

# HIGH-GRADE DRILLING RESULTS CONTINUE AT MANNA

# Best drill intercept to date of 26m @ 1.53% Li<sub>2</sub>O

# Key Highlights

• Over 60,000m of Reverse Circulation (RC) and Diamond Drilling (DD) has been completed at GL1's Manna Lithium Project during 2023.

# Manna Central

- Resource infill drilling at the Manna Central resource area continues to demonstrate continuity and deliver high-grade infill drilling results including;
  - MRC0290
  - 26m @ 1.53% Li<sub>2</sub>O from 249m
  - MRC0306
    - 15m @ 1.58% Li<sub>2</sub>O from 251m
  - MRC0356
    - 13m @ 1.34% Li₂O from 75m and,
    - 9m @ 1.59% Li₂O from 217m

- MRC0359
- 10m @ 1.35% Li₂O from 163m
- MRC0364
  - 10m @ 1.49% Li<sub>2</sub>O from 125m
  - 10m @ 1.23% Li₂O from 258m
- Key sections of the central Manna resource are now infilled to a 40 x 40m spacing to support mine planning and Mineral Resource Estimate (MRE) update.

# Manna North

ASX:GL1

- Drilling in the Manna north-eastern extension area has intersected significant intercepts outside of the current resource, with this drilling extending mineralisation, including;
  - MRC0236
    - 10m @ 1.61% Li<sub>2</sub>O from 317m
  - MRC0257
    - 8m @ 1.19% Li₂O from 378m
    - 10m @ 1.14% Li₂O from 417m

- MRC0252
- 22m @ 1.03% Li<sub>2</sub>O from 461m
- MRC0261
  - 15m @ 1.11% Li<sub>2</sub>O from 468m
- Assays results from drilling targeted to confirm shallow extensions of mineralisation along strike to the northeast are pending.
- Separate underground mine study underway focussing on the Manna North lithium mineralisation.

# Manna South

- Step out exploration drilling suggests a potential new zone of mineralised pegmatite under cover to the southwest of the Manna Central resource area.
  - MRC0339
    - 4m @ 0.64% Li₂O from 137m
    - 6m @ 0.79% Li₂O from 146m
    - 3m @ 1.05% Li₂O from 155m
    - 6m @ 0.93% Li₂O from 161m
    - 11m @ 0.64% Li<sub>2</sub>O from 173m
- Follow up drilling to target up dip and strike extensions is planned for 2024.

# Pending results

- Complete assay results expected during Q1 2024, to be included in the Manna Definitive Feasibility Study (DFS).
- The 2023 exploration program drilled 221 holes with ~25,000 samples being sent for analysis. Currently 92 holes comprising ~9,500 sample assay results are still outstanding.

Established multi-asset West Australian lithium company, Global Lithium Resources Limited (**ASX: GL1**, "**Global Lithium**" or "the **Company**") is pleased to report further high-grade results from the recently completed resource infill and expansion drilling program at the Company's **100% owned Manna Lithium Project**, located 100km east of Kalgoorlie in the Goldfields region.

After a successful year completing over 60,000m of RC and diamond drilling, positive assay results continue to be received.

# Manna Central area

Drilling in the central Manna pegmatite zone continues to deliver high grade infill results which will be incorporated into a MRE update in early 2024. Significant results from the infill drilling of the Manna central area include;

- 26m @ 1.53% Li₂O from 249m in MRC0290
- 15m @ 1.58% Li₂O from 251m in MRC0306
- 13m @ 1.34% Li<sub>2</sub>O from 75m in MRC0356
- 16m @ 1.57% Li₂O from 176m in MRC0379<sup>1</sup>
- 13m @ 1.73% Li<sub>2</sub>O from 26m in MRC0385<sup>1</sup>
- 14m @ 1.59% Li₂O from 110m in MRC0357<sup>1</sup>
- 1. Previously announced in ASX Announcement October 26, 2023. MANNA DRILLING DELIVERS FURTHER HIGH-GRADE RESULTS

These results continue to confirm the internal continuity of the mineralisation and help to increase the confidence within the resource area. The 2023 drill program infilled a significant portion of the known



resource area to a spacing of 40 x 40m. This infill drilling was designed to support technical studies, pending resource update and to coincide with the potential initial stages of open pit mining. The central Manna pegmatite zone has currently been tested over a 1.4km strike and to a vertical depth of 450m (Figure 2).

## Manna North extension

Drilling at the Manna northeast extension area has confirmed that mineralisation remains open down dip and along strike. Drilling indicates that the northeastern Manna zone hosts multiple spodumene bearing pegmatite sheets with drill hole intercepts >1%  $Li_2O$  of up to 22m downhole width. This area has been drilled on an 80 x 80m spacing over a strike length of 1.7km and to a vertical depth of 450m (Figure 3).

Importantly assay results from drilling that was designed to target shallow extensions of mineralisation along strike to the northeast are still pending (Figure 3).

## Manna South extension

Early results from the 2023 drill program have identified a potential new zone of mineralisation located to the southwest of the central Manna area (Figure 4). Results received from hole MRC0339, indicate that mineralisation may extend under cover to the southwest from the central Manna pegmatite zone. These early results continue to demonstrate the potential of the Manna Lithium Project for further discoveries. Follow up targeted drilling is planned for 2024 to test up dip and along strike.

In total the Manna pegmatites have, so far, returned grades >1%  $Li_2O$  over a strike length of 3.2km and down to a vertical depth of 450m.

Due to the success of the current program, further step out drilling and testing of target areas away from the main Manna resource is planned in H1 CY24.

# Global Lithium Exploration Manager, Logan Barber commented,

"The Manna Lithium Project is demonstrating significant potential for further extensions to the main resource area. The current resource is still open along strike, to the SW and NE, and in areas at depth. We look forward to receiving further assay results over the coming months to feed into an updated Mineral Resource Estimate, which will form part of the Manna DFS results. We are also progressing plans for further exploration drilling in 2024 with the aim of better understanding the full potential of the Manna Lithium Deposit."

The Manna Lithium Project currently hosts a Mineral Resource of **36.0Mt @ 1.13% Li<sub>2</sub>O<sup>1</sup>**.

1. ASX Announcement July 26, 2023. Manna Lithium Project Resource Grows





Figure 1. Manna Project showing all RC and DD drill collars with select new significant intercepts.





**Figure 2.** Long section A-A' through the central zone of the Manna lithium deposit looking northwest with new significant Li<sub>2</sub>O intercepts.



**Figure 3.** Long section B-B' through the northeastern zone of the Manna lithium deposit looking northwest with new significant Li<sub>2</sub>O intercepts.





Figure 4. Cross section C-C' through the Manna lithium deposit with significant Li<sub>2</sub>O intercepts.



Figure 5. Cross section D-D' through the Manna lithium deposit with significant Li<sub>2</sub>O intercepts.



Page 6 of 21 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au





**Figure 6.** Tenements held within the 100% owned Manna Lithium Project, including surrounding strategic alliance with Kairos Minerals (GL1 direct and indirect Manna landholding has increased 280% from January 2023 and now covers 700km<sup>2</sup>).

