ASX ANNOUNCEMENT ASX:AZS

21 August 2023

DRILLING DELIVERS LARGE VOLUMES OF LITHIUM MINERALISATION AT ANDOVER

<u>167.6m @1.31% Li20 in ANDD0238</u>

100m @ 1.52% Li20 in ANRC0011

HIGHLIGHTS

Broad zones of high-grade lithium mineralisation continue to be intersected in the AP0011 pegmatite:

- **167.7m @ 1.31% Li₂0** from 168.4m in ANDD0238 (~112.2m True Width), including:
 - o **89.1m @ 1.55% Li₂O** from 168.4m (~59.6m True Width) which includes:
 - **30.5m @ 2.03% Li₂0** from 215.3m (~20.4m True Width)
 - o 12.5m @ 1.57% Li₂O from 274.5m (~8.3m True Width)
- **100m @ 1.52% Li₂0*** from 194m in ANRC0011 (~57.4m True Width), (* hole ended in mineralisation), including:
 - **21m @ 1.67% Li₂0** from 210m (~12.0m True Width), and:
 - o 46m @ 1.77% Li₂0 from 248m (~26.4m True Width)

Additional significant mineralised intersections in the AP0011 pegmatite include:

- 55m @ 1.24% Li₂0 from 160m (~50.6m True Width) in ANRC0018
- 33m @ 0.90% Li₂O from 101m (~23.3m True Width) in ANRC0116; and
- **32m @ 1.34% Li₂0** from 183m (~22.6m True Width) in ANRC0116
- **31m @ 1.18% Li₂O** from 175m (~28.1m True Width) in ANRC0054
- **39m @ 1.02% Li₂0** from 111m (~36.4m True Width) in ANRC0010 including
 - o **20m @ 1.60% Li₂0** from 123m (~18.7m True Width)

Near-surface mineralisation also confirmed in the AP0009 and AP0012 pegmatites:

- 10.2m @ 1.73% Li₂O from 39m (~9.6m True Width) in ANDD0226 (in AP0009) including: 7.6m @ 2.44% Li₂O from 44.2m (~7.1m True Width)
- 22m @ 0.95% Li₂0 from 32m (~21.3m True Width) in ANRC0071 (in AP0009) including: 5m @ 1.81% Li₂0 from 32m (~4.8m True Width)
- 34m @ 1.14% Li₂O from 2m (~32.7m True Width) in ANRC0005 (in AP0012) including: 6m @ 2.13% Li₂O from 8m (~5.8m True Width)

RC and diamond rigs continue resource delineation drilling within Target Area 1

Three diamond rigs now drilling in Target Area 2

www.azureminerals.com.au

ABN: 46 106 346 918 ASX: AZS

Level 1, 34 Colin Street West Perth WA 6005

+61 8 6187 7500 admin@azureminerals.com.au

ASX:AZS

Azure Minerals Limited (ASX: AZS) ("Azure" or "the Company") is pleased to announce infill and extensional Reverse Circulation (RC) and diamond core drilling continues to intersect significant lithium mineralisation at the Company's Andover Project (Azure 60% / Creasy Group 40%), located in the West Pilbara region of Western Australia.

Encouragingly, drilling has now confirmed broad zones of high-grade lithium mineralisation extend from surface to more than 400m vertically below surface over a strike length of 2,000m, indicating that the AP0009, AP0011 and AP0012 pegmatites have the potential to host substantial lithium resources.

TECHNICAL DISCUSSION

The Andover pegmatite swarm extends over an area of 9km (east-west) and up to 5km (northsouth) (see Figure 1) and comprises hundreds of outcropping pegmatites with many containing high lithium grades identified from extensive surface sampling.

To date, 54 diamond core holes have been completed for 19,682.5m and 89 RC holes completed for 18,084m. Infill and extensional resource delineation drilling continues at AP0011 (see Figure 2), and exploration drilling has commenced in Target Area 2 which hosts the AP0015, AP0016 and AP0017 prospects (see Figure 3).

The latest assay results significantly increase the confidence of the size and quality of the lithium mineralisation within Target Area 1. Within the known extents of the mineralisation, the infill drilling demonstrates strong continuity of mineralisation laterally along strike, up-dip to surface and down-dip to more than 400m below surface.

In the AP0011 pegmatite, an intersection of **167.6m @ 1.31% Li₂O** in ANDD0238 has confirmed the strong continuity of high-grade mineralisation intersected in ANDD0228 (**183.1m @ 1.25% Li₂O**) (ASX: 4 August), located approximately 40m to the west.

Infill drill hole ANRC0011 demonstrated strong continuity of high-grade mineralisation in the AP0011 pegmatite by intersecting **100m** @ **1.52%** Li₂**0**, although the hole stopped in mineralisation due to the rig running out of drill rods. (Figure 5). A diamond drill hole (ANDD0245) has since twinned ANRC0011 to confirm the mineralisation and define the depth extent of the mineralised zone in between ANDD0215 (**112.4m** @ **1.05%** Li₂**0**) (ASX: 20 June 2023) and ANDD0223 (**101.3m** @ **1.21%** Li₂**0**)(ASX: 14 July 2023).

