

30 July 2019

ASX Announcement

AMALGAMATION OF EXPIRED PROSPECTING LICENCES AT MT VENN GOLD PROJECT

Woomera Mining Limited (ASX: WML) ('Woomera' or 'Company') wishes to provide an update on the status of the Mt Venn gold tenements which are the subject of the recently signed Heads of Agreement with Cazaly Resources Limited (ASX:CAZ).

As announced on 23 May 2019, Woomera signed a Heads of Agreement providing the framework to purchase an initial 80% interest in Cazaly's Mt Venn gold tenements located in the north eastern goldfields of Western Australia.

Under the terms of the transaction, at completion of the acquisition:

- Woomera will acquire 100% of the shares in Yamarna West Pty Ltd ('Yamarna'), a wholly owned subsidiary of Cazaly, which holds the tenements.
- Yamarna would then transfer to Cazaly a 20% undivided interest in the Tenements, and
- Cazaly would enter into an agreement with Yamarna to establish an unincorporated joint venture under which the JV parties will hold the following interests:

Yamarna 80% Cazaly 20%

Completion is now expected to occur on or before 16 September 2019.

Woomera also wishes to advise that according to the DMIRS register, the amalgamation applications have been granted and the areas the subject of P38/4149-4151 and P38/4195 are now part of E38/3111. CAZ will advise Woomera once it receives written confirmation from DMIRS.

Mt Venn Tenements

The Mt Venn gold and nickel project located 125 kms northeast of the township of Laverton in the north eastern goldfields of Western Australia.

The two tenements E 38/3111 and E 38/3150 cover 50km of strike of the Mt Venn Greenstone Belt providing Woomera with the dominant land position (>90%) in the belt.

Mount Venn greenstone belt is associated with the Yamarna Shear and is close to Gold Road Resources (ASX: GOR) Gruyere gold deposit (>6 Mozs. Gold Resource) located in the neighbouring Dorothy Hills Greenstone Belt.

Figure 1. Location of the Mt Venn Project

At the time of entering into the Binding Heads of Agreement, the Mt Venn project consisted of two granted exploration licences E 38/3111 and E 38/3150. In addition to the granted exploration licences, four Prospecting Licences over the historic Chapman's Reward mine (P38/4149, 4150, 4151 and 4195) (Expired Prospecting Licences) were pending amalgamation into E 38/3111 (Figure 2). Woomera has been advised that that the four expired Prospecting Licences covering the Chapman's Reward gold prospect at Mt Venn have been amalgamated into E 38/3111.

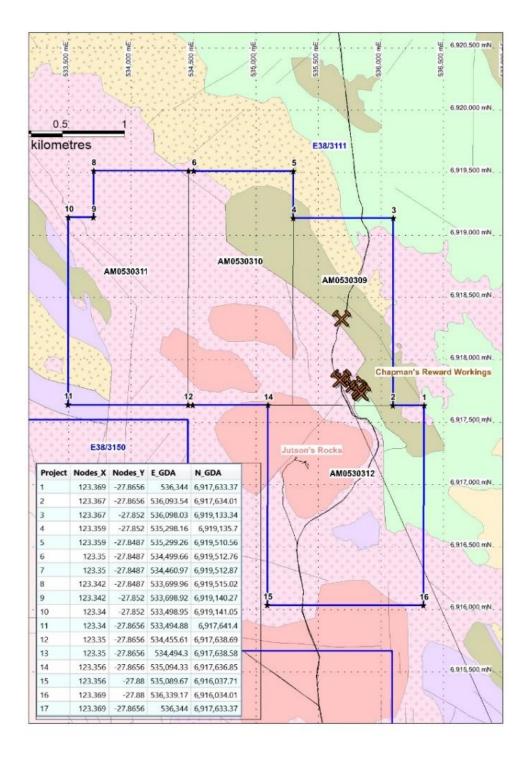


Figure 2. Location of the Chapman's Reward former PL's showing historic workings

Significance of the Amalgamation of the Former PLs

Chapman's Reward is a compelling exploration target consisting of N-S striking, up to 5m thick quartz veins that carry fine visible gold.