Approved by the board of Global Lithium Resources Limited.

For more information:

Ron Mitchell Managing Director info@globallithium.com.au +61 8 6103 7488 Ben Creagh Media & Investor Relations ben@nwrcommunications.com.au +61 (0) 417 464 233

## **About Global Lithium**

Global Lithium Resources Limited (ASX:GL1, Global Lithium) is a diversified West Australian lithium exploration and development company with multiple assets in key lithium branded jurisdictions with a primary focus on the 100% owned Manna Lithium Project in the Goldfields and the Marble Bar Lithium Project (MBLP) in the Pilbara region, Western Australia.

Global Lithium has now defined a total Indicated and Inferred Mineral Resource of 54Mt @ 1.09% Li<sub>2</sub>O at its Manna and MBLP Lithium projects, confirming Global Lithium as a significant global lithium player.

## Directors

| Geoff Jones     | Non-Executive Chair    |
|-----------------|------------------------|
| Ron Mitchell    | Managing Director      |
| Dr Dianmin Chen | Non-Executive Director |
| Greg Lilleyman  | Non-Executive Director |
| Hayley Lawrance | Non-Executive Director |
|                 |                        |



### **Global Lithium – Mineral Resources**

| Project Name   | Category  | Million Tonnes | Li <sub>2</sub> O% | Ta₂O₅ ppm |
|----------------|-----------|----------------|--------------------|-----------|
|                |           |                |                    |           |
| Marble Bar     | Indicated | 3.8            | 0.97               | 53        |
|                | Inferred  | 14.2           | 1.01               | 50        |
|                | Subtotal  | 18.0           | 1.00               | 51        |
|                |           |                |                    |           |
| Manna          | Indicated | 20.2           | 1.12               | 56        |
|                | Inferred  | 15.8           | 1.14               | 52        |
|                | Subtotal  | 36.0           | 1.13               | 54        |
|                |           |                |                    |           |
| Combined Total |           | 54.0           | 1.09               | 53        |

#### Competent Persons Statement:

#### Exploration Results

The information in this announcement that relates to Exploration Results for the Manna Lithium Project complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) and is based on, and fairly represents, information and supporting documentation prepared by Mr Logan Barber, a full time employee of Global Lithium Resources Limited and who participates in the Company's Incentive Performance Rights and Option Plan. Mr Barber is a member of the Australasian Institute of Geoscientists. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Barber considers that the information in the market announcement is an accurate representation of the available data and studies for the mining project. Mr Barber consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

#### Mineral Resources

Information on historical exploration results and Mineral Resources for the Manna Lithium Project presented in this announcement, together with JORC Table 1 information, is contained in an ASX announcement released on 26 July 2023.

Information on historical exploration results and Mineral Resources for the Marble Bar Lithium Project presented in this announcement is contained in an ASX announcement released on 15 December 2022

The Company confirms that it is not aware of any new information or data that materially affects the information in the relevant market announcements, and that the form and context in which the Competent Persons findings are presented have not been materially modified from the original announcements.

Where the Company refers to Mineral Resources for the Manna Lithium Project (MLP) and the Marble Bar Lithium Project in this announcement (referencing previous releases made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the Mineral Resource estimate in that announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons findings are presented have not materially changed from the original announcement.



# Table 1. Manna Drilling Summary

| Hole ID | Easting | Northing | RL  | Dip       | Azimuth   | Total Depth |
|---------|---------|----------|-----|-----------|-----------|-------------|
|         | (MGA51) | (MGA51)  | (m) | (degrees) | (degrees) | (m)         |
| MRC0236 | 455999  | 6585106  | 417 | -60       | 320       | 450         |
| MRC0237 | 455995  | 6585246  | 418 | -59       | 318       | 222         |
| MRC0239 | 456078  | 6585270  | 414 | -60       | 318       | 384         |
| MRC0240 | 456026  | 6585320  | 418 | -60       | 319       | 300         |
| MRC0252 | 456544  | 6585583  | 412 | -59       | 320       | 504         |
| MRC0257 | 456665  | 6585685  | 403 | -60       | 319       | 474         |
| MRC0261 | 456754  | 6585705  | 401 | -59       | 319       | 504         |
| MRC0270 | 455884  | 6585123  | 428 | -61       | 321       | 328         |
| MRC0286 | 455695  | 6584982  | 438 | -60       | 317       | 360         |
| MRC0290 | 455980  | 6584631  | 414 | -60       | 321       | 510         |
| MRC0296 | 455933  | 6584564  | 415 | -60       | 319       | 516         |
| MRC0302 | 455900  | 6584097  | 429 | -61       | 319       | 341         |
| MRC0304 | 455740  | 6583912  | 430 | -59       | 318       | 378         |
| MRC0306 | 455844  | 6584416  | 418 | -61       | 319       | 510         |
| MRC0307 | 455428  | 6583552  | 438 | -60       | 321       | 236         |
| MRC0319 | 454879  | 6583766  | 435 | -60       | 319       | 192         |
| MRC0339 | 454608  | 6584038  | 432 | -61       | 320       | 248         |
| MRC0348 | 455135  | 6583517  | 441 | -60       | 320       | 247         |
| MRC0351 | 454827  | 6583834  | 437 | -61       | 325       | 168         |
| MRC0352 | 454924  | 6583711  | 434 | -60       | 319       | 273         |
| MRC0355 | 455649  | 6584588  | 422 | -60       | 317       | 240         |
| MRC0356 | 455703  | 6584522  | 423 | -61       | 319       | 318         |
| MRC0359 | 455732  | 6584437  | 419 | -60       | 321       | 210         |
| MRC0362 | 455619  | 6584507  | 424 | -60       | 322       | 204         |
| MRC0364 | 455665  | 6584447  | 424 | -60       | 318       | 360         |
| MRC0365 | 455693  | 6584417  | 423 | -60       | 317       | 204         |
| MRC0366 | 455663  | 6584391  | 419 | -61       | 324       | 234         |
| MRC0367 | 455503  | 6584518  | 424 | -60       | 321       | 84          |
| MRC0368 | 455530  | 6584482  | 424 | -61       | 318       | 168         |
| MRC0370 | 455576  | 6584433  | 421 | -60       | 315       | 288         |
| MRC0371 | 455607  | 6584395  | 420 | -60       | 316       | 330         |
| MRC0372 | 455459  | 6584455  | 423 | -60       | 324       | 120         |
| MRC0373 | 455479  | 6584423  | 422 | -60       | 319       | 216         |
| MRC0374 | 455506  | 6584390  | 420 | -60       | 319       | 288         |
| MRC0375 | 455535  | 6584357  | 419 | -59       | 322       | 348         |
| MRC0398 | 455878  | 6584820  | 416 | -60       | 323       | 184         |
| MRC0399 | 455903  | 6584797  | 415 | -60       | 319       | 220         |
| MRC0403 | 456000  | 6584669  | 414 | -59       | 322       | 334         |
| MRC0404 | 455893  | 6584924  | 420 | -61       | 323       | 274         |
| MRC0406 | 455949  | 6584858  | 414 | -60       | 319       | 232         |
| MRC0407 | 455972  | 6584828  | 413 | -61       | 321       | 274         |





