

ASX:CXO Announcement

6 May 2019

Initial Resource Estimate for Lees Deposit Drives Finniss Mineral Resource to 9.6Mt

Highlights

- Rapidly growing Finniss Lithium Project global Mineral Resource Estimate expanded to 9.63Mt at 1.3% Li₂O through addition of a Resource Estimate for the Lees deposit.
- Further resource growth is expected from an Exploration Target now defined in the adjacent Lees-Booths Link
- Assay results returned recently from Lees Prospect include some wide highgrade intersections (hole NRC116):
 - 18m @ 1.59% Li₂O from 210m, including 7m @ 1.91% Li₂O from 211m, and
 - o 3m @ 1.93% Li₂0 from 174m
- Assay results returned recently from Booths include multiple high-grade intersections (hole NRC117):
 - 4m @ 1.20% Li₂0 from 121m,
 - 3m @ 1.53% Li₂O from 156m, and
 - o 3m @ 1.24% Li₂0 from 174m
- Expanding global Mineral Resource base at the Finniss Project aimed at increasing mine life and further enhancing project economics, following the recent release of Definitive Feasibility Study (DFS)
- Considerable scope remains to further increase the Mineral Resource from additional lithium-rich pegmatites within Core's large >500km² of tenure at Finniss

Emerging Northern Territory lithium developer, Core Lithium Ltd (ASX: CXO) (Core or the Company), is pleased to announce the global Mineral Resource Estimate (MRE) for the Company's Finniss Lithium Project in the Northern Territory (Finniss Project) has been increased to now total 9.63Mt @ 1.3% Li₂O with the addition of an initial MRE in respect of the Lees Deposit (Table 1).

The initial Lees MRE is 0.78Mt at 1.3% $\rm Li_2O$ and is classified as Inferred under the JORC code 2012. The maiden MRE announced today is expected to be significantly upgraded in scale and in confidence category over the course of 2019, resulting in additional resources with further drilling.

In addition to the new MRE at Lees, a further Exploration Target of 2 to 3 million tonnes grading between 1.0% and 1.3% Li₂O has been identified by Core at the adjacent Lees-Booths Link. The potential quantity and grade of this Exploration Target is conceptual in nature; there has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of additional Mineral Resources.

Lees is located 3km from the proposed mine and processing facility at the Grants Deposit (Figures 5 and 6) and only 2km from the BP33 Deposit, both of which are central to the recently published Definitive Feasibility Study (**DFS**) (ASX 17/4/2019).

The Lees MRE combines existing RC drilling data with recently received assays for two targeted drill holes, as illustrated in Figures 2 and 4:

- NRC 116: 18m @ 1.59% Li₂O from 210m, including 7m @ 1.91% Li₂O from 211m & 3m @ 1.93% Li₂O from 174m
- NRC 115: 5m @ 1.04% Li₂O from 159m

There are at least five separate spodumene pegmatites at Lees, with only two of those having adequate drilling to date to enable estimation for the initial MRE at Lees (Figures 1 & 2). There are a number of additional infill pegmatite targets at Lees requiring further drilling to test to bring those into the MRE.

The north west extent of spodumene pegmatites at Lees remain open and untested due to limited drill rig access early in the 2019 wet season (Figure 3 and 4). To the south east, the spodumene pegmatites at Lees join with the new Exploration Target defined at Lees-Booths Link.

Based on the potential outlined by the 2-3Mt Exploration Target grading between 1.0% and 1.3% Li2O at Lees-Booths, along with the 3-5Mt Exploration Target grading between 1.0% and 1.4% Li₂O at Hang Gong (ASX 31/1/2019), Core will be conducting follow-up drilling in the coming months with the aim of expanding on these two prospects. Note that the potential quantity and grade of the Hang Gong Exploration Target is conceptual in nature; there has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of additional Mineral Resources.

The Lees-Booths Exploration Target is based on a number of very broadly space RC drill holes stretching between the Lees Mineral Resource Estimate and the historic open pits mines at Booths – "Lees-Booths Link" (Figures 2 and 4). The Exploration Target assumes extensions of the existing Lees and Booths mineralised pegmatites along the Link with average thicknesses of between 5-8m and density of 2.72 g/cm³. Giving a range of 2-3 Mt. The average grade range of 1.0-1.3 % Li_2O was derived from the typical range of grades seen for drilling at this and other similar deposits nearby and is consistent with recently received assays results (Table 2):

- NRC117: 4m @ 1.20% Li₂O from 121m, 3m @ 1.53% Li₂O from 156m & 3m @ 1.24% Li₂O from 174m
- NRC114: 4m @ 0.96% Li₂O from 143m & 6m @ 1.23% Li₂O from 170m (inc 4m @ 1.60% Li₂O from 172m)

Mining was first reported over 100 years ago at Lees and Booths, where rich pegmatite shoots were mined for tin and tantalum. In the 1980's, Greenex (Greenbushes) completed drilling before mining both prospects during the 1990's (Figure 3). The pits are now interpreted to be the surface expression of a larger pegmatite swarm at depth, which "day-lights" only sporadically along the NW-trending structure (Figure 3).

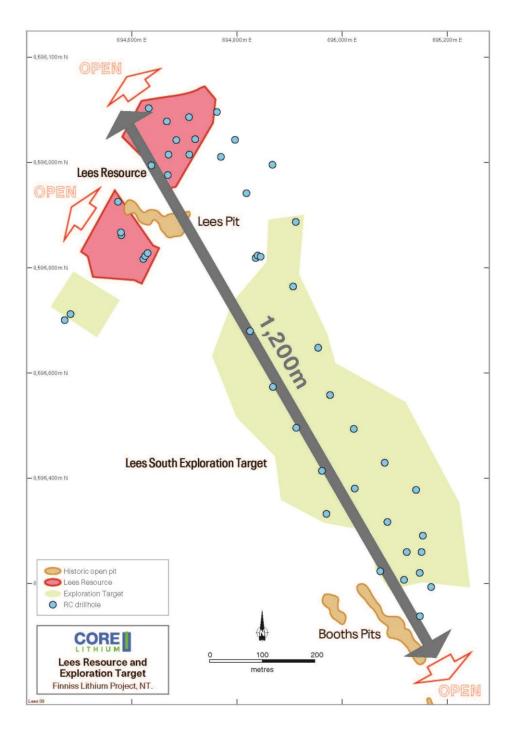


Figure 1. Lees Mineral Resource and Lees-Booths Exploration Target plan showing the relative footprint.

Core's recent evaluation of Lees, Booths and Hang Gong highlights that within the Finniss Project there are multiple stacked pegmatites that are relatively flat lying to shallow dipping and vary from less than 1m up to 15m in true thickness. At least three continuous stacked pegmatite bodies have identified at Lees and Booths in the logging and interpreted between regularly spaced sections oriented approximately perpendicular to the strike of the body (Figures 2, 4). There are also a number of narrower pegmatite sheets that potentially widen in the sub-surface. In the immediate footwall of Lees Northern Resource Area, below the pit, is one of the principal targets for resource upside (Figure 5). A second zone is also identified further south, under the Lees South workings. Significant untested potential exists to the east and southeast of Booths (Figure 1 and 4). These zones have not yet been drill-tested and will be a focus of exploration early in the coming Top End dry season.

