

FURTHER ORE SORTING TRIAL CONFIRMS EXCELLENT RESULTS AT MANNA

Ore sorting technology achieves a higher-grade Spodumene Ore Concentrate product

Key Highlights

ASX:GL1

- Second ore sorting trial achieved a 1.64% Li₂O Spodumene Ore Concentrate (SOC) product
- Both trials achieved a final product greater than 1.5% Li₂O with an average **lithia recovery of 92%**
- Iron rejection greater than 90% from 2.80% Fe₂O₃ in ore sorter feed to 0.27% in ore sorter product
- Multi-sensor ore sorting technology will underpin near term cash flow opportunity to export SOC and potentially **increase concentrate production capacity of the Manna Processing Plant by 20%**

Established multi-asset West Australian Lithium company, Global Lithium Resources Limited (**ASX: GL1**, "**Global Lithium**" or "the **Company**"), is pleased to announce it has completed the second stage of Ore Sorting Trials at its **100% owned Manna Lithium Project**, 100km east of Kalgoorlie in Western Australia.

This program complements earlier trials performed on Manna pegmatite ore (refer ASX release 30 May 2023) and shows ore sorting technology can be utilised at Manna to upgrade the pegmatite ore to boost concentrate production at the Manna Processing Plant, as well as produce a high-grade SOC product. This testwork forms part of a wider scope of work being undertaken by the Company to progress the Definitive Feasibility Study (**DFS**) at the Manna Lithium Project towards completion by Q1, CY24.

The latest ore sorting test program was performed on a 700kg high-grade pegmatite test sample. The sample was composited using 50m of PQ diamond drill core selected from five drill holes within the proposed Manna stage one pit, with core including approximately 30% waste to simulate expected full-scale mining operations. The sample was crushed to -50mm and screened to remove fines (-10mm), with the screened ore separated into a coarse (-50+25mm) and a mids (-25+10mm) size fraction which were then processed through the ore sorter in consecutive runs.

The testwork was conducted under controlled conditions utilising calibrated sensor settings developed during the first ore sorting trial, achieving a lithium grade of 1.75% Li₂O and 0.27% Fe₂O₃ from the ore sorter Accepts. This trial increased the lithium grade from 1.41% to 1.75% Li₂O which is a 24% increase lithium grade for the ore sorter Accepts. When the fines fraction (-10mm) is recombined with the ore sorter Accepts, the lithium grade maintained a high 1.64% Li₂O with an overall lithium recovery of 89%.

Page 1 of 22 | ACN 626 093 150 Level 1, 35 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au Both trials demonstrated high selectively for rejecting iron. The ore sorter was able to remove 90% of the contained iron in the ore sorter feed from 2.80% to 0.27% Fe_2O_3 . When the ore sorter Accepts were recombined with fines fraction (-10mm), the resulting iron grade was 1.2% Fe_2O_3 , and a total waste mass rejection of 24% (refer to Table 1).

Description		Distribution ¹ Grad						ade1	de ¹	
	Mass	Li ₂ O	SiO ₂	AI_2O_3	Fe_2O_3	Li ₂ O	SiO ₂	AI_2O_3	Fe_2O_3	
	%	%	%	%	%	%	%	%	%	
Ore Sort Rejects	23.8	11.3	18.9	18.0	67.3	0.67	53.7	11.0	7.9	
Ore Sort Accepts	47.6	59.2	52.3	53.4	4.7	1.75	74.0	16.3	0.3	
Crushed Fines (-10mm)	28.6	29.5	28.8	28.6	28.1	1.45	67.7	14.6	2.7	
Final Product	76.2	88.7	81.1	82.0	32.7	1.64	71.6	15.7	1.2	
Final Rejects	23.8	11.3	18.9	18.0	67.3	0.67	53.7	11.0	7.9	
Head Grade	100	100	100	100	100	1.41	67.4	14.6	2.8	

Table 1: Summary of Ore Sorting Results – High-Grade Ore¹

1. Average results from coarse and mid-size fractions and recombined with -10mm fraction.

The initial ore sorting testwork program established the ability of ore sorting technology to upgrade a lowgrade pegmatite ore from 0.9% to 1.5% Li_2O . However the second ore sorting trial, which focussed on a high-grade pegmatite ore, has shown the technology is also capable of generating a high-grade SOC product for which there is strong customer demand.

Figure 1. shows the high-grade ore being processed through the Steinert ore sorting facility.

Figure 1. Showing Manna ore being processed through Steinert ore sorting facility.