| Hole ID  | Easting<br>(MGA51) | Northing<br>(MGA51) | RL<br>(m) | Dip<br>(degrees) | Azimuth<br>(degrees) | Total Depth<br>(m) |
|----------|--------------------|---------------------|-----------|------------------|----------------------|--------------------|
| MRC0408  | 455999             | 6584797             | 413       | -61              | 322                  | 244                |
| MRC0409  | 456023             | 6584766             | 413       | -60              | 320                  | 280                |
| MRC0410  | 456049             | 6584736             | 413       | -60              | 318                  | 322                |
| MRC0411  | 455972             | 6584955             | 415       | -60              | 321                  | 154                |
| MRC0412  | 455997             | 6584924             | 414       | -60              | 317                  | 106                |
| MRC0413  | 456022             | 6584895             | 413       | -60              | 322                  | 172                |
| MRC0414  | 456045             | 6584864             | 412       | -60              | 311                  | 202                |
| MRC0415  | 456072             | 6584830             | 412       | -61              | 323                  | 286                |
| MRC0416  | 456053             | 6584987             | 413       | -61              | 318                  | 136                |
| MRC0417  | 456075             | 6584963             | 411       | -61              | 313                  | 166                |
| MRC0418  | 456100             | 6584929             | 411       | -60              | 317                  | 184                |
| MRC0419  | 456126             | 6584903             | 410       | -61              | 321                  | 244                |
| MRC0420  | 456081             | 6585016             | 411       | -61              | 322                  | 124                |
| MRCD0060 | 455785             | 6584746             | 418       | -61              | 323                  | 634.05             |
| MRCD0068 | 456105             | 6584989             | 410       | -61              | 320                  | 685.06             |
| MRCD0071 | 456282             | 6585027             | 408       | -61              | 321                  | 796.07             |
| MRCD0162 | 455917             | 6584960             | 418       | -60              | 323                  | 618.63             |
| MDD0038  | 455968             | 6584528             | 416       | -60              | 320                  | 401.93             |

Table 2. Manna Significant Drillhole Intercepts<sup>(1)</sup>

| Hole_ID | Easting<br>(MGA51) | Northing<br>(MGA51) | From<br>(m) | То<br>(m) | Thickness<br>(m) | Li₂O<br>(%) | Ta₂O₅<br>(ppm) |
|---------|--------------------|---------------------|-------------|-----------|------------------|-------------|----------------|
| MRC0236 | 455999             | 6585106             | 262         | 267       | 5                | 0.95        | 70             |
| MRC0236 | 455999             | 6585106             | 294         | 296       | 2                | 0.78        | 59             |
| MRC0236 | 455999             | 6585106             | 304         | 306       | 2                | 0.49        | 42             |
| MRC0236 | 455999             | 6585106             | 314         | 324       | 10               | 1.61        | 41             |
| MRC0237 | 455995             | 6585246             | 98          | 104       | 6                | 1.33        | 88             |
| MRC0237 | 455995             | 6585246             | 107         | 110       | 3                | 1.12        | 75             |
| MRC0237 | 455995             | 6585246             | 179         | 184       | 5                | 0.93        | 45             |
| MRC0239 | 456078             | 6585270             | 130         | 132       | 2                | 1.12        | 65             |
| MRC0239 | 456078             | 6585270             | 156         | 161       | 5                | 1.82        | 53             |
| MRC0239 | 456078             | 6585270             | 167         | 172       | 5                | 1.51        | 63             |
| MRC0240 | 456026             | 6585320             | 59          | 71        | 12               | 0.94        | 57             |
| MRC0240 | 456026             | 6585320             | 194         | 196       | 2                | 1.00        | 84             |
| MRC0240 | 456026             | 6585320             | 265         | 267       | 2                | 1.02        | 54             |
| MRC0240 | 456026             | 6585320             | 270         | 272       | 2                | 1.26        | 78             |
| MRC0252 | 456544             | 6585583             | 255         | 257       | 2                | 0.85        | 45             |
| MRC0252 | 456544             | 6585583             | 306         | 312       | 6                | 0.86        | 47             |
| MRC0252 | 456544             | 6585583             | 326         | 328       | 2                | 0.71        | 48             |
| MRC0252 | 456544             | 6585583             | 343         | 347       | 4                | 1.08        | 44             |

Page 11 of 21 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au



| Hole_ID | Easting  | Northing  | From  | To<br>(m) | Thickness | Li <sub>2</sub> O | Ta <sub>2</sub> O <sub>5</sub> |
|---------|----------|-----------|-------|-----------|-----------|-------------------|--------------------------------|
|         | (INGASI) | (IVIGASI) | (111) | (111)     | (111)     | (70)              | (ppm)                          |
| MRC0252 | 456544   | 6585583   | 350   | 356       | 6         | 0.61              | 35                             |
| MRC0252 | 456544   | 6585583   | 364   | 368       | 4         | 0.97              | 53                             |
| MRC0252 | 456544   | 6585583   | 416   | 418       | 2         | 0.70              | 27                             |
| MRC0252 | 456544   | 6585583   | 446   | 450       | 4         | 0.89              | 30                             |
| MRC0252 | 456544   | 6585583   | 461   | 483       | 22        | 1.03              | 27                             |
| MRC0257 | 456665   | 6585685   | 378   | 386       | 8         | 1.19              | 34                             |
| MRC0257 | 456665   | 6585685   | 417   | 427       | 10        | 1.14              | 37                             |
| MRC0257 | 456665   | 6585685   | 431   | 438       | 7         | 1.00              | 36                             |
| MRC0257 | 456665   | 6585685   | 448   | 453       | 5         | 0.57              | 28                             |
| MRC0261 | 456754   | 6585705   | 468   | 483       | 15        | 1.11              | 38                             |
| MRC0261 | 456754   | 6585705   | 491   | 495       | 4         | 1.31              | 56                             |
| MRC0270 | 455884   | 6585123   | 194   | 196       | 2         | 0.79              | 123                            |
| MRC0270 | 455884   | 6585123   | 200   | 202       | 2         | 0.94              | 78                             |
| MRC0270 | 455884   | 6585123   | 236   | 238       | 2         | 0.90              | 99                             |
| MRC0270 | 455884   | 6585123   | 254   | 262       | 8         | 1.50              | 45                             |
| MRC0286 | 455695   | 6584982   | 319   | 322       | 3         | 0.74              | 71                             |
| MRC0290 | 455980   | 6584631   | 165   | 169       | 4         | 1.18              | 32                             |
| MRC0290 | 455980   | 6584631   | 196   | 199       | 3         | 0.98              | 31                             |
| MRC0290 | 455980   | 6584631   | 232   | 236       | 4         | 0.95              | 49                             |
| MRC0290 | 455980   | 6584631   | 249   | 275       | 26        | 1.53              | 38                             |
| MRC0296 | 455933   | 6584564   | 175   | 179       | 4         | 1.22              | 23                             |
| MRC0296 | 455933   | 6584564   | 190   | 196       | 6         | 0.96              | 29                             |
| MRC0296 | 455933   | 6584564   | 239   | 243       | 4         | 0.86              | 46                             |
| MRC0296 | 455933   | 6584564   | 250   | 260       | 10        | 0.99              | 43                             |
| MRC0302 | 455900   | 6584097   | 279   | 281       | 2         | 0.67              | 34                             |
| MRC0304 | 455740   | 6583912   | 308   | 311       | 3         | 0.86              | 42                             |
| MRC0306 | 455844   | 6584416   | 194   | 196       | 2         | 0.44              | 0                              |
| MRC0306 | 455844   | 6584416   | 204   | 212       | 8         | 0.43              | 16                             |
| MRC0306 | 455844   | 6584416   | 234   | 239       | 5         | 0.68              | 32                             |
| MRC0306 | 455844   | 6584416   | 242   | 246       | 4         | 1.52              | 32                             |
| MRC0306 | 455844   | 6584416   | 251   | 266       | 15        | 1.58              | 39                             |
| MRC0306 | 455844   | 6584416   | 322   | 327       | 5         | 1.20              | 45                             |
| MRC0306 | 455844   | 6584416   | 435   | 437       | 2         | 1.12              | 22                             |
| MRC0306 | 455844   | 6584416   | 440   | 443       | 3         | 0.99              | 58                             |
| MRC0307 | 455428   | 6583552   | 19    | 28        | 9         | 1.14              | 50                             |
| MRC0319 | 454879   | 6583766   | 31    | 42        | 11        | 1.19              | 43                             |
| MRC0319 | 454879   | 6583766   | 60    | 62        | 2         | 0.67              | 39                             |
| MRC0319 | 454879   | 6583766   | 76    | 79        | 3         | 0.41              | 50                             |
| MRC0319 | 454879   | 6583766   | 89    | 95        | 6         | 0.84              | 16                             |
| MRC0319 | 454879   | 6583766   | 99    | 101       | 2         | 0.66              | 34                             |
| MRC0319 | 454879   | 6583766   | 124   | 126       | 2         | 0.65              | 62                             |
| MRC0319 | 454879   | 6583766   | 134   | 138       | 4         | 0.52              | 66                             |