Commenting on the results, Core Lithium's Managing Director, Stephen Biggins, commented:

"The global Finniss Project Mineral Resource has increased over 500% from the start of 2018 to now at almost 10Mt. Along with an additional Exploration Target of 5-8Mt, Core is confident in being able to rapidly build the resources in the upcoming 2019 field season, with the aim to potentially deliver more reserves for mining.

"The solid economics highlighted in detail in the recently released DFS focussed on development of the first two well-defined orebodies at Grants and BP33 - are highly sensitive on the upside to increasing the life of the project. Core very much has a plan in mind to deliver upside to shareholders through continuing resource growth as we finalise regulatory, offtake and financing in 2019.

"The huge premium offered by Wesfarmers in their recent \$766M takeover bid proposal for Kidman Resources Ltd (ASX:KDR), highlights that some of Australia's most sophisticated investors understand the deep value currently offered in the Australian lithium industry and the significance and international interest in development ready lithium projects to the global battery and EV industry.

"We continue to be excited by the new results that the Finniss Project turns up for us, and we are confident that Lees, together with the other prospects and deposits at Finniss, will add up to a substantial long-life lithium project."

Core has recently published a DFS for the development of a spodumene concentrate operation at the Finniss Project (refer to ASX announcement 17 April 2019) and is aiming to commence mining and construction in the second half of 2019 and spodumene concentrate production in 2020, subject to financing and regulatory approvals.

The Finniss Project has arguably the best supporting infrastructure and logistics chain to Asia of any Australian lithium project. The Finniss Project is within 25km of port, power station, gas, rail and 1 hour by sealed road to workforce accommodated in Darwin and importantly to Darwin Port - Australia's nearest port to Asia.

Core has established offtake and prepayment agreements and is also in the process of negotiating further agreements with some of Asia's largest lithium consumers and producers that support and finance the Finniss Project's modest capex requirements and the Company into production in 2019.



Figure 2. Recent RC drill intersections at Lees Prospect in section (refer Figure 3).

Figure 3. Historic open pit mine at Lees, Finniss Project.

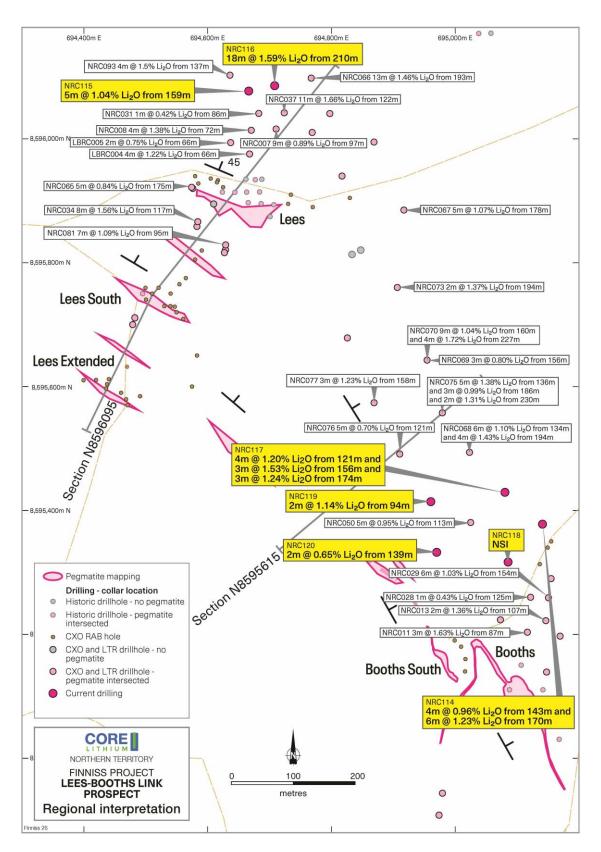


Figure 4. Recent RC drill intersections and section location (Fig 2) at Lees and Booths Prospects in plan.

Lees and Finniss Project Mineral Resource

The result of the Mineral Resource Estimate is provided in Table 1 and Figures 2-4.

Deposit		Tonnes (Mt)	Li ₂ O %	Li ₂ O (t)	LiCO ₃ (t)
	Measured	1.09	1.48	16,100	39,815
Grants	Indicated	0.82	1.54	12,600	31,160
	Inferred	0.98	1.43	14,000	34,622
	Total	2.89	1.48	42,700	105,597
	Indicated	0.63	1.39	9,000	22,257
BP33	Inferred	1.52	1.56	24,000	59,352
	Total	2.15	1.51	33,000	81,609
Sandras	Inferred	1.30	1.0	13,000	32,149
Sandras	Total	1.30	1.0	13,000	32,149
	Indicated	0.46	1.3	6,000	14,838
Carlton	Inferred	0.63	1.3	8,000	19,784
	Total	1.09	1.3	14,000	34,622
Hang Gong	Inferred	1.42	1.2	17,000	42,041
Hang Gong	Total	1.42	1.2	17,000	42,041
Lees	Inferred	0.78	1.3	9,700	23,988
2003	Total	0.78	1.3	9,700	23,988
Finniss Project	Total	9.63	1.3	129,400	320,006

 Table 1. Mineral Resource Estimate for Finniss Project.

Grants (22/10/18), BP33 (06/11/18), Sandras (29/11/18), Hang Gong (31/1/19) and Carlton Mineral Resources (12/3/19) are unchanged. Grants, BP33, Carlton, Lees and Hang Gong use a 0.75% Li_2O cut-off, whereas Sandras uses at 0.6% Li_2O cut-off.

Summary of Mineral Resource Estimate and Reporting Criteria

Geology and geological interpretation

The Lees and Lees South Deposits are hosted within rare element pegmatites that are members of the Bynoe pegmatite field. The Bynoe Pegmatite Field is situated 15km south of Darwin and extends for up to 70km in length and 15 km in width. Over 100 pegmatites are known within clustered groups or as single bodies. Individual pegmatites vary in size from a few metres wide and tens of metres long up to larger bodies tens of metres wide and hundreds of metres long.

The pegmatites are predominantly hosted within the early Proterozoic metasedimentary lithologies of the Burrell Creek Formation and are usually conformable to the regional schistosity. The Bynoe pegmatites are classified as LCT (Lithium-Caesium-Tantalum) type and are believed to have been derived from the \sim 1845 Ma S-Type Two Sisters Granite which outcrops to the west.

Fresh pegmatite at Lees and Lees South is composed of coarse quartz, albite, microcline, spodumene and muscovite (in decreasing order of abundance). Spodumene, a lithium bearing pyroxene (LiAl(SiO₃)₂), is the predominant lithium bearing phase and displays a diagnostic red-pink UV fluorescence. The Lees and Lees South deposits represent stacked pegmatites that at are relatively shallow dipping and vary from 4m up to 15m in true thickness. Two dominant and continuous stacked pegmatite bodies (approximately 140m apart) were identified in the logging and interpreted as strings on regularly spaced sections oriented approximately perpendicular to the strike of the bodies. The pegmatites appear to be zoned, with a thin quartz-mica-albite wall facies. Within the pegmatites, the mineralisation is not as continuous as that seen at Grants and BP33. The grade distribution is a lot more variable leading to lower average grades.

