ASX Announcement

26 October 2023

MANNA DRILLING DELIVERS FURTHER HIGH-GRADE RESULTS

Resource expansion drilling continues to extend strike of known mineralisation at Manna

Key Highlights

- A further ~500m of mineralised strike added to the North-eastern extension.
- Infill drilling intersecting high grade spodumene bearing pegmatites.
- Highlighted intercepts, from the initial assays, of the current 50,000m Reverse Circulation (RC) and Diamond Drilling (DD) program include:

Infill drilling within the existing Manna Deposit

- MRC0357
 - 14m @ 1.59% Li₂O from 110m
- MRC0379
 - 6m @ 1.74% Li₂O from 37m
 - 10m @ 1.69% Li₂O from 48m
 - 16m @ 1.57% Li₂O from 176m
- MRC0380
 - 7m @ 1.43% Li₂O from 72m
 - 12m @ 1.40% Li₂O from 97m
 - 11m @ 1.95% Li₂O from 229m
- MRC0385
 - 13m @ 1.73% Li₂O from 26m
- MRC0388
 - 11m @ 1.69% Li₂O from 140m
- MRC0386
 - 7m @ 1.85% Li₂O from 75m
 - 9m @ 1.42% Li₂O from 142m
- MRC0395

ASX:GL1

■ 11m @ 1.52% Li₂O from 227m

North-eastern extensional drilling

- MRC0258
 - 5m @ 1.08% Li₂O from 25m
 - 6m @ 1.34% Li₂O from 56m
- MRC0259
 - 9m @ 1.43% Li₂O from 195m
- MRC0260
 - 11m @ 1.03% Li₂O from 309m
 - 16m @ 0.92% Li₂O from 364m
- MRC0264
 - 5m @ 1.31% Li₂O from 139m
- MRC0265
 - 7m @ 1.12% Li₂O from 304m
 - 10m @ 1.00% Li₂O from 328m
 - 10m @ 0.90% Li₂O from 353m
 - 3m @ 1.21% Li₂O from 418m
- MRC0342
 - 4m @ 1.49% Li₂O from 105m
 - 7m @ 1.24% Li₂O from 132m

Page 1 of 24 | ACN 626 093 150 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

ASX Announcement

- Over 25,000m, of the planned 50,000m program, has been completed at the Manna Lithium Project with the majority of assays pending.
- 4 RC rigs and 1 DD rig currently onsite performing resource expansion, infill, and geotechnical drilling.
- 1 RC rig will continue the hydrological drilling program across the Manna Project along with hydrological and water bore testing underway.
- The current drilling program is expected to be complete by early December 2023 with final assays to be received in Q1 2024.

Established multi-asset West Australian lithium company, Global Lithium Resources Limited (**ASX: GL1**, "**Global Lithium**" or "the **Company**") is pleased to announce further high-grade results from the resource infill and expansion drilling program at the Company's **100% owned Manna Lithium Project**, located 100km east of Kalgoorlie.

The current 50,000m drilling program includes extensional and infill drilling of the Manna Lithium Deposit. Additional geotechnical and hydrological drilling are underway to complement the definitive feasibility study (DFS), which is running in parallel at the Manna Lithium Project.

Two RC rigs have been deployed to infill drill the existing Manna resource model to a 40m x 40m grid which will increase confidence in the resource model and allow for more accurate mine scheduling to be used in the final DFS. A grid of 10x10m drill spacing will also be tested to provide grade variability data. This information will help define the ideal drill spacing required to move a portion of the main resource into a Measured category.

A further two RC rigs and one DD rig are tasked to expand the current resource along strike and at depth. These results will be used in the fourth update of the Mineral Resource Estimate (MRE) for the Manna deposit, which is expected to be released in Q2 CY24.

Due to the success of the current program, further step out drilling and testing of target areas away from the main Manna resource will be planned for the H1 CY24.

Global Lithium Exploration Manager, Logan Barber commented,

"The significant 2023 Manna drilling program is progressing well while being executed safely by a great team. Initial results are very pleasing with the LCT pegmatite system still open in multiple directions and the infill results we have received to date returning excellent grades. We are on track to deliver approximately 50,000m of extensional and infill drilling by early December, as we continue to progress key items related to the DFS including the geotechnical drilling and water exploration programs."

The Manna Lithium Project currently hosts a Mineral Resource of 36.0Mt @ 1.13% Li₂O¹.