Page 12 of 21 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au



| Hole_ID | Easting | Northing | From | То  | Thickness | Li <sub>2</sub> O | Ta₂O₅ |
|---------|---------|----------|------|-----|-----------|-------------------|-------|
|         | (MGA51) | (MGA51)  | (m)  | (m) | (m)       | (%)               | (ppm) |
| MRC0319 | 454879  | 6583766  | 150  | 154 | 4         | 1.10              | 56    |
| MRC0319 | 454879  | 6583766  | 162  | 168 | 6         | 0.57              | 25    |
| MRC0339 | 454608  | 6584038  | 36   | 38  | 2         | 0.72              | 47    |
| MRC0339 | 454608  | 6584038  | 68   | 70  | 2         | 0.71              | 39    |
| MRC0339 | 454608  | 6584038  | 137  | 141 | 4         | 0.64              | 40    |
| MRC0339 | 454608  | 6584038  | 146  | 152 | 6         | 0.79              | 55    |
| MRC0339 | 454608  | 6584038  | 155  | 158 | 3         | 1.05              | 60    |
| MRC0339 | 454608  | 6584038  | 161  | 167 | 6         | 0.93              | 56    |
| MRC0339 | 454608  | 6584038  | 173  | 184 | 11        | 0.64              | 34    |
| MRC0339 | 454608  | 6584038  | 189  | 191 | 2         | 0.63              | 42    |
| MRC0339 | 454608  | 6584038  | 246  | 248 | 2         | 0.47              | 45    |
| MRC0348 | 455135  | 6583517  | 117  | 119 | 2         | 0.69              | 25    |
| MRC0351 | 454827  | 6583834  | 90   | 93  | 3         | 2.54              | 71    |
| MRC0351 |         |          | 91   | 93  | 2         | 3.48              | 90    |
| MRC0352 | 454924  | 6583711  | 96   | 103 | 7         | 0.59              | 25    |
| MRC0355 | 455649  | 6584588  | 42   | 48  | 6         | 0.57              | 43    |
| MRC0356 | 455703  | 6584522  | 53   | 61  | 8         | 0.83              | 40    |
| MRC0356 | 455703  | 6584522  | 75   | 88  | 13        | 1.34              | 30    |
| MRC0356 | 455703  | 6584522  | 156  | 160 | 4         | 1.51              | 38    |
| MRC0356 | 455703  | 6584522  | 217  | 226 | 9         | 1.59              | 47    |
| MRC0356 | 455703  | 6584522  | 258  | 263 | 5         | 0.86              | 38    |
| MRC0359 | 455732  | 6584437  | 140  | 143 | 3         | 1.26              | 39    |
| MRC0359 | 455732  | 6584437  | 163  | 173 | 10        | 1.35              | 41    |
| MRC0359 | 455732  | 6584437  | 177  | 179 | 2         | 0.88              | 36    |
| MRC0362 | 455619  | 6584507  | 11   | 16  | 5         | 0.66              | 37    |
| MRC0362 | 455619  | 6584507  | 59   | 63  | 4         | 1.37              | 42    |
| MRC0362 | 455619  | 6584507  | 72   | 75  | 3         | 1.02              | 61    |
| MRC0362 | 455619  | 6584507  | 86   | 88  | 2         | 0.58              | 20    |
| MRC0362 | 455619  | 6584507  | 118  | 121 | 3         | 1.20              | 46    |
| MRC0362 | 455619  | 6584507  | 179  | 183 | 4         | 0.77              | 43    |
| MRC0364 | 455665  | 6584447  | 42   | 44  | 2         | 1.93              | 54    |
| MRC0364 | 455665  | 6584447  | 106  | 113 | 7         | 0.76              | 37    |
| MRC0364 | 455665  | 6584447  | 125  | 135 | 10        | 1.49              | 44    |
| MRC0364 | 455665  | 6584447  | 209  | 214 | 5         | 1.09              | 39    |
| MRC0364 | 455665  | 6584447  | 258  | 268 | 10        | 1.23              | 45    |
| MRC0364 | 455665  | 6584447  | 280  | 284 | 4         | 1.08              | 17    |
| MRC0365 | 455693  | 6584417  | 104  | 109 | 5         | 0.69              | 33    |
| MRC0365 | 455693  | 6584417  | 148  | 151 | 3         | 1.39              | 60    |
| MRC0365 | 455693  | 6584417  | 155  | 158 | 3         | 0.91              | 48    |
| MRC0365 | 455693  | 6584417  | 167  | 171 | 4         | 1.00              | 42    |
| MRC0366 | 455663  | 6584391  | 104  | 113 | 9         | 0.77              | 51    |
| MRC0366 | 455663  | 6584391  | 148  | 152 | 4         | 0.98              | 45    |