Drilling techniques and hole spacing

The Lees drill hole database used for the MRE contains a total of 18 RC holes for 2,549m of drilling. Three of the drill holes were completed by Liontown Resources and the remainder by Core Lithium.

Most holes have been drilled at angles of between 60 - 90° and approximately perpendicular to the strike of the pegmatite and on sections approximately 30m apart.

Geological data for all drill holes was used in the geological interpretation and MRE.

Sampling and sub-sampling

Samples were collected from RC drilling and when submitted for assay typically weighed 2-5kg over an average 1m interval. RC sampling of pegmatite for assays is done on a 1 metre basis. 1m-sampling continued into the barren wall-zone of the pegmatite and then a 3m composite was collected from the immediately surrounding barren phyllite host rock. RC samples were homogenised and subsampled by cone splitting at the drill rig.

Sample analysis method

Sample Preparation - The samples have been sorted and dried. RC samples are universally fine-grained and do not require primary crushing. The samples have been split with a riffle splitter to obtain a sub-fraction which has then been pulverised to 95% passing 100μ m.

A 0.3 g sub-sample of the pulp is digested in a standard 4 acid mixture and analysed via ICP-MS and ICP-OES methods for the following elements: Li, Cs, Rb, Sr, Nb, Sn, Ta, U, As, K, P and Fe. In mid-2018, Sulphur was added to the element suite.

In the 2017 drilling, all samples were also analysed via the fusion method - a 0.3 g sub-sample is fused with a Sodium Peroxide Fusion flux and then digested in 10% hydrochloric acid. ICP-OES is used for the following elements: Li, P and Fe. Exhaustive checks of this data suggested an excellent correlation exists, so in 2018 a 3000 ppm Li trigger was set to process that sample via a fusion method.

Standards, blanks and duplicates have all been applied in the QAQC methodology. Sufficient accuracy and precision have been established for the type of mineralisation encountered and is appropriate for QAQC in the Resource Estimation.

Cut-off grades

The current Mineral Resource Inventory for the Lees and Lees South Deposits have been reported at a cut-off grade of 0.75% Li₂O. No top cuts were applied.

Estimation methodology

Geology and mineralisation wireframes were generated in Micromine software using drill hole data supplied by Core. Resource data was flagged with unique lithology and mineralisation domain codes as defined by the wireframes and composited to 1m lengths.

Grade continuity analysis was undertaken in Micromine software for Li_2O for the Lees Pegmatite mineralised domain. Due to a low number of data points, the analysis did not result in meaningful semi-variograms. A search ellipse was created based on the strike and dip of the mineralised pegmatite bodies.

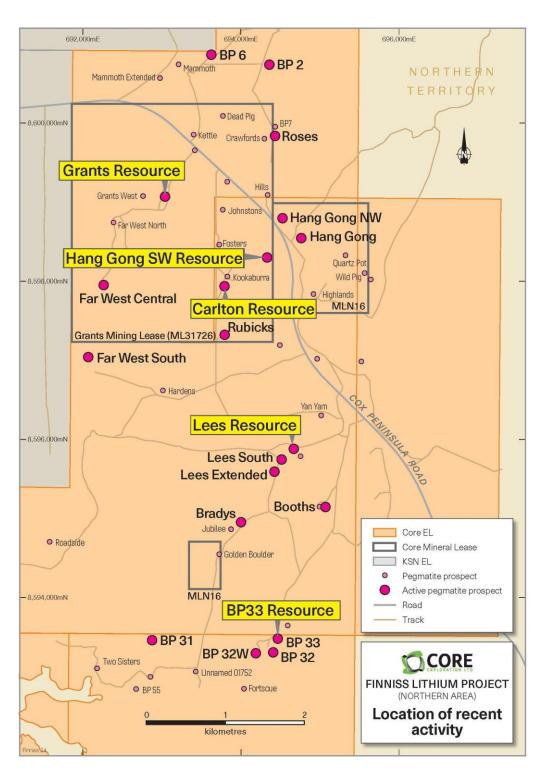
The block model interpolation was undertaken using inverse distance squared (ID2). A block model with a parent block size of $16 \times 12 \times 6m$ with sub-blocks of $4 \times 3 \times 1.5m$ has been used to adequately represent the mineralised volume, with sub-blocks estimated at the parent block scale.

There is no density data for Lees pegmatites, but it is reasonable to apply the same density as that determined for the nearby Grants and BP33 deposits. The values used are consistent with expected values for the lithologies present and the degree of weathering. Within the block model, density has been assigned based on lithology and oxidation state.

Classification criteria

Resource classification has been applied to the Mineral Resource Estimate based on the drilling data spacing, grade and geological continuity, and data integrity. All of the Mineral Resource satisfies the requirements to be classified as an **Inferred Mineral Resources**. The classification reflects the view of the Competent Person.

Mining and Metallurgy


It has been assumed that the traditional open cut mining method of drill, blast, load and haul will be used and that the material would be processed at the proposed Grants processing facility nearby. No other mining assumptions have been made.

No metallurgical recoveries have been applied to the Mineral Resource Estimate.

Eventual Economic Extraction

It is the view of the Competent Person that at the time of estimation there are no known issues that could materially impact on the eventual extraction of the Mineral Resource.

Figure 5. Location of Lees Resource and other lithium resources and active prospects within vicinity of Grants, Finniss Project NT.

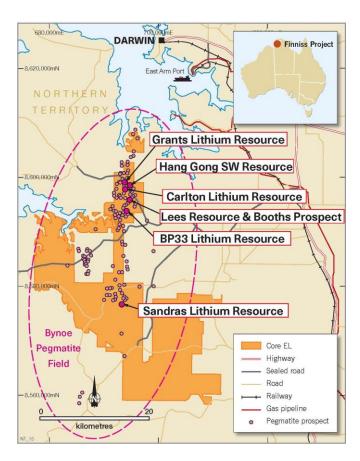


Figure 6. Location of Lees Resource and Booths Prospect at Finniss Project

Hole No.	Prospect	GDA94 Grid Easting	GDA94 Grid Northing		From (m)	To (m)	Interval (m)	Grade (Li2O %)
NRC114	Booths	695141.17	8595377.5		143.0	147.0	4.0	0.96
				and	170.0	176.0	6.0	1.23
				including	172.0	176.0	4.0	1.60
NRC115	Lees	694666.55	8596077.5		159.0	164.0	5.0	1.04
NRC116	Lees	694708.79	8596085.6		210.0	228.0	18.0	1.59
				including	211.0	218.0	7.0	1.91
				including	221.0	224.0	3.0	1.93
NRC117	Booths	695080.46	8595429.3		121.0	125.0	4.0	1.20
				and	156.0	159.0	3.0	1.53
				and	174.0	177.0	3.0	1.24
NRC118	Booths	695085.65	8595316.4		No Significa	nt Intercep	ts	
NRC119	Booths	694961.13	8595413.9		94.0	96.0	2.0	1.14
NRC120	Booths	694969.99	8595332.4		139.0	141.0	2.0	0.65

Table 2. Recent assay results from Lees and Booths Prospects. All samples are RC Cyclone split. Mean grades have been calculated on a 0.4% Li2O lower cut-off grade with no upper cut-off grade applied, and maximum length of consecutive internal waste of 3.0 metres.

For further information please contact: For Media and Broker queries:

Stephen Biggins
Managing Director
Core Lithium Ltd
+61 8 8317 1700
info@corelithium.com.au

Andrew Rowell
Director - Investor Relations
Cannings Purple
+61 400 466 226
arowell@canningspurple.com.au

Competent Persons Statements

The information in this report that relates to Exploration Results and Exploration Target is based on, and fairly represents, information and supporting documents compiled by Dr David Rawlings (BSc(Hons)Geol, PhD) an employee of Core Lithium Ltd who is a member of the Australasian Institute of Mining and Metallurgy and is bound by and follows the Institute's codes and recommended practices. He has sufficient experience which is relevant to the styles of mineralisation and types of deposits under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Rawlings consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. This report includes results that have previously been released under JORC 2012 by Core.

The information in this release that relates to the Estimation and Reporting of Mineral Resources is based on, and fairly represents, information and supporting documents compiled by Dr Graeme McDonald (BSc(Hons)Geol, PhD). Dr McDonald acts as an independent consultant to Core Lithium Ltd on the Lees Deposit Mineral Resource estimation. Dr McDonald is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience with the style of mineralisation, deposit type under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (The JORC Code). Dr McDonald consents to the inclusion in this report of the contained technical information relating to the Mineral Resource Estimation in the form and context in which it appears.

Core confirms that it is not aware of any new information or data that materially affects the information included in this announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimates in the announcements "Over 50% Increase in BP33 Lithium Resource to Boost DFS" dated 6 November 2018, "Grants Lithium Resource Increased by 42% ahead of DFS" dated 22 October 2018, "Maiden Sandras Mineral Resource Grows Finniss to 6.3Mt" dated 29 November 2018, "Finniss Mineral Resource grows to 8.6Mt with Hang Gong" dated 31 January 2019 and "Upgrade of Mineral Resource at Carlton Grows Finniss Project" dated 12 March 2019 continue to apply and have not materially changed. The Mineral Resources underpinning the production target have been prepared by a Competent Person in accordance with the requirements of the JORC code. Core confirms that all material assumptions underpinning production target and forecast financial information derived from the DFS announced on 17 April 2019 continue to apply and have not materially changed.

The report includes results that have previously recently been released under JORC 2012 by Core as listed in the table below. The Company is not aware of any new information that materially affects the information included in this announcement.

The Hang Gong Exploration Target (previously announced on 31/1/2019) is based on a number of very broadly space RC drill holes immediately surrounding the Hang Gong SW Mineral Resource Estimate (Figure 3). The Exploration Target assumes extensions of the existing Hang Gong SW mineralised pegmatites to the south and north with average thicknesses of between 5-8m and density of 2.72 g/cm^3 . Giving a range of 3-5 Mt. The average grade range of $1.0-1.4 \% \text{ Li}_2\text{O}$ was derived from the typical range of grades seen for drilling at this and other similar deposits nearby.

17-Apr-19 Finniss Definitive Feasibility Study and Maiden Ore Reserve 27-Mar-19 Wide, High-grade intersections at BP33 ahead of DFS 12-Mar-19 Upgrade of Mineral Resource at Carlton grows Finniss Resource 28-Feb-19 Drill results to underpin additional Resources at Finniss 31-Jan-19 Finniss Mineral Resource grows to 8.6Mt with Hang Gong 21-Jan-19 Mineral Lease Granted for Finniss Lithium Project 20-Dec-18 Positive Assay Results from Lees-Booths Link and Hang Gong 18-Dec-18 Maiden Mineral Resource at Carlton Grows Finniss to 7.1Mt 29-Nov-18 Maiden Sandras Mineral Resource Grows Finniss to 6.3Mt 27-Nov-18 Carlton and Hang Gong to Boost Finniss Resource Base 6-Nov-18 Over 50% increase in BP33 Lithium Resource to boost DFS 1-Nov-18 Exploration Further Boosts Finniss Lithium Project Potential 22-Oct-18 Grants Lithium Resource Increased by 42% ahead of DFS 22-Aug-18 More Wide High-grade Lithium Intersections at BP33 16-Aug-18 New Exploration Intersections Add to Finniss Potential 2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33 8-May-17 Core Defines First Lithium Resource in the NT	Date	ASX Announcement
12-Mar-19 Upgrade of Mineral Resource at Carlton grows Finniss Resource 28-Feb-19 Drill results to underpin additional Resources at Finniss 31-Jan-19 Finniss Mineral Resource grows to 8.6Mt with Hang Gong 21-Jan-19 Mineral Lease Granted for Finniss Lithium Project 20-Dec-18 Positive Assay Results from Lees-Booths Link and Hang Gong 18-Dec-18 Maiden Mineral Resource at Carlton Grows Finniss to 7.1Mt 29-Nov-18 Maiden Sandras Mineral Resource Grows Finniss to 6.3Mt 27-Nov-18 Carlton and Hang Gong to Boost Finniss Resource Base 6-Nov-18 Over 50% increase in BP33 Lithium Resource to boost DFS 1-Nov-18 Exploration Further Boosts Finniss Lithium Project Potential 22-Oct-18 Grants Lithium Resource Increased by 42% ahead of DFS 22-Aug-18 More Wide High-grade Lithium Intersections at BP33 16-Aug-18 New Exploration Intersections Add to Finniss Potential 2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 33-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Resource Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	17-Apr-19	Finniss Definitive Feasibility Study and Maiden Ore Reserve
28-Feb-19 Drill results to underpin additional Resources at Finniss 31-Jan-19 Finniss Mineral Resource grows to 8.6Mt with Hang Gong 21-Jan-19 Mineral Lease Granted for Finniss Lithium Project 20-Dec-18 Positive Assay Results from Lees-Booths Link and Hang Gong 18-Dec-18 Maiden Mineral Resource at Carlton Grows Finniss to 7.1Mt 29-Nov-18 Maiden Sandras Mineral Resource Grows Finniss to 6.3Mt 27-Nov-18 Carlton and Hang Gong to Boost Finniss Resource Base 6-Nov-18 Over 50% increase in BP33 Lithium Resource to boost DFS 1-Nov-18 Exploration Further Boosts Finniss Lithium Project Potential 22-Oct-18 Grants Lithium Resource Increased by 42% ahead of DFS 22-Aug-18 More Wide High-grade Lithium Intersections at BP33 16-Aug-18 New Exploration Intersections Add to Finniss Potential 2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	27-Mar-19	Wide, High-grade intersections at BP33 ahead of DFS
31-Jan-19Finniss Mineral Resource grows to 8.6Mt with Hang Gong21-Jan-19Mineral Lease Granted for Finniss Lithium Project20-Dec-18Positive Assay Results from Lees-Booths Link and Hang Gong18-Dec-18Maiden Mineral Resource at Carlton Grows Finniss to 7.1Mt29-Nov-18Maiden Sandras Mineral Resource Grows Finniss to 6.3Mt27-Nov-18Carlton and Hang Gong to Boost Finniss Resource Base6-Nov-18Over 50% increase in BP33 Lithium Resource to boost DFS1-Nov-18Exploration Further Boosts Finniss Lithium Project Potential22-Oct-18Grants Lithium Resource Increased by 42% ahead of DFS22-Aug-18More Wide High-grade Lithium Intersections at BP3316-Aug-18New Exploration Intersections Add to Finniss Potential2-Aug-18Improved Recovery of High-Grade Lithium Concentrate24-Jul-18New high-grade Assay Results expected to expand Grants6-Jul-18Extensions to Grants Lithium Deposit25-Jun-18Finniss Pre-Feasibility Study23-May-18Maiden Resource Estimate at BP338-May-18Grants Lithium Resource Upgrade6-Apr-18High-Grade Lithium Assays to Upgrade Resource Confidence8-Mar-18Multiple High-grade Lithium Intersections at Grants1-Feb-18Drilling Commenced to Upgrade Grants Lithium Resource23-Jan-18Core Re-Commences Lithium Resource Drilling at BP33	12-Mar-19	Upgrade of Mineral Resource at Carlton grows Finniss Resource
21-Jan-19 Mineral Lease Granted for Finniss Lithium Project 20-Dec-18 Positive Assay Results from Lees-Booths Link and Hang Gong 18-Dec-18 Maiden Mineral Resource at Carlton Grows Finniss to 7.1Mt 29-Nov-18 Maiden Sandras Mineral Resource Grows Finniss to 6.3Mt 27-Nov-18 Carlton and Hang Gong to Boost Finniss Resource Base 6-Nov-18 Over 50% increase in BP33 Lithium Resource to boost DFS 1-Nov-18 Exploration Further Boosts Finniss Lithium Project Potential 22-Oct-18 Grants Lithium Resource Increased by 42% ahead of DFS 22-Aug-18 More Wide High-grade Lithium Intersections at BP33 16-Aug-18 New Exploration Intersections Add to Finniss Potential 2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	28-Feb-19	Drill results to underpin additional Resources at Finniss
20-Dec-18 Positive Assay Results from Lees-Booths Link and Hang Gong 18-Dec-18 Maiden Mineral Resource at Carlton Grows Finniss to 7.1Mt 29-Nov-18 Maiden Sandras Mineral Resource Grows Finniss to 6.3Mt 27-Nov-18 Carlton and Hang Gong to Boost Finniss Resource Base 6-Nov-18 Over 50% increase in BP33 Lithium Resource to boost DFS 1-Nov-18 Exploration Further Boosts Finniss Lithium Project Potential 22-Oct-18 Grants Lithium Resource Increased by 42% ahead of DFS 22-Aug-18 More Wide High-grade Lithium Intersections at BP33 16-Aug-18 New Exploration Intersections Add to Finniss Potential 2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	31-Jan-19	Finniss Mineral Resource grows to 8.6Mt with Hang Gong
Maiden Mineral Resource at Carlton Grows Finniss to 7.1Mt 29-Nov-18 Maiden Sandras Mineral Resource Grows Finniss to 6.3Mt 27-Nov-18 Carlton and Hang Gong to Boost Finniss Resource Base 6-Nov-18 Over 50% increase in BP33 Lithium Resource to boost DFS 1-Nov-18 Exploration Further Boosts Finniss Lithium Project Potential 22-Oct-18 Grants Lithium Resource Increased by 42% ahead of DFS 22-Aug-18 More Wide High-grade Lithium Intersections at BP33 16-Aug-18 New Exploration Intersections Add to Finniss Potential 2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	21-Jan-19	Mineral Lease Granted for Finniss Lithium Project
29-Nov-18 Maiden Sandras Mineral Resource Grows Finniss to 6.3Mt 27-Nov-18 Carlton and Hang Gong to Boost Finniss Resource Base 6-Nov-18 Over 50% increase in BP33 Lithium Resource to boost DFS 1-Nov-18 Exploration Further Boosts Finniss Lithium Project Potential 22-Oct-18 Grants Lithium Resource Increased by 42% ahead of DFS 22-Aug-18 More Wide High-grade Lithium Intersections at BP33 16-Aug-18 New Exploration Intersections Add to Finniss Potential 2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	20-Dec-18	Positive Assay Results from Lees-Booths Link and Hang Gong
27-Nov-18 Carlton and Hang Gong to Boost Finniss Resource Base 6-Nov-18 Over 50% increase in BP33 Lithium Resource to boost DFS 1-Nov-18 Exploration Further Boosts Finniss Lithium Project Potential 22-Oct-18 Grants Lithium Resource Increased by 42% ahead of DFS 22-Aug-18 More Wide High-grade Lithium Intersections at BP33 16-Aug-18 New Exploration Intersections Add to Finniss Potential 2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	18-Dec-18	Maiden Mineral Resource at Carlton Grows Finniss to 7.1Mt
6-Nov-18 Over 50% increase in BP33 Lithium Resource to boost DFS 1-Nov-18 Exploration Further Boosts Finniss Lithium Project Potential 22-Oct-18 Grants Lithium Resource Increased by 42% ahead of DFS 22-Aug-18 More Wide High-grade Lithium Intersections at BP33 16-Aug-18 New Exploration Intersections Add to Finniss Potential 2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	29-Nov-18	Maiden Sandras Mineral Resource Grows Finniss to 6.3Mt
1-Nov-18 Exploration Further Boosts Finniss Lithium Project Potential 22-Oct-18 Grants Lithium Resource Increased by 42% ahead of DFS 22-Aug-18 More Wide High-grade Lithium Intersections at BP33 16-Aug-18 New Exploration Intersections Add to Finniss Potential 2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	27-Nov-18	Carlton and Hang Gong to Boost Finniss Resource Base
22-Oct-18 Grants Lithium Resource Increased by 42% ahead of DFS 22-Aug-18 More Wide High-grade Lithium Intersections at BP33 16-Aug-18 New Exploration Intersections Add to Finniss Potential 2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	6-Nov-18	Over 50% increase in BP33 Lithium Resource to boost DFS
22-Aug-18 More Wide High-grade Lithium Intersections at BP33 16-Aug-18 New Exploration Intersections Add to Finniss Potential 2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	1-Nov-18	Exploration Further Boosts Finniss Lithium Project Potential
16-Aug-18 New Exploration Intersections Add to Finniss Potential 2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	22-Oct-18	Grants Lithium Resource Increased by 42% ahead of DFS
2-Aug-18 Improved Recovery of High-Grade Lithium Concentrate 24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	22-Aug-18	More Wide High-grade Lithium Intersections at BP33
24-Jul-18 New high-grade Assay Results expected to expand Grants 6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	16-Aug-18	New Exploration Intersections Add to Finniss Potential
6-Jul-18 Extensions to Grants Lithium Deposit 25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	2-Aug-18	Improved Recovery of High-Grade Lithium Concentrate
25-Jun-18 Finniss Pre-Feasibility Study 23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	24-Jul-18	New high-grade Assay Results expected to expand Grants
23-May-18 Maiden Resource Estimate at BP33 8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	6-Jul-18	Extensions to Grants Lithium Deposit
8-May-18 Grants Lithium Resource Upgrade 6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	25-Jun-18	Finniss Pre-Feasibility Study
6-Apr-18 High-Grade Lithium Assays to Upgrade Resource Confidence 8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	23-May-18	Maiden Resource Estimate at BP33
8-Mar-18 Multiple High-grade Lithium Intersections at Grants 1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	8-May-18	Grants Lithium Resource Upgrade
1-Feb-18 Drilling Commenced to Upgrade Grants Lithium Resource 23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	6-Apr-18	High-Grade Lithium Assays to Upgrade Resource Confidence
23-Jan-18 Core Re-Commences Lithium Resource Drilling at BP33	8-Mar-18	Multiple High-grade Lithium Intersections at Grants
g .	1-Feb-18	Drilling Commenced to Upgrade Grants Lithium Resource
8-May-17 Core Defines First Lithium Resource in the NT	23-Jan-18	Core Re-Commences Lithium Resource Drilling at BP33
	8-May-17	Core Defines First Lithium Resource in the NT