1. ASX Announcement July 26, 2023. Manna Lithium Project Resource Grows

ASX:GL1

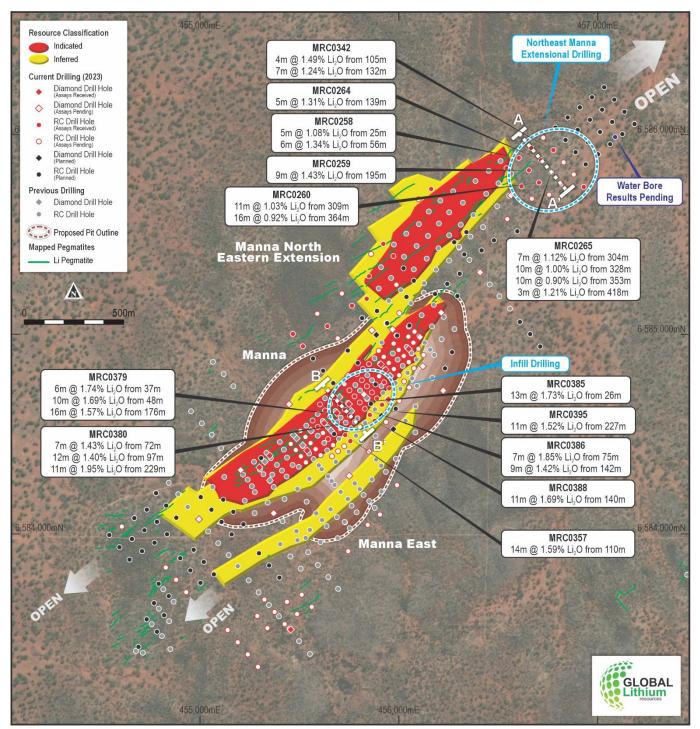
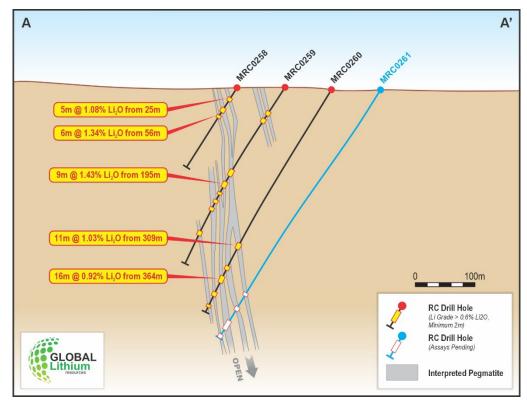



Figure 1. Manna Lithium Project showing the North-eastern extension and planned drilling program.

Figure 2. Cross section A-A' through the northern extension of the Manna lithium deposit with significant Li₂O intercepts.

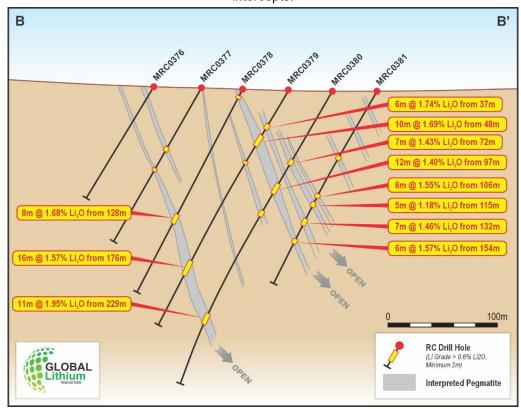


Figure 3. Cross section B-B' through the Manna lithium deposit with significant Li₂O intercepts.

Page 4 of 24 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

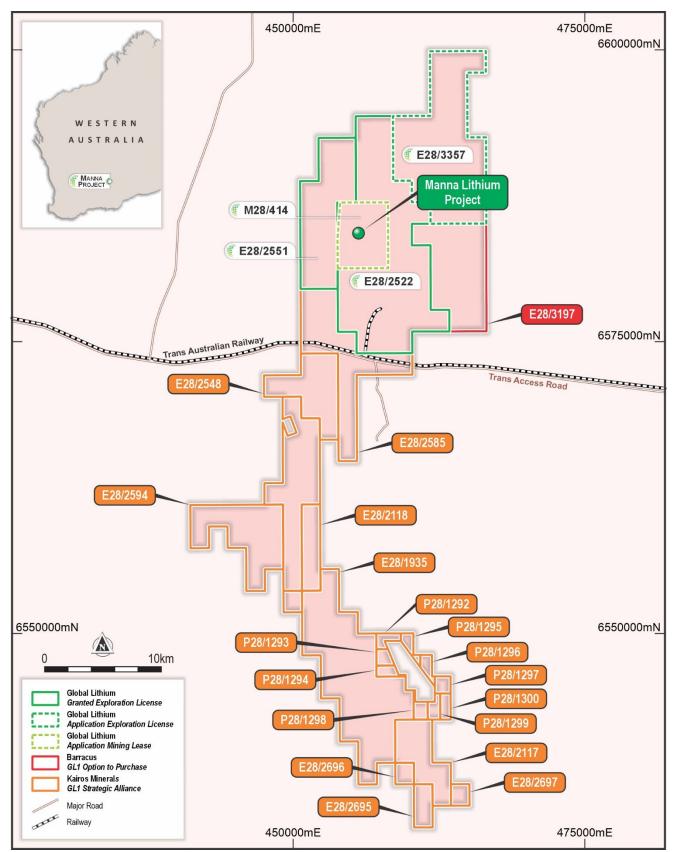


Figure 4. Tenements held within the 100% owned Manna Lithium Project, with surrounding strategic alliance with Kairos Minerals (ASX:KAI).

Figure 5. Infill drilling using multiple drill rigs at the Manna Lithium Project.

Figure 6. Spodumene bearing pegmatite outcrop at the Manna Lithium Deposit.

Page 6 of 24 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

Marble Bar Lithium Project (MBLP) Exploration Update

While this year's RC drilling program of Corridor 2 area (Figure 7), east of the Archer deposit did intersect multiple LCT pegmatite zones, no significant zones of spodumene were identified. A peak Li₂O assay result of 0.68% was returned for the program with most pegmatites returning assay results of between 0.1% and 0.2% Li₂O. This program has downgraded the prospectivity of Corridor 2 but increased the understanding of the pegmatite fractionation from the interpreted Moolyella Granite source towards the Archer Lithium Deposit (18Mt @ 1.0% Li₂O)¹.

