ASX ANNOUNCEMENT

| 15 January 2025

Evergreen confirms LCT pegmatite plus gold potential at Bynoe Project, Northern Territory

ASX:EGI
EverGreen Lithium

HIGHLIGHTS

- Multiple field programs completed in 2024 have validated the lithium potential at Bynoe, strengthening Evergreen's confidence in the Bynoe Project's potential.
- RC drilling of Lithium Aircore targets has confirmed the presence of LCT pegmatites
- Field activities also identified large areas prospective for gold mineralisation, with several of them drill tested assays due in the first quarter of 2025.

EverGreen Lithium Limited (ASX: EG1) ("EverGreen" or "the Company") is pleased to announce the successful completion of its 2024 work program at the Bynoe Project.

Field programs conducted aimed to build a geological knowledge base, understand the potential for mineralisation, and to test several of the priority areas for LCT pegmatites and gold mineralisation.

The work involved geological mapping, rock chip sampling, auger sampling, aircore, RAB and RC drilling. Exploration has identified spodumene-bearing pegmatites in the western part of the lease, adjacent to Core Lithium's Finniss project. Additionally, the potential for gold mineralisation similar to other parts of the Pine Creek Gold Fields has been recognised. Evergreen awaits assays to confirm the presence of gold in targets identified after field work.

EverGreen's Chairman, Simon Lill, commented:

"The Completion of the 2024 fieldwork program at Bynoe is an exciting milestone for Evergreen and marks a step forward in the Company's exploration strategy as it seeks to unlock the value of Bynoe for shareholders. Our geological team has worked diligently and systematically to enhance the understanding of Bynoe and we eagerly await laboratory results to build on recent successes and plan for the 2025 field season".

Field Exploration Programs

Geological Mapping and Rock Chip Sampling Programs

Regional and prospect scale mapping, along with rock chip sampling was undertaken. The mapping programs identified numerous quartz veins which may be the surface expression of blind pegmatites or potential hosts to gold mineralisation. A total of **217 rock chip samples** were taken in the recent program aimed at delineating potential gold hosting quartz veins.

Auger Sampling Program

From June to August, auger sampling was carried out in several key areas targeting LCT pegmatites. Aiming to collect geochemical samples for lab analysis and to map the host rock types beneath thin cover layers.

The auger program totaled **1,314m drilled** with a total of **578 samples** taken during 2024. Results identified lithium anomalous zones in the SW of the lease which received follow-up aircore and RC drilling. Interpretation of results is on-going, with re-assaying of selected laboratory pulps for gold (results pending).

RAB / Aircore Drilling

An initial drilling program commenced mid-year and was completed in June and July. This initial program consisted of a total of **6,872 meters** and was aimed at testing structures for blind pegmatites in areas not affected by wet field conditions (2nd priority areas).

An air core drilling program testing for both LCT pegmatites and gold mineralisation was thereafter conducted across several of the high priority areas in Sept and Oct for **6,456 meters**. The completed AC program included: -

- 156 x 2m short holes to test for gold mineralisation across three soil arsenic anomalous trends near
 Core Lithium's Far East Prospect.
- o 32 x 5m vertical short holes to obtain geochemical and lithological samples testing for LCT pegmatites (regional geochemical near surface program to test beneath cover units)
- 109 inclined holes testing for the presence of pegmatites in the west of the lease.

AC drilling identified eleven different pegmatite bodies, which given timing, two of which received follow up RC drill testing. The market will be updated once laboratory results are received and interpreted.

Figure 1: Aircore drilling targeting LCT pegmatites in the west of the lease

RC Drilling

RC drilling was conducted in three areas within EL31774 testing both LCT pegmatite and gold targets. This drill program was undertaken late in the year and was interrupted by wet field conditions which restricted access to many areas. The RC program's aims were:-

- Test pegmatite targets identified in the AC drilling program;
- Test areas identified as priority gold targets.

Fourteen holes were completed for a total of **1,799 meters** drilled prior to rain interrupting the program. Holes EBRC001 to 006 targeted pegmatites and holes EBRC007 to 014 targeted gold.

