

COARSE SPODUMENE CONCENTRATE PRODUCED AT SEYMOUR WITH LITHIUM RECOVERY EXCEEDING 72%

HIGHLIGHTS

- Flagship Seymour concentrate recovery exceeds 72% using heavy liquid separation
- Confirms simple 2 stage DMS flowsheet potential
- Critical milestone for the PEA and future off-take partners
- Test work based on 1000kg of representative composites as per preliminary mine plan
- Very high recovery due to large spodumene crystal size
- Concentrates now being sent for conversion work to Lithium Hydroxide

Green Technology Metals Limited (**ASX: GT1**)(**GT1** or the **Company**), a Canadian-focused multi-asset lithium business, is pleased to announce very high spodumene concentrate recoveries from its 100%-owned Seymour Project, located approximately 250km north of Thunder Bay in Ontario, Canada. The spodumene concentrate represents a critical milestone for the business and future off-take partners.

Figure 1: DMS test work being undertaken at SGS Canada's facilities in Lakefield, Ontario

"The next few months will be an exciting time for the team at GT1 as we focus on increasing the value of our Flagship Seymour Project through metallurgical test work. These results will culminate part of our Preliminary Economic Assessment (PEA) and marks another important step closer to building a vertically integrated lithium business in Ontario, Canada." - GT1 Chief Executive Officer, Luke Cox

Green Technology Metals

94 Rokeby Road, Subiaco, Western Australia 6008 +61 8 6557 6825 www.greentm.com.au

info@greentm.com.au ABN 99 648 657 649

Four composite samples totalling approximately 1000kg of recent and historic diamond core, derived from the Seymour pegmatite was selected, and shipped for testing. The samples represent the different mineralisation phases seen in the pegmatite within, what GT1 expect to be, the final open pit mine shell at Seymour.

Heavy liquid separation (HLS) test work was undertaken at SGS Canada's facilities in Lakefield, Ontario. SGS compiled a master composite, based on the four samples selected, to provide a preliminary indication of the lithium beneficiation performance by utilising dense media separation (DMS).

Table 1 presents a summary table of the 8 mm HLS test results to achieve an HLS concentrate grade of 6.0% Li₂0 and 1.2% Fe₂O₃. The resulting global HLS recovery, post magnetic separation including losses to HLS fines bypass, is 72%. This recovery has been reduced to align the laboratory magnetic separator with the industrial-scale equipment. The HLS result shows a strong potential to use DMS as the primary recovery method. Further work will continue to be completed for an optimised flowsheet that will ensure both maximised lithium unit recovery, and mass yield will be achieved for the Seymour deposit.

HLS on master composite - crush s	Grade		Distribution			
Description	HLS SG	Mass Distribution	% Li ₂ 0	% Fe ₂ 0 ₃	Li ₂ 0	Fe ₂ 0 ₃
HLS non-mag ¹ product	2.82	12.7	6.0	1.2	72.6	19.2
HLS mag ¹ product	2.82	3.6	1.3	9.1	4.5	34.7
HLS tailings	-2.65	46.7	0.0	0.2	2.0	9.3
Flotation feed (fines and middlings)	-	37.0	0.6	0.9	20.9	36.9
Total feed	-	100	1.1	0.9	100	100

¹ Dry magnetic separator used for HLS testwork

Table 1: HLS and assay test work on 8mm feed (12mm & 10mm samples being QAQC)

The Seymour bulk sample permit has been approved by the Ontario Mines Department (MNDM) and sampling is planned to begin in January 2023 where we will be extracting approximately ninety-nine tonnes from the North Aubry pegmatite outcrop within the Seymour project. The spodumene concentrate produced through the pilot work will be used as feed stock for the Lithium Hydroxide Conversion Program (LHCP), all forming part of the ongoing feasibility study.

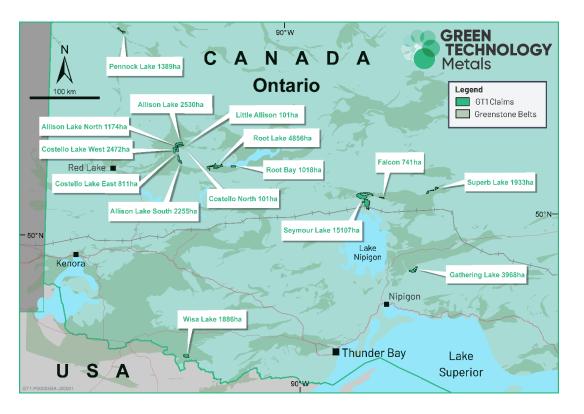
This ASX release has been approved for release by the Board.

KEY CONTACTS

Investors

Luke Cox Chief Executive Officer

info@greentm.com.au +61865576825 Media Jacinta Martino Investor Relations and Media ir@greentm.com.au +61 430 147 046



Green Technology Metals (ASX:GT1)

GT1 is a North American focussed lithium exploration and development business. The Company's 100% owned Ontario Lithium Projects comprise high-grade, hard rock spodumene assets (Seymour, Root and Wisa) and lithium exploration claims (Allison and Solstice) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada.

All sites are proximate to excellent existing infrastructure (including hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality.

Seymour has an existing Mineral Resource estimate of $9.9 \text{ Mt} @ 1.04\% \text{ Li}_20$ (comprised of 5.2 Mt at $1.29\% \text{ Li}_20$ Indicated and 4.7 Mt at $0.76\% \text{ Li}_20$ Inferred).¹ Accelerated, targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

¹ For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, *Interim Seymour Mineral Resource Doubles to 9.9Mt*. The Company confirms that it is not aware of any new information or data that materially affects the information in that release and that the material assumptions and technical parameters underpinning this estimate continue to apply and have not materially changed.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

Information in this report relating to Exploration Results is based on information reviewed by Mr Luke Cox (Fellow AusIMM). Mr Cox has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Cox consents to the inclusion of the data in the form and context in which it appears in this release. Mr Cox is the Chief Executive Officer of the Company and holds securities in the Company.

No new information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

The information in this report relating to the Mineral Resource estimate for the Seymour Project is extracted from the Company's ASX announcement dated 23 June 2022. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GT1's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GT1's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GTI's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or guarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence).

Appendix A JORC Code, 2012 Edition – Table 1 report template

Criteria	JORC Code explanation	Commentary						
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 Diamond Drilling Available drill holes data were accumulated from multiple phases of drilling conducted by a number of operators from 2 to the present. Diamond drilling was used to obtain nominally 1m downhole samples of core. Core samples were ½ cored using a diamond saw with ½ the core placed in numbered sample bags for assaying and the other half retained in sequence in the core tray. ½ core samples were approximately 2.5kg in weight with a minimum weight of 500grams. Core was cut down the apex of the core and the same downhole side of the core selected for assaying to reduce potent sampling bias. 						
		CompaLinear Ardidel Green Total Linear Ardiden Green Tech Total All Companies						
	Include reference to measures	Holes Metres Metres						
	taken to ensure sample	Year DDH DDH DDH DDH DDH DDH DDH BTW NQ HQ NR 2002 30 0 0 30 1,677.45 - - 1,677.45 - - -						
	representivity and the							
	appropriate calibration of any	2016 0 29 0 29 - 1,950.00 - 1,950.00 - 1,950.00						
	measurement tools or systems	2017 0 69 0 69 - 7,864.29 - 7,864.29 - 7,097.00						
	used.	2018 0 37 0 37 - 6,564.71 - 6,564.71 - 1,905.00 - 2021 0 0 1 1 - - 341.00 - 341.00 -						
		2021 0 0 1 1 - - 341.00 341.00 - - - 2022 0 0 21 21 - - 7.950.69 - 7.219.69 731.00 -						
		Grand 42 135 22 199 3,250.95 16,379.00 8,291.69 26,244.19 4,659.71 9,238.14 2,636.00 10,620.50						
	mineralisation that are Material	18 holes were excluded for the MRE						
	to the Public Report.	Excluded holes were largely from 2009 and 2002 where assaying and/regological data was missing						
	 In cases where 'industry 	from the record or the holes were re-drills						
	standard' work has been done							
	this would be relatively simple							
	(eg 'reverse circulation drilling	Historic Grab Samples						
	was used to obtain 1 m samples							
	Crob complex were not used in the MPE							
	from which 3 kg was pulverised							
	to produce a 30 g charge for	Historic Channel Samples						
	fire assay'). In other cases more							
	explanation may be required,	 Preparation prior to obtaining the channel samples including grid and geo-references and marking of the pegmat 						
	such as where there is coarse	structures.						
	gold that has inherent sampling	 Samples were cut across the pegmatite with a diamond saw perpendicular to strike. 						
	problems. Unusual	 Average 1 metre samples are obtained, logged, removed and bagged and secured in accordance with QAQC 						
	commodities or mineralisation	procedures.						
	commoaities or mineralisation	piocedules.						

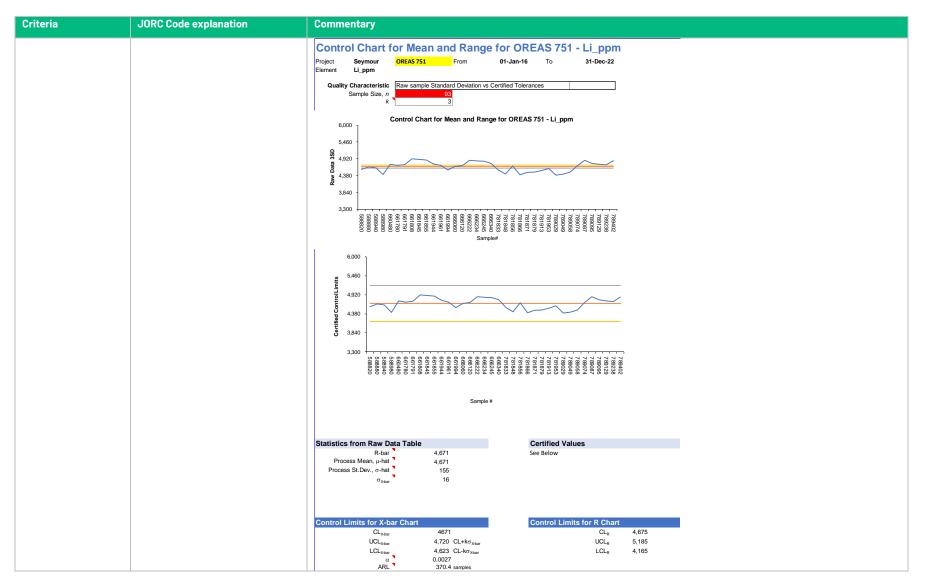
Green Technology Metals

94 Rokeby Road, Subiaco, Western Australia 6008 +61 8 6557 6825

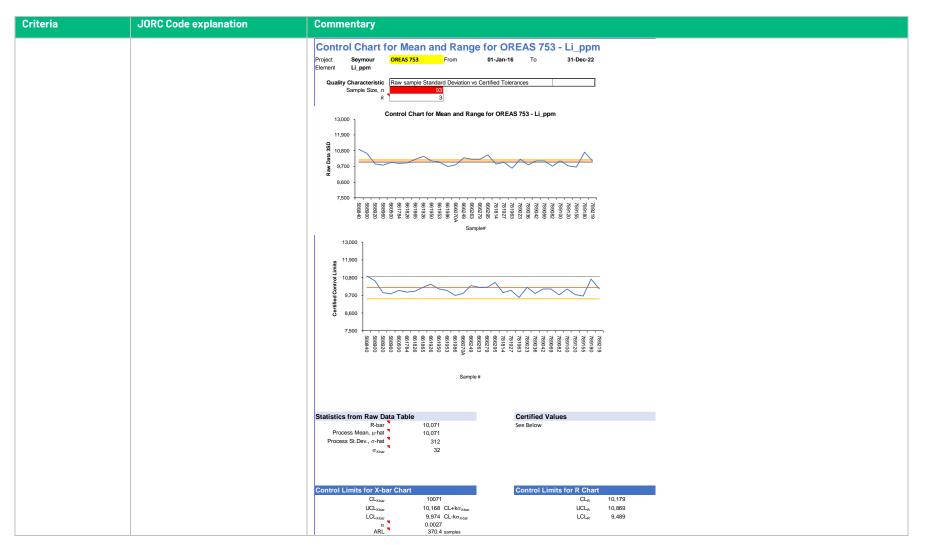
www.greentm.com.au

info@greentm.com.au ABN 99 648 657 649

Criteria	JORC Code explanation	Commentary
	types (eg submarine nodules) may warrant disclosure of detailed information.	 Sampling continued past the Spodumene -Pegmatite zone, even if it is truncated by Mafic Volcanic a later intrusion. Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups. One tag from a triple tag book was inserted in the sample bag.
		As recorded, procedures were consistent with normal industry practices
		Channel samples were used to aid the pegmatite interpretation but were not used in the estimate.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Tri-cone drilling was undertaken through the thin overburden prior to NQ2 or BTW diamond drilling through the primary rock.11 holes were drilled by Ardiden using HQ core. 199 diamond core samples were used in the Mineral Resource estimate for 26,244.19 metres including 22 holes drilled by GT1 for 8,291.69m. 18 holes were rejected from the estimate mainly from 2009 and 2002 due to missing lithology logging and assay data or redrills or poor orientation to the pegmatite attitude. Some of the earlier North Aubry holes were drilled vertically until it was released the pegmatite strike 045. The vast majority of holes were drilled to the southwest approximately perpendicular to the pegmatite orientation.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No core was recovered through the overburden tri-coned section of the hole (top 5m of the hole) Core recovery through the primary rock and mineralised pegmatite zones was over 95% and considered satisfactory. Recovery was determined by measuring the recovered metres in the core trays against the drillers core block depths for each run.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content, and any structures. Logging is qualitative in nature. Samples are representative of an interval or length. Sampling was undertaken for the entire cross strike length of the intersected pegmatite unit at nominal 1m intervals with breaks at geological contacts. Sampling extended into the country mafic rock. Logging is qualitative in nature based on visual estimates of mineral species and geological features.



Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The bulk of the core is NQ diameter core with some BTK and HQ core drilled by Linear and Ardiden. All recent drilling has been NQ diameter core Each ½ core sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh)(includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. Ardiden field duplicates were taken at a rate of 1:20 taken immediately adjacent to the original sample. The sample preparation process is considered representative of the whole core sample.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Prior to 2016 little QAQC was performed other than some duplicate core sampling and verification laboratory internal standards. Whilst the results appear acceptable the lack of QAQC was a concern. A spatial sampling pairing review was undertaken comparing Ardiden and Linear samples located within 8m of each other within the pegmatite domains. The results were inconclusive but hinted at the Linear Li₂O results being biased slightly lower than Ardiden's results. It is unclear as to why this would be the case: Company Field Minimum Maximum No of Points Mean Variance Std Dev Coeff. of Variation Ardiden U2O_ppm 105.4 53609.7 200 14,776 1.46E+08 12085.76 0.818 Linear Li₂O_ppm 53.81 59640 200 12,483 1.64E+08 12819.8 1.027 Difference -111% As the Linear drilling makes up only 12% of the meterage included in the mineral resource the bias is not considered material to the estimate. In 2016 Ardiden employed a single Li₂O standard (CGL 128) certified by the Mongolian Central Geological Laboratory derived from the wolfram-lithium deposit located in the Arbayan area, Sukhbaatar province of Mongolia in April 2012. Ardiden used the standard from 2016 to 2018 until it was superseded by more reliable OREAS standards. The control charts produced over this time period for CGL 128 suggest occasional poor precision and a cluster of low grade assay returns. However, the OREAS standards, overlapping some of 2018 show no obvious bias and better precision from AGAT Laboratories. All the Ardiden drill samples were analysed by AGAT Laboratories who are accredited by The Standards Council of Canada (SCC), The Canadian Association for Laboratory Accreditation (CALA), SAI Global and have ISO/IEC 17025:2005 and ISO 9001:2015 accreditation. All Ardiden samples were analysed by AGAT for lithium and a suite of other elements, using Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish (method# 201-378). Sodium Peroxide Fusion oxidizes samples a



Criteria	JORC Code explanation	Commentary
		dissolving all the pegmatite minerals while the ICP-MS ionizes chemical species and sorts the ions based on their mass-to- Control Chart for Mean and Range for CGL 128 - Li_ppm Project Seymour CGL 228 From 01-Jan-16 To 31-Dec-18 Element L_ppm Quality Characteristic Rev sample Standard Deviation vs Certified Tolerances Sample Size, n 93
		Samplel
		3,500 3,200 2,900 2,900 2,900 2,900 2,900 2,900 2,900 2,900 2,900 2,900 2,900 2,900 2,900 2,900 2,900 3,000 2,900 3,000 2,900 3,000 2,900 3,000 2,900 3,000 2,900 3,000 3,000 2,900 3,000 3,000 2,900 3,000 3,
		Statistics from Raw Data Table Certified Values R-bar 2.725 Process Man, u-bat 2.725 Process St.Dev., σ-hat 151 σ _{xear} 16
		Control Limits for X-bar Chart Control Limits for R Chart Ct_xxxx 2725 CL UCL_xxxx 2.772 CL+Ko_{7420} UCL_xxxx 2.678 CL-Ko_{7420} LCL_xxxx 2.678 CL-Ko_{7420} a 0.0027 LCL ARL 370-4 samples
		 All GT1 drill samples were submitted to Actlabs Thunder Bay for analysis for sample preparation before forwarding the pulps to their Ancaster laboratory in Ontario Canada for analysis using Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish. GT1 inserted certified lithium standards of varying grade and blanks into each batch submitted to Actlabs to monitor precision and bias performance at a rate of 1:20. Actlabs also inserted internal standards, blanks and pulp duplicates within each sample batch as part of their own internal monitoring of quality control. All GT1 results were within acceptable tolerances. No significant bias or precision issues were observed in the control samples.

Criteria	JORC Code explanation	Commentary
		DUPLICATE SAMPLES - Li_ppm
		22,080 22,080 16,580 5,580
		Duplicates — CL — UCL — LCL Linear (Duplicates)
		Standards & Blanks Seymour Valid Raw Mean Certified Values Fails 2022 Records Li ppm Lip ppm LCL UCL Max % Fails OREAS 751 Lip pm 28 10,088 10,179 9,489 10,869 0 0% Blank Lip pm 28 - - 100 50 1 4%
		Seymour Valid Raw Mean Certified Values Fails 2021 Records Lippm Lippm LC UC Min Max % Fails OREAS 751 Lippm 1 4,630 4,675 4,165 5,185 0 0 0% OREAS 753 Lippm 2 9,835 10,179 9,489 10,869 0 0 0% Blank Lippm 0 - - 100 50 0 0%
		Seymour Valid Raw Mean Certified Values Fails 2018 Records Li_ppm Li_ppm LCL ULL Max % Fails OREAS 147 Li_ppm 19 2,325 2,268 0 0 0% OREAS 149 Li_ppm 20 10,282 9,382 11,182 0 0 0% GGL 128 Li_ppm 7 2,714 2,685 2,476 2,894 0 0 0% Blank Li_ppm 0 23 - 100 50 0 0%
		Seymour Valid Raw Mean Certified Values Fails 2017 Records Li ppm Li ppm Li ppm LCL Max % Fails OREAS 147 Li ppm 0 2,268 1,938 2,598 0 0% OREAS 147 Li ppm 0 10,282 9,382 11,182 0 0 0% OREAS 149 Li ppm 0 10,282 9,382 11,182 0 0 0% GL128 Li ppm 0 - 100 50 0 0% Blank Li ppm 0 - 100 - 100 0 0%
		Seymour Valid Raw Man Certified Values Faits 2016 Records Li ppm Li ppm Li ppm Li ppm Li ppm Max % Faits OREAS 147 Li ppm 0 2,268 1,938 2,598 0 0 0% OREAS 149 Li ppm 0 1,0282 9,382 1,182 0 0 0% GL128 Li ppm 24 2,684 2,676 2,894 0 0 0% Blank Li pp - 100 - 50 0 0%

Criteria	JORC Code explanation	Commentary
		 All independent certified reference data returns were within acceptable limits with no discernible bias, except one blank sample that appears to have been a field swap. The major element oxides and trace elements including Rb, Cs, Nb, Ta and Be were analyzed by FUS-ICP and FUS-MS (4Litho-Pegmatite Special) analytical codes which uses a lithium metaborate tetraborate fusion with analysis by ICP and ICPMS. Historic specific gravity testwork was determined for every 10th sample by RX17-GP analytical code measured on the pulp by a gas pycnometer. More recently GT1 submitted 226 samples for water immersion test work by Actlabs prior to samples preparation.
<i>Verification of sampling and assaying</i>	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Ardiden drilled 17 diamond holes within 8m of hole drilled by the previous owner, Linear, in 2016 and 2017. The results were discussed in the previous section, Quality of assay data and laboratory tests. Whilst the result was erratic Ardidien were able to confirm the presence of high grade LCT pegmatites. Further drilling undertaken by GT1 has also confirmed the high grade nature of the main pegmatite (North Upper - HG). The majority of laboratory assay results have been sourced directly from the laboratory and the laboratory file directly imported into GT1's SQL database. All recent north seeking gyroscope surveys are uploaded directly from the survey tool output file and visually validated. Geological logs and supporting data are uploaded directly to the database using custom built importers to ensure no chance of typographical errors. No adjustment to laboratory assay data was made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A GPS reading was taken for each sample location using UTM NAD83 Zone16 (for Seymour); waypoint averaging or dGPS was performed when possible. Ardiden undertook a Lidar survey of the Seymour area in 2018 (+/- 0.15m) which underpins the local topographic surface. All drill collars have been draped onto the LIDAR surface to ensure accurate elevation data for the drillholes. GT1 employed a calibrated Reflex SprintIQ North Seeking Gyroscopic tool on all 2021 and 2022 drill holes and surveyed the holes in their entirety with readings downhole every 5m. North Seeking gyroscopes have a typical azimuth accuracy of +/- 0.75 degrees and +/-0.15 degrees for dip.

Criteria	JORC Code explanation	Commentary
		All collars are picked up and stored in the database in North American Datum of 1983 (NAD83) Zone 16 horizontal and geometric control datum projection for the United States.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The Seymour pegmatites in the North and South areas of the deposit have variable drill spacing from 20Ex20Nm in the shallower areas (<150m) of the deposit to 50mEx50mN at lower depths (150-250m) and greater than 80m spacing below this depth. The drill spacing is sufficient to support the various levels of Mineral Resource classification applied to the estimate. Im compositing was applied to the Seymour Mineral Resource update based on a review of sample interval lengths.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 GT1 drill samples were drilled close to perpendicular to the strike of the pegmatite unit and sampled the entire length of the pegmatite as well including several metres into the mafic country rock either side of the pegmatite. Grab and trench samples were taken where outcrop was available. All attempts were made to ensure trench samples represented traverses across strike of the pegmatite. Older holes from Linear Metals and some of Ardidens earlier drilling were vertical and only approximated the true widths of the pegmatites.
Sample security	• The measures taken to ensure sample security.	• All core and samples were supervised and secured in a locked vehicle, warehouse, or container until delivered to Actlabs in Thunder Bay for cutting, preparation and analysis.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	• No independent audits or reviews have been undertaken on this Mineral Resource estimate.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Seymour Lithium Asset consists of 744 Cell Claims (Exploration Licences) with a total claim area of 15,058 ha. All Cell Claims are in good standing An Active Exploration Permit exists over the Seymour Lithium Assets An Early Exploration Agreement is current with the Whitesand First Nation who are supportive of GT1 exploration activities.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Regional exploration for lithium deposits commenced in the 1950's. In 1957, local prospector, Mr Nelson Aubry, discovered the North Aubry and the South Aubry pegmatites. Geological mapping by the Ontario Department of Mines commenced in 1959 and was completed in 1962 (Pye, 1968), with the publication of "Map 2100 Crescent Lake Area" in 1965. From the late 1950's to 2002, exploration by the Ontario Department of Mines was generally restricted to geological mapping and surface sampling, although some minor drilling was completed to test the North Aubry pegmatite in late 1957 (Rees, 2011). In 2001, Linear Resources Inc. ("Linear Resources") obtained the Seymour Lake Project with an initial focus on the project's tantalum potential. In 2002, a 23-diamond drill-hole campaign was completed at North Aubry, and a further 8 diamond drill-holes at South Aubry. In 2008, