag(g/t) + (83 \times Au(g/t))$. Gold equivalent was calculated based on the formula AuEq(g/t) = Au(g/t) + (Ag(g/t) / 83). Metallurgical recoveries for gold and silver are closely linked and are typically 90-93% for gold and silver. The Company considers the estimation of metallurgical recoveries in respect of exploration work to be reasonable based on the past processing records from the nearby Cerro Bayo plant between 1995 and 2016, and work undertaken in preparing the Mineral Resource Estimate. It is the Company's view that all elements in the silver and gold equivalents calculations have a reasonable potential to be recovered and sold.

8

Forward Looking Statements

This document contains forward looking statements concerning the Company. Forward-looking statements are not statements of historical fact, and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies.

Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes.

Forward looking statements in this document are based on the Company's beliefs, opinions and estimates of the Company as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward-looking information will prove to be accurate.

Forward-looking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among others, the actual market price of commodities, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed documents.

Readers should not place undue reliance on forward-looking information. The Company does not undertake to update any forward-looking information, except in accordance with applicable securities laws. No representation, warranty or undertaking, express or implied, is given or made by the Company that the occurrence of the events expressed or implied in any forward-looking statements in this release will actually occur.

APPENDIX A - Cerro Bayo Project Mineral Resource Estimate

Mineral Resource Estimate as at 1 September 2024

			Indicated						
Area	Tonnes (Mt)	Ag Grade (g/t)	Au Grade (g/t)	Silver (Moz)	Gold (koz)	AgEq (g/t)	AgEq (Moz)	AuEq (g/t)	AuEq (koz)
LVMC - UG	0.4	532	4.9	6.5	60	939	11.5	11.3	139
	0.4	532	4.9	6.5	60	939	11.5		

			Inferred						
Area	Tonnes (Mt)	Ag Grade (g/t)	Au Grade (g/t)	Silver (Moz)	Gold (koz)	AgEq (g/t)	AgEq (Moz)	AuEq (g/t)	AuEq (koz)
LVMC - UG	2.9	171	2.8	16.1	265	405	38.1	4.9	459
LVMC - OP	2.9	38	1.6	3.6	148	171	15.8	2.1	191
CBMC - UG	2.0	190	2.4	12.4	155	387	25.2	4.7	304
	7.8	127	2.2	32.1	568	313	79.1	3.8	954

Total	Tonnes	Ag Grade	Au Grade	Silver	Gold	AgEq	AgEq	AuEq	AuEq
Indicated	(Mt)	(g/t)	(g/t)	(Moz)	(koz)	(g/t)	(Moz)	(g/t)	(koz)
and Inferred	8.2	146	2.4	38.6	628	342	90.7	4.1	1,093

- 1. Mineral Resource Estimates are classified and reported in accordance with the 2012 JORC Code.
- 2. Open pit resources are reported to a cut-off grade of 65g/t AgEq.
- 3. Pit optimisation shells were used to constrain the resource using a gold price of US\$1,850/oz and Silver price of US\$24/oz.
- 4. Taitao Underground Mineral Resource Estimates are reported at a cut-off of 165g/t AgEq beneath the open pit. LVMC and CBMC Resources external to Taitao are reported at a cut-off of 200q/t AgEq.
- 5. Silver equivalents are calculated using the equation AgEq = Ag(g/t) + (83 x Au(g/t) and gold equivalents are calculated based on the equation AuEq = Au(g/t) + (Ag(g/t) / 83) based on a gold price of US\$1,900/oz and Silver price of US\$23/oz. Metallurgical recoveries for gold and silver are closely linked and are typically 92-93% for gold and silver. The Company considers the estimation of metallurgical recoveries in respect of exploration work to be reasonable based on the past processing records from the nearby Cerro Bayo plant between 1995 and 2016, and work undertaken in preparing the Mineral Resource Estimate. It is the Company's view that all elements in the silver and gold equivalents calculations have a reasonable potential to be recovered and sold.
- 6. Bulk Density of 2.63g/cm³ has been applied to veins and 2.57g/cm³ has been applied to stockwork and waste domains.
- 7. No internal selectivity or dilution has been applied and the stockwork domains have been modelled using a selective mining unit (SMU) of 2.5m x 5m x 2.5m (X,Y,Z) with dilution incorporated into the SMU.
- 8. Numbers may not add due to rounding.

APPENDIX B – Drilling Results

Hole Id	Easting	Northing	RL	Azi	Dip	Drilled Length (m)	From (m)	To (m)	Width (m)	Ag (g/t)	Au (g/t)	AgEq (g/t)	AuEq (g/t)	Zn (%)	Pb (%)	Lode
CBD159	272,136.2	4,842,813.9	294	291	-52.5	332.3	206.6	207.5	0.8	197	1.2	297	3.6	0.0	0.0	Pegaso 7
CBD160	270,797.0	4,842,190.0	353	54.2	-25.2	26.4		Hole tern	ninated du	e to bogge	d rods, CE	BD160A is	redrilled I	hole		Cristal
CBD160A	270,797.0	4,842,190.0	353	55.6	-25.9	165.4	83.1	165.4	82.4	13	0.5	53	0.6	0.0	0.0	Cristal
inc							93.4	94.6	1.2	442	8.5	1,150	13.9	0.1	0.0	Cristal
inc							117.8	119.1	1.3	121	2.5	325	3.9	0.0	0.0	Cristal
inc							138.1	140.0	1.8	61	1.4	180	2.2	0.2	0.2	Cristal
CBD162	270,797.0	4,842,190.0	353	100	-10.2	229.4	121.3	146.2	25.0	7	0.7	62	0.7	0.0	0.0	Cristal
inc							121.3	125.8	4.5	4	2.4	206	2.5	0.0	0.0	Cristal
inc							145.5	146.2	0.7	157	2.0	324	3.9	0.0	0.1	Cristal
and							181.0	181.7	0.7	121	1.5	242	2.9	1.5	0.4	Cristal
CBD163	272,136.2	4,842,813.9	294	256.5	-54.5	289.9	193.9	195.4	1.4	226	1.1	318	3.8	0.0	0.0	Pegaso 7
		Ag-Au Repo	orted 31s	st October	2024		263.7	265.0	1.4	1,140	8.8	1,871	22.5	0.6	0.2	Pegaso 7
CBD164	270,759.0	4,842,287.0	394	70	-15	265	7.1	49.3	42.2	67	0.7	122	1.5	NS	NS	Cristal
inc		Ag-AU Rep	orted 31s	st October	2024		7.1	11.6	4.5	380	2.5	584	7.0	0.3	1.2	Cristal
inc							38.7	49.3	10.6	61	0.7	121	1.5	0.0	0.0	Cristal
and							153.6	154.5	0.90	609	2.5	818	9.9	0.3	1.2	Cristal
CBD166	272,136.2	4,842,813.9	294	306	-39.5	344.7	313.5	313.8	0.3	2,887	12.5	3,926	47.3	NS	NS	Pegaso 7
CBD168	272,136.2	4,842,813.9	294	306	-48	349.8	262.6	275.7	13.1	179	1.8	332	4.0	NS	NS	Pegaso 7
inc							262.6	263.5	0.9	1,579	9.0	2,326	28.0	NS	NS	Pegaso 7
inc							270.1	270.4	0.3	1,140	8.6	1,856	22.4	NS	NS	Pegaso 7
inc							273.8	275.7	1.9	238	5.7	710	8.6	NS	NS	Pegaso 7

Note: NS = Not sampled, AgEq and AuEq calculations are inclusive of gold/silver only.

APPENDIX C - JORC Code, 2012 Edition

The following table is provided to ensure compliance with the JORC Code (2012 Edition) for the reporting of Exploration Results

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Data collected in 2024 by Compañía Minera Cerro Bayo SpA (CMCB), a 100% indirectly owned subsidiary of Andean Silver Limited, comprising NQ and HQ Diamond Drilling, Surfa sawn channel and rock chips. All drilling and sampling conducted was completed under the supervision of Andean Senior Geological personnel who are responsible for the implementation and supervision of all exploration activities on site and who have sufficient and relevant experience in the style of mineralisation and methods employed on site All the respective samples from the above methods were analysed at the Cerro Bayo Mine assay laboratory located at the mine site. This laboratory contains all the facilities required sample preparation, fire, wet and atomic absorption assays, as well as offices, washrooms reagents and general storage with Lab audits conducted yearly and check assaying completed at ISO certified ALS laboratory monthly. The sample preparation and assay procedures for the drilling comprised: All sample collection, logging and specific gravity measurements were undertaken by professionally qualified geologists Drill core was marked for cutting during logging and split lengthwise using an Almonte automatic core saw cut along a continuously marked centre line prior to splitting at marked cut points Half core samples were taken for assaying while the remained was retained in Andear onsite core storage facility Channel samples were cut on lengths of 0.2m to 1.5m using a portable diamond saw. Channels were typically 10cm wide, 10cm deep and 100% of cut sample interval was taken for assaying. Drill and channel samples were put into clean unused calico bags Each drill and/or channel sample is identified with a unique sample number that is tracked throughout the assaying process with QAQC samples inserted at prescribed intervals. T

Criteria	JORC Code explanation	Commentary
		roll crushed to achieve 90% passing 2.00mm (10 mesh ASTM) product, then split with a 1-in rifle to approximately 0.50kg. This 0.50kg sample is dried for 2 hours at 102°C prior to being pulverised using a plate pulveriser to 100% passing 0.15mm (100 mesh ASTM). After pulverising each sample, the bowl, ring, and puck assembly are disassembled with the pulverised sample and placed on a rolling cloth. The pulveriser assembly is placed back in the bowl with another sample. Two assemblies are used in an alternating fashion. The pulverised sample is rolled and transferred to a numbered envelope. Silica sand is pulverised at the end of the entire sample run in order to minimize possible contamination for the next run.
		Assaying was completed by fire assaying methods (30g charge) with a gravimetric finish. Each sample is fire-assayed using a traditional lead oxide flux as well as a known addition of silver, called in inquart. The samples are placed in electric assay furnaces. The fusion of the flux and inquarted sample produces a molten mixture that is poured into conical moulds and cooled. The lead button formed during the fusion process is separated from the cooled slag and pounded to remove any adhering slag. The lead button is then cupelled using a magnesium oxide cupel. The remaining doré bead is flattened and weighed. The weighed doré is placed in a test tube and concentrated nitric acid added. The button is then rinsed, ammonia added, and rinsed again. The button is dried and then roasted for 5 minutes. After cooling, the gold is weighed. Gold to silver ratios are checked. If greater than 0.40 additional silver and lead is added, and the sample re-analysed.
		 The gold and silver present in the sample are expressed according to the following formula:
		 Au (g/t) = Au (mg) / sample weight (g); and
		Ag (g/t) = (Au + Ag) (mg) – Au (mg) / sample weight (g)
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond drilling has been conducted from surface from February 2024 whereby all holes are cored in their entirety from the base of surface regolith cover and HQ (63.5 mm diameter) coring is conducted to hole completion. Diamond drilling size may be reduced to NQ (47.6 mm diameter) in the case that broken ground is encountered. All drilling by Andean Silver is being conducted by contractors using DG1500, CS11 and/or LM90 core rigs during which all core is drilled triple tube (HQ3 and NQ3) and is orientated using a AXIS Champ Core orientation device.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 During diamond drilling conducted by Andean Silver since February 2024, each core hole drill interval is reviewed for linear core recovery based on measured recovered intervals from drilled intervals from which percentage recoveries are calculated (average 96% achieved in