Results targeting LCT pegmatites proved positive with pegmatites intercepted in 4 holes, with the best result coming from EBRC001 which intercepted 5m of spodumene bearing pegmatite from 91m as shown in table 1. The company is considering following up with deeper drilling to better understand the extents of the system in 2025.

Drilling tested gold targets noted quartz veins with minor sulphides. Assay results for this program are pending and expected within Q1.

				10000	Control of the last	The second second	
Hole_ID	From	То	Mineralised interval	Recovery	Lithology	OreMin Code 1	ORE MIN%
EBRC001	91	92		60	PEGMATITE		
EBRC001	92	93		100	PEGMATITE	SPODUMENE	5
EBRC001	93	94		100	PEGMATITE	SPODUMENE	10
EBRC001	94	95	5	100	PEGMATITE	SPODUMENE	5
EBRC001	95	96		100	PEGMATITE	SPODUMENE	20
EBRC001	96	97		100	PEGMATITE	SPODUMENE	5
EBRC001	125	126	1	100	PEGMATITE	SPODUMENE	20
EBRC001	126	127		100	PEGMATITE		
EBRC002	20	21		100	PEGMATITE		
EBRC002	28	29		100	PEGMATITE		
EBRC002	29	30		100	PEGMATITE		
EBRC002	33	34		100	PEGMATITE		
EBRC002	36	37		100	PEGMATITE		
EBRC002	63	64		100	PEGMATITE		
EBRC002	64	65		100	PEGMATITE		
EBRC002	79	80		100	PEGMATITE		
EBRC002	81	82		100	PEGMATITE		
EBRC002	123	124		100	PEGMATITE	SPODUMENE	2
EBRC002	124	125	3	100	PEGMATITE	SPODUMENE	5
EBRC002	125	126		100	PEGMATITE	SPODUMENE	5
EBRC003	135	136		100	PEGMATITE	SPODUMENE	5
EBRC003	136	137	3	100	PEGMATITE	SPODUMENE	20
EBRC003	137	138		100	PEGMATITE	SPODUMENE	10
EBRC004		No significant result					
EBRC005	57	58		100	PEGMATITE		
EBRC006	No significant result						

Table 1. Reverse circulation drilling summary logs with significant pegmatite intervals.

HOLE_ID	East_MGA	North_MGA	Elevation	Hole_Depth	Azi_Mag	Azi_MGA	Dip	Drill_type
EBRC001	695713	8600154	23	198	267	270	-60	RC
EBRC002	695707	8600100	23	132	267	270	-65	RC
EBRC003	695710	8600200	23	162	267	270	-84	RC
EBRC004	695494	8591749	27	132	269	272	-60	RC
EBRC005	695744	8591754	44	84	269	272	-60	RC
EBRC006	695620	8591968	36	156	268	271	-61	RC
EBRC007	695795	8591936	38	90	248	251	-60	RC
EBRC008	697321	8595884	50	96	267	270	-60	RC
EBRC009	697354	8595987	49	144	264	267	-60	RC
EBRC010	697353	8596059	45	120	267	270	-60	RC
EBRC011	697368	8595609	57	144	87	90	-60	RC
EBRC012	697473	8595736	61	95	267	270	-60	RC
EBRC013	697096	8593445	34	96	267	270	-60	RC
EBRC014	697166	8593449	38	150	267	270	-60	RC
	Total meters			1799				

Table 2. Reverse circulation drilling drill collar table.

Figure 2: Drill rig with associated support trucks at West Bloc

Figure 3: Spodumene in an RC chip sample

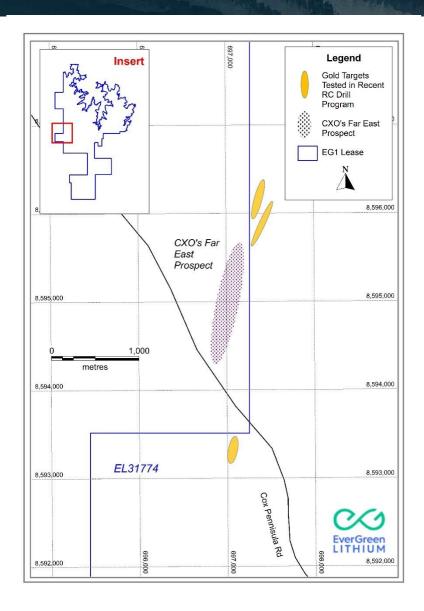


Figure 4: Map showing Gold Targets Tested in Recent RC Drill Program

Other Activities

Concurrent with its ongoing exploration at Bynoe, the Company continues to review various projects within Australia, with a view to complementing its suite of existing exploration assets.