JORC Code, 2012 Edition – Table 1 Report Grants

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation (RC) drill techniques have been employed for the Core Lithium Ltd ("Core" or "CXO") drilling at Lees that were used to calculate this resource, over the period late 2017 to early 2019. A list of the 18 hole IDs and positions can be found in the "Drill hole information" section below. Additional 5 RC hole collars are provided for new results presented above for Booths Prospect. Sampling methods RC drill spoils over all programs were collected into two sub-samples: 1 metre split sample, homogenized and cone split at the cyclone into 12x18 inch calico bags. Weighing 2-5 kg, or 15% of the original sample. 20-40 kg primary sample, which for CXO's drilling was collected in 600x900mm green plastic bags and retained until assays had been returned and deemed reliable for reporting purposes. RC sampling of pegmatite for CXO's assays was done on a 1 metre basis. 1m-sampling continued into the barren wall-zone of the pegmatite and then a 3m composite was collected from the immediately surrounding barren phyllite host rock.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Drilling technique was exclusively Reverse Circulation (RC) using a face sampling bit. Drilling was carried out by a number of operators but using the same technique. These included, Bullion Drilling (Schram W450 with 5 inch bit), WDA Drilling (UDR 1000 with 5.5-inch bit) and Geo Drilling (Schram 450 with 5-inch bit).

Drill sample recovery

- Method of recording and assessing core and chip sample recoveries and results assessed.
- Measures taken to maximise sample recovery and ensure representative nature of the samples.
- Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.
- RC drill recoveries were visually estimated from volume of sample recovered. The majority of sample recoveries reported were above 90% of expected.
- RC samples were visually checked for recovery, moisture and contamination and notes made in the logs.
- The rigs splitter was emptied between 1m samples by hammering the cyclone bin with a mallet. The set-up of the cyclone varied between rigs, but a gate mechanism was used to prevent inter-mingling between metre intervals. The cyclone and splitter were also regularly cleaned by opening the doors, visually checking, and if build-up of material was noted, the equipment cleaned with either compressed air or high-pressure water. This process was in all cases undertaken when the drilling first penetrated the pegmatite mineralization, to ensure no host rock contamination took place.
- Drill collars are sealed to prevent sample loss and holes are normally drilled dry to prevent poor recoveries and contamination caused by water ingress. Wet intervals are noted in case of unusual results.
- There is no observable relationship between recovery and grade at a project scale, and therefore no sample bias is anticipated.

Logging

- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate
 Mineral Resource estimation, mining studies and metallurgical studies.
- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.
- The total length and percentage of the relevant intersections logged.
- Detailed geological logging was carried out on all RC drill holes. The geological data is suitable for inclusion in a Mineral Resource Estimate (MRE).
- Logging recorded lithology, mineralogy, mineralisation, weathering, colour, and other sample features. RC chips are stored in plastic RC chip trays.
- All holes were logged in full.
- Pegmatite sections are also checked under a single-beam UV light for spodumene identification on an ad hoc basis. These only provide indicative qualitative information.
- RC chip trays are photographed and stored on the CXO server.

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to
- The majority of the mineralised samples were collected dry, as noted in the drill logs and database.
- The field sample preparation followed industry best practice.
- For CXO drilling this involved collection of RC samples from the cone splitter on the drill rig into a calico bag for dispatch to the laboratory.
- The sample sizes are considered more than adequate to ensure that there are no

maximise representivity of samples.

- Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

particle size effects relating to the grain size of the mineralisation.

Field RC duplicates

- A field duplicate sample regime is used to monitor sampling methodology and homogeneity of RC drilling at Lees. The typical procedure was to collect Duplicates via a spear of the green RC bag (CXO's drilling), having collected the Original in a calico bag. Trying to split the 2-3kg calico bag into an Original and a Duplicate has inherent dangers, least of all reducing the sample mass. However, comparing rotary split sample with a spear sample also has some element of incompatibility. The expectation would be a high degree of variability in the spear sample, because of the heterogenous and stratified RC bag, but overall it should statistically match the split original sample.
- The duplicates cover a wide range of Lithium values.
- Results of duplicate analysis show an acceptable degree of correlation given the heterogeneous nature of the pegmatite.

Sample preparation

CXO drilling

- Sample prep occurs at North Australian Laboratories ("NAL"), Pine Creek, NT.
- RC samples do not require any crushing, as they are largely pulp already.
- A 1-2 kg riffle-split of RC Samples are then prepared by pulverising to 95% passing -100 um.
- In 2017, samples were pulverized in a Kregormill, a vertical spindle based pulveriser). In mid-2017, Steel Ring Mills were installed at NAL to reduce the iron contamination that was recognised in the 2017 Drilling program assays.

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels

CXO drilling

- Sample analysis also occurs at North Australian Laboratories, Pine Creek, NT.
- A 0.3 g sub-sample of the pulp is digested in a standard 4 acid mixture and analysed via ICP-MS and ICP-OES methods for the following elements: Li, Cs, Rb, Sr, Nb, Sn, Ta, U, As, K, P and Fe. In mid-2018, sulphur was added to the element suite. The lower and upper detection range for Li by this method are 1 ppm and 5000 ppm respectively.
- During the drilling program a 3000 ppm Li trigger was set to process that sample via a fusion method. The fusion method was - a 0.3 g sub-sample is fused with 1g of

Sodium Peroxide Fusion flux and then digested in 10% hydrochloric acid. ICP-OES is of accuracy (i.e. lack of bias) and precision have been established. used for the following elements: Li, P and Fe. The lower and upper detection range for Li by this method are 10 ppm and 20,000 ppm respectively. • A barren flush is inserted between samples at the laboratory. • The laboratory has a regime of 1 in 8 control subsamples. NAL utilise standard internal quality control measures including the use of Certified Lithium Standards and duplicates/repeats. • Approximate CXO-implemented quality control procedures include: One in twenty-five certified Lithium ore standards were used for this drilling. o One in twenty-five duplicates were used for this drilling. o One in sixty blanks were inserted for this drilling. QAQC of CXO Drilling data One in 50 certified Lithium reference standards were used. CXO used six standards roughly between 1,700 ppm and 10,000 ppm Li, covering the range of expected Li values in the mineralized pegmatite. The standards reported back with an excellent correlation. Blanks were inserted on a 1 in 60 basis. The data from the blanks pulverised and assayed at NAL indicate that the Li content is very low and well below the effective cut-off grade used for the significant intercepts. • The baseline Fe₂O₃ content of blanks is indicative of Iron being stripped from the steel pulverising equipment at the NAL laboratory. This stripping of metal obviously has an effect on the Fe content of the Lithium bearing samples as well. • There were no apparent issues identified with any of this data. • CXO runs regular Umpire analysis and has found excellent agreement. • The verification of significant intersections by either independent or Verification of • Senior technical personnel have visually inspected and verified the significant drill intersections. sampling and alternative company personnel. The use of twinned holes. No holes have been twinned at this stage. assaying • Documentation of primary data, data entry procedures, data • All field data is entered into excel spreadsheets (supported by look-up tables) at verification, data storage (physical and electronic) protocols. site and subsequently validated as it is imported into the centralized CXO Access database. Discuss any adjustment to assay data. • Hard copies of survey and sampling data are stored in the local office and