Criteria	JORC Code explanation	Commentary
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	bedrock).
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All diamond drill core drilled by Andean Silver since February 2024 is geologically logged, marked up and photographed by a qualified geologist. All geological and geotechnical observations including lithology and alteration, mineralisation type, in situ orientation of mineralised structures and bedding, recoveries, specific density and RQD are recorded. All drilled intervals are continually orientated with an AXIS Champ Core orientator which permits recording of insitu orientations of structural and lithological data. All channel samples have been geologically logged following company procedures and using company codes Photographs of channel locations and outcrop have been recorded
Sub- sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	All Andean Silver diamond drill core was sampled onsite with a Corewise Pty Ltd (7,5 Kw-380v) automatic core cutting facility. Representative half core sawn segments were cut by diamond saw after logging, marking of sample intervals and core cutting lines and digital
and sample	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	photography on a drill tray basis.
preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 Core was generally sampled in detail in 0.2m to 1.5m length intervals based primarily on geological parameters and samples were marked considering minimum and maximum lengths of 0.2m and 1.5m respectively.
	 Quality control procedures adopted for all sub- sampling stages to maximise representivity of 	The half core samples were packed and despatched to the onsite Cerro Bayo laboratory for analysis
	samples.Measures taken to ensure that the sampling is	 Channel samples were taken on lengths of 0.2m to 1.5m using a portable diamond saw. Channels were typically 10cm wide, 10cm deep. Total sample intervals were packed and
	representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	delivered to the onsite laboratory for Analysis. QAQC samples (STD/Blank) were inserted every 20 th sample.
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples once cut are placed in individual bags with unique sample numbers, sealed and then bagged in groups of 10 samples and stored in a secure, clean location in the core logging shed prior to transfer to the onsite Cerro Bayo Mine laboratory for preparation and analysis.
laboratory	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 For the Cerro Bayo Mine laboratory, the process comprises: Sample preparation initially comprises drying, weighing, jaw and fine roll crush, riffle split and pulverising of 1kg to 85% < 75µm Au: Fire Assay 30 gr - Au by fire assay fusion and Atomic Absorption Spectroscopy (AAS) finish on 30g nominal sample weight with lower and upper detection limit of 0.01 ppm and 8 ppm Au respectively. Au-GRA (by fire assay and gravimetric finish 30 g nominal sample weight) for Au values > 8 g/t up to 1,000 g/t Au. Ag by 4 acid HNO3-HCIO4-HF-HCI digestion, HCI leach and Atomic Absorption Spectroscopy (AAS) finish with lower and upper detection limit of 2 and 500 ppm Ag respectively. Ag-GRA (by fire assay and gravimetric finish 30g nominal sample weight) for Ag values > 500 g/t up to 10,000 g/t Ag. Alternate certified blanks and standards for Au and Ag are submitted by Andean Silver within each laboratory batch at a ratio of 1:20 (i.e. 5%) for which QA/QC revision is conducted on results from each batch. Barren Quartz flushes are used between high grade samples at crushing and pulp stage to ensure no contamination. Quality control procedures adopted include the insertion of a range of certified geochemical standards (CRMS's) and blanks that were inserted methodically on a one for every 20 sample basis (5%).