With ore sorting testwork performed on Manna pegmatite ore demonstrating the technology is highly effective in upgrading both low-grade and high-grade ores, the Company has decided to implement the following:

- Incorporation of ore sorting technology into the overall process flowsheet to increase mill feed grade from 1.0% to 1.2% Li₂O, and thereby increase the concentrate production capacity of the main Manna Processing Plant by 20%, and
- Further financial and technical evaluation of the option to produce SOC for a period of up to 24 months during construction and commissioning of the Manna Processing Plant.

Next Steps

Further ore sorting variability testwork using bulk PQ diamond drill core will be performed to establish a grade recovery curve for proposed SOC production and over life-of-mine (LOM) for the Manna Processing Plant.

The main process flowsheet for the DFS has been modified to incorporate ore sorting into the crushing circuit. The milling circuit will remain at a 2 million tonnes per annum capacity, however the feed grade to the concentrator is now expected be higher resulting in additional spodumene concentrate.

Page 3 of 22 | ACN 626 093 150 | ASX: GL1 Level 1, 35 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

Global Lithium Project Director, Tony Chamberlain commented,

"Both trials have demonstrated that the Manna pegmatite ore body is highly suited to ore sorting. This work will unlock further value for the Manna Project through potential early production of a SOC product and increase spodumene production for the main concentrator. The high-grade SOC product will be a very attractive product for potential offtake partners. The Company is nearing completion of a pre-feasibility study in relation to SOC and is in discussions with several potential partners.

With ore sorting now being incorporated into the main flowsheet, this will enhance the economics of the project due to the expected generation of additional revenue. The Manna Lithium Project DFS is due for completion in the first quarter of CY24."

Approved by the board of Global Lithium Resources Limited.

For more information:

Ron Mitchell Managing Director info@globallithium.com.au +61 8 6103 7488 Ben Creagh Media & Investor Relations ben@nwrcommunications.com.au +61 (0) 417 464 233

About Global Lithium

Global Lithium Resources Limited (ASX:GL1, Global Lithium) is a diversified West Australian lithium exploration and development company with multiple assets in key lithium branded jurisdictions with a primary focus on the 100% owned Manna Lithium Project in the Goldfields and the Marble Bar Lithium Project (MBLP) in the Pilbara region, Western Australia.

Global Lithium has now defined a total Indicated and Inferred Mineral Resource of 54Mt @ 1.09% Li₂O at its Manna and MBLP Lithium projects, confirming Global Lithium as a significant global lithium player.

or or or

Directors

Geoff Jones	Non-Executive Chair
Ron Mitchell	Managing Director
Dr Dianmin Chen	Non-Executive Direct
Greg Lilleyman	Non-Executive Direct
Hayley Lawrance	Non-Executive Direct

GLOBAL Lithium resources

Page 4 of 22 | ACN 626 093 150 | ASX: GL1 Level 1, 35 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

Global Lithium - Mineral Resources

Project (equity)	Category	Tonnes (T)	Li ₂ O%	Ta₂O₅ ppm
Marble Bar	Indicated	3.8	0.97	53
	Inferred	14.2	1.01	50
	Total	18.0	1.00	51
Manna	Indicated	20.2	1.12	56
	Inferred	15.8	1.14	52
	Total	36.0	1.13	54
			4.00	
Combined Total		54.0	1.09	53

Competent Persons Statement:

Exploration Results

The information in this announcement that relates to Exploration Results for the Manna Lithium Project complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) and is based on, and fairly represents, information and supporting documentation prepared by Dr Tony Chamberlain, a full time employee of Global Lithium Resources Limited and who participates in the Company's Incentive Performance Rights and Option Plan. Dr Chamberlain is a member of the Australasian Institute of Mining and Metallurgy. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Dr Chamberlain considers that the information in the market announcement is an accurate representation of the available data and studies for the mining project. Mr Chamberlain consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Mineral Resources

Information on historical exploration results and Mineral Resources for the Manna Lithium Project presented in this announcement, together with JORC Table 1 information, is contained in an ASX announcement released on 26 July 2023.

Information on historical exploration results and Mineral Resources for the Marble Bar Lithium Project presented in this announcement is contained in an ASX announcement released on 15 December 2022

The Company confirms that it is not aware of any new information or data that materially affects the information in the relevant market announcements, and that the form and context in which the Competent Persons findings are presented have not been materially modified from the original announcements.

Where the Company refers to Mineral Resources for the Manna Lithium Project (MLP) in this announcement (referencing previous releases made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the Mineral Resource estimate in that announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons findings are presented have not materially changed from the original announcement.

Appendix 1.

The tables below show the drilling results returned from the Metallurgical and Ore Sorting Diamond core drill program. This program was specifically designed to drill down dip so a bulk sample of the pegmatite could be collected for metallurgical testing requirements. These results and the high-grade intercepts are not to be interpreted as true width of the deposit and have not been added to the resource model.