| Hole_ID | Easting | Northing | From | То  | Thickness | Li <sub>2</sub> O | Ta <sub>2</sub> O <sub>5</sub> |
|---------|---------|----------|------|-----|-----------|-------------------|--------------------------------|
|         | (MGA51) | (MGA51)  | (m)  | (m) | (m)       | (%)               | (ppm)                          |
| MRC0366 | 455663  | 6584391  | 165  | 169 | 4         | 1.00              | 34                             |
| MRC0366 | 455663  | 6584391  | 174  | 178 | 4         | 1.15              | 33                             |
| MRC0367 | 455503  | 6584518  | 2    | 6   | 4         | 0.62              | 56                             |
| MRC0367 | 455503  | 6584518  | 13   | 16  | 3         | 1.20              | 61                             |
| MRC0367 | 455503  | 6584518  | 25   | 27  | 2         | 0.63              | 63                             |
| MRC0368 | 455530  | 6584482  | 8    | 11  | 3         | 1.64              | 104                            |
| MRC0368 | 455530  | 6584482  | 65   | 74  | 9         | 0.77              | 44                             |
| MRC0368 | 455530  | 6584482  | 93   | 103 | 10        | 0.66              | 41                             |
| MRC0368 | 455530  | 6584482  | 131  | 134 | 3         | 0.53              | 32                             |
| MRC0370 | 455576  | 6584433  | 11   | 15  | 4         | 0.26              | 24                             |
| MRC0370 | 455576  | 6584433  | 28   | 35  | 7         | 1.45              | 52                             |
| MRC0370 | 455576  | 6584433  | 97   | 103 | 6         | 0.67              | 29                             |
| MRC0370 | 455576  | 6584433  | 152  | 156 | 4         | 1.42              | 50                             |
| MRC0370 | 455576  | 6584433  | 172  | 180 | 8         | 0.66              | 39                             |
| MRC0370 | 455576  | 6584433  | 262  | 264 | 2         | 0.49              | 59                             |
| MRC0371 | 455607  | 6584395  | 62   | 64  | 2         | 0.83              | 65                             |
| MRC0371 | 455607  | 6584395  | 83   | 90  | 7         | 1.59              | 54                             |
| MRC0371 | 455607  | 6584395  | 102  | 104 | 2         | 0.55              | 25                             |
| MRC0371 | 455607  | 6584395  | 128  | 139 | 11        | 0.68              | 29                             |
| MRC0371 | 455607  | 6584395  | 198  | 203 | 5         | 1.61              | 52                             |
| MRC0371 | 455607  | 6584395  | 235  | 242 | 7         | 1.19              | 49                             |
| MRC0372 | 455459  | 6584455  | 53   | 58  | 5         | 1.48              | 56                             |
| MRC0372 | 455459  | 6584455  | 62   | 65  | 3         | 0.48              | 39                             |
| MRC0373 | 455479  | 6584423  | 26   | 31  | 5         | 0.71              | 35                             |
| MRC0373 | 455479  | 6584423  | 43   | 46  | 3         | 1.07              | 39                             |
| MRC0373 | 455479  | 6584423  | 106  | 108 | 2         | 1.22              | 55                             |
| MRC0373 | 455479  | 6584423  | 111  | 117 | 6         | 1.26              | 36                             |
| MRC0373 | 455479  | 6584423  | 133  | 135 | 2         | 0.57              | 35                             |
| MRC0374 | 455506  | 6584390  | 14   | 18  | 4         | 1.29              | 79                             |
| MRC0374 | 455506  | 6584390  | 33   | 37  | 4         | 1.74              | 92                             |
| MRC0374 | 455506  | 6584390  | 40   | 43  | 3         | 0.45              | 21                             |
| MRC0374 | 455506  | 6584390  | 71   | 73  | 2         | 1.22              | 79                             |
| MRC0374 | 455506  | 6584390  | 94   | 98  | 4         | 1.04              | 35                             |
| MRC0374 | 455506  | 6584390  | 129  | 131 | 2         | 1.41              | 60                             |
| MRC0374 | 455506  | 6584390  | 148  | 154 | 6         | 0.78              | 37                             |
| MRC0374 | 455506  | 6584390  | 168  | 172 | 4         | 0.87              | 50                             |
| MRC0374 | 455506  | 6584390  | 191  | 193 | 2         | 0.57              | 60                             |
| MRC0375 | 455535  | 6584357  | 29   | 31  | 2         | 0.62              | 29                             |
| MRC0375 | 455535  | 6584357  | 68   | 70  | 2         | 1.10              | 62                             |
| MRC0375 | 455535  | 6584357  | 75   | 81  | 6         | 0.92              | 51                             |
| MRC0375 | 455535  | 6584357  | 109  | 112 | 3         | 0.36              | 16                             |
| MRC0375 | 455535  | 6584357  | 126  | 130 | 4         | 0.96              | 42                             |