A small drill program was also executed at the Twin Veins gold prospect and returned positive results consistent with those received during the small RC drill campaigns completed in 2021^{2,3}. This highlights the potential for a significant vein hosted gold resources to exist in the Twin Veins prospect area.

Some highlighted intercepts include:

- MBRC0619, 4m @ 4.85g/t Au and 72g/t Ag from 86m
- MBRC0621, 5m @ 3.94g/t Au from 118m
- MBRC0623, 3m @ 8.9g/t Au from 49m

The planned drilling program at the MBLP was reduced due to heritage clearance being received at the Manna Lithium Project, allowing the Company to shift its immediate focus to executing the planned drilling, exploration, and development programs at Manna.

Drill testing of the prospective lithium ground across the greater MBLP tenement area, including along strike and at depth within Corridor 1, is planned in H1 CY24 once the exploration phase of the Manna Lithium Project is completed.

^{1.} ASX Announcement July 26, 2023. Manna Lithium Project Resource Grows

^{2.} ASX Announcement August 4, 2021. 12m at 2.95g/t Gold Intercepted at Twin Veins Prospect

^{3.} ASX Announcement November 18, 2021. Exploration and Heritage Update

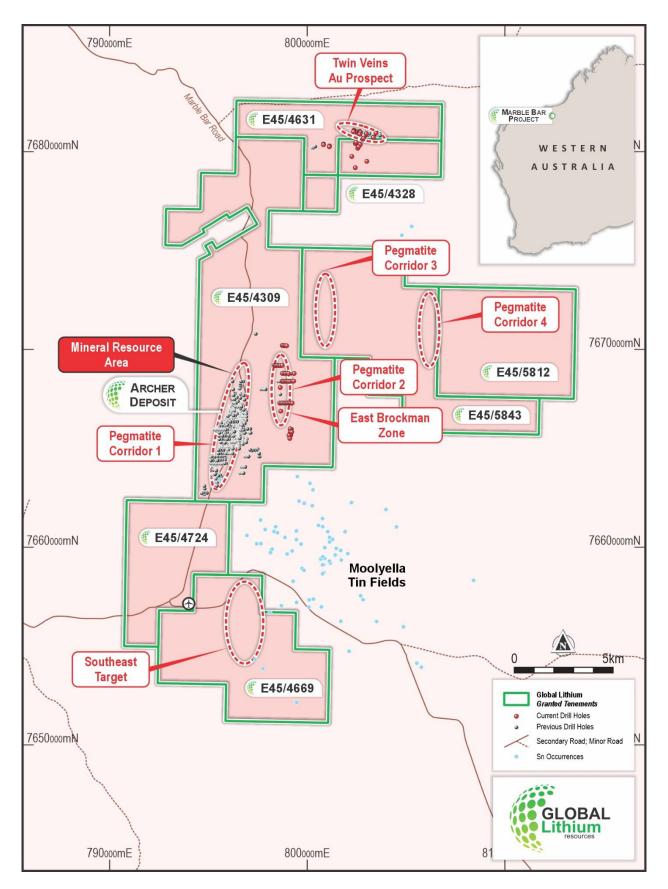


Figure 7. 100% Owned Marble Bar Lithium Project tenement map.

Page 8 of 24 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au Approved by the board of Global Lithium Resources Limited.

For more information:

Ron Mitchell Managing Director info@globallithium.com.au +61 8 6103 7488 Ben Creagh Media & Investor Relations ben@nwrcommunications.com.au +61 (0) 417 464 233

About Global Lithium

Global Lithium Resources Limited (ASX:GL1, Global Lithium) is a diversified West Australian lithium exploration and development company with multiple assets in key lithium branded jurisdictions with a primary focus on the 100% owned Manna Lithium Project in the Goldfields and the Marble Bar Lithium Project (MBLP) in the Pilbara region, Western Australia.

Global Lithium has now defined a total Indicated and Inferred Mineral Resource of 54Mt @ 1.09% Li₂O at its Manna and MBLP Lithium projects, confirming Global Lithium as a significant global lithium player.

Directors

Geoff Jones	Non-Executive Chair
Ron Mitchell	Managing Director
Dr Dianmin Chen	Non-Executive Director
Greg Lilleyman	Non-Executive Director
Hayley Lawrance	Non-Executive Director

Global Lithium – Mineral Resources

Project Name	Category	Million Tonnes (Mt)	Li ₂ O%	Ta₂O₅ ppm
Marble Bar	Indicated	3.8	0.97	53
	Inferred	14.2	1.01	50
	Subtotal	18.0	1.00	51
Manna	Indicated	20.2	1.12	56
	Inferred	15.8	1.14	52
	Subtotal	36.0	1.13	54
Combined Total		54.0	1.09	53

Page 9 of 24 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

Competent Persons Statement:

Exploration Results

The information in this announcement that relates to Exploration Results complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) and is based on, and fairly represents, information and supporting documentation prepared by Mr Logan Barber, a full time employee of Global Lithium Resources Limited and who participates in the Company's Incentive Performance Rights and Option Plan. Mr Barber is a member of the Australasian Institute of Geoscientists. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Barber consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Mineral Resources

Information on historical exploration results and Mineral Resources for the Manna Lithium Project presented in this announcement, together with JORC Table 1 information, is contained in an ASX announcement released on 26 July 2023.

Information on historical exploration results and Mineral Resources for the Marble Bar Lithium Project presented in this announcement is contained in an ASX announcement released on 15 December 2022

The Company confirms that it is not aware of any new information or data that materially affects the information in the relevant market announcements, and that the form and context in which the Competent Persons findings are presented have not been materially modified from the original announcements.