		 electronic data is stored on the CXO server. Metallic Lithium percent was multiplied by a conversion factor of 2.15283/10000 to report Li ppm as Li₂O%. The current assay database is known to contain Fe data that is affected by variable levels of Fe contamination that is difficult to correct. For this reason Fe
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 was not estimated as part of the current MRE as it would be misleading. Differential GPS has been used to determine collar locations, apart from those drilled by Liontown ("LBRC" prefix). Collar position audits are regularly undertaken, and no significant issues have arisen. The grid system is MGA_GDA94, zone 52 for easting, northing and RL. Most of the CXO drilled RC hole traces were surveyed by north seeking gyro tool operated by the drillers and the collar is oriented by a line of sight compass and a clinometer. A small number of CXO holes were surveyed with a Pathfinder digital camera.
		 The local topographic surface used in the MRE was generated from digital terrain models supplied by CXO. This DTM is also used to generate the RL of collars for which there was DGPS data. Cross-checking by CXO against DGPS control points indicates that this DTM-derived RL is within 1m of the true RL.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 The nominal drill hole spacing is 30 metres between drill sections. The majority of sections have had more than one hole drilled. The mineralisation and geology show very good continuity from hole to hole and will be sufficient to support the definition of a Mineral Resource and the classifications contained in the JORC Code (2012 Edition).
	Whether sample compositing has been applied.	All mineralised intervals reported are based on a one metre sample interval.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 Drilling is oriented approximately perpendicular to the interpreted strike of mineralization (pegmatite body) as mapped. Because of the dip of the hole, drill intersections are apparent thicknesses and overall geological context is needed to estimate true thicknesses.
su acture	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if 	No sampling bias is believed to have been introduced.

	material.	
Sample security	The measures taken to ensure sample security.	 Sample security was managed by the CXO. After preparation in the field samples were packed into polyweave bags and transported by the Company directly to the assay laboratory. The assay laboratory audits the samples on arrival and reports any discrepancies back to the Company. No such discrepancies occurred.
Audits or reviews	The results of any audits or reviews of sampling techniques and da	 The only audits or reviews of the data associated with this drilling occurred as part of this MRE.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Drilling by CXO took place on EL30015, which is 100% owned by CXO. EL30015was previous owned by LTR, and in September 2017 was purchased by CXO via a sale agreement (ASX Release 14 Sept 2017). The area being drilled comprises Vacant Crown land. There are no registered heritage sites covering the areas being drilled. The tenements are in good standing with the NT DPIR Titles Division.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The history of mining in the Bynoe area dates back to 1886 when tin was discovered by Mr. C Clark. By 1890 the Leviathan Mine and the Annie Mine were discovered and worked discontinuously until 1902. In 1903 the Hang Gong Wheel of Fortune was found, and 109 tons of tin concentrates were produced in 1905. In 1906, the mine produced 80 tons of concentrates. By 1909 activity was limited to Leviathan and Bells Mona mines in the area with little activity in the period 1907 to 1909. The records of production for many mines are not complete, and in numerous cases changes

Criteria	JORC Code explanation	Commentary
		 have been made to the names of the mines and prospects which tend to confuse the records still further. In many cases the published names of mines cannot be linked to field occurrences. In the early 1980s the Bynoe Pegmatite field was reactivated during a period of high tantalum prices by Greenbushes Tin which owned and operated the Greenbushes Tin and Tantalite (and later spodumene) Mine in WA. Greenbushes Tin Ltd entered into a JV named the Bynoe Joint Venture with Barbara Mining Corporation, a subsidiary of Bayer AG of Germany. Greenex (the exploration arm of Greenbushes Tin Ltd) explored the Bynoe pegmatite field between 1980 and 1990 and produced tin and tantalite from its Observation Hill Treatment Plant between 1986 and 1988. They then tributed the project out to a company named Fieldcorp Pty Ltd who operated it between 1991 and 1995. In 1996, Julia Corp drilled RC holes into representative pegmatites in the field, but like all of their predecessors, did not assay for Li. Since 1996 the field has been defunct until recently when exploration has begun on ascertaining the lithium prospectivity of the Bynoe pegmatites. The NT geological Survey undertook a regional appraisal of the field, which was published in 2004 (NTGS Report 16, Frater 2004). LTR drilled the first deep RC holes at Lees in 2016, targeting surface workings dating back to the 1980s. The operators at that time were seeking Tin and Tantalum.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The tenement covers the northern portion of a swarm of complex zoned rare element pegmatite field, which comprises the 55km long by 10km wide West Arm – Mt Finniss pegmatite belt (Bynoe Pegmatite Field; NTGS Report 16). The main pegmatites in this belt include Mt Finniss, Grants, BP33, Hang Gong and Sandras The Finniss pegmatites have intruded early Proterozoic shales, siltstones and schists of the Burrell Creek Formation which lies on the northwest margin of the Pine Creek Geosyncline. To the south and west are the granitoid plutons and pegmatitic granite stocks of the Litchfield Complex. The source of the fluids that have formed the intruding pegmatites is generally accepted as being the Two Sisters Granite to the west of the belt, and which probably underlies the entire area at depths of 5-10 km. Lithium mineralisation has been identified historically as occurring at Bilato's (Picketts) and Saffums 1 (both amblygonite) but more recently LTR and CXO have identified spodumene at

JORC Code explanation Criteria Commentary numerous other prospects, including Grants, BP33, Booths, Lees, Hang Gong, Ah Hoy, Far West Central and Sandras. Hole ID Prospect Northing Azimuth Dip Drill hole Information • A summary of all information material to the Easting RL Total Depth understanding of the exploration results including a LBRC004 8595976 29 183 -70 694668 90 Lees tabulation of the following information for all Material drill holes: LBRC005 Lees 694637 8595994 28 183 -90 90 o easting and northing of the drill hole collar LBRC055 Lees 694769 8596010 30 228 -60 133 o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar NRC007 694710 8596014 30 209 -62 161 Lees o dip and azimuth of the hole down hole length and interception depth NRC008 Lees 694669 8596015 29 211 -63 101 o hole length. -75 NRC031 Lees 694685 8596042 29 209 133 • If the exclusion of this information is justified on the basis that the information is not Material and this NRC033 694580 8595862 24 210 -60 33 Lees exclusion does not detract from the understanding of the report, the Competent Person should clearly NRC034 Lees 694580 8595865 24 210 -61 190 explain why this is the case. 8595822 24 210 NRC035 Lees 694625 -85 54 NRC036 Lees 694623 8595817 24 210 -85 80 NRC037 694720 8596043 30 211 -85 162 Lees NRC065 694574 8595925 26 212 192 -80 Lees NRC066 694762 8596095 31 220 -80 234 Lees NRC081 Lees 694630 8595827 24 200 -75 132 NRC091 694796 8596042 31 208 -71 193 Lees NRC093 694632 8596102 28 213 -71 151 Lees NRC114 Booths 695141 8595377 39 210 -71 192