This announcement is approved for release by the Board of EverGreen Lithium.

FOR FURTHER INFORMATION, PLEASE CONTACT:

COMPANY

MEDIA & INVESTOR RELATIONS

E. admin@evergreenlithium.com.au

Melissa Tempra
NWR Communications

E. melissa@nwrcommunications.com.au

ABOUT EVERGREEN LITHIUM (ASX: EG1)

EverGreen Lithium (ASX:EG1) is an exploration company which owns 100% of three highly prospective lithium spodumene projects in Australia. The Bynoe, Kenny and Fortune Projects are located in areas of known lithium pegmatite occurrences within the Northern Territory and Western Australia. EverGreen's flagship Bynoe Lithium Project comprises a 231km² land position contiguous to Core Lithium's (ASX:CXO) producing Finniss Project. EverGreen's objective is to achieve exploration success with the goal of identifying a world class discovery utilising the latest in exploration techniques while maintaining an ESG focus with a view to contributing to a clean and green future.

To learn more, please visit: www.evergreenlithium.com.au

FORWARD LOOKING STATEMENTS

This announcement may contain certain forward-looking statements that have been based on current expectations about future acts, events and circumstances. These forward-looking statements are, however, subject to risks, uncertainties and assumptions that could cause those acts, events and circumstances to differ materially from the expectations described in such forward-looking statements. These factors include, among other things, commercial and other risks associated with exploration, estimation of resources, the meeting of objectives and other investment considerations, as well as other matters not yet known to EverGreen Lithium or not currently considered material by the company. EverGreen Lithium accepts no responsibility to update any person regarding any error or omission or change in the information in this presentation or any other information made available to a person or any obligation to furnish the person with further information.

COMPETENT PERSON STATEMENT

The information in this announcement that relates to exploration results is based on information reviewed by Bruce Smith, a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy and Technical Consultant to Evergreen Lithium Limited. Mr Smith is an exploration geologist with over 30 years' experience including sufficient experience in the styles of mineralisation and type of deposit under consideration and to the activity undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Bruce Smith has consented to the inclusion in this Public Report of the matters based on his information in the form and context in which it appears.

APPENDIX D: JORC CODE, 2012 EDITION - TABLE 1 REPORT TEMPLATE

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
SAMPLING TECHNIQUES	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Drill samples have been obtained from reverse circulation (RC) holes, using face sampling hammer, 5 inch bit. The collar details and depths of these holes are summarised in Tables 1 and 2. Im samples have been collected directly from a rig mounted cone splitter for laboratory analysis. The site geologist recorded collar locations with a handheld GPS (+/- 5m accuracy) and drill azimuth/dip using a compass/clinometer. Drillholes were sampled in their entirety. Sample weight averaged 1.2kg. Samples were transported from supervised storage at Evergreens project site to certified laboratory (North Australian Labortories, Pine Creek NT) at the completion of the program, where they will be dried, weighed, and pulverised to produce representative pulps from which a 50g split will be taken for fused sodium peroxide ICP-MS & OES analysis. During the logging of the RC samples, the rig geologist spear samples each meter pile of chips and pulverised material, which is then washed thru a sieve where 90% of the material is lost as fines, and remaining coarse grained material is checked for the presence or not of identifiable spodumene crystals. A visual estimate is made of the presence of spodumene.
DRILLING TECHNIQUES	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	RC Drilling used a 5.5" face sampling Hammer, with duel tube system to minimise sample contamination. Recovered chips are not orientated.
DRILL SAMPLE RECOVERY	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and 	 RC sample recoveries are estimated by visually assessing the volume of recovered sample. Any samples of less than approximately 80% are noted in the geological/sampling log with a visual estimate of the actual recovery. Very few samples were recorded with recoveries of less than 80%. Wet RC samples were minimal.

	grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Use experienced driller, appropriate drilling fluids and reputable drilling company, supervised by and experienced geologist to ensure representative samples. No relationship has been observed between sample recovery, and geological contacts observed and reported in this release. Observed geological contacts are sharp.
LOGGING	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging was carried out on RC chips. This included lithology, alteration, visible mineral assemblages, intervals of pegmatite, sufficient for first pass exploration drilling All drill core and RC chip trays are photographed. Total length of hole was logged.
SUB-SAMPLING TECHNIQUES AND SAMPLE PREPARATION	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Representative sub-samples were produced using a rig mounted cyclone and cone splitter. Samples were mostly damp. RC sampling is an appropriate first-pass drill exploration method for lithium exploration. Before each drillhole the cyclone and riffle splitter were inspected for damage, cleanliness, and correct set-up. The cyclone was cleaned with compressed air between (3m) drill runs. RC sample duplicates were collected every 30 samples from a second chute on the cone splitter. Target sub-sample weight for RC samples was 1- 2kg. This sample size is appropriate for exploration stage lithium mineralisation.
QUALITY OF ASSAY DATA AND LABORATORY TESTS	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg.)	 No laboratory assays are reported in this release During the logging of the RC samples, the rig geologist spear samples each meter pile of chips and pulverised material, which is then washed through a sieve where 60% of the material is lost as fines, and remaining coarse grained material is checked for the presence or not of identifiable spodumene crystals. A visual estimate is made of the presence of spodumene The identification of spodumene in RC chips is appropriate for exploration, indicating the presence or not of spodumene in the target pegmatites. Lithium leaches readily in oxidised environment, and the presence of spodumene crystals does not imply a lithium grade, it only indicates the potential for a fertile pegmatite. Standards and blanks will be included at a rate of 1 in each for every 50 samples submitted Assays expected March 2025

procedures adopted (eg

	standards, blanks, duplicates, external laboratory checks)	
	and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	
VERIFICATIONOF SAMPLING AND ASSAYING	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Visual identification of spodumene was verified 3 senior company geologists. Results were reviewed and verified internally by alternative company employees. No twin holes were completed. Field data was recorded electronically and backed up on multiple company computers and off site company server.
LOCATION OF DATA POINTS	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The drill sites were located using handheld GPS units and the locations were recorded in datum GDA94 projected in MGA94 Zone 51. The accuracy of the Easting and Northing locations is considered to be +/-10m and the accuracy of the elevation is considered to be +/-10m: the aforementioned accuracy is considered to be within tolerance for the style of surface sampling for 'Exploration Results'
DATA SPACING AND DISTRIBUTION	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	 Spacing between sections 200m - 400m Drill spacing was for exploration purposes and not sufficient to for Mineral Resource and Ore Reserve Estimation. Samples were all 1m collected directly from the rig mounted conesplitter. No compositing applied.
ORIENTATION OF DATA IN RELATION TO GEOLOGICAL STRUCTURE	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Pegmatites and quartz blows (potential weathered pegmatite surface remnants) within the tenure have been located by field reconnaissance using in-house and contracted geological teams completing fieldwork for Evergreen Lithium Limited. Field mapping is compared with the Northern Territory Geological Survey ("NTGS") mapped quartz veins at the 1:250,000 scale and the 1:100,000 scale, and with published geological maps of pegmatite fields on adjacent properties to estimate the potential orientation of pegmatites. Overlapping fences of inclined (-60) AC drill holes are completed to locate pegmatite bodies, and multiple intersections of pegmatites are used to develop a geological model and estimate the orientation of the pegmatite bodies and the true thickness
SAMPLE SECURITY	The measures taken to ensure sample security.	Samples are currently in a secure on-site locked area, pending shipment at the end of the current AC program
AUDITS OR REVIEWS	The results of any audits and reviews of sampling techniques and data.	No external audits or reviews were undertaken on sampling techniques and data. Drill data was reviewed internally by the

Exploration Manager, Senior Exploration Geologist and Senior Geological Consultant.

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections.)

MINERAL TENEMENT Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wildenses or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining allicence to operate in the are. EXPLORATION DONE BY OTHER PARTIES Acknowledgement and oppraisal of exploration by other parties.	CRITERIA	JORC CODE EXPLANATION	COMMENTARY
DONE BY OTHER PARTIES appraisal of exploration by other parties. Lithium Limited are detailed in the Valuation & Resource Management Pty Ltd's Technical Assessment Report of EverGreen Lithium Limited' (dated 20/Dec/2022) forming part of the Prospectus (dated 13/Jan/2023) released by EverGreen Lithium Limited in an ASX Release on the 05/Apr/2023. The Bynoe project lies in the eastern Bynoe Pegmatite Field; the northern field of the larger Litchfield Pegmatite Belt in the Northern Territory. The bulk of the following geological summary is presented in the Valuation & Resource Management Pty Ltd's Technical Assessment Report of EverGreen Lithium Limited in an ASX Release on the 05/Apr/2023. The 180km-long Litchfield Pegmatite Belt stretches along the eastern contact aureole of the Two Sisters, Allia Creek, and Soldiers Creek granites, from Darwin Harbour in the north to the Wingste Mountains in the south. These granites form part of the Yilia Creek Suite', a late- to post-tectonic, felsic, fractionated S-type granite system emplaced along the western margin of the Pine Creek Orogen at 1845Ma. The fractionated S-type Two Sisters granite comprises two phases: a medium-grained or porphyritic biotite granite and a coarse-grained pegmatities) represent the synto late-collisional setting. The dominant host stratigraphy of the Litchfield pegmatites is a succession of psammite and slate of the Palaeoproterozoic Burrell Creek Formation of the Finniss River Group or its metamorphosed equivalent, the Welltree Metamorphics. The primary target for mineralisation are lithium-bearing pegmatites, ideally Lithium-Cesium-Tantalum ("LCT") pegmatites that contain spodumene. Benyl, tantalum, and/or tin have the potential to be associated with the LCT pegmatites. Additional targets for mineralisation include gold, documented from Core Lithium's ASX Releases to be nuggety gold associated	TENEMENT AND LAND TENURE	location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to	("EL") 31774, which consists of 92 sub-blocks (~231Km2), the tenure details are as follows: TENEMENT
and style of mineralisation. **No Polymer Field of the larger Litchfield Pegmatite Belt in the Northern Territory.** **The bulk of the following geological summary is presented in the Valuation & Resource Management Pty Ltd's Technical Assessment Report of EverGreen Lithium Limited' (dated 20/Dec/2022) forming part of the Prospectus (dated 13/Jan/2023) released by EverGreen Lithium Limited in an ASX Release on the 05/Apr/2023. **The 180km-long Litchfield Pegmatite Belt stretches along the eastern contact aureole of the Two Sisters, Allia Creek, and Soldiers Creek granites, from Darwin Harbour in the north to the Wingate Mountains in the south. These granites form part of the 'Allia Creek Suite', a late- to post-tectonic, felisic, fractionated S-type granite system emplaced along the western margin of the Pine Creek Orogen at 1,845Ma. **The fractionated S-type Two Sisters granite comprises two phases: a medium-grained or porphyritic biotite granite and a coarse-grained pegmatitic phase. Frater (2005) proposed that the biotite granite straddles the boundary between the volcanic-arc and syncollisional environment, whereas the pegmatitic granite (and associated pegmatities) represent the synto late-collisional setting. **The dominant host stratigraphy of the Litchfield pegmatites is a succession of psammite and slate of the Palaeoproterozoic Burrell Creek Formation of the Finniss River Group or its metamorphosed equivalent, the Welltree Metamorphics. **The primary target for mineralisation are lithium-bearing pegmatites, ideally Lithium-Cesium-Tantalum ("LCT") pegmatites that contain spodumene. Beryl, tantalum, and/or tin have the potential to be associated with the LCT pegmatites. **Additional targets for mineralisation include gold, documented from Core Lithium's ASX Releases to be nuggety gold associated	DONE BY OTHER	appraisal of exploration by	Lithium Limited are detailed in the Valuation & Resource Management Pty Ltd's 'Technical Assessment Report of EverGreen Lithium Limited' (dated 20/Dec/2022) forming part of the Prospectus (dated 13/Jan/2023) released by EverGreen Lithium
	GEOLOGY		northern field of the larger Litchfield Pegmatite Belt in the Northern Territory. The bulk of the following geological summary is presented in the Valuation & Resource Management Pty Ltd's 'Technical Assessment Report of EverGreen Lithium Limited' (dated 20/Dec/2022) forming part of the Prospectus (dated 13/Jan/2023) released by EverGreen Lithium Limited in an ASX Release on the 05/Apr/2023. The 180km-long Litchfield Pegmatite Belt stretches along the eastern contact aureole of the Two Sisters, Allia Creek, and Soldiers Creek granites, from Darwin Harbour in the north to the Wingate Mountains in the south. These granites form part of the 'Allia Creek Suite', a late- to post-tectonic, felsic, fractionated S-type granite system emplaced along the western margin of the Pine Creek Orogen at 1,845Ma. The fractionated S-type Two Sisters granite comprises two phases: a medium-grained or porphyritic biotite granite and a coarse-grained pegmatitic phase. Frater (2005) proposed that the biotite granite straddles the boundary between the volcanic-arc and syncollisional environment, whereas the pegmatitic granite (and associated pegmatites) represent the synto late-collisional setting. The dominant host stratigraphy of the Litchfield pegmatites is a succession of psammite and slate of the Palaeoproterozoic Burrell Creek Formation of the Finniss River Group or its metamorphosed equivalent, the Welltree Metamorphics. The primary target for mineralisation are lithium-bearing pegmatites, ideally Lithium-Cesium-Tantalum ("LCT") pegmatites that contain spodumene. Beryl, tantalum, and/or tin have the potential to be associated with the LCT pegmatites.