The first discovery of gold was officially reported in 1923 by the State Prospecting Party's (SPP) discovery of several existing pits, at Chapman's Reward, following numerous high-grade quartz veins, in schist or gneiss, with widths of up to 5m and specks of fine gold.

The results of SPP sampling are shown below in Table 1 – Source; The WA Department of Mines 1923 Annual Report.

Prospect	MGA94_51_East	MGA94_51_North	Sample	Au Ozs total/t	Au g/t	Comments
Chapman's Reward	535585	6918398	1	0.075	2.33	Jutson's/Chapman's - auriferous flat lying qtz vein in workings
Chapman's Reward	535585	6918398	2	2.765	85.99	Jutson's/Chapman's - 1 to 2m qtz vein in workings
Chapman's Reward	535585	6918398	3	1.410	43.87	Jutson's/Chapman's - 30cm qtz vein in same pit as 2
Chapman's Reward	535585	6918398	4	6.467	201.13	Jutson's/Chapman's - qtz vein mulloch from same pit as 2&3
Chapman's Reward	535585	6918398	6	5.363	166.79	Jutson's/Chapman's - qtz vein mulloch from same pit as 2&3
Chapman's Reward	535585	6918398	7	0.213	6.61	Jutson's/Chapman's - qtz vein in workings
Chapman's Reward	535585	6918398	8	2.454	76.33	Jutson's/Chapman's - qtz vein near workings
Chapman's Reward	535585	6918398	10	0.075	2.33	Jutson's/Chapman's - qtz vein near workings
Chapman's Reward	535585	6918398	11	0.029	0.91	Jutson's/Chapman's - qtz vein near workings
Chapman's Reward	535585	6918398	13	1.425	44.32	Jutson's/Chapman's - qtz vein mulloch near working as sampled by 16
Chapman's Reward	535585	6918398	14	0.356	11.08	Jutson's/Chapman's - 2m wide qtz vein in workings on 350 ⁰
Chapman's Reward	535585	6918398	16	0.044	1.36	Jutson's/Chapman's - <1m wide qtz vein in workings

Table 1. Coordinates and descriptions of State Prospecting Party's 1923 rock chip sampling undertaken at Chapman's Reward results converted to Au g/t

Notes:

- Sample locations are noted in the WA Department of Mines 1923 Annual Report (Geological Survey of Western Australia, 1924). Coordinates are not included however the location descriptions are deemed sufficient to enable the relocation of samples points
- g/t Au results have been converted from pennyweight (dwt)
- The Exploration Results have not been reported in accordance with the JORC Code 2012
- A Competent Person has not done sufficient work to disclose the Exploration Results in accordance with the JORC Code 2012;
- It is possible that following further evaluation and/or exploration work that the confidence in the prior reported Exploration Results may be reduced when reported under the JORC Code 2012;
- That nothing has come to the attention of the acquirer that causes it to question the accuracy or reliability of the former owner's Exploration Results; but
- The acquirer has not independently validated the former owner's Exploration Results and therefore is not to be regarded as reporting, adopting or endorsing those results.

From 1925, a total of 26.65 ounces of gold was recovered from 15.24 tonnes of ore at an average grade of 54.39 g/t gold from Chapman's Reward (GML 215OT).

Cazaly Resources Limited conducted rock chip sampling in September 2018. The results are shown below in Table 2.

SampleID	GDA_East	GDA_Nort	Prospect	Date_Sampled	Comments	Au ppm
CF001	6917845	5356	63 Chapman's Reward	20/09/2018	qtz feox vein in 20º working at Chapman's Reward 15-50cm wide. Gneiss, minor amphib and chlorite schist	0.22
CF002	6917845	5356	63 Chapman's Reward	20/09/2018	qtz feox vein in 20º working at Chapman's Reward 15-50cm wide. Gneiss, minor amphib and chlorite schist	0.52
CF003	6917845	5356	63 Chapman's Reward	20/09/2018	as above with some pegmatite associated	0.54
CF004	6917845	5356	63 Chapman's Reward	20/09/2018	pegmatite vein from muloch at old workings Chapman's Reward	0.08
CF005	6917845	5356	63 Chapman's Reward	20/09/2018	qtz feox vein from mulloch in pegmatatie/gneiss and mica scist	8.18
CF006	6917845	5356	63 Chapman's Reward	20/09/2018	qtz feox vein from mulloch in pegmatatie/gneiss and mica scist	31.80
CF007	6917845	5356	63 Chapman's Reward	20/09/2018	qtz feox vein in 20° working at Chapman's Reward 15-50cm wide. Gneiss, minor amphib and chlorite schist	0.25
CF008	6917845	5356	63 Chapman's Reward	20/09/2018	gtz feox vein in 20° working at Chapman's Reward 15-50cm wide. Gneiss, minor amphib and chlorite schist	0.13