Criteria	JORC Code explanation	Commentary
		originally reported from the Cerro Bayo Mine laboratory
		 Pulps are generally initially analysed for Au, Ag and trace and base elements using method codes:
		 Au-ICP21 (Au by fire assay and ICP-AES. 30 g nominal sample weight with lower and upper detection limit of 0.001 and 10 ppm Au respectively),
		 Au-AA23 Au by fire assay fusion and Atomic Absorption Spectroscopy (AAS) finish on 30 g nominal sample weight with lower and upper detection limit of 0.005 and 10 ppm Au respectively
		 Ag-AA62 Ore grade Ag by HNO3-HCIO4-HF-HCl digestion, HCl leach and AAS with lower and upper detection limit of 1 and 1500 ppm Ag respectively
		 ME-MS41 (Multi-Element Ultra Trace method whereby a 0.5g sample is digested in aqua regia and analysed by ICP-MS + ICP-AES with lower and upper detection limit of 0.01 and 100 ppm Ag respectively)
		 For high grade samples method codes include:
		 Au-GRA21 (by fire assay and gravimetric finish 30 g nominal sample weight for Au values > 10 g/t up to 1,000 g/t Au),
		 ME-OG46 Ore Grade Ag by Aqua Regia Digestion and ICP-AES (with lower and upper detection limit of 1 and 1500 ppm Ag respectively) and Ag-GRA21 (Ag by fire assay and gravimetric finish, 30 g nominal weight for ≥ 1500 g/t to 10,000 g/t Ag)
		o Zn-AA62 (for >1% up to 30% Zn)
		 Pb-AA62 (for >1% up to 20% Zn)
		 Alternate certified blanks and standards for Au and Ag are submitted by Andean Silver within each laboratory batch at a ratio of 1:20 (i.e. 5%) for which QA/QC revision is conducted on results from each batch.
		 Internal laboratory QAQC checks are reported by the ALS laboratory for which previous reviews of the QAQC reports suggests the Cerro Bayo laboratory is performing within acceptable limits
		 The methods of analysis have been in place and verified by independent audits over the life of operation of the Cerro Bayo mine site laboratory. Multiple companies including Coeur Mining, Mandalay Resources and Equus Mining have all utilised and reported from the site laboratory with no historical issues encountered.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No adjustment to drill assay data was made For drill core sample data, laboratory CSV result files are merged with downhole geological logs and unique sample numbers. The Site Laboratory undergoes yearly independent audits on process and practices A selection of pulps and coarse reject samples are sent to ALS laboratory in Santiago each month as a check on the onsite laboratory. No issues have been detected with preparatory or analysis from these check samples. A Vanta PXRF machine calibrated using on site gold and silver standards is used at times on remaining pulp samples as a check and balance on exceptionally high gold and silver results
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The datum South American 69 Zone 19 South was adopted for the drill collar surveying and topographic bases. For the 2019-2024 diamond drilling, all collars were surveyed with a Differential GPS Trimble GNSS Trimble R2 Sub-Foot antenna and Nomad 1050 LC receiver using TerraSync data software. This system provides accuracy of approximately <20cm for x, y and z m. All 2019-2024 drill holes were downhole surveyed in a continuous down hole trace format using a STMicroelectronics MEMS gyroscope. Topographic control is adequate for the current Inferred Mineral Resource Estimate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Compositing of assay results where applicable on contiguous samples has been applied on a weighted average basis. Further drilling is required to provide sufficient data spacing and distribution to establish the degree of geological and grade continuity appropriate to develop a Mineral Resource Estimate
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The predominant mineralised vein and breccia structures are typically sub-vertical to steep easterly to north easterly dipping and generally strike north-south and north-west for which the orientation of drilling in both these project areas achieved a minimum level of bias. Core sampling is considered to have achieved an un-biased representation of the mineralization.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	 All core and samples were maintained in the enclosed and locked logging facility from which batches of bagged samples were subsequently despatched to the onsite laboratory or transported to the Balmaceda airport by vehicle and transported via air courier directly to the ALS Laboratory in Santiago.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 A review of sampling techniques and data was carried out by the Competent Person, Mr Tim Laneyrie, during field visits conducted between October 10 to 13, 2023 and January 24 to 29, 2024 and subsequent procedural reviews.
		 A review of the laboratory facility and QAQC data was conducted by Mr Damien Koerber who is the COO/Exploration manager for Andean as well as progressive QAQC reviews of all recent results produced from the lab by Andean Silver. Mr Laneyrie undertook a site inspection of the sample preparation areas and verification checks of the laboratory QAQC data for historic data. No significant discrepancies were identified.
		 Mr Laneyrie considers that the sample preparation, security, and analytical procedures adopted for the resource drilling provide an adequate basis for the current Mineral Resource estimates.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Andean Silver Limited, via its wholly owned subsidiary Compania Minera Cerro Bayo SpA (CMCB), holds the 33,180 hectare Cerro Bayo mine district. This district comprises 67 mining claims totalling 28,631 hectares of registered mining claims, 5 registered exploration claims totalling 1,300 hectares and 13 exploration claims totalling 3,250 hectares under application. The Cerro Bayo mine district mine infrastructure includes a tailings facility and 1,500tpd processing plant (currently on care and maintenance) through which approximate historical production of 645Koz Gold and 45Moz Silver was achieved up until the mine's temporary closure in mid-2017. The Resource areas are located wholly within the contiguous block of 67 mining claims The mining claims that host the resource areas include: Carrera 1-37 Nacional Registration No. (Rol) 11201-0155-9, 370 hectares Laguna 1-100 Nacional Registration No. (Rol) 11201-0084-6, 760 hectares Vicuna 1-45 Nacional Registration No. (Rol) 11201-0098-6, 426 hectares Guanaca 6-17, 23-34 Y 38-87 Nacional Registration No. (Rol) 11201-0082-K, 990 hectares Jara 1-100 Nacional Registration No. (Rol) 11201-0082-K, 990 hectares Bayo 1-70 Nacional Registration No. (Rol) 11201-0088-9, 700 hectares Mallines 1-100 Nacional Registration No. (Rol) 11201-0085-4, 990 hectares The mining claims are in good standing and the pertinent annual mining fees were paid in March 2024. Andean Silver Limited owns approximately 2,365 hectares of underlying freehold land which hosts the mill infrastructure, Taitao Pit and Laguna Verde underground mines and MRE (LVMC). Andean also has current surface access and land use agreements totalling 1,650 hectares with landowners for the area encompassing the majority of the CBMC MRE areas. The Taitao Op