Where the Company refers to Mineral Resources for the Manna Lithium Project (MLP) and the Marble Bar Lithium Project in this announcement (referencing previous releases made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the Mineral Resource estimate in that announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons findings are presented have not materially changed from the original announcement.

Table 1. Manna Drilling Summary

Hole ID	Easting	Northing	RL	Dip	Azimuth	Total Depth
noie ib	(MGA51)	(MGA51)	(m)	(degrees)	(degrees)	(m)
MRC0241	455974	6585397	423	-60	322	247
MRC0241	455923	6585459	430	-60	323	144
MRC0242	456163	6585734	416	-60	320	164
MRC0255	456542	6585840	410	-60	320	174
MRC0255	456618	6585747	406	-61	320	384
MRC0258	456604	6585891	408	-59	322	160
MRC0259	456655	6585829	409	-60	320	348
MRC0260	456706	6585767	407	-61	319	440
MRC0263	456666	6585941	408	-58	325	160
MRC0264	456716	6585880	404	-59	324	301
MRC0265	456767	6585818	402	-60	322	460
MRC0266	455851	6585295	436	-60	320	162
MRC0269	455840	6585182	428	-60	320	229
MRC0275	455765	6585147	427	-61	321	248
MRC0285	455642	6585045	431	-60	318	280
MRC0298	455518	6584943	428	-59	321	260
MRC0341	456727	6585992	405	-60	322	163
MRC0342	456778	6585931	401	-60	323	169
MRC0353	455604	6584651	426	-60	320	108
MRC0354	455630	6584620	424	-60	320	198
MRC0355	455655	6584589	422	-60	320	240
MRC0357	455731	6584497	420	-60	320	348
MRC0358	455757	6584466	418	-60	320	204
MRC0360	455568	6584569	428	-60	320	84
MRC0361	455593	6584538	426	-60	320	198
MRC0363	455644	6584477	426	-60	320	318
MRC0376	455678	6584687	421	-60	320	118
MRC0377	455704	6584656	419	-60	320	160
MRC0378	455729	6584625	418	-60	320	208
MRC0379	455755	6584594	417	-60	320	244
MRC0380	455780	6584563	417	-60	320	300
MRC0381	455806	6584532	416	-60	320	200
MRC0383	455753	6584722	418	-60	320	120
MRC0384	455778	6584691	417	-60	320	180
MRC0385	455804	6584660	416	-60	320	240
MRC0386	455829	6584629	416	-60	320	284
MRC0387	455855	6584599	416	-60	320	318
MRC0388	455880	6584568	416	-60	320	360
MRC0389	455789	6584804	419	-60	320	82
MRC0390	455815	6584773	418	-60	320	142
MRC0391	455840	6584742	416	-60	320	184

Hole ID	Easting (MGA51)	Northing (MGA51)	RL (m)	Dip (degrees)	Azimuth (degrees)	Total Depth (m)
MRC0392	455866	6584711	415	-60	320	244
MRC0393	455891	6584680	415	-60	320	244
MRC0394	455917	6584649	415	-60	320	244
MRC0395	455942	6584619	415	-60	320	262
MRC0396	455820	6584829	419	-60	320	82
MRC0397	455851	6584855	418	-60	320	118
MRC0400	455927	6584762	415	-60	320	292
MRC0401	455953	6584731	414	-60	320	220
MRC0402	455978	6584700	414	-60	320	280

Table 2. Manna Significant Drillhole Intercepts⁽¹⁾

Hole_ID	Easting (MGA51)	Northing (MGA51)	From (m)	To (m)	Thickness (m)	Li2O (%)	Ta₂O₅ (ppm)
MRC0241	455974	6585397	21	24	3	0.86	92
MRC0241		and	196	200	4	1.05	86
MRC0249	456163	6585734	22	24	2	1.10	136
MRC0255	456542	6585840	42	44	2	1.01	110
MRC0255		and	53	60	7	0.37	55
MRC0256	456618	6585747	160	163	3	1.08	52
MRC0256		and	194	203	9	0.73	73
MRC0256		and	266	268	2	1.11	46
MRC0256		and	274	277	3	1.65	45
MRC0256		and	284	290	6	1.41	51
MRC0256		and	317	320	3	1.40	80
MRC0256		and	323	332	9	1.16	70
MRC0256		and	357	359	2	0.66	42
MRC0258	456604	6585891	25	30	5	1.08	145
MRC0258		and	48	52	4	0.99	119
MRC0258		and	56	62	6	1.34	108
MRC0259	456655	6585829	53	56	3	0.76	87
MRC0259		and	64	68	4	0.79	147
MRC0259		and	175	179	4	1.22	73
MRC0259		and	195	204	9	1.43	67
MRC0259		and	214	219	5	1.03	92
MRC0259		and	224	229	5	0.66	26
MRC0259		and	240	242	2	0.62	87
MRC0259		and	292	294	2	0.96	170
MRC0260	456706	6585767	309	320	11	1.03	41
MRC0260		and	351	357	6	1.23	47
MRC0260		and	364	380	16	0.92	31