The results do show that the grade within the pegmatite is consistent with depth and of a higher grade than represented in the resource model. This is due to the natural dilution of Reverse Circulation (RC) drilling and the wider drill spacing.

Further close spaced infill drilling currently being performed at the Manna Lithium Deposit, is designed to improve the classification of the resource model and to bring the overall grade of the deposit more in line with the results observed in the tables below.

Hole ID	Drill Type	Easting (MGA50)	Northing (MGA50)	RL (m)	Dip (degrees)	Azimuth (degrees)	Depth (m)
MDD0006	HQ	455541	6584419	426	-60	322	82
MDD0008	HQ	455745	6584172	422	-60	324	108
MDD0011	PQ	455558	6584515	423	-60	322	112
MDD0013	PQ	455352	6584265	421	-72	145	78
MDD0014	PQ	455687	6584608	420	-62	140	150
MDD0015A	PQ	455624	6584557	424	-65	140	211
MDD0016	PQ	455909	6584852	413	-80	135	156
MDD0017	PQ	456049	6584929	413	-78	140	132
MDD0018	PQ	455748	6584652	417	-60	140	183
MDD0019	PQ	455298	6584334	424	-71	150	199
MDD0020	PQ	455349	6584393	423	-68	140	106
MDD0021	PQ	455932	6584825	415	-68	140	121

Hole ID	Core Type	From (m)	То (m)	Interval (m)	Li₂O %
MDD0006	HQ	40.29	43.40	3.11	1.29
MDD0008	HQ	36.26	48.25	11.99	1.60
MDD0008	HQ	154.8	165.41	10.61	1.48
MDD0011	HQ	55.95	65.5	9.55	1.31
MDD0013	HQ	2.18	44.22	42.04	1.66
MDD0014	PQ	26.28	34.22	7.94	1.98
MDD0014	PQ	52.66	98.25	45.59	1.91
MDD0014	PQ	108.77	143.41	34.64	1.36
MDD0015A	PQ	36.47	73.95	37.48	1.61
MDD0015A	PQ	97.85	207.94	110.09	1.64
MDD0016	PQ	24.84	86.72	61.88	1.33
MDD0016	PQ	114.52	151.69	37.17	1.52
MDD0017	PQ	51.76	62.52	10.76	1.18
MDD0017	PQ	104.35	131.77	27.42	1.09
MDD0018	PQ	26.14	51.37	25.23	1.12
MDD0018	PQ	63.95	95.91	31.96	1.63
MDD0018	PQ	129.58	173.72	44.14	1.07
MDD0019	PQ	22.74	42.92	20.18	1.42
MDD0019	PQ	53.28	71.78	18.50	1.84
MDD0019	PQ	74.25	109.31	35.06	1.64
MDD0019	PQ	114.4	195.38	80.98	1.43
MDD0020	PQ	15.46	34.92	19.46	1.21
MDD0020	PQ	66.53	95.25	28.72	1.32
MDD0021	PQ	37.06	49.90	12.84	0.97
MDD0021	PQ	71.14	90.48	19.34	0.33

Table 3: Highlighted significant down dip intercepts

Hole ID	Northing	Easting	From (m)	To (m)	Li2O (%)	Ta205 (%)
	0					
MDD006	455541	6584419	40.29	43.40	1.29	0.006
MDD008	455745	6584172	36.26	39.68	1.41	0.006
and	455745	6584172	39.68	43.04	1.73	0.001
and	455745	6584172	43.04	46.41	1.89	0.007
and	455745	6584172	46.41	48.25	1.37	0.003
and	455745	6584172	154.80	158.31	1.83	0.006
and	455745	6584172	158.31	161.74	0.91	<0.001
and	455745	6584172	161.74	165.41	1.70	0.006
MDD0011	455558	6584515	55.95	59.57	1.63	0.004
and	455558	6584515	59.57	63.10	1.56	0.007
and	455558	6584515	63.10	65.50	0.74	0.003
MDD0013	455352	6584265	2.18	4.56	1.43	0.007
and	455352	6584265	4.56	7.28	1.39	0.005
and	455352	6584265	7.28	9.80	1.35	0.006
and	455352	6584265	9.80	12.00	1.77	0.006
and	455352	6584265	12.00	14.62	1.69	0.006
and	455352	6584265	14.62	16.76	1.17	0.006
and	455352	6584265	16.76	19.55	1.44	0.005
and	455352	6584265	19.55	21.73	1.47	<0.001
and	455352	6584265	21.78	23.80	1.56	0.007
and	455352	6584265	23.80	26.11	2.07	0.004
and	455352	6584265	26.11	28.47	1.90	0.004
and	455352	6584265	28.47	31.21	2.32	0.008
and	455352	6584265	31.21	33.78	1.88	0.008
and	455352	6584265	33.78	36.03	1.62	0.007
and	455352	6584265	36.03	38.85	1.51	0.006
and	455352	6584265	38.85	41.57	2.14	0.006
and	455352	6584265	41.57	44.22	1.55	0.009
MDD0014	455687	6584608	26.28	29.12	2.12	0.007
and	455687	6584608	29.12	31.67	2.17	0.003
and	455687	6584608	31.67	34.22	1.66	0.005
and	455687	6584608	52.66	55.40	2.04	0.006
and	455687	6584608	55.40	58.15	1.93	0.009
and	455687	6584608	58.15	60.90	1.96	0.007
and	455687	6584608	63.73	66.38	2.54	0.002
and	455687	6584608	66.38	69.20	2.24	0.007
and	455687	6584608	69.20	71.66	1.47	0.005
and	455687	6584608	71.66	74.30	1.54	0.009