Criteria	JORC Code explanation	Commentary
		combined conceptual heap leach and flotation plant processing flow sheet.
		 A large proportion of the CMCB mine district is covered by an environmental impact study approved in 1994 which covers a 8,600 hectare portion of the Cerro Bayo Project. This area encompasses the LVMC and CBMC and includes the mill infrastructure, and TSF. The Cerro Bayo Project also holds subsequent approved modifications, and ten other legacy mine and sectorial permits No native title interests exist over the mine district. Under the acquisition agreement between Andean Silver and that carried between previous owners Equus Mining and Mandalay Resources, a NSR royalty of 2.25% is payable by CMCB to Mandalay Resources upon future production exceeding the first 50,000 ounces of gold equivalent Mandalay Resources is responsible for approximately 50% of the mine closure costs up to an amount of approximately AU\$10 million which was approved by government authorities in February 2024 to commence in 2032.
Exploration done by other	Acknowledgment and appraisal of exploration by other parties.	A large portion of the historic drill, tunnel and geochemical database was completed by other previous operators of the project and mine areas including:
parties		 Freeport Chilean Exploration Company: conducted exploration between 1980 and 1989 which culminated in a prefeasibility study completed in 1989.
		CDE Chilean Mining Corporation (subsidiary of Coeur Mining) acquired the project in 1990 and subsequent to further exploration, engineering and a feasibility study conducted by Fluor Daniel Wright following which a 1,500tpd flotation plant was constructed and production commenced in 1995. During the period 1991 to 1994 NCL Ingeneira y Construccion S.A. completed an environmental impact study (EIA) throughout an approximate 8,700 hectare portion within the Cerro Bayo Project, which was voluntarily submitted by CDE Chilean Mining Corporation and received approval in October 1994 for exploitation of resources/reserves at the Taitao Pit and numerous other slot cut and underground resources in the Laguna Verde and Cerro Bayo Mine Complex areas including the Guanaco area, the processing plant, tailings storage facility and exploration and resource drilling. The exploitation of the Taitao open pit was concentrated in four areas denominated Taitao, 00, Brecha and Noreste.
		 Equus Mining drilled 137 diamond drillholes throughout the Cerro Bayo mine district area. A significant rock and channel sampling campaign was undertaken on the proximal mine areas. This work was completed between 2019-2023.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	Laguna Verde Mine Complex (LVMC)
		• The main vein systems including those of Delia, Coyita, Dagny, Fabiola Temer, and Tranque comprise of 315° to 345° oriented fissure style veins varying in dip between vertical and 75° northwest and southeast and extend over strike lengths up to 1,200 m and over vertical intervals of up to 230m. Widths are highly variable between the different vein systems and within individual veins along strike and down dip, varying from centimetres up to 8m. These veins are hosted in a sub-horizontal package of dacitic to rhyolitic tuffs and ignimbrites along planes of normally displaced faults. These veins are interpreted to represent low sulphidation, epithermal late stage gold-silver rich mineralization characterised by massive to locally brecciated and broadly banded veins. The veins consist mainly of fine-grained quartz and chalcedonic silica, adularia, and fluorite, with minor amounts of barite and carbonates. The overall sulphide content is generally less than 5% in which sulphides mainly comprise pyrite, silver sulphosalts, and locally low Fe sphalerite disseminations as clusters and bands.
		Pegaso VII Prospect
		 The mineralization is typical of a low sulphidation type and is interpreted to be of a multi-stage, open space filling epithermal origin resulting in mineralized veins, stockworks and breccias. Two main vein systems are recognized at the Pegaso 7 prospect namely NS to NW to NNW trending veins and breccias varying in dip from vertical to 60° to the E and NE . The Pegaso 7 vein corridor has been defined over a strike length of approximately 800m to date, which is broadly centred on a north-south trending, sub vertical to steep easterly dipping pre-mineral intrusive dacite dome. This dome complex is currently defined over an approximate 600m strike length and varies in thickness between 30 and 100m. Veins are hosted both within the welded rhyolitic Temer Formation and the pre-mineral intrusive dacite dome within which vein widths are highly variable along-strike and down-dip varying from 0.2 to 2m and up to 8m in breccias and quartz-pyrite and pyrite sheeted vein zones which are predominantly developed in the margins and contacts of the pre-mineral intrusive dacite dome. Vein mineralization is represented by crudely banded veins which are commonly brecciated which consist mainly of fine-grained quartz and chalcedonic silica, adularia, and amethyst, with minor amounts of barite and Mg and Mn rich carbonates. The general sulphide content is low, less than 5%, which consists mainly pyrite, silver sulphosalts and locally sphalerite and galena as disseminations, clusters, and bands.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	Refer to Appendix B of this release
	 easting and northing of the drill hole collar 	