Criteria	JORC Code explanation	Commenta	У						
		NRC115	Lees	694667	8596078	29	0	-90	180
		NRC116	Lees	694709	8596086	30	0	-90	240
		NRC117	Booths	695080	8595429	37	218	-76	186
		NRC118	Booths	695086	8595316	42	215	-71	162
		NRC119	Booths	694961	8595414	36	227	-70	149
		NRC120	Booths	694970	8595332	40	222	-76	180
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Any sample assays. Le (pegmati 0.4% Li₂C allowance dilution). 	e Lees holes have ble compositing the weighte te) is constant was used as the for including the equivalent value.	ng reported ed averages t. lower cut o g up to 3m c	here is calcul are acceptabl ff grades for c of consecutive	ated via le e method ompositin drill mate	because the	e density of	the rock
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not 	perpendi The pegr	ority of holes h cular to the N natites are sta ion true width	W strike of icked and sh	the pegmatite	es (refer to ng to the r	Table abov orth to NNE	e for azi and E. As such, m	d dip data). nineralised

Criteria	JORC Code explanation	Commentary
	known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to Figures and Tables in the release.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All exploration results have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All meaningful and material data has been reported.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	CXO will undertake follow up drilling at the Lees in the following months to expand and infill resource.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 A data check of source assay data and survey data has been undertaken and compared to the database. No translation issues have been identified. The data was validated during the interpretation of the mineralisation, with no significant errors identified. Only RC holes have been included in the MRE. Data validation processes are in place and run upon import into Micromine to be used for the MRE. Checks included: missing intervals, overlapping intervals and any depth errors. A DEM topography to collar check has been completed.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Graeme McDonald (CP) undertook a site visit during November/December 2017 and September 2018. A review of the drilling, logging, sampling and QAQC procedures has been undertaken. All processes and procedures were in line with industry best practice.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The geological interpretation is considered robust due to the nature of the mineralisation. The mineralisation is hosted within pegmatite. The locations of the hangingwall and footwall of the pegmatite intrusions are well understood with drilling which penetrates both contacts. Reverse circulation drill holes have been used in the MRE. Lithology, structure, alteration and mineralisation data has been used to generate the mineralisation model. The primary assumption is that the mineralisation is hosted within structurally controlled pegmatite, which is considered robust. Due to the nature of the drilling data and the geological continuity conveyed by this dataset, no alternative interpretations have been considered. The mineralisation interpretation is based on a lithium cut-off grade of 0.3% Li₂O, hosted within the pegmatite.

Criteria	JORC Code explanation	Commentary
		 At Lees there are multiple stacked pegmatites that are relatively shallow dipping and vary from 4m up to 15m in true thickness. A non-mineralised wall rock phase of is often present. A total of two mineralised grade domains have been identified and estimated using a hard boundary.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The two mineralised pegmatite domains occur over an area of approximately 250m by 375m. The mineralised pegmatites vary from 4m up to 15m in true width. The pegmatites are gently dipping to the north and have been interpreted up to a vertical depth of approximately 270m (Lees) and 200m (Lees South) below surface. The pegmatite is deeply weathered to depths of approximately 70m below surface.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. 	 Grade estimation of lithium has been completed using Inverse Distance Squared (ID2) using Micromine software. A search ellipse was created based on the strike and dip of the mineralised pegmatite bodies. There have been no previous estimates. No assumptions have been made regarding recovery of any by-products. The data spacing varies within the deposit but with a nominal drill hole spacing of 30 m by 40 m. A parent block size of 16 m (X) by 12 m (Y) by 5 m (Z) with a sub-block size of 4 m (X) by 3 m (Y) by 1.5 m (Z) has been used to define the mineralisation, with the lithium estimated at the parent block scale. Pass 1 estimation has been undertaken using a minimum of 4 and a maximum of 20 samples into a search ellipse with a radius of 70m, with samples from a minimum of two drill holes. Pass 2 estimation has been undertaken using a minimum of 4 and a maximum of 20 samples into a search ellipse with a radius of 140m, with samples from a minimum of two drill holes. Pass 3 estimation has been undertaken using a minimum of 4 and a maximum of 20 samples into a search ellipse with a radius of 210m, with samples from a minimum of two drill holes. Pass 4 estimation has been undertaken to populate a small

Criteria	JORC Code explanation	Commentary
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	 number of remaining blocks using a minimum of 4 and a maximum of 20 samples into a search ellipse with a radius of 280m, with samples from a minimum of one drill hole. No selective mining units are assumed in this estimate. Lithium only has been estimated within the mineralised domains. No correlation between variables has been assumed. The mineralisation and geological wireframes have been used to flag the drill hole intercepts in the drill hole assay file. The flagged intercepts have then been used to create composites in Micromine. The composite length is 1 m in all data. The influence of extreme sample distribution outliers in the composited data has been determined using a combination of histograms and log probability plots. It was decided that no top-cuts need to be applied. Model validation has been carried out, including visual comparison between composites and estimated blocks; check for negative or absent grades; statistical comparison against the input drill hole data and graphical plots.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	The tonnes have been estimated on a dry basis.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	$\bullet~$ For the reporting of the MRE, a 0.75 Li ₂ O% cut-off has been used after consultation with CXO.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 It has been assumed that the traditional open cut mining method of drill, blast, load and haul will be used, and that the material would be processed at the proposed Grants processing facility nearby. No other assumptions have been made at this time.

Criteria	JORC Code explanation	Commentary
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 No metallurgical recoveries have been applied. It is assumed that the material would be processed and concentrated at a facility located at the Grants deposit.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	No environmental assumptions have been made during the MRE.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	• There have been no direct measurements of any drill samples at the Lees deposit. Therefore, given the relative uncertainties associated with this MRE it is appropriate at this stage to assign SG values based on those determined at the nearby Grants and BP33 deposits as part of their MRE's. A value of 2.72 g/cm³ has been assigned to all fresh mineralisation and a value of 2.13 g/cm³ to all oxidised pegmatite. This is not considered unreasonable, given the lithology is directly comparable, with the same mineral species in similar concentrations.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors 	 The resource classification has been applied to the MRE based on the drilling data spacing, grade and geological continuity, and data integrity. The classification takes into account the relative contributions of

Criteria	JORC Code explanation	Commentary
	 (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 geological and data quality and confidence, as well as grade confidence and continuity. The classification reflects the view of the Competent Person.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	This MRE has not been audited by an external party.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The relative accuracy of the MRE is reflected in the reporting of Mineral Resources as per the guidelines of the 2012 JORC Code. The statement relates to global estimates of tonnes and grade. No production records have been supplied as part of the scope of works, so no comparison or reconciliation has been made.