ANRD0116, which was drilled targeting the AP0011 pegmatite, intersected **33m @ 0.90% Li₂0 from 101m** and **32m @ 1.34% Li₂0 from 183m**, extending the strike length of mineralisation within AP0011 for a further 175m to the west of holes ANDD0228 and ANDD0238.

Mineralisation within AP0011 remains open down-dip and to the west and recent drilling is continuing to extend the AP0011 mineralisation in these directions.

Near-surface high-grade mineralisation was intersected in the AP0009, AP0011 and AP0012 pegmatites (Figure 4). Of particular importance, ANRC0051 intersected **16m @ 1.02% Li₂O from 4m** including **5m @ 1.54% Li₂O from 8m** and ANRC0052 intersected **17m @ 0.97% Li₂O** from surface which represents the surface expression of the AP0011 pegmatite.

www.azureminerals.com.au

PO Box 493 West Perth WA 6872 +61 8 6187 7500 admin@azureminerals.com.au

ASX ANNOUNCEMENT ASX:AZS

ANRC0005 intersected **34m @ 1.14% Li₂0 from 2m** in pegmatite AP0012 including **10m @ 1.73%** Li₂0 from 4m and is located ~30m up dip from ANDD0220 (**39.5m @ 1.06% Li₂0 from 2.0m**)(ASX: 14 July 2023).

Two holes into the AP009 pegmatite intersected high-grade mineralisation, with ANDD0226 intersecting **10.2m @ 1.73% Li₂0 from 39m** including **7.6m @ 2.44% Li₂0 from 44m**, and ANRC0071 intersecting **22m @ 0.95% Li₂0 from 32m**.

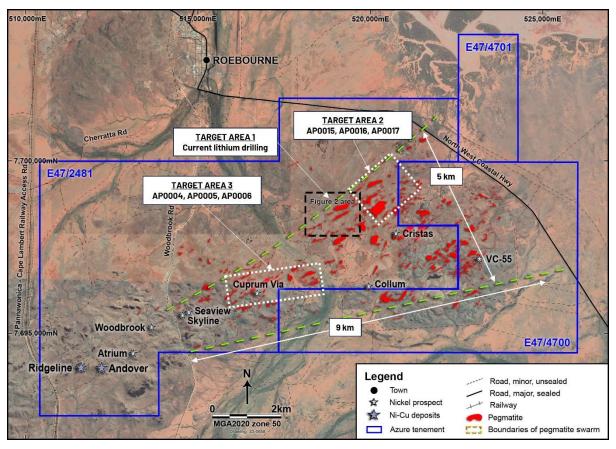


Figure 1: Andover Lithium Project showing pegmatite outcrops and current Target Areas