| Hole_ID | Easting | Northing | From | То  | Thickness | Li <sub>2</sub> O | Ta <sub>2</sub> O <sub>5</sub> |
|---------|---------|----------|------|-----|-----------|-------------------|--------------------------------|
|         | (MGA51) | (MGA51)  | (m)  | (m) | (m)       | (%)               | (ppm)                          |
| MRC0375 | 455535  | 6584357  | 137  | 139 | 2         | 1.30              | 49                             |
| MRC0375 | 455535  | 6584357  | 167  | 174 | 7         | 0.66              | 44                             |
| MRC0375 | 455535  | 6584357  | 184  | 189 | 5         | 1.33              | 44                             |
| MRC0375 | 455535  | 6584357  | 213  | 215 | 2         | 0.62              | 29                             |
| MRC0375 | 455535  | 6584357  | 219  | 226 | 7         | 0.74              | 47                             |
| MRC0398 | 455878  | 6584820  | 128  | 130 | 2         | 1.10              | 86                             |
| MRC0398 | 455878  | 6584820  | 143  | 145 | 2         | 1.33              | 39                             |
| MRC0399 | 455903  | 6584797  | 44   | 47  | 3         | 1.57              | 90                             |
| MRC0403 | 456000  | 6584669  | 131  | 138 | 7         | 1.11              | 29                             |
| MRC0403 | 456000  | 6584669  | 191  | 196 | 5         | 1.34              | 29                             |
| MRC0403 | 456000  | 6584669  | 253  | 261 | 8         | 1.34              | 29                             |
| MRC0404 | 455893  | 6584924  | 48   | 50  | 2         | 0.69              | 75                             |
| MRC0404 | 455893  | 6584924  | 237  | 239 | 2         | 0.50              | 18                             |
| MRC0406 | 455949  | 6584858  | 40   | 47  | 7         | 1.73              | 51                             |
| MRC0406 | 455949  | 6584858  | 196  | 198 | 2         | 1.15              | 37                             |
| MRC0407 | 455972  | 6584828  | 5    | 9   | 4         | 1.06              | 64                             |
| MRC0407 | 455972  | 6584828  | 42   | 46  | 4         | 1.70              | 47                             |
| MRC0407 | 455972  | 6584828  | 59   | 61  | 2         | 0.65              | 61                             |
| MRC0407 | 455972  | 6584828  | 105  | 112 | 7         | 1.34              | 38                             |
| MRC0407 | 455972  | 6584828  | 261  | 265 | 4         | 0.78              | 45                             |
| MRC0408 | 455999  | 6584797  | 51   | 60  | 9         | 1.02              | 47                             |
| MRC0408 | 455999  | 6584797  | 94   | 97  | 3         | 0.92              | 41                             |
| MRC0408 | 455999  | 6584797  | 118  | 121 | 3         | 0.68              | 34                             |
| MRC0408 | 455999  | 6584797  | 128  | 130 | 2         | 0.68              | 26                             |
| MRC0408 | 455999  | 6584797  | 146  | 148 | 2         | 1.07              | 31                             |
| MRC0408 | 455999  | 6584797  | 174  | 180 | 6         | 1.25              | 36                             |
| MRC0409 | 456023  | 6584766  | 100  | 104 | 4         | 1.34              | 72                             |
| MRC0409 | 456023  | 6584766  | 111  | 113 | 2         | 1.00              | 107                            |
| MRC0409 | 456023  | 6584766  | 136  | 138 | 2         | 0.94              | 47                             |
| MRC0409 | 456023  | 6584766  | 181  | 189 | 8         | 1.34              | 43                             |
| MRC0409 | 456023  | 6584766  | 202  | 207 | 5         | 0.61              | 41                             |
| MRC0409 | 456023  | 6584766  | 210  | 213 | 3         | 1.07              | 52                             |
| MRC0410 | 456049  | 6584736  | 148  | 150 | 2         | 1.19              | 49                             |
| MRC0410 | 456049  | 6584736  | 165  | 170 | 5         | 1.09              | 35                             |
| MRC0410 | 456049  | 6584736  | 183  | 188 | 5         | 1.18              | 71                             |
| MRC0410 | 456049  | 6584736  | 233  | 241 | 8         | 1.50              | 33                             |
| MRC0410 | 456049  | 6584736  | 247  | 250 | 3         | 1.32              | 68                             |
| MRC0411 | 455972  | 6584955  | 11   | 13  | 2         | 0.84              | 48                             |
| MRC0411 | 455972  | 6584955  | 134  | 136 | 2         | 0.74              | 49                             |
| MRC0412 | 455997  | 6584924  | 1    | 3   | 2         | 0.84              | 64                             |
| MRC0412 | 455997  | 6584924  | 64   | 66  | 2         | 1.35              | 36                             |
| MRC0413 | 456022  | 6584895  | 6    | 8   | 2         | 0.72              | 124                            |





| Hole_ID   | Easting<br>(MGA51) | Northing<br>(MGA51) | From<br>(m)      | To<br>(m)        | Thickness<br>(m) | Li <sub>2</sub> O<br>(%) | Ta₂O₅<br>(ppm) |
|-----------|--------------------|---------------------|------------------|------------------|------------------|--------------------------|----------------|
| MPC0412   | 456022             | 6504005             |                  | 40               | E                | 0 55                     | 60             |
| MRC0413   | 450022             | 6584895             | 44<br>57         | 49               | 7                | 1 02                     | 26             |
|           | 450022             | 6594895             | 112              | 117              | 7                | 1.02                     | 20             |
| MPC0413   | 456045             | 6584893             | 2/               | 26               | 2                | 0.85                     | 102            |
|           | 450045             | 6594904             | 34<br>45         | 50               | 6                | 0.03                     | 66             |
|           | 450045             | 6594904             | 45               | 116              | 6                | 1.26                     | 84             |
|           | 450045             | 6594964             | 125              | 127              | 2                | 0.75                     | 04             |
|           | 450045             | 6594964             | 123              | 127              | Z<br>F           | 0.75                     | 144            |
|           | 450045             | 6594900             | 115              | 100              | 5                | 1.10                     | 19             |
|           | 450072             | 6594930             | 120              | 122              | 0                | 1.10                     | 49             |
|           | 450072             | 6594930             | 150              | 152              | 2                | 0.04                     | 90             |
|           | 450072             | 6594930             | 150              | 172              | 2                | 0.65                     | 145<br>E0      |
|           | 450072             | 6594930             | 107              | 1/5              | 2                | 1.20                     | 30             |
| MRC0415   | 450072             | 6594097             | 100              | 190              | 2                | 1.05                     | 30             |
| MRC0416   | 450053             | 0584987             | 10               | 1/               | /                | 1.02                     | 93             |
|           | 450053             | 6584987             | 93               | 98               | 5                | 0.45                     | 20             |
| MRC0417   | 450075             | 0584903             |                  | 117              | 10               | 0.95                     | 20             |
|           | 450075             | 6584963             | E1               | 11/<br>E0        | 2                | 1.50                     | 21             |
| IVIRCU418 | 456100             | 6584929             | 51               | 58               | /                | 0.07                     | 38             |
|           | 456100             | 6584020             | 122              | 124              | 2                | 1.70                     | 120            |
| IVIRCU418 | 456100             | 6584929             | 132              | 134              | 2                | 1.78                     | 41             |
| IVIRCU418 | 456100             | 6584929             | 138              | 140              | 8                | 1.75                     | 53             |
| MRC0419   | 450120             | 6584903             | 115              | 119              | 4                | 1.30                     | 69             |
| MRC0419   | 450120             | 6584903             | 162              | 157              | 7                | 0.80                     | 57             |
| MRC0419   | 450120             | 6584002             | 100              | 100              | 5                | 1.11                     | 50             |
| MRC0419   | 450120             | 6585016             | 190              | 195              | 5                | 1.25                     | 52             |
| MRC0420   | 450081             | 6585016             | 7                | 20               | 0                | 1.37                     | 103            |
| MRC0420   | 450061             | 6584746             | 20               | 5U<br>2EE 12     | 2                | 1.75                     | 25             |
| MRCD0060  | 455765             | 6594740             | 252.95           |                  | 2.17             | 1.72                     | 55             |
| MPCD0060  | 455765             | 6594740             | 544              | 546.55           | 4.55             | 1.25                     | 04             |
|           | 455765             | 6584080             | 220.7            | 222.07           | 2.72             | 0.40                     | 94<br>27       |
|           | 450105             | 6584989             | 421.04           | 126.05           | 5.01             | 1.00                     | 27             |
|           | 450105             | 6594989             | 421.04<br>507.90 | 420.03<br>510.42 | 2.52             | 1.09                     | 55             |
|           | 450105             | 6584989             | 515 51           | 520.02           | 2.55             | 1.50                     | 25             |
| MRCD0071  | 450105             | 6585027             | 217 0            | 221.05           | 4.52<br>2 10     | 0.50                     | 7/             |
| MRCD0071  | 456282             | 6585027             | 601 74           | 600              | 7.26             | 0.59                     | 24             |
| MRCD0071  | 450202             | 6585027             | 615              | 647              | 7.20             | 0.55                     | 24             |
| MPCD0162  | 450202             | 6584060             | 177              | 170              | 2                | 0.52                     | 25<br>E        |
| MPCD0162  | 455917             | 6584960             | 19/              | 100              | 6                | 0.51                     | ر<br>۱۵        |
| MRCD0162  | 455917             | 6584960             | 467              | 471.2            | 4.2              | 0.70                     | 54             |

 Table 2: Significant intercepts calculated using a 0.4% Li<sub>2</sub>O cut-off grade, minimum 2m thickness and widths including up to 2m internal dilution.