Criteria	JORC Code explanation	Commentary
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All drillhole intersections were reported above a lower cutoff grade of 100g/t AgEq. A maximum of 1m interval of material <100g/t AgEq was allowed for underground targets. Metal equivalents have been calculated at a silver price of US\$23/oz and gold price of US\$1,900/oz. These prices reflect a view on long-term conservative case commodity prices for these metals. Individual grades for the metals are set out at Appendices A and B of this announcement. Silver equivalent was calculated based on the formula AgEq(g/t) = Ag(g/t) + (83 x Au(g/t). Gold equivalent was calculated based on the formula AuEq(g/t) = Au(g/t) + (Ag(g/t) / 83). Metallurgical recoveries for gold and silver are closely linked and are typically 90-93% for gold and silver. The Company considers the estimation of metallurgical recoveries in respect of exploration work to be reasonable based on the past processing records from the nearby Cerro Bayo plant between 1995 and 2016, and work undertaken in preparing the Mineral Resource Estimate. It is the Company's view that all elements in the silver and gold equivalents calculations have a reasonable potential to be recovered and sold.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, 	 All intersections reported in the body of this release pertaining to Pegaso VII & Cristal are down hole. Only downhole lengths are reported.

Criteria	JORC Code explanation	Commentary
	true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See diagrams included in the body of this announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All holes have been reported
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Equus Mining undertook a program of bulk density determinations on drill core to confirm historical values for their Taitao MRE. A total of 114 bulk density determinations have been carried out resulting in an average bulk density of 2.57g/cm3 for stockwork and waste material and 2.64g/cm3 for epithermal vein material. This validated the historic Bulk density determinations completed by Mandalay and Coeur mining.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). 	Pegaso VII
		 Further mapping and sampling of the central and northern extents of the outcropping Pegaso 7 vein corridor system
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Continued drill testing of the Pegaso 7
		 Follow up resource infill and exploration drilling at depth targeting veined along strike and down plunge extensions of the pre- mineral dacite dome and NW trending extensions peripheral to the dome
		Cristal
		Further mapping of surface structures
		Continued drill testing of the Cristal structural corridor