www.azureminerals.com.au

Level 1, 34 Colin Street West Perth WA 6005

0

PO Box 493 West Perth WA 6872 +61 8 6187 7500 admin@azureminerals.com.au

ASX:AZS

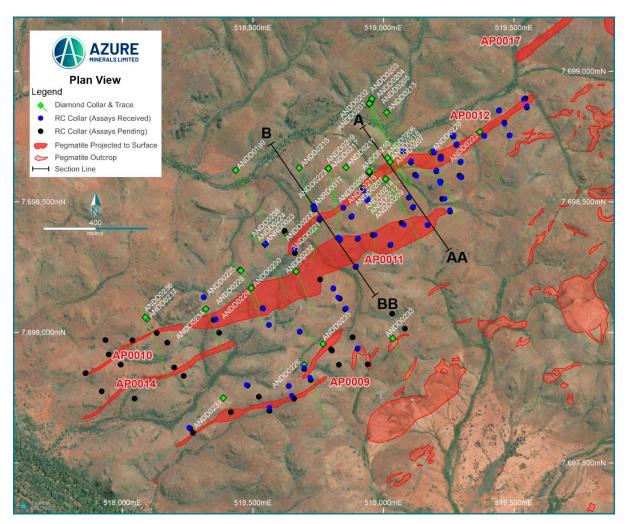


Figure 2: Pegmatites, drilling and section lines in Target Area 1

www.azureminerals.com.au

Level 1, 34 Colin Street West Perth WA 6005

0

ASX:AZS

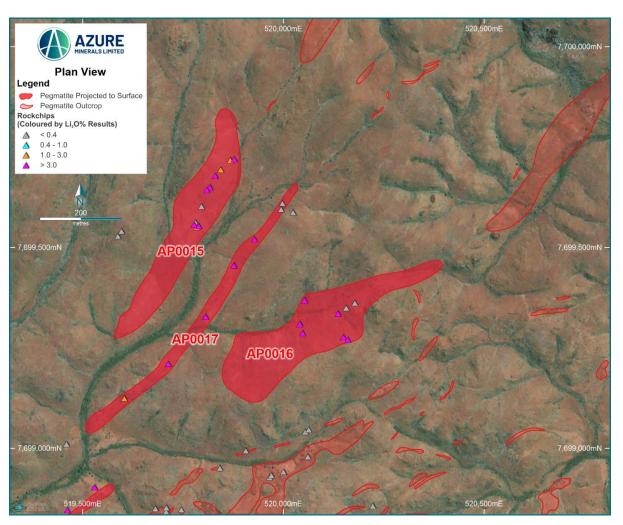


Figure 3: Pegmatites in Target Area 2 with rock chip sample results

www.azureminerals.com.au

Level 1, 34 Colin Street West Perth WA 6005

0

ASX:AZS

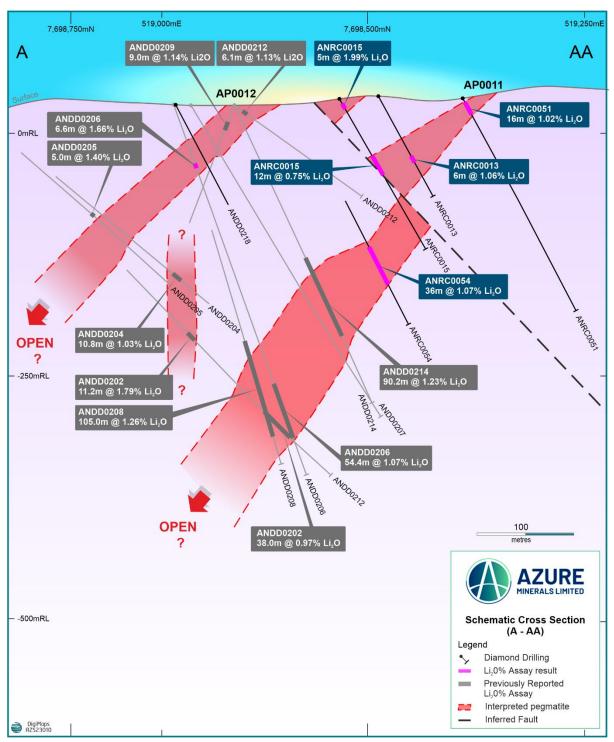


Figure 4: Section A-AA through AP0011 and AP0012 pegmatites with reported lithium intersections

www.azureminerals.com.au

Level 1, 34 Colin Street West Perth WA 6005

0

PO Box 493 West Perth WA 6872 +61 8 6187 7500 admin@azureminerals.com.au

ASX:AZS

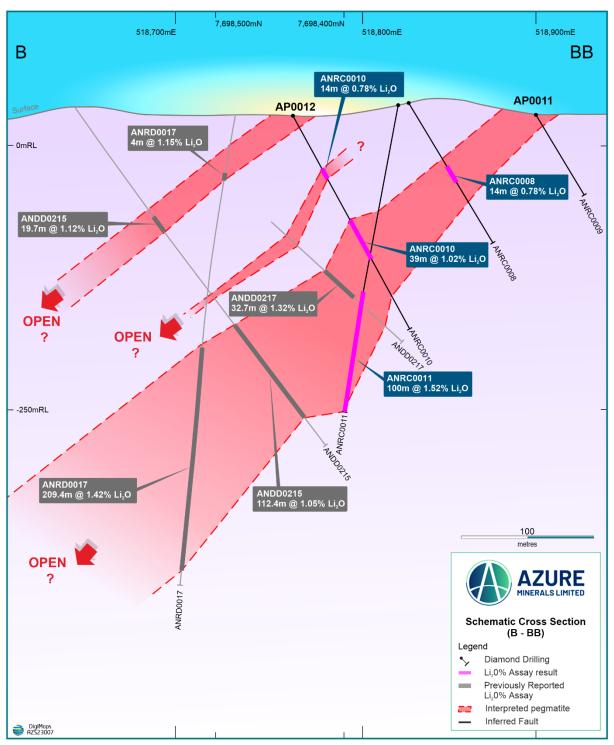


Figure 5: Section B-BB through AP0011 and AP0012 pegmatites with reported lithium intersections