# JORC Code, 2012 Edition – Table 1 Report

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

| Criteria                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques      | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>RC drillholes were drilled/sampled under supervision of a geologist.</li> <li>RC samples were cone split in 1 m intervals to produce a ~2 to 3 kg sample. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken.</li> <li>Diamond Core samples were taken, generally on 1 m intervals or on geological boundaries where appropriate (minimum 0.4 m to maximum of 1.2 m).</li> <li>Diamond drilling was undertaken to produce core for geological logging, assaying and future metallurgical test work.</li> <li>Samples for lithium analysis were crushed and riffle split to 2 to 2.5 kg for pulverising to 85% passing 75 microns.</li> <li>For lithium analysis prepared samples are fused with sodium peroxide and digested in dilute hydrochloric acid. The resultant solution is analysed by ICP by Jinning Testing and Inspection Laboratory in Perth. The assay technique is considered to be robust as the method used offers total dissolution of the sample and is useful for mineral matrices that may resist acid digestions.</li> </ul> |
| Drilling<br>techniques      | <ul> <li>Drill type (eg core, reverse circulation,<br/>open-hole hammer, rotary air blast,<br/>auger, Bangka, sonic, etc) and details<br/>(eg core diameter, triple or standard<br/>tube, depth of diamond tails, face-<br/>sampling bit or other type, whether core<br/>is oriented and if so, by what method,<br/>etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>RC drilling was undertaken by Profile<br/>Drilling or K-Drill using 4.5-inch (140 mm)<br/>rods using a 5.5-inch (150 mm) diameter<br/>face sampling hammer.</li> <li>All reported RC drill holes collar and survey<br/>details noted in the drilling statistics<br/>presented in Table 1.</li> <li>Manna diamond drilling was undertaken by<br/>DDH1 Drilling using HQ3 or NQ diameters.</li> <li>Core was orientated using a Reflex ACT III<br/>digital core orientation tool.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Drill<br>sample<br>recovery | <ul> <li>Method of recording and assessing core<br/>and chip sample recoveries and results<br/>assessed.</li> <li>Measures taken to maximise sample</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Sample chip recovery for RC drilling was visually<br/>estimated. Sample chip recovery is very good<br/>through the interpreted mineralised zones and is<br/>estimated to be greater than 80%.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |





| Criteria                                                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                | <ul> <li>recovery and ensure representative<br/>nature of the samples.</li> <li>Whether a relationship exists between<br/>sample recovery and grade and whether<br/>sample bias may have occurred due to<br/>preferential loss/gain of fine/coarse<br/>material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>RC drilling utilised an on-board compressor and auxiliary booster to keep samples dry and maximise recoveries.</li> <li>The diamond drill core recovered is physically measured by tape measure and the length recovered is recorded for every run.</li> <li>Core recovery is calculated as a percentage recovery. This is confirmed by Company geologists during core orientation activities on site. Average recovery is over 95%.</li> <li>No relationship between grade and recovery has been identified.</li> </ul>                                                                                                                                                                                                                                                                                                                                         |
| Logging                                                        | <ul> <li>Whether core and chip samples have<br/>been geologically and geotechnically<br/>logged to a level of detail to support<br/>appropriate Mineral Resource<br/>estimation, mining studies and<br/>metallurgical studies.</li> <li>Whether logging is qualitative or<br/>quantitative in nature. Core (or costean,<br/>channel, etc) photography.</li> <li>The total length and percentage of the<br/>relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                             | <ul> <li>Geological logs exist for all drill holes with lithological codes via an established reference legend.</li> <li>Logging and sampling has been carried out to industry standards to support a Mineral Resource Estimate.</li> <li>Drill holes have been geologically logged in their entirety. Where logging was detailed, the subjective indications of spodumene content were estimated and recorded.</li> <li>All drill holes were logged in full, from start to finish of the hole.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                |
| Sub-<br>sampling<br>techniques<br>and<br>sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>Dry RC samples were collected at 1 m intervals and cone split from the rig cyclone on-site to produce a subsample less than 3 kg.</li> <li>Quarter Core samples were taken, generally on 1 m intervals or on geological boundaries where appropriate (minimum 0.4 m to maximum of 1.2 m).</li> <li>Sample preparation is according to industry standards, including oven drying, coarse crush, and pulverisation to 85% passing 75 microns.</li> <li>Field duplicate samples, field standards, laboratory standards and laboratory repeats were used to monitor quality of analyses.</li> <li>Sample sizes are considered to be appropriate and correctly represent the style and type of mineralisation.</li> <li>Rock chip samples were taken whole to the laboratory, crushed and riffled to obtain a sub-fraction and assayed using the same lab.</li> </ul> |
| Quality of<br>assay data<br>and<br>laboratory<br>tests         | <ul> <li>The nature, quality and appropriateness<br/>of the assaying and laboratory<br/>procedures used and whether the<br/>technique is considered partial or total.</li> <li>For geophysical tools, spectrometers,<br/>handheld XRF instruments, etc, the<br/>parameters used in determining the<br/>analysis including instrument make and<br/>model, reading times, calibrations</li> </ul>                                                                                                                                                                                                                                                                                                                  | <ul> <li>The industry standard assay techniques are considered to be robust as the methods used offers total dissolution (Sodium Peroxide Fusion) of the samples.</li> <li>For lithium exploration drilling field inserted standards are utilised for 1 sample in every 50.</li> <li>For lithium exploration drilling field duplicate samples are taken for 1 sample in every 50.</li> <li>For infill drilling field inserted standards are</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | <ul> <li>factors applied and their derivation, etc.</li> <li>Nature of quality control procedures<br/>adopted (eg standards, blanks,<br/>duplicates, external laboratory checks)<br/>and whether acceptable levels of<br/>accuracy (ie lack of bias) and precision<br/>have been established.</li> </ul>                                                                                           | <ul> <li>utilised for 2 sample in every 50.</li> <li>For infill drilling field duplicate samples are taken for 1 sample in every 50.</li> <li>For infill drilling field blank samples are taken for 1 sample in every 50.</li> </ul>                                                                                                                                                                                                                                                                                                         |
| Verification<br>of<br>sampling<br>and<br>assaying                   | <ul> <li>The verification of significant<br/>intersections by either independent or<br/>alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data<br/>entry procedures, data verification, data<br/>storage (physical and electronic)<br/>protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                | <ul> <li>The 2023 RC and diamond drilling programs are supervised by Global Lithium staff.</li> <li>Significant assay results are verified against visual logs by site supervisors.</li> <li>There were no twin holes drilled during the RC/diamond program in 2023.</li> <li>Primary data is captured by Coreplan and utilising excel.</li> <li>All data are exported to an external Database Administrator, validated, and loaded to a database and validated prior to use.</li> <li>No adjustments made to primary assay data.</li> </ul> |
| Location of<br>data points                                          | <ul> <li>Accuracy and quality of surveys used to<br/>locate drill holes (collar and down-hole<br/>surveys), trenches, mine workings and<br/>other locations used in Mineral Resource<br/>estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic<br/>control.</li> </ul>                                                                          | <ul> <li>Prior to drilling, collar coordinates are situated using handheld GPS (considered accurate to within 3 m).</li> <li>DGPS collar surveying is completed post program to improve accuracy.</li> <li>For the Manna Project the grid used is GDA94z51.</li> <li>All holes have been surveyed with an Axis Champ north seeking gyro to determine hole deviation.</li> </ul>                                                                                                                                                              |
| Data<br>spacing<br>and<br>distribution                              | <ul> <li>Data spacing for reporting of Exploration<br/>Results.</li> <li>Whether the data spacing, and<br/>distribution is sufficient to establish the<br/>degree of geological and grade<br/>continuity appropriate for the Mineral<br/>Resource and Ore Reserve estimation<br/>procedure(s) and classifications applied.</li> <li>Whether sample compositing has been<br/>applied.</li> </ul>    | <ul> <li>At Manna exploration drilling has been drilled on<br/>a grid pattern.</li> <li>Drill spacing generally varies between a 80x80m<br/>to 40m x 40m grid in selected areas. Exploration<br/>holes targeting specific geochemical, outcrops or<br/>structural targets are not on a uniform grid<br/>spacing.</li> <li>Historic Breaker resources drilling undertaken<br/>was widely spaced across separate lines<br/>targeting outcrop and geochemical anomalies.</li> </ul>                                                             |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>Drilling has been angled to achieve the most representative (near perpendicular) intersections through mineralisation (i.e. angled holes for moderately dipping pegmatite bodies).</li> <li>The identified target lithium bearing pegmatite dykes are generally steeply dipping (70° to 85°) Southeast in nature. The true width of pegmatites is generally considered 80% to 90% of the intercept width, with minimal opportunity for sample bias.</li> </ul>                                                                      |