evergreenlithium.com.au **EVERGREEN LITHIUM**

		prospect which is less than 50m from the tenure boundary. CXO's prospects of Windswept, Hurricane, & Far East (SSW to NNE) are interpreted to trend NNE into Evergreen's Bynoe project (EL31774). • The gold occurrences are likely associated with the Pine Creek Orogen. The Pine Creek Orogen has a 150 year history of gold mining with more than 4 million ounces of gold produced. Most deposits are orogenic gold deposits in the Palaeoproterozoic Cosmo Supergroup, with gold most commonly hosted in-quartz veins, lodes, sheeted veins, stockworks and saddle reefs, with some gold also hosted within iron- rich sediments. Gold also occurs with zinc and silver associated with volcanic-associated massive sulphide deposits (sourced from Resourcing the Territory: Pine Creek Orogen)
DRILL HOLE INFORMATION	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elecation of RL (Reduced Level – elevation above sea level in metres) of the drill hole collar. dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case	Relevant drill hole data is presented in Table 1.
DATA AGGREGATION METHODS	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Not applicable.
DIARGAMS	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant	Appropriate maps and diagrams are presented within the ASX Release.

commercially sensitive.

BALANCED REPORTING	discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	'Balanced reporting' of the Exploration Results is presented.
OTHER SUBSTANTIVE EXPLORATION DATA	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Pegmatites and quartz blows (potential weathered pegmatite surface remnants) within the tenure have been located by field reconnaissance by geological contractors completing fieldwork for Synergy Prospecting Pty Ltd and/or Evergreen Lithium Limited. Now overlain by the Bynoe project tenure E31774, the Northern Territory Geological Survey ("NTGS") has mapped quartz veins at the 1:250,000 scale and the 1:100,000 scale. Quartz interpreted from satellite images by geological contractors completing fieldwork for Synergy Prospecting Pty Ltd. Campaign-based fieldwork activities completed on behalf of the Tenure Holder Synergy Prospecting Pty Ltd from 26/Oct/2018 to June 2022, prior to the acquisition by EverGreen Lithium Limited. Limited records exist of the field-verified pegmatites exist, and mainly consist of field photographs, and comments on dimensions (refer to subsection 'Exploration done by other parties') with no substantial information on the trend and plunge of the pegmatites. No further 'substantive exploration data' is available as 'Exploration Results' at the present point in time this ASX Release was generated.
FURTHER WORK	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not	'Further Work' is presented in the 'Next Steps' section of the ASX Release Body.