www.azureminerals.com.au

Level 1, 34 Colin Street West Perth WA 6005

0

PO Box 493 West Perth WA 6872 +61 8 6187 7500 admin@azureminerals.com.au

HOLE No.	DEPT	H(m)	INTERCEPT LENGTH (m)	ESTIMATED TRUE WIDTH (m)	GRADE
	FROM	TO			Li₂0(%)
		DIAMN	D DRILL HOLES		
ANDD0226	39	56.9	17.9	16.9	1.29
Incl	41.6	51.8	10.2	9.6	2.04
Which includes	44.2	51.8	7.6	7.1	2.44
ANDD0227	112.4	142.4	31.0	25.4	0.85
Incl	124.2	143.4	19.2	15.7	1.05
	182.1	185.0	2.9	2.4	1.19
	211.9	225.6	13.7	11.2	0.71
	237.2	249.0	11.8	9.7	0.76
Incl	243.7	249	5.3	4.3	1.18
ANDD0229	40.9	46.9	6.0	5.9	0.72
ANDBOZZO	145.5	147.3	1.8	1.8	1.74
		-	-		
ANDD0230			NSI	+ +	
ANDD0231	26.0	28.3	2.3	2.2	2.90
ANDD0232			NSI ¹		
ANDD0233			NSI		
ANDD0234	159.1	167.8	8.7	8.3	0.73
And	174.6	179.3	4.7	4.5	0.70
And	216.4	229.7	13.3	12.6	0.69
Incl	216.4	220.4	4.0	3.8	1.41
ANDD0235	210.7	219.1	8.4	6.4	0.79
Incl	211.7	215.9	4.2	3.2	1.18
ANDD0236	147.6	155.2	7.6	7.0	1.24
And	292.6	295.7	3.1	2.9	0.88
ANDD0238	139.0	149.2	10.2	6.8	1 07
	139.0		3.1	2.1	1.03 1.71
Incl	143.3	146.4 336.1	167.7	112.2	1.71
Incl	168.4	257.5	89.1	59.6	1.51
Which includes	215.3	257.5	30.5	20.4	2.03
And	215.3	245.8	12.5	8.3	1.57
Allu	2/4.0	207.0	G.21	0.0	1.07
ANRD0023	266.0	273.0	24	17.0	0.67
Incl	266.0	273.0	7.0	4.9	1.24
	281.0	297.1	16.1	11.4	0.57
	355.4	357.7	2.3	1.6	1.34
	r		LATION (RC) DRILL I		
ANRC0001	r 21	22		1	2.20
	27	29	2	1.9	1.41

Table 1: Significant mineralised drill intersections from recent drill holes

¹NSI: Denotes No Significant Intersection

www.azureminerals.com.au

ABN: 46 106 346 918 **ASX**: AZS

+61 8 6187 7500 admin@azureminerals.com.au

ASX:AZS

	43	46	2	1.9	1.31
	40	40	Z	1.5	1.01
ANRC0002	50	54	4	2.8	0.85
	62	87	25	17.7	0.76
incl	64	69	5	3.5	1.21
	78	86	8	5.7	1.02
			-		
ANRC0003			NSI		
ANRC0004	46	50	4	2.6	1.08
ANRC0005	2	36	34	32.7	1.14
incl	8	22	14	13.4	1.52
Which includes	8	114	6	5.8	2.13
ANRC0006					Assays Pending
ANRC0007					Assays Pending
	00	00	1/	17 -	0.70
ANRC0008	68	82	14	13.5	0.78
Incl	77	81	4	3.9	1.44
			NO		
ANRC0009			NSI		
ANRC0010	111	150	39	36.4	1.02
incl	123	143	20	18.7	1.60
Inci	125	145	20	10.7	1.00
ANRC0011	194	294	100*	57.4	1.52
incl	210	234	21	12.0	1.67
and	248	294	46	26.4	1.77
and	210	201	* Hole ended in p		1.77
			noie ended in p		
ANRC0012			NSI		
7.1111000012			Nor		
ANRC0013	48	86	38	36.5	0.57
Incl	75	81	6	5.8	1.06
	-		-		
ANRC0014	142	146	4	3.9	1.57
ANRC0015	6	11	5	4.8	1.99
incl	6	9	3	2.9	2.88
	83	95	12	11.6	0.75
ANRC0016	3	16	13	12.4	0.76
ANRC0018	121	124	3	2.8	1.16
	134	138	4	3.7	0.96
	160	215	55	50.6	1.24
Incl	188	202	14	12.9	1.60
	4/2	45.1			
ANRC0019	148	154	6	5.5	2.04
7111100010		170	8	7.3	1.07
	163				
	189	193	4	3.7	0.96
				3.7 10.1 11.0	0.96 0.93 1.12

www.azureminerals.com.au

Level 1, 34 Colin Street West Perth WA 6005 PO Box 493 West Perth WA 6872 +61 8 6187 7500 admin@azureminerals.com.au