Page 12 of 24 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

Hole_ID	Easting	Northing	From	То	Thickness	Li ₂ O	Ta₂O₅
	(MGA51)	(MGA51)	(m)	(m)	(m)	(%)	(ppm)
MRC0260		and	402	406	4	1.16	52
MRC0260		and	424	426	2	0.48	14
MRC0263	456666	6585941	5	7	2	0.59	178
MRC0263		and	74	79	5	0.42	63
MRC0264	456716	6585880	139	144	5	1.31	79
MRC0264		and	157	159	2	0.64	71
MRC0264		and	164	166	2	0.99	85
MRC0264		and	174	176	2	0.94	110
MRC0264		and	184	186	2	0.62	87
MRC0264		and	189	191	2	0.94	76
MRC0265	456767	6585818	273	275	2	0.56	80
MRC0265		and	304	311	7	1.12	26
MRC0265		and	320	324	4	0.63	47
MRC0265		and	328	338	10	1.00	27
MRC0265		and	353	363	10	0.90	43
MRC0265		and	418	421	3	1.21	31
MRC0266	455851	6585295	35	39	4	1.45	95
MRC0269	455840	6585182	116	118	2	0.62	59
MRC0269		and	133	138	5	1.07	72
MRC0275	455765	6585147	194	202	8	0.71	96
MRC0275		and	210	212	2	1.10	55
MRC0275		and	221	224	3	1.35	93
MRC0285	455642	6585045	239	241	2	0.62	62
MRC0298	455518	6584943	108	110	2	0.92	43
MRC0342	456778	6585931	87	89	2	0.86	107
MRC0342		and	105	109	4	1.49	116
MRC0342		and	132	139	7	1.24	84
MRC0354	455630	6584620	6	11	5	1.56	77
MRC0355	455655	6584589	64	72	8	1.05	51
MRC0355		and	108	113	5	0.55	22
MRC0357	455731	6584497	81	83	2	1.39	88
MRC0357		and	90	92	2	2.02	52
MRC0357		and	110	124	14	1.59	45
MRC0357		and	197	199	2	1.39	34
MRC0357		and	243	248	5	0.74	38
MRC0357		and	257	263	6	1.19	58
MRC0357		and	268	270	2	1.30	34
MRC0357		and	273	275	2	0.87	55
MRC0357		and	318	321	3	0.96	51
MRC0358	455757	6584466	119	121	2	0.89	61
MRC0358		and	137	140	3	1.184	43
MRC0358		and	145	154	9	1.38	47

Page 13 of 24 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

Hole_ID	Easting	Northing	From	То	Thickness	Li₂O	Ta₂O₅
	(MGA51)	(MGA51)	(m)	(m)	(m)	(%)	(ppm)
MRC0358		and	157	165	8	1.52	42
MRC0360	455568	6584569	19	25	6	0.55	48
MRC0360		and	63	66	3	0.78	60
MRC0361	455593	6584538	6	12	6	1.36	56
MRC0361		and	15	23	8	0.99	49
MRC0361		and	44	46	2	0.80	74
MRC0361		and	63	65	2	1.33	40
MRC0361		and	124	126	2	0.94	71
MRC0361		and	186	189	3	0.60	6
MRC0363	455644	6584477	32	34	2	1.18	35
MRC0363		and	64	72	8	0.59	22
MRC0363		and	82	86	4	0.56	33
MRC0363		and	90	93	3	1.48	44
MRC0363		and	103	114	11	0.58	25
MRC0363		and	171	176	5	1.23	52
MRC0363		and	213	220	7	1.07	55
MRC0377	455704	6584656	60	65	5	1.26	52
MRC0377		and	84	86	2	1.28	26
MRC0378	455729	6584625	8	11	3	1.34	94
MRC0378		and	128	136	8	1.68	62
MRC0379	455755	6584594	37	43	6	1.70	25
MRC0379		and	48	58	10	1.70	54
MRC0379		and	74	77	3	0.73	52
MRC0379		and	176	192	16	1.58	35
MRC0380	455780	6584563	72	79	7	1.44	36
MRC0380		and	97	109	12	1.55	48
MRC0380		and	124	130	6	0.50	27
MRC0380		and	229	240	11	1.96	44
MRC0381	455806	6584532	70	72	2	0.46	25
MRC0381		and	106	112	6	1.55	37
MRC0381		and	115	120	5	1.18	33
MRC0381		and	132	139	7	1.46	39
MRC0381		and	154	160	6	1.57	51
MRC0383	455753	6584722	64	76	12	1.12	56
MRC0384	455778	6584691	75	79	4	0.69	45
MRC0384		and	130	134	4	1.32	39
MRC0385	455804	6584660	10	12	2	0.62	27
MRC0385		and	26	39	13	1.74	44
MRC0385		and	56	60	4	0.76	46
MRC0385		and	136	138	2	0.86	111
MRC0385		and	164	168	4	1.27	50
MRC0386	455829	6584629	51	53	2	0.87	35