Table 4: Expanded metallurgical and ore sorting drillhole intercepts

Page 9 of 22 | ACN 626 093 150 | ASX: GL1 Level 1, 35 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

and	455007	0504000	74.30	76.88	2.46	<0.001
and	455687	6584608				
and	455687	6584608	76.88	79.52	1.72	0.004
and	455687	6584608	79.52	82.11	1.89	0.001
and	455687	6584608	87.51	90.28	1.52	0.007
and	455687	6584608	90.28	92.94	1.75	0.005
and	455687	6584608	92.94	95.53	1.92	0.006
and	455687	6584608	95.53	98.25	1.77	0.006
and	455687	6584608	108.77	111.40	0.37	<0.001
and	455687	6584608	114.14	116.68	0.41	0.008
and	455687	6584608	116.68	119.53	1.61	0.006
and	455687	6584608	119.53	122.30	2.07	0.003
and	455687	6584608	122.30	125.04	1.51	0.004
and	455687	6584608	125.04	127.77	2.23	<0.001
and	455687	6584608	127.77	130.41	2.40	0.005
and	455687	6584608	130.41	133.17	1.00	0.006
and	455687	6584608	133.17	135.82	1.19	0.008
and	455687	6584608	135.82	138.36	1.78	0.006
and	455687	6584608	138.36	140.75	1.61	0.007
and	455687	6584608	140.75	143.41	0.18	<0.001
MDD0015A	455624	6584557	36.47	39.12	2.28	0.004
and	455624	6584557	39.12	41.82	1.53	0.006
and	455624	6584557	44.47	47.07	1.61	0.006
and	455624	6584557	47.07	49.88	1.94	0.002
and	455624	6584557	49.88	52.70	1.61	0.005
and	455624	6584557	52.70	55.37	1.11	0.004
and	455624	6584557	55.37	58.07	2.28	0.006
and	455624	6584557	58.07	60.76	2.17	0.009
and	455624	6584557	63.45	66.02	1.84	0.003
and	455624	6584557	66.02	68.68	1.46	0.002
and	455624	6584557	68.68	71.27	1.25	0.010
and	455624	6584557	71.27	73.95	0.24	<0.001
and	455624	6584557	97.85	100.43	2.00	0.004
and	455624	6584557	100.43	103.02	1.68	0.005
and	455624	6584557	103.02	105.46	0.44	0.003
and	455624	6584557	113.15	115.83	0.59	<0.001
and	455624	6584557	115.83	118.64	1.54	0.002
and	455624	6584557	118.64	121.31	1.89	0.007
and	455624	6584557	121.31	123.86	1.72	0.003
and	455624	6584557	123.86	126.56	2.55	0.005
and	455624	6584557	126.56	129.30	2.21	0.004
and	455624	6584557	129.30	132.03	1.43	0.006
and	455624	6584557	132.03	134.89	2.13	0.004