ASX:AZS

	107	157	50	45.3	0.87
Incl	107	128	21	19.0	1.06
	190	204	14	12.7	1.03
ANRC0021	147	55	8	6.6	2.03
	147	186	3	2.5	0.71
	193	197	4	3.3	0.93
	201	204	3	2.5	1.00
	213	204	8	6.6	0.65
	210	221	0	0.0	0.00
ANRC0022			NSI		
ANRC0025	171	173	2	2.0	1.15
ANRC0026	160	163	3	2.9	0.97
	100	170	10	0.7	0.01
ANRC0027	169 213	179 219	<u>10</u> 6	9.7 5.8	0.81
	2.0	2.0		5.0	
ANRC0028			NSI		
ANRC0051	4	20	16	15.4	1.02
	8	13	5	4.8	1.54
ANRC0052	0	17	17	16.4	0.97
ANRC0053	12	20	8	7.7	0.71
ANRC0054	175	206	31	28.1	1.18
ANRC0055	30	38	8	6.6	1.18
				10 5	
ANRC0056	31	51	20	18.5	0.92
Incl	31	45	14	13.0	1.05
ANRC0057	3	33	30	NA ²	1.06
Incl	14	28	14	INA	1.54
IIIGI	89	99	14		0.98
	112	114	2		1.14
	161	169	8		1.14
	196	216	23		1.00
Incl	205	215	10		1.66
			11	10.7	
ANRC0059	6	17	11	10.7	0.79
ANRC0060			NSI		
ANRC0064					Assays Pendin
ANRC0065			NSI		
		230	22	21.3	0.89
ANRC0066	208	7211			

² Unable to calculate True Width due uncertain pegmatite orientation

www.azureminerals.com.au

ABN: 46 106 346 918 ASX: AZS

0

6 +61 8 6187 7500 @ admin@azureminerals.com.au

ASX:AZS

ANRC0067	196	211	15	14.5	1.18
ANRC0068	130	139	9	6.9	0.95
Incl	133	136	3	2.3	1.62
ANRC0069	162	168	6	5.6	1.49
ANKCUU09	102	100	0	5.0	1.49
ANRC0070			NSI		
ANRC0071	32	54	22	21.3	0.95
Incl	32	37	5	4.8	1.81
ANRC0072	114	120	6	5.9	0.72
ANRCOUTZ	114	120	0	5.8	0.72
ANRC0073			NSI		
ANRC0074	116	130	14	13.1	0.98
Incl	121	129	8	7.5	1.11
ANRC0075			NSI		
ANNOUTS			1101		
ANRC0101	136	156	20	19.3	0.68
Incl	147	152	5	4.8	1.11
ANRC0102			NSI		
ANRC0103	68	70	2	1.9	1.04
ANIXOOIOO	00	/0	Σ	1.0	1.04
ANRC0104	87	88	1	1.0	1.07
ANRC0105	46	47	1	0.8	1.29
ANRC0106	24	33	9	8.7	1.12
ANROUIUU	24		9	0.7	1.12
ANRC0107	7	14	7	6.8	0.93
ANRC0108			NSI		
ANRC0110	0	37	37	35.7	0.75
ANRCUTIU	14	23	9	8.6	1.13
		20	0	0.0	1.10
ANRC0112	60	80	20	18.8	1.25
ANRC0114	150	163	13	12.6	1.16
ANRC0115	133	146	13	12.6	0.67
ANNOUTO	100	140	IJ	12.0	0.07
ANRC0116	101	134	33	23.3	0.90
Incl	101	108	7	4.9	1.66
	183	215	32	22.6	1.34
Incl	199	213	14	9.9	1.85