Page 14 of 24 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

Hole_ID	Easting	Northing	From	То	Thickness	Li₂O	Ta₂O₅
	(MGA51)	(MGA51)	(m)	(m)	(m)	(%)	(ppm)
MRC0386		and	66	71	5	1.28	31
MRC0386		and	75	82	7	1.85	45
MRC0386		and	127	129	2	0.70	56
MRC0386		and	190	199	9	1.43	45
MRC0386		and	269	272	3	1.15	67
MRC0387	455855	6584599	96	102	6	1.61	43
MRC0387		and	115	123	8	1.34	50
MRC0387		and	144	148	4	1.04	45
MRC0387		and	225	232	7	1.10	42
MRC0387		and	290	292	2	1.31	211
MRC0388	455880	6584568	122	127	5	0.84	35
MRC0388		and	140	151	11	1.70	49
MRC0388		and	168	171	3	1.17	40
MRC0388		and	187	191	4	1.31	55
MRC0388		and	265	273	8	1.55	37
MRC0389	455789	6584804	40	44	4	0.80	40
MRC0390	455815	6584773	94	97	3	1.70	30
MRC0391	455840	6584742	59	62	3	0.84	106
MRC0391	455840	6584742	144	149	5	1.34	43
MRC0392	455866	6584711	13	16	3	0.41	53
MRC0392		and	67	70	3	1.42	80
MRC0392		and	178	184	6	0.78	41
MRC0393	455891	6584680	68	72	4	1.57	29
MRC0393		and	76	81	5	0.85	12
MRC0393		and	104	111	7	0.85	48
MRC0393		and	136	144	8	0.60	36
MRC0394	455917	6584649	81	83	2	1.10	74
MRC0394		and	96	98	2	0.70	24
MRC0394		and	122	127	5	1.43	31
MRC0394		and	148	150	2	0.90	50
MRC0394		and	155	157	2	1.58	47
MRC0394		and	176	179	3	1.09	50
MRC0394		and	183	185	2	0.80	40
MRC0395	455942	6584619	137	141	4	1.55	44
MRC0395		and	166	168	2	0.83	41
MRC0395		and	181	184	3	0.48	12
MRC0395		and	216	220	4	0.64	26
MRC0395		and	227	238	11	1.52	43
MRC0396	455820	6584829	43	47	4	0.74	54
MRC0397	455851	6584855	57	63	6	1.78	61
MRC0400	455927	6584762	5	10	5	0.52	45
MRC0400		and	46	51	5	1.45	34

Page 15 of 24 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

Hole_ID	Easting (MGA51)	Northing (MGA51)	From (m)	To (m)	Thickness (m)	Li₂O (%)	Ta₂O₅ (ppm)
MRC0400		and	63	66	3	1.36	76
MRC0400		and	91	94	3	1.12	75
MRC0400		and	106	108	2	1.75	88
MRC0400		and	258	265	7	1.42	44
MRC0401	455953	6584731	48	50	2	1.07	32
MRC0401		and	64	70	6	0.64	28
MRC0401		and	100	105	5	1.55	39
MRC0401		and	111	114	3	1.73	52
MRC0401		and	151	154	3	0.64	49
MRC0401		and	157	161	4	1.14	39
MRC0402	455978	6584700	89	92	3	1.22	30
MRC0402		and	144	152	8	0.84	41
MRC0402		and	190	199	9	1.15	30

(1) **Table 2:** Significant intercepts calculated using a 0.4% Li₂O cut-off grade, minimum 2m thickness and widths including up to 2m internal dilution.

			-	-		
Hole ID	Easting (MGA50)	Northing (MGA50)	RL (m)	Dip (degrees)	Azimuth (degrees)	Total Depth (m)
MBRC0567	798743	7670216	420	-61	270	304
MBRC0568	798808	7670209	420	-61	275	178
MBRC0569	798884	7670214	420	-61	273	160
MBRC0570	798963	7670200	420	-61	274	178
MBRC0571	798338	7669209	420	-60	273	304
MBRC0572	798401	7669203	420	-60	273	160
MBRC0573	798469	7669216	420	-61	272	160
MBRC0574	798561	7669202	420	-61	275	172
MBRC0575	798642	7669204	420	-61	275	160
MBRC0576	798730	7669207	420	-60	274	178
MBRC0577	798747	7668808	420	-61	274	166
MBRC0578	798823	7668812	420	-60	276	166
MBRC0579	798904	7668808	420	-61	275	178
MBRC0580	798976	7668824	420	-60	273	160
MBRC0581	799064	7668800	420	-61	271	160
MBRC0582	799340	7668803	420	-61	272	160
MBRC0583	798730	7668410	420	-61	272	166
MBRC0584	798811	7668408	420	-61	271	196
MBRC0585	798896	7668409	420	-60	272	142
MBRC0586	798972	7668411	420	-61	271	166
MBRC0587	799047	7668410	420	-61	269	160