Table 2. Coordinates and descriptions of Cazaly Resources Limited's September 2018 rock chip sampling undertaken at Chapman's Reward results converted to Au g/t

Mt Venn Gold Potential

The overall potential for gold discoveries is considered to be excellent. There are several gold targets that could be drilled once Heritage Clearances are completed. Foremost among the gold targets are Chapman's Reward, Lang's Find, Mount Cumming and the Three Bears Prospect (Figure 3).

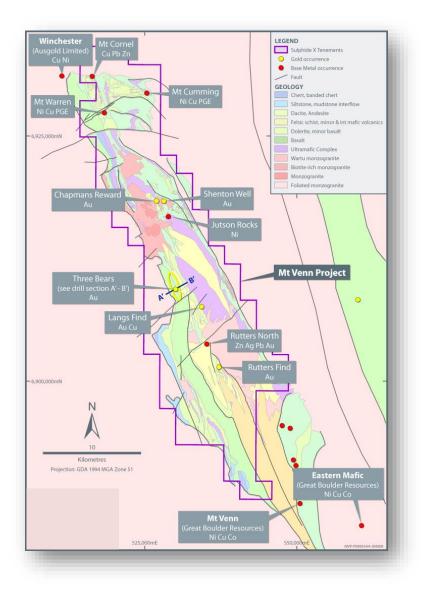


Figure 3. Identified exploration targets within the Mt Venn Greenstone Belt

Contact

Gerard Anderson Managing Director Woomera Mining Limited Peter Taylor Investor Relations 0412 036 231 Peter@nwrcommunications.com.au

About Woomera Mining Limited

Woomera Mining Limited (Woomera) is an ASX listed exploration company based in Adelaide, South Australia with an extensive mineral tenement portfolio prospective for Copper, Lithium, Gold, Uranium, Iron Ore, Nickel and Cobalt. The Woomera tenement package includes tenements in the Musgrave Province of South Australia (Musgrave Alcurra-Tieyon Project). The Company also has tenements in the Gawler Craton which are considered prospective for IOCGU deposits, Cu-Ni-Co deposits, Rare Earth and Precious Metals. Woomera's tenement portfolio also includes 7 granted tenements and 3 tenement applications in Western Australia including 2 tenements and 1 tenement application in the Pilbara region of WA (Pilgangoora Lithium Project), 3 lithium tenements near Ravensthorpe (Mt Cattlin Lithium Project), 1 lithium tenement and 1 tenement application at Binneringie near Lake Cowan and 2 WA lithium brine prospects over Lakes Dundas and Dumbleyung (Lakes Lithium Projects).

ANNEXURE 1. JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Yamarna West Pty Ltd (YAM) a wholly owned subsidiary of Cazaly Resources Limited (CAZ), has completed the following exploration at Mt Venn: 24 reverse circulation (RC) drill holes for 3,147m, 116 air core (AC) drill holes for 4,995m and 138 rotary air blast (RAB) drill holes for 2,546m were completed by YAM to variable depths. All sampling was conducted using Cazaly Resources Ltd (CAZ) protocols including industry best practice, QAQC procedures including duplicates and standards. RC samples were collected in 1 metre intervals from a rig mounted cyclone with attached cone splitter. The dry samples were split into a bulk sample (green bag) and a representative 3kg split (calico). All 1 metre samples were lined up in rows of 20 beside the hole. Damp or wet samples were collected in green bags and spear/scoop sampled. Composite samples were collected from each 1 metre bulk green bag using a sample spear to ensure a representative sample was combined from 2-4 metre intervals, depending on the geologist's instructions. In some intervals, only 1 metre cone split representative samples were collected off a rig mounted cyclone in buckets and placed on the ground beside the hole in 10 sample rows. Composite samples were sent to Bureau Veritas in Perth, sorted, crushed and pulverized to -75µm, split to produce a 40g charge for either Fire assay (RC) or Aqua Regia digest (RAB, AC) analysis for gold. Samples were also analysed for Al, Fe, Mn, V, Ag, As, Ba, Bi, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sc, Te, TI, W and Zn by ICP and OES or MS finish. 21 Grab rock chip samples from surface outcrops were completed by YAM
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of 	 RC drilling by YAM utilized a face sampling percussion hammer with 5¹/₂ inch bits AC drilling by YAM utilized a face