Level 1, 34 Colin Street West Perth WA 6005

ASX:AZS

HOLE No.	EAST (mE)	NORTH (mN)	ELEVATION (mASL)	AZIMUTH	DIP	TOTAL DEPTH (m)
ANDD0226	518698	7697862	43	155	-50	396.3
ANDD0227	518624	7698383	29	204	-81	330.6
ANDD0229	518493	7698186	34	153	-60	168.6
ANDD0230	518494	7698185	34	168	-38	30.0
ANDD0231	518385	76977367	37	155	-50	148.8
ANDD0232	518655	7698238	31	155	-50	300.0
ANDD0233	519040	7697972	47	155	-50	297.5
ANDD0234	518344	7698096	47	156	-49	351.3
ANDD0235	518773	7697949	40	300	-50	258.3
ANDD0236	518091	7698057	35	155	-50	393.1
ANDD0238	518454	7698237	44	310	-80	376.7
7	010101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		010		0,00
ANRC0001	519281	7698722	31	155	-60	82
ANRC0002	519272	7698753	40	155	-60	120
ANRC0003	519299	7698656	51	155	-60	288
ANRC0004	519269	7698755	40	335	-80	200
ANRC0005	519222	7698670	40	155	-60	42
ANRC0005	519205	7698619	40	155	-60	186
ANRC00007	518738	7698474	30	155	-60	304
ANRC0008	518835	7698357	39	155	-60	152
ANRC0009	518896	7698254	37	155	-60	90
ANRC0010	518758	7698436	37	140	-60	225
ANRC0011	518826	7698365	44	335	-80	294
ANRC0012	518905	7698363	47	155	-60	160
ANRC0013	519117	7698483	38	155	-60	120
ANRC0014	518879	7698448	44	155	-60	201
ANRC0015	519102	7698522	39	155	-60	180
ANRC0016	519025	7698334	29	155	-60	132
ANRD0017	518733	7698483	27	335	-80	294
ANRC0018	518940	7698509	32	155	-60	220
ANRC0019	518927	7698539	29	155	-60	258
ANRC0020	518846	7698479	31	155	-60	222
ANRC0021	518939	7698508	32	211	-70	270
ANRC0022	518967	7698374	52	155	-60	150
ANRD0023	518548	7698340	38	294	-80	409
ANRC0025	518660	7698321	28	158	-60	198
ANRC0026	518561	7698029	46	158	-59	216
ANRC0027	518540	7698090	49	152	-59	240
ANRC0028	518678	7698004	50	153	-60	204
ANRC0051	519167	7698412	36	155	-60	250
ANRC0052	519254	7698469	34	155	-60	225
ANRC0053	519235	7698511	34	155	-60	160
ANRC0054	519126	7698599	30	155	-60	258
ANRC0055	519106	7698657	30	158	-60	66
ANRC0056	519196	7698690	33	158	-60	72
ANRC0057	519193	7698694	33	334	-80	300
ANRC0059	519075	7698694	29	156	-60	90
ANRC0060	519079	7698412	40	137	-60	180
ANRC0064	518902	7697940	39	154	-61	258
ANRC0065	518808	7698170	38	157	-61	252
ANRC0066	518825	7698135	41	145	-61	247
ANRC0067	518857	7698092	35	155	-60	250
ANRC0068	518718	7697827	45	335	-60	210
ANRC0069	518696	7697865	43	336	-80	200
ANRC0003	518648	7697758	43	155	-60	200
ANRC0070	518638	7697795	48			150
ANRCOU71 ANRC0073	518638	7697635	28	145 150	-60	150
					-60	
ANRC0074	518475	7697799	35	153	-60	156
ANRC0075	518563	7697713	37	158	-59	150
ANRC0101	519550	7698867	32	162	-60	252

Table 2: Location data of diamond and RC drill holes

Reversion www.azureminerals.com.au

Level 1, 34 Colin Street West Perth WA 6005

0

+61 8 6187 7500 admin@azureminerals.com.au

ASX:AZS

ANRC0102	519537	7698893	31	158	-61	246
ANRC0103	519485	7698755	35	167	-61	114
ANRC0104	519464	7698798	33	155	-61	120
ANRC0105	519443	7698849	35	355	-80	150
ANRC0106	519443	7698848	35	161	-60	150
ANRC0107	519386	7698751	31	153	-60	84
ANRC0108	519218	7698571	40	159	-61	216
ANRC0110	519221	7698664	33	152	-61	102
ANRC0111	519215	7698579	40	342	-80	156
ANRC0112	519296	7698594	44	159	-61	276
ANRC0115	518358	7698050	42	151	-60	228
ANRC0116	518310	7698135	46	337	-80	215

-ENDS-

For enquiries, please contact:

Tony Rovira

Managing Director Azure Minerals Limited Ph: +61 8 6187 7500 E: <u>admin@azureminerals.com.au</u>

Media & Investor Relations David Tasker Chapter One Advisors Ph: +61 433 112 936 E: dtasker@chapteroneadvisors.com.au

or visit <u>www.azureminerals.com.au</u>

COMPETENT PERSON STATEMENT

Information in this report that relates to Exploration Results for the Andover Project is based on information compiled by Mr Graham Leaver, who is a Member of The Australian Institute of Geoscientists. Mr Leaver has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Leaver is a full-time employee of Azure Minerals Limited and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Information in this report that relates to previously reported Exploration Results has been crossedreferenced in this report to the date that it was reported to ASX. Azure Minerals Limited confirms that it is not aware of any new information or data that materially affects information included in the relevant market announcements.

www.azureminerals.com.au

Level 1, 34 Colin Street West Perth WA 6005

JORC Code, 2012 Edition – Table 1

	Section 1: Sampling	J Techniques and Data
Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Diamond core samples are taken from diamond drill core (HQ or NQ2) that is sawn into halves or quarters. Sample intervals are determined according to the geology logged in the drill holes. Reverse Circulation samples were collected directly from an RC drill rig using a cone splitter at 1m intervals. A 1/8 split of each interval was sampled directly into a calico sample bag.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Sample preparation was undertaken at Bureau Veritas Minerals, Canning Vale laboratory, where the samples received were sorted and dried. Primary preparation for diamond core samples crushes each sample in its entirety to 10mm and then further to 3mm. RC samples were primarily crushed to 3mm. Larger samples were split with a riffle splitter and all samples were pulverised via robotic pulveriser. The resultant pulverised material was placed in a barcoded sample packet for analysis. The barcoded packet is scanned when weighing samples for their respective analysis. Internal screen sizing QAQC is done at 90% passing 75um. Samples were digested by peroxide fusion and analysed by ICPMS & ICPOES for 55 elements. The technique is considered a total digest for all relevant minerals.
Drilling Techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	Where diamond drilling techniques have been employed HQ-size core is drilled (63.5mm diameter) from surface or extended from the bottom of an RC hole and NQ2-size (50.6mm diameter) core from the depth the rock is considered competent to the final depth. Drill holes are angled, core is routinely recovered in standard core tubes and core is oriented for structural interpretation. Where reverse circulation drilling techniques are employed holes are drilled from surface using a nominal 140mm face sampling RC drill bit.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have	Diamond core was reconstructed into continuous runs. Depths were measured from the core barrel and checked against marked depths on the core blocks. Core recoveries were logged and recorded in the database. Core recoveries are very high with >90% of the drill core having recoveries of >98%. RC sample quality was monitored by the onsite geologist. The sampling methodology from the rig was consistent throughout the drilling program.