a ia al			404.00	407.00	0.00	-0.001
and	455624	6584557	134.89	137.68	2.02	< 0.001
and	455624	6584557	137.68	140.49	1.70	0.003
and	455624	6584557	140.49	143.18	2.42	0.010
and	455624	6584557	143.18	145.92	1.05	0.008
and	455624	6584557	145.92	148.59	1.46	0.009
and	455624	6584557	148.59	151.33	1.53	0.009
and	455624	6584557	151.33	154.00	1.29	0.006
and	455624	6584557	154.00	156.64	1.80	0.006
and	455624	6584557	156.64	159.29	1.77	0.005
and	455624	6584557	159.29	162.00	1.64	0.005
and	455624	6584557	162.00	164.81	1.42	0.004
and	455624	6584557	164.81	167.50	1.69	0.005
and	455624	6584557	167.50	170.29	1.81	0.004
and	455624	6584557	170.29	173.05	1.90	0.006
and	455624	6584557	173.05	175.85	1.34	0.005
and	455624	6584557	175.85	178.60	1.62	0.004
and	455624	6584557	178.60	181.28	1.15	0.005
and	455624	6584557	181.28	183.99	2.45	0.004
and	455624	6584557	183.99	186.61	2.10	0.006
and	455624	6584557	186.61	189.44	2.14	0.004
and	455624	6584557	189.44	192.15	1.62	0.006
and	455624	6584557	192.15	194.73	2.35	0.007
and	455624	6584557	194.73	197.21	1.54	0.005
and	455624	6584557	197.21	199.83	1.51	0.007
and	455624	6584557	199.83	202.47	0.73	0.003
and	455624	6584557	202.47	205.31	0.97	0.005
and	455624	6584557	205.31	207.94	1.28	0.003
MDD0016	455909	6584852	24.84	27.43	0.17	<0.001
and	455909	6584852	27.43	30.13	1.78	0.002
and	455909	6584852	30.13	32.99	1.08	0.007
and	455909	6584852	32.99	35.66	0.67	0.009
and	455909	6584852	35.66	38.40	0.45	0.009
and	455909	6584852	38.40	40.99	1.20	0.005
and	455909	6584852	40.99	43.66	1.31	0.010
and	455909	6584852	43.66	46.45	0.82	0.011
and	455909	6584852	46.45	49.15	1.05	0.005
and	455909	6584852	49.15	51.86	0.97	0.003
and	455909	6584852	51.86	54.51	1.83	0.003
and	455909	6584852	54.51	57.07	1.88	0.004
and	455909	6584852	57.07	59.87	1.65	0.002
and	455909	6584852	59.87	62.49	1.90	< 0.001
and	455909	6584852	64.93	67.63	2.07	< 0.001
	400909	000+002	0.100	0.100		5.001

Page 11 of 22 | ACN 626 093 150 | ASX: GL1 Level 1, 35 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

and	455000	6501050	67.63	70.28	1.41	0.001
and	455909	6584852	70.28	73.01	1.70	0.002
and	455909	6584852	73.01	75.21	2.27	0.002
and	455909	6584852	75.21	78.41	1.59	0.003
and	455909	6584852	78.41	81.29	1.39	0.003
and	455909	6584852	81.29	84.03	0.99	0.004
	455909	6584852	84.03	86.72	1.17	0.006
and	455909	6584852		117.13		
and	455909	6584852	114.52 117.13	117.13	0.10	< 0.001
and	455909	6584852			0.20	< 0.001
and	455909	6584852	119.64	122.20	2.13	0.004
and	455909	6584852	122.20	124.85	1.88	0.004
and	455909	6584852	124.85	127.57	1.49	0.001
and	455909	6584852	127.57	130.40	2.35	0.003
and	455909	6584852	130.40	133.14	2.25	0.005
and	455909	6584852	133.14	135.98	2.00	0.002
and	455909	6584852	135.98	138.52	2.54	0.004
and	455909	6584852	138.52	141.16	1.62	<0.001
and	455909	6584852	141.80	143.69	1.55	0.003
and	455909	6584852	148.92	151.69	0.09	<0.001
MDD0017	456049	6584929	51.76	54.40	0.99	0.009
and	456049	6584929	54.40	57.14	0.81	0.008
and	456049	6584929	57.14	59.78	1.78	0.006
and	456049	6584929	59.78	62.52	1.15	0.011
and	456049	6584929	104.35	106.95	0.09	<0.001
and	456049	6584929	106.95	109.75	0.31	0.003
and	456049	6584929	109.75	112.49	1.68	0.001
and	456049	6584929	112.49	115.22	1.79	0.002
and	456049	6584929	117.92	120.57	1.76	0.014
and	456049	6584929	120.57	123.45	1.46	0.012
and	456049	6584929	123.45	126.29	1.15	0.012
and	456049	6584929	126.29	128.96	1.47	0.006
and	456049	6584929	128.96	131.77	0.12	<0.001
MDD0018	455748	6584652	26.14	28.10	0.02	<0.001
and	455748	6584652	28.10	30.67	0.88	0.003
and	455748	6584652	30.67	33.10	1.51	0.004
and	455748	6584652	33.10	35.75	1.80	<0.001
and	455748	6584652	35.75	38.34	2.51	0.003
and	455748	6584652	41.08	43.50	1.00	0.006
and	455748	6584652	43.50	46.12	1.27	0.003
and	455748	6584652	46.12	48.66	1.07	0.002
and	455748	6584652	48.66	51.37	0.01	<0.001
and	455748	6584652	63.95	66.67	0.01	<0.001

and and	455748	CEO/CEO	66.67	69.41	0.48	
and		6584652				<0.001
	455748	6584652	69.41	72.23	1.36	0.002
and	455748	6584652	72.23	74.85	1.92	0.005
and	455748	6584652	74.85	77.51	2.30	0.006
and	455748	6584652	77.51	80.00	2.26	<0.001
and	455748	6584652	80.00	82.55	2.60	0.004
and	455748	6584652	82.55	85.27	2.62	0.004
and	455748	6584652	85.27	88.01	1.45	0.002
and	455748	6584652	88.01	90.52	1.98	0.004
and	455748	6584652	90.52	93.22	1.10	0.005
and	455748	6584652	93.22	95.91	1.43	0.008
and	455748	6584652	129.58	132.20	0.01	<0.001
and	455748	6584652	132.20	134.57	0.20	<0.001
and	455748	6584652	134.57	137.06	1.27	0.003
and	455748	6584652	137.06	139.32	1.27	0.003
and	455748	6584652	139.30	141.96	0.54	0.003
and	455748	6584652	141.96	144.59	1.01	0.003
and	455748	6584652	144.59	147.29	0.43	0.003
and	455748	6584652	149.88	152.54	1.77	0.002
and	455748	6584652	152.54	155.14	2.47	0.007
and	455748	6584652	155.15	157.71	1.06	0.004
and	455748	6584652	157.71	160.42	0.77	0.005
and	455748	6584652	160.42	163.07	0.42	0.002
and	455748	6584652	163.07	165.82	1.40	0.004
and	455748	6584652	165.82	168.35	1.45	0.004
and	455748	6584652	168.35	171.09	1.26	0.004
and	455748	6584652	171.09	173.72	1.85	0.003
MDD0019	455349	6584393	22.74	24.83	1.15	0.008
and	455349	6584393	24.83	27.75	1.68	0.009
and	455349	6584393	27.75	30.06	1.88	0.010
and	455349	6584393	30.06	32.33	1.30	0.007
and	455349	6584393	32.33	34.87	1.38	0.008
and	455349	6584393	34.87	37.56	2.00	0.008
and	455349	6584393	37.56	40.25	0.93	<0.001
and	455349	6584393	40.25	42.92	1.02	0.002
and	455349	6584393	53.28	56.00	2.07	0.006
and	455349	6584393	56.00	58.59	1.83	0.006
and	455349	6584393	58.59	61.29	1.80	0.008
and	455349	6584393	64.00	66.26	1.50	0.009
and	455349	6584393	66.26	69.09	1.75	0.009
and	455349	6584393	69.08	71.78	2.11	0.005
and	455349	6584393	74.25	76.85	0.98	0.010

and	455240	6594202	76.85	79.61	1.98	0.004
and	455349	6584393	79.61	82.24	1.96	0.002
and	455349	6584393	82.24	84.93	2.26	0.002
and	455349	6584393	84.93	87.61	1.52	0.008
and	455349	6584393	87.61	90.42	1.67	0.008
and	455349	6584393	90.42	90.42	1.57	0.004
	455349	6584393	90.42	95.90	1.58	0.007
and	455349	6584393				
and	455349	6584393	95.90	98.52	1.60	0.006
and	455349	6584393	98.52	101.15	2.07	0.003
and	455349	6584393	101.15	103.86	1.28	0.006
and	455349	6584393	103.86	106.57	1.66	0.005
and	455349	6584393	106.57	109.31	1.18	0.008
and	455349	6584393	114.40	117.16	2.14	0.004
and	455349	6584393	117.16	120.02	1.88	0.004
and	455349	6584393	120.02	122.80	1.87	0.006
and	455349	6584393	122.80	125.47	2.06	0.012
and	455349	6584393	125.47	128.13	2.43	<0.001
and	455349	6584393	128.13	130.70	3.47	0.003
and	455349	6584393	130.70	133.37	2.27	0.003
and	455349	6584393	133.37	136.04	1.61	0.005
and	455349	6584393	136.04	138.65	0.64	0.004
and	455349	6584393	138.65	141.32	1.32	0.005
and	455349	6584393	141.32	144.07	1.91	0.002
and	455349	6584393	144.07	146.98	1.82	<0.001
and	455349	6584393	149.98	149.72	0.84	<0.001
and	455349	6584393	149.72	152.26	1.04	0.002
and	455349	6584393	152.26	155.15	0.88	0.004
and	455349	6584393	155.15	157.80	1.03	0.005
and	455349	6584393	157.80	160.50	0.68	0.005
and	455349	6584393	160.50	163.16	1.53	0.004
and	455349	6584393	163.16	165.89	0.96	<0.001
and	455349	6584393	165.89	168.22	1.15	0.004
and	455349	6584393	168.22	171.09	1.64	0.002
and	455349	6584393	171.09	173.70	1.08	0.005
and	455349	6584393	173.70	176.43	1.05	0.002
and	455349	6584393	176.43	179.23	1.38	0.002
and	455349	6584393	179.23	182.00	1.02	0.004
and	455349	6584393	182.00	184.76	1.25	0.003
and	455349	6584393	184.76	187.44	0.70	0.002
and	455349	6584393	187.44	190.22	1.54	0.005
and	455349	6584393	190.22	192.70	0.70	<0.001
and	455349	6584393	192.70	195.38	0.97	<0.001

Page 14 of 22 | ACN 626 093 150 | ASX: GL1 Level 1, 35 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

MDD0020	4550.40	0504000	15.46	17.74	0.78	0.004
	455349	6584393			1.13	0.004
and	455349	6584393	17.74	19.90		
and	455349	6584393	19.90	22.01	1.70	0.004
and	455349	6584393	22.01	24.40	1.57	0.006
and	455349	6584393	24.40	26.66	2.11	0.004
and	455349	6584393	26.66	29.51	1.51	<0.001
and	455349	6584393	29.51	32.49	0.89	<0.001
and	455349	6584393	32.49	34.92	0.01	<0.001
and	455349	6584393	66.53	69.19	1.00	0.002
and	455349	6584393	69.19	71.78	1.55	0.003
and	455349	6584393	71.78	74.29	1.62	0.003
and	455349	6584393	74.29	76.85	1.76	0.006
and	455349	6584393	76.85	79.58	2.11	0.005
and	455349	6584393	82.28	84.98	1.65	0.003
and	455349	6584393	84.98	87.47	1.72	0.001
and	455349	6584393	87.47	90.09	1.47	<0.001
and	455349	6584393	92.79	95.25	0.01	<0.001
MDD0021	455932	6584825	37.06	39.62	0.80	<0.001
and	455932	6584825	39.62	42.19	1.45	0.002
and	455932	6584825	42.19	44.86	0.65	0.007
and	455932	6584825	44.86	47.91	0.59	0.011
and	455932	6584825	47.91	49.90	1.39	0.006
and	455932	6584825	71.14	72.80	0.16	0.007
and	455932	6584825	72.80	76.21	0.16	<0.001
and	455932	6584825	76.21	78.39	0.20	<0.001
and	455932	6584825	78.39	80.94	0.65	<0.001
and	455932	6584825	80.94	83.52	0.74	0.009
and	455932	6584825	85.91	88.19	0.27	0.007
and	455932	6584825	88.19	90.48	0.15	<0.001

JORC Code, 2012 Edition – Table 1 Report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary	/		
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 core for m Testwork Selected Perth whe sampled, Select int crushed a pulverisin Prepared peroxide acid. The by Jinning Perth. The assa as the me the samp that may Ore Sortin The samp core from cores (MI transferre Steinert fa The test p core (MD crushed t fines (-10 into a coa (-25+10m fractions v sorting tri Lake, We 	netallurgical core was su crushed an ervals of cu and riffle spl g to 80% pa samples ar and digeste e resultant s g Testing ar y technique ethod used of le and is us resist acid of ng Samples ole consiste five Manna DD13, 14, 1 d in pallets acility in Per program inv D13, 14, 15 o -50mm ar mm), with the trace (-50+25 im) size frace were process al at the Step stern Austra	test work a ubmitted to kamined an d assayed. t 1/4 core s it to 2 to 2.9 assing 75 m e fused wit d in dilute h olution is a nd Inspection offers total eful for min digestions :: d of represe a Lithium Pr 5, 18 and 19 and consig rth. olved the M h, 18 and 19 m screened of screened	amples were 5 kg for hicrons. h sodium hydrochloric nalysed by ICP on Laboratory in red to be robust dissolution of eral matrices entative PQ full oject diamond 9) that was ned to the lanna diamond 0) that was d to remove d ore separated mids e oversize size h the ore acility in Bibra ther be or recombined

Criteria	JORC Code explanation	Commentary	/		
		DD14	98.25	103.63	5.38
		DD14	111.4	114.14	2.74
		DD15A	33.71	36.47	2.76
		DD15A	95.17	97.85	2.68
		DD15A	207.94	210.4	2.46
		DD18	95.91	101.1	5.19
		DD18	173.72	178.87	5.15
		DD19	50.72	53.28	2.56
		DD19	71.78	74.25	2.47
		DD19	109.31	114.4	5.09
				Total	49.89
techniques Drill sample recovery	 open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All diamo approxim drill down The diam measured recovered recovery recovery. geologists site. There is n recovery 	dip if the p ond drill cor d by tape m d is recorde is calculated This is cor s during cor no observat	s were ang -80 degree egmatite. re recovere easure and d for every d as a perc offirmed by (e orientations)	d is physically the length run. Core entage
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	mineralisa and obvio	ation, struct	ure, weathe nation by a	gy, alteration, ering, wetness geologist. Data e.
Sub- sampling techniques	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether 	intervals	or on geolog	gical bound	penerally on 1 m aries where maximum of

Page 17 of 22 | ACN 626 093 150 | ASX: GL1 Level 1, 35 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

Criteria	JORC Code explanation	Commentary
and sample preparation	 sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The samples were sent to accredited laboratories for sample preparation and analysis. All samples were sorted, dried pulverised to 75 µm to produce a homogenous representative subsample for analysis. A grind quality target of 85% passing -75 µm has been established
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Ore Sorting Samples The ore sorting process was conducted by Steinert in Perth Western Australia. The process utilises a combination of colour camera, 3D laser, induction sensor and X-Ray sensor to differentiate inputs into waste and those matching parameters of target elements. These four sensors can be utilised to tailor an optimum combination for specific mineralisation mineralogy. The resulting concentrates were analysed via ICP-MS and compared to initial assays undertaken by Global Lithium in 2022. This enabled Steinert to determine the grade upgrade achieved in the various tests. The assay technique is considered to be robust sensor to all dissolution of the sample and is useful for mineral matrices that may resist acid digestions. Multielement analysis will be carried out on assay samples for the following elements: Al, Be, Ca, Cs, Fe, Ga, K, Li and Li2O, Mg, Mn, Mo, Nb, P, Rb, S, Si, Sn, Ta, Ti and V.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Results were verified by alternative personnel at Global Lithium Twin holes have been drilled at Manna lithium project in both RC and DD to allow correlation of the assay results between drilling styles and to provide more confidence in the resource model. Primary geological and sampling data were recorded digitally and on hard copy respectively and were subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols Global Lithium has not adjusted any assay data, other than to convert Li (ppm) to Li2O (%).

Criteria	JORC Code explanation	Commentary
		Snowden Optiro converted Ta to Ta2O5 following grade estimation
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A handheld global positioning system (GPS) was used to initially record drillhole locations (±5 m accuracy), followed by a differential GPS surveyor pickup. Downhole survey measurements taken at 10 m intervals for RC drillholes and at an average interval of 5 m for diamond drillholes GDA94 (MGA) Zone 50 Southern Hemisphere Topographical data provided on a 50 m by 50 m grid. Global Lithium plans to acquire more detailed topographical data
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The Manna deposit has been drilled at a spacing of around 80 m along strike by 40 m across strike. Drill spacing is appropriate for the Mineral Resource estimation and classification applied. Samples were not composited except for metallurgical test work
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No orientation data was collected as the drilling was down Dip and not used in a resource model.
Sample security	 The measures taken to ensure sample security. 	• The diamond core samples are taken from the drilling rig by experienced personnel, stored securely and transported to the laboratory by a registered courier and handed over by signature.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Data inputs and outputs have been reviewed and verified by Global Lithium and Steiner No audits have been undertaken to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral</i> <i>tenement and</i> <i>land tenure</i> <i>status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Manna Lithium deposit is situated entirely within tenement WA exploration licence E28/2522 and E38/2551 All tenure is wholly owned by Global Lithium Resources Limited. The portfolio of mineral tenements, comprising two granted exploration licences are in good standing.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Mineral exploration over the Eastern Kalgoorlie project area has been undertaken for a number of commodities, including gold, base metals, diamonds, tin and tantalum by various companies since the 1960s. Breaker Resources performed a basic mapping and geochemical sampling program over the area before running a small RC drilling program of 23 holes totalling 3428m that defined the Manna Lithium deposit After acquiring the project in 2021, GL1 is performing a large RC and Diamond drilling campaign that will result in the declaration of an upgraded Mineral Resources.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Typical LCT pegmatite model occurring as swarms of dykes in a preferred corridor orientation. Within this area, the Company has discovered the Manna deposit, comprising a series of steeply dipping pegmatite bodies with lithium mineralisation predominantly by way of spodumene hosted pegmatites. These pegmatites have been the focus of exploration by the Company
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth 	Diagrams in the announcement show the location of and distribution of drillholes in relation to the Mineral Resource

Page 20 of 22 | ACN 626 093 150 | ASX: GL1 Level 1, 35 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

Criteria	JORC Code explanation	Commentary		
	 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 			
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Not relevant – exploration results are not being reported; a Mineral Resource has been defined 		
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Not relevant – exploration results are not being reported; a Mineral Resource has been defined 		
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See attached Figures		
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All results are being reported in this release. 		
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey	 All relevant information is disclosed in the attached release and/or is set out in this JORC Table 1. 		

Criteria	JORC Code explanation	Commentary
	results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Global Lithium will review the results of the ore sorting testwork with a view to determining the scope of a larger follow-up program.