Criteria	JORC Code explanation	Commentary
	diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 sampling blade or hammer bit with a nominal hole diameter of 80mm RAB drilling by YAM utilized a blade bit and open hole sample collection method with a nominal hole diameter of 80mm
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 YAM RC, AC and RAB drill recoveries were visually estimated. All RC samples were dry and no significant ground water was encountered. Sample recovery was estimated to be good. Some sample loss was encountered at the top of hole YAM AC and RAB sample recovery was mostly estimated to be good. Some wet samples were encountered in RAB drilling at the bottom of hole. These are <1% of samples collected and were recorded in geological logs. Drill cyclones were cleaned regularly
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All YAM drill chips were geologically logged on site by geologists following the CAZ logging scheme. Logging recorded depth, colour, lithology, texture, mineralogy, mineralization, alteration and other features. All YAM drill holes were logged in full
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 YAM 1 metre RC drill samples fall through a rotary cone-splitter directly below the rig mounted cyclone. A 2-3 kg sample is collected in an pre-numbered calico bag, and lined up in rows with the corresponding plastic bag. The majority of samples were dry, wet or dry samples were appropriately recorded. YAM AC and RAB 1metre drill samples were laid out on the ground in 10 metre rows. A 2-4 metre composite sample (2- 3 kg) was collected using a metal scoop, into pre-numbered calico bags. The majority of samples were dry, wet or dry samples were appropriately recorded. Duplicate field sample composites were collected in YAM RC drilling at the rate of 2 samples per hole Appropriate sampling protocols were used during YAM RC, AC and RAB composite sampling. These included scoop or spear collection at various angles through bulk 1 metre sample bags or piles to maximize representivity.
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, 	 All YAM RC samples were analysed using a 40g charge Fire Assay with an AAS finish which is industry standard for

Criteria	JORC Code explanation	Commentary
laboratory tests	 handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 gold analysis. A 40g aqua regia digest with an MS finish has been used for AC and RAB samples which is industry standard for low level gold analysis. This is considered a partial digest Technique however in weathered samples it is considered to approximate a total digest assay. Samples were also analysed for AI, Fe, Mn, V, Ag, As, Ba, Bi, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sc, Te, TI, W and Zn by ICP and OES or MS finish. Field duplicate samples were submitted with each sample batch at a rate of 1 per 25 samples. The laboratory inserted standards, blanks and duplicate samples. Results are within tolerable limits
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All YAM data has been checked internally by senior CAZ staff CAZ is yet to collect 1m splits within significant composite sample intercepts for assay. Duplicate composite samples show repeatable values with acceptable tolerances within significant intercepts where available Field data is collected using Field Marshal software on Toughbook computer. The data is validated using Micromine software in the office. No adjustment to assay data has been made
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All YAM location points were collected using handheld GPS in MGA 94 – Zone 51
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 YAM RC drill holes were drilled at varying spacing from 40m to 100m depending on the target and geology. AC and RAB drilling were drilled at 100m x 150m and 100m x 50m depending upon the targeting and the geology. This AC/RAB spacing was utilized for first pass testing of targets. Further RC drilling is considered necessary before being of sufficient density for Mineral Resource estimation Four metre composite samples have been collected for YAM RC drilling via spearing. Four metre composite samples have been collected for RAB/AC drilling using a metal scoop
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling 	YAM RC drilling at -60 degrees towards the west (270) has appeared to confirm the interpreted east dipping stratigraphy minimizing lithological bias. RC drilling is considered sufficient to confirm primary