Level 1, 34 Colin Street West Perth WA 6005

0

6 +61 8 6187 7500 @ admin@azureminerals.com.au

ABN: 46 106 346 918 ASX: AZS

www.azureminerals.com.au

	1	
	occurred due to preferential loss/gain of fine/coarse material.	Overall high drill sample recoveries limit the potential to introduce any sample bias. No known sample bias is thought to be associated with the drill sample recovery.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Detailed diamond drill core logging was carried out, recording weathering, lithology, alteration, veining, mineralisation, structure, mineralogy, RQD and core recovery. Drill core logging is qualitative. Drill core was photographed, wet and dry without flash, in core trays prior to sampling. Core from the entire drill hole was logged.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	Detailed RC drill chip logging of each entire drill hole was carried out, recording weathering, lithology, alteration, veining, mineralisation and mineralogy. RC logging is qualitative. RC chips were collected in chip trays and photographed.
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Diamond core samples are taken from diamond drill core (HQ or NQ2) that is sawn into halves or quarters. Sample intervals are determined according to the geology logged in the drill holes. Reverse Circulation samples were collected directly
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	from an RC drill rig using a cone splitter at 1m intervals. A 1/8 split of each interval was sampled directly into a calico sample bag.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Sample preparation was undertaken at Bureau Veritas Minerals, Canning Vale laboratory, where the samples received were sorted and dried. Primary preparation for diamond core samples crushes each sample in its
	Measures taken to ensure that the sampling is representative of the in- situ material collected, including for instance results for field duplicate/second-half sampling.	entirety to 10mm and then further to 3mm. RC samples were primarily crushed to 3mm. Larger samples were split with a riffle splitter and all samples were pulverised via robotic pulveriser. The resultant pulverised material was placed in a barcoded sample packet for analysis. The
	Whether sample sizes are appropriate to the grain size of the material being sampled	barcoded packet is scanned when weighing samples for their respective analysis. Internal screen sizing QAQC is done at 90% passing 75um.
		Samples were digested by peroxide fusion and analysed by ICPMS & ICPOES for 55 elements.
		The sample preparation technique is considered appropriate for all relevant minerals.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered	Diamond drill core and RC samples underwent sample preparation and analysis by Bureau Veritas Minerals, Canning Vale laboratory in Perth.
tests	partial or total.	All samples were digested by peroxide fusion and analysed by ICPMS & ICPOES for 55 elements.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the	The technique is considered a total digest for all relevant minerals.
	analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Certified analytical standards, blanks and duplicates were inserted at appropriate intervals for diamond drill samples with an insertion rate of ~12%. All QAQC samples display results within acceptable levels of accuracy and
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks)	precision.

@ www.azureminerals.com.au

PO Box 493 West Perth WA 6872 +61 8 6187 7500 admin@azureminerals.com.au

ASX:AZS

Verification of sampling and assaying	and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data	Senior technical personnel from the Company (Project Geologists +/- Exploration Manager) logged and verified significant intersections. Primary data was collected by employees of the Company at the project site. All measurements and observations were recorded digitally and entered into the Company's database. Data verification and validation is checked upon entry into the database. Digital data storage is managed by an independent data management company. No adjustments or calibrations have been made to any assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Drill hole collar locations are initially surveyed using handheld GPS with the expected relative accuracy of 5m for easting, northing, and elevation coordinates. Drill hole collar locations are regularly surveyed following completion of drilling by an external registered surveyor using industry standard DGPS equipment accurate to +/- 30mm horizontal and +/-50mm vertical. Collar locations are recorded in the database. The grid system used is MGA2020. Topographic orthographic digital terrain model (DTM) data was provided by Azure based on 4 m spaced contours in MGA2020 Zone 50 Grid. The DTM file is dated 26 May 2021. Downhole surveys were completed every 20 m using an Axis Champ Navigator gyro or every 10 m using a Reflex Ez-GyroN after completion of drilling. Downhole azimuth and dip data is recorded in the database.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	This release reports on several drill holes which is not considered sufficient to establish the degree of geological and grade continuity appropriate for a Mineral Resource and Ore Reserve estimation. No sample compositing has been applied to reported exploration results.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered	The orientation of the drilling is not considered to have introduced sampling bias.