| Criteria             | JORC Code explanation                                                                         | Commentary                                                                                                                                     |
|----------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample<br>security   | <ul> <li>The measures taken to ensure sample<br/>security.</li> </ul>                         | • The drill samples were collected from the drilling rig by experienced personnel, stored securely and transported directly to the laboratory. |
| Audits or<br>reviews | <ul> <li>The results of any audits or reviews of<br/>sampling techniques and data.</li> </ul> | No audits have been undertaken to date.                                                                                                        |

# Section 2 Reporting of Exploration Results

| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status                                | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul>  | <ul> <li>At the Manna Project the drilling is located on tenement E28/2522, which is held 100% Global Lithium. Precious Metals rights are held by Ramelius Resources.</li> <li>There is no royalty covering the current lithium resource or extensional drilling.</li> <li>There are no material interests or issues associated with the tenement.</li> <li>The tenement is in good standing and no known impediments exist.</li> </ul> |
| Exploration<br>done by other<br>parties                                         | <ul> <li>Acknowledgment and appraisal of<br/>exploration by other parties.</li> </ul>                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Global Lithium Limited acquired an 100% of the<br/>Manna Lithium Project from Breaker Resources<br/>on 25 October 2022.</li> </ul>                                                                                                                                                                                                                                                                                             |
| Geology                                                                         | <ul> <li>Deposit type, geological setting and<br/>style of mineralisation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                               | • The pegmatites are LCT type lithium bearing-<br>pegmatites for both projects.                                                                                                                                                                                                                                                                                                                                                         |
| Drillhole<br>Information                                                        | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes:</li> <li>easting and northing of the drillhole collar</li> <li>elevation or RL (elevation above sea level in metres) of the drillhole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> | <ul> <li>Diagrams in the announcement show the location of and distribution of drillholes in relation to the Mineral Resource.</li> <li>Tables of drillhole collars and significant intercepts are included.</li> </ul>                                                                                                                                                                                                                 |
| Data<br>aggregation<br>methods                                                  | <ul> <li>In reporting Exploration Results,<br/>weighting averaging techniques,<br/>maximum and/or minimum grade<br/>truncations (e.g. cutting of high<br/>grades) and cut-off grades are<br/>usually Material and should be<br/>stated.</li> </ul>                                                                                                                                                                                                  | <ul> <li>No weighting or cut-off values were used other<br/>than where stated.</li> </ul>                                                                                                                                                                                                                                                                                                                                               |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>If the geometry of the mineralisation<br/>with respect to the drillhole angle is<br/>known, its nature should be<br/>reported.</li> <li>If it is not known and only the down<br/>hole lengths are reported, there</li> </ul>                                                                                                                                                                                                               | • Pegmatite orientation interpretation is at a reasonably high level due to the proximity and number of drill holes. Drilling angle is oriented across the pegmatite trend although significant intersections should not be considered true width.                                                                                                                                                                                      |

Page 20 of 21 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au



|                                               | should be a clear statement to this<br>effect (e.g. 'down hole length, true<br>width not known').                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                 |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Diagrams •                                    | Appropriate maps and sections<br>(with scales) and tabulations of<br>intercepts should be included for<br>any significant discovery being<br>reported These should include, but<br>not be limited to a plan view of drill<br>hole collar locations and appropriate<br>sectional views.                                                                                                                                 | <ul> <li>Plan view drillhole collar maps and cro<br/>sections have been included in t<br/>announcement.</li> </ul>                                                                        | ss<br>he        |
| Balanced •<br>reporting                       | Where comprehensive reporting of<br>all Exploration Results is not<br>practicable, representative reporting<br>of both low and high grades and/or<br>widths should be practiced to avoid<br>misleading reporting of Exploration<br>Results.                                                                                                                                                                            | <ul> <li>Significant Lithium results at Manna have be<br/>calculated using a 0.4% Li2O cut-off grad<br/>minimum 2m thickness and widths including<br/>to 2m internal dilution.</li> </ul> | en<br>le,<br>up |
| Other •<br>substantive<br>exploration<br>data | Other exploration data, if meaningful<br>and material, should be reported<br>including (but not limited to):<br>geological observations;<br>geophysical survey results;<br>geochemical survey results; bulk<br>samples – size and method of<br>treatment; metallurgical test results;<br>bulk density, groundwater,<br>geotechnical and rock<br>characteristics; potential deleterious<br>or contaminating substances. | • None reported.                                                                                                                                                                          |                 |
| Further work •                                | The nature and scale of planned<br>further work (e.g. tests for lateral<br>extensions or depth extensions or<br>large-scale step-out drilling).                                                                                                                                                                                                                                                                        | <ul> <li>Additional drilling is planned for extension a<br/>infill of the existing mineral resource at Manna</li> </ul>                                                                   | nd<br>a.        |