Criteria	JORC Code explanation	Commentary
geological structure	orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 mineralized structure orientation dipping to the east. AC/RAB drilling is not sufficient to confidently predict orientation of structural mineralisation No sampling bias is identified in the YAM RC drill data
Sample security	The measures taken to ensure sample security.	YAM RC samples were delivered by CAZ staff directly to the laboratory depots in Leonora and Kalgoorlie. The laboratory managed secure transport of samples from regional depots to the Perth laboratory
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	• YAM Data is audited and reviewed in house using Datashed and Micromine as well as visual audits by senior staff.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All drilling in this report is located within granted E38/3111, which is held 100% by CAZ through wholly owned subsidiary company Yamarna West Pty Ltd (YAM). YAM signed an Access Agreement for exploration with The Yilka Native Title Claimant group and the Cosmo Newberry Community. These groups have Native Title over the area through a registered claim and Cosmo Newberry Aboriginal Reserve. The tenement is in good standing with no known impediments
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Historic holders of the Project area include Global Metals Exploration NL, Elmina NL, Asarco Exploration Company and Kilkenny Gold NL The State Prospecting Party took 12 rock chip samples of quartz veins at Chapman's Reward and 3 rock chip samples of quartz veins at Lang's Find that were reported in the WA Department of Mines 1923 Annual Report. 86 RAB holes for 2,181m, 54 AC drill holes for 1,594m and 41 RC drill holes for 6,768m was undertaken by Global Metals Exploration in 2011-12 which highlighted gold mineralization in shallow weathered basement at the "Central" prospect known today as "Three Bears" (WAMEX Report A093805). Elmina (WAMEX Reports A049192; A052151 and A053979), Asarco and Global Metals geochemical sampling included 4,644 auger samples, 453 rock chip samples and 7,135 soil samples which has identified a number of other gold and base metal anomalies
Geology	 Deposit type, geological setting and style of mineralisation. 	 Orogenic Archean gold mineralization associated with major shears is targeted

Criteria	JORC Code explanation	Commentary
		at the Mt Venn Project. Base metal mineralization is also targeted. The geology of the mineralization is not yet known due to the lack of information collected to date.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Refer to tables and body of text within Cazaly Resources announcements for drill hole locations and results. Low level geochemical information has been used from YAM and historic drilling to help identify trends or the "footprint" of gold and base metal mineralization. This is summarized in figures and maps and considered appropriate. A nominal 0.2g/t gold and 0.02% Zn, 0.02% Cu and 1g/t Ag lower cut-off has been used and reported as significant in the context of the first pass drilling at a grassroots stage of exploration.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No top cuts were applied when reporting results First assay from the interval is reported (Au1) Aggregate sample assays were calculated using a length weighted average Significant RC assay results were reported based on >0.10g/t Au, 0.02% Cu, 0.02% Zn and 1g/t Ag. Significant AC/RAB assay results were reported based on >0.10g/t Au, 0.02% Cu, 0.02% Zn and 1g/t Ag A representative "gram metre" value was calculated and presented in parts of the report using industry standard calculations based on "g/t gold x metre interval" aggregate over an anomalous intercept length. This intercept is based on plus 0.10g/t Au, 0.02% Cu, 0.02% Zn and 1g/t Ag values and contains no more than one interval of waste. This representation of grade is considered appropriate for the style of mineralisation.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Mineralisation intersected in YAM RC drilling appeared oblique to the orientation of the drill holes. Reported mineralisation down hole is considered to be closely representative of true widths. However, more information is required to confirm true width of mineralization. Orientation of mineralisation intersected in YAM RAB/AC drilling is not known and therefore true widths of mineralization is not known

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer to Maps, Figures and Diagrams in previous Cazaly ASX announcements
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All YAM drill hole locations were reported and a table of significant intercepts was provided in previous ASX announcements by parent company Cazaly Resources Ltd (ASX: CAZ)
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All meaningful and material information was reported in previous ASX announcements by parent company Cazaly Resources Ltd (ASX: CAZ)
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further Heritage Survey, drilling, geological mapping and prospecting is being planned and is expected to commence within Q4 2019.