www.azureminerals.com.au

PO Box 493 West Perth WA 6872 +61 8 6187 7500 admin@azureminerals.com.au

ASX:AZS

	to have introduced a sampling bias, this should be assessed and reported if material.	
Sample security	The measures taken to ensure sample security	Diamond core samples are collected and placed in calico sample bags pre-printed with a unique sample ID at Azures' Roebourne Exploration Facility. Calico bags are placed in a poly weave bag and cabled tied closed at the top. Poly weave bags were placed inside a large bulka bag prior to transport.
		RC samples are collected directly from the drill rig in calico sample bags which are pre-printed with a unique sample number. Calico bags are placed in a poly weave bag and cabled-tied closed at the top. Poly weave bags were placed inside a large bulka bag prior to transport.
		Bulka bags were transported from the core shed to the Bureau Veritas Minerals laboratory in Perth by a freight contractor several times weekly.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been conducted in relation to the current drilling program.

www.azureminerals.com.au

Level 1, 34 Colin Street West Perth WA 6005

0

+61 8 6187 7500 admin@azureminerals.com.au

ASX:AZS

	Section 2: Reporting	of Exploration Results
Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures,	Exploration Licences E47/2481, E47/4700 & E47/4701 are a Joint Venture between Azure Minerals Ltd (60%) and Croydon Gold Pty Ltd (40%), a private subsidiary of the Creasy Group.
	partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the	The project is centred 35km southeast of the major mining/service town of Karratha in northern WA. The tenement area is approximately 15.6km x 7.5km in size with its the northern boundary located 2km south of the town of Roebourne.
	time of reporting along with any known impediments to obtaining a licence to operate in the area.	Approximately 20% of the tenement area is subject to either pre-existing infrastructure, Class "C" Reserves and registered Heritage sites.
		The tenements are kept in good standing with all regulatory and heritage approvals having been met. There are no known impediments to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Limited historical drilling has been completed within the Andover Complex. The following phases of drilling have been undertaken:
		1997-1998: BHP Minerals
		Two RC/DD holes were drilled within the Andover Project area (ARD01 & ARD02). ARD02 intersected 21m of Felsic Intrusive from 24m.
		2012-2018: Croydon Gold
		VTEM Survey, soil, and rock chip sampling, seven RC holes tested four geophysical / geological targets. Significant Ni-Cu-Co sulphide mineralisation was intersected in two locations.
		Several historical artisanal excavations within the tenement area extracted beryl, tantalite and cassiterite found within pegmatite bodies.
Geology	Deposit type, geological setting and style of mineralisation.	The Andover Complex is an Archean-age mafic- ultramafic intrusive complex covering an area of approximately 200km ² that intruded the West Pilbara Craton.
		The Andover Complex comprises a lower ultramafic zone 1.3 km thick and an overlying 0.8 km gabbroic layer intruded by dolerites.
		The magmatic Ni-Cu-Co sulphide mineralisation at the Andover Deposit is hosted in a fractionated, low MgO gabbro with taxitic textures (± websterite xenoliths) proximal to the mineralisation.
		Later spodumene-rich pegmatite bodies have intruded the Andover Mafic-Ultramafic Complex along pre- existing structures. Based on field observations, the pegmatites range up to 1,200m in length with surface exposures up to 100m across. The pegmatites are currently mapped over an approximate 9km strike length within the tenements.

Level 1, 34 Colin Street West Perth WA 6005

0

+61 8 6187 7500 admin@azureminerals.com.au

ABN: 46 106 346 918 ASX: AZS

www.azureminerals.com.au

ASX:AZS

Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to tables in the report and notes attached thereto which provide all relevant details.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No data aggregation techniques have been applied.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The drillholes intersected pegmatites over differing downhole widths. Based on current drilling, the mineralised intersections of most drill holes are interpreted to be near perpendicular to the drill holes and true thicknesses of the pegmatites are estimated to be greater than 90% of the intersected widths. Visible spodumene has been observed within various zones of the pegmatite in all holes. Visual estimation of spodumene content is difficult given the varying grain sizes within the pegmatite intersection.

+61 8 6187 7500 admin@azureminerals.com.au

ASX:AZS

Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The Company believes that the ASX announcement is a balanced report with all material results reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Everything meaningful and material is disclosed in the body of the report. Geological observations have been factored into the report.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or large-scale step out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Diamond and RC drilling continues with holes planned to test the pegmatites depth and along strike. Drill testing of other priority target areas across the tenement area will commence shortly.

www.azureminerals.com.au

Level 1, 34 Colin Street West Perth WA 6005 PO Box 493 West Perth WA 6872 +61 8 6187 7500 admin@azureminerals.com.au