Page 16 of 24 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

Hole ID	Easting (MGA50)	Northing (MGA50)	RL (m)	Dip (degrees)	Azimuth (degrees)	Total Depth (m)
					(
MBRC0588	799128	7668410	420	-61	274	166
MBRC0589	799240	7668413	420	-61	270	160
MBRC0590	799314	7668417	420	-61	269	160
MBRC0591	798614	7667308	420	-60	272	250
MBRC0592	798642	7668090	420	-61	273	190
MBRC0593	798685	7667306	420	-60	272	160
MBRC0594	798764	7667311	420	-60	271	160
MBRC0595	798850	7667305	420	-61	270	160
MBRC0596	798928	7667311	420	-61	272	178
MBRC0597	799007	7667309	420	-61	271	172
MBRC0598	799085	7667310	420	-61	271	166
MBRC0599	799164	7667308	420	-61	270	142
MBRC0600	799243	7667307	420	-61	271	172
MBRC0601	798667	7666894	420	-61	270	316
MBRC0602	799140	7666008	420	-59	272	160
MBRC0603	799137	7665845	420	-60	270	160
MBRC0604	799222	7665844	420	-61	271	166
MBRC0605	799164	7665686	420	-60	271	162
MBRC0606	799080	7665682	420	-60	272	162
MBRC0607	799120	7665521	420	-60	270	162
MBRC0608	802558	7680192	420	-60	32	250
MBRC0609	802439	7680421	420	-60	30	162
MBRC0610	802470	7680497	420	-60	34	180
MBRC0611	802815	7680637	420	-60	31	198
MBRC0612	802853	7680698	420	-58	31	180
MBRC0613	802996	7680932	420	-61	29	208
MBRC0614	802991	7680928	420	-81	31	202
MBRC0615	802539	7681008	420	-61	2	124
MBRC0616	802576	7680987	420	-61	2	136
MBRC0617	802666	7681049	420	-60	3	130
MBRC0618	802485	7681028	420	-60	1	126
MBRC0619	802663	7681006	420	-59	0	178
MBRC0620	802369	7681105	420	-60	358	168
MBRC0621	802664	7680970	420	-60	2	172
MBRC0622	802369	7681065	420	-59	359	120
MBRC0623	802347	7681027	420	-60	1	120
MBRC0624	803481	7680953	420	-59	28	180
MBRC0625	803345	7680733	420	-60	30	186
MBRC0626	802700	7681000	420	-61	360	160
MBRC0627	802664	7680913	420	-60	360	160
MBRC0628	800825	7680408	420	-61	359	82

Hole ID	Easting (MGA50)	Northing (MGA50)	RL (m)	Dip (degrees)	Azimuth (degrees)	Total Depth (m)
MBRC0629	800825	7680371	420	-61	2	124
MBRC0630	801126	7680310	420	-60	359	84
MBRC0631	801121	7680269	420	-61	1	120
MBRC0632	802252	7679773	420	-60	28	160
MBRC0633	802434	7679207	420	-60	358	162
MBRC0634	803020	7679530	420	-61	3	160
MBRC0635	802691	7680381	420	-60	32	226
MBRC0636	802604	7680269	420	-61	29	252

Table 4. Marble Bar Au Significant Drillhole Intercepts⁽²⁾

Hole_ID	Easting	Northing	From	То	Thickness	Au	Ag
	(MGA50)	(MGA50)	(m)	(m)	(m)	(ppm)	(ppm)
MBRC0608	802558	7680192	220	224	4	0.53	16.8
MBRC0615	802539	7681008	77	78	1	0.94	0.8
MBRC0615	802539	7681008	83	85	2	0.57	0.3
MBRC0616	802576	7680987	101	102	1	1.61	1.2
MBRC0617	802666	7681049	20	21	1	0.53	1.6
MBRC0617	802666	7681049	24	32	8	1.05	1.8
MBRC0618	802485	7681028	14	20	6	1.62	1.5
MBRC0619	802663	7681006	73	75	2	0.69	1
MBRC0619	802663	7681006	86	90	4	4.85	72.4
MBRC0620	802369	7681105	54	55	1	0.9	2
MBRC0621	802664	7680970	101	102	1	1.42	2
MBRC0621	802664	7680970	118	123	5	3.94	2.6
MBRC0623	802347	7681027	49	52	3	8.90	3.9
MBRC0626	802700	7681000	70	71	1	3.2	14.5
MBRC0627	802664	7680913	78	79	1	0.98	0.9
MBRC0627	802664	7680913	89	90	1	1.19	0.8
MBRC0629	800825	7680371	36	40	4	1.16	0.3
MBRC0629	800825	7680371	50	52	2	1.31	0.3
MBRC0629	800825	7680371	67	69	2	1.16	0.3
MBRC0629	800825	7680371	72	76	4	0.85	0.7

(2) **Table 4:** Significant intercepts calculated using a 0.5ppm Au cut-off grade, minimum 1m thickness and widths including up to 2m internal dilution.

JORC Code, 2012 Edition – Table 1 Report

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC drillholes were drilled/sampled under supervision of a geologist. RC samples were cone split in 1 m intervals to produce a ~2 to 3 kg sample. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. Diamond Core samples were taken, generally on 1 m intervals or on geological boundaries where appropriate (minimum 0.4 m to maximum of 1.2 m). Diamond drilling was undertaken to produce core for geological logging, assaying and future metallurgical test work. Samples for lithium analysis were crushed and riffle split to 2 to 2.5 kg for pulverising to 85% passing 75 microns. For lithium analysis prepared samples are fused with sodium peroxide and digested in dilute hydrochloric acid. The resultant solution is analysed by ICP by Jinning Testing and Inspection Laboratory in Perth. The assay technique is considered to be robust as the method used offers total dissolution of the sample and is useful for mineral matrices that may resist acid digestions. Samples for Gold and multielement analysis were crushed and riffle split to 2 to 2.5 kg for pulverising to 85% passing 75 microns.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC drilling was undertaken by Profile Drilling or K-Drill using 4.5-inch (140 mm) rods using a 5.5-inch (150 mm) diameter face sampling hammer. All reported RC drill holes collar and survey details noted in the drilling statistics presented in Table 1. Manna diamond drilling was undertaken by DDUI Drilling with 100 m MO line to the second second

DDH1 Drilling using HQ3 or NQ diameters.

Criteria	JORC Code explanation	Commentary
		 Core was orientated using a Reflex ACT III digital core orientation tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample chip recovery for RC drilling was visually estimated. Sample chip recovery is very good through the interpreted mineralised zones and is estimated to be greater than 80%. RC drilling utilised an on-board compressor and auxiliary booster to keep samples dry and maximise recoveries. The diamond drill core recovered is physically measured by tape measure and the length recovered is recorded for every run. Core recovery is calculated as a percentage recovery. This is confirmed by Company geologists during core orientation activities on site. Average recovery is over 95%. No relationship between grade and recovery has been identified.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logs exist for all drill holes with lithological codes via an established reference legend. Logging and sampling has been carried out to industry standards to support a Mineral Resource Estimate. Drill holes have been geologically logged in their entirety. Where logging was detailed, the subjective indications of spodumene content were estimated and recorded. All drill holes were logged in full, from start to finish of the hole.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Dry RC samples were collected at 1 m intervals and cone split from the rig cyclone on-site to produce a subsample less than 3 kg. Quarter Core samples were taken, generally on 1 m intervals or on geological boundaries where appropriate (minimum 0.4 m to maximum of 1.2 m). Sample preparation is according to industry standards, including oven drying, coarse crush, and pulverisation to 85% passing 75 microns. Field duplicate samples, field standards, laboratory standards and laboratory repeats were used to monitor quality of analyses. Sample sizes are considered to be appropriate and correctly represent the style and type of mineralisation. Rock chip samples were taken whole to the laboratory, crushed and riffled to obtain a sub-fraction and assayed using the same lab.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The industry standard assay techniques are considered to be robust as the methods used offers near (4-Acid) to total dissolution (Sodium Peroxide Fusion) of the samples. For lithium exploration drilling field inserted standards are utilised for 1 sample in every 50. For lithium exploration drilling field duplicate samples are taken for 1 sample in every 50. For infill drilling field inserted standards are utilised for 2 sample in every 50. For infill drilling field duplicate samples are taken for 1 sample in every 50. For infill drilling field duplicate samples are taken for 1 sample in every 50. For infill drilling field blank samples are taken for 1 sample in every 50.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The 2023 RC and diamond drilling programs are supervised by Global Lithium staff. Significant assay results are verified against visual logs by site supervisors. There were no twin holes drilled during the RC/diamond program in 2023. Primary data is captured by Coreplan and utilising excel. All data are exported to an external Database Administrator, validated, and loaded to a database and validated prior to use. No adjustments made to primary assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Prior to drilling, collar coordinates are situated using handheld GPS (considered accurate to within 3 m). DGPS collar surveying is completed post program to improve accuracy. For the Marble Bar Project the grid used is GDA94z50 For the Manna Project the grid used is GDA94z51. All holes have been surveyed with an Axis Champ north seeking gyro to determine hole deviation.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 At Manna exploration drilling has been drilled on a grid pattern. Drill spacing generally varies between a 80x80m to 40m x 80m grid in selected areas. A 40x40m grid is currently being drilled over the central deposit area. Exploration holes targeting specific geochemical, outcrops or structural targets are not on a uniform grid spacing. Historic Breaker resources drilling undertaken was widely spaced across separate lines targeting outcrop and geochemical anomalies. At Marble Bar drill hole traverses were used with

Page 21 of 24 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 drilling purely exploratory in nature. Drilling has been angled to achieve the most representative (near perpendicular) intersections through mineralisation (i.e. angled holes for moderately dipping pegmatite bodies). The identified target lithium bearing pegmatite dykes are generally steeply dipping (70° to 85°) Southeast in nature. The true width of pegmatites is generally considered 80% to 90% of the intercept width, with minimal opportunity for sample bias.
Sample security	The measures taken to ensure sample security.	• The drill samples were collected from the drilling rig by experienced personnel, stored securely and transported directly to the laboratory.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits have been undertaken to date.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 At the Manna Project the drilling is located on tenement E28/2522, which is held 100% Global Lithium. Precious Metals rights are held by Ramelius Resources. There is no royalty covering the current lithium resource or extensional drilling. There are no material interests or issues associated with the tenement. The tenement is in good standing and no known impediments exist.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Global Lithium Limited acquired an 100% of the Manna Lithium Project from Breaker Resources on 25 October 2022. Initial drill holes at the Marble Bar Project were drilled by BCI Minerals.
Geology	 Deposit type, geological setting and style of mineralisation. 	• The pegmatites are LCT type lithium bearing- pegmatites for both projects.
Drillhole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth 	 Diagrams in the announcement show the location of and distribution of drillholes in relation to both of the Mineral Resources.

	hole length.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. No weighting or cut-off values were used other than where stated.
Relationship between mineralisation widths and intercept lengths	 If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). Pegmatite orientation interpretation is at a reasonably high level due to the proximity and number of drill holes. Drilling angle is oriented across the pegmatite trend although significant intersections should not be considered true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Plan view drillhole collar maps have been included in the announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. For Marble Bar lithium drilling results a peak Li2O result and general range are quoted. These results are considered low grade and not significant. Significant Gold results at Marble Bar have been calculated using a 0.5ppm Au cut-off grade, minimum 1m thickness and widths including up to 2m internal dilution. Significant Lithium results at Manna have been calculated using a 0.4% Li2O cut-off grade, minimum 2m thickness and widths including up to 2m internal dilution.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. None reported. None reported.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Additional drilling is planned for extension and infill of the existing mineral resource at Manna. Further exploratory drilling surrounding the existing mineral resource at Marble Bar will be planned.

Page 23 of 24 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

the Twin Veins gold occurrence and its potential upside will occur subordinately to the development of the MLP and ongoing lithium exploration at the MBLP.

Page 24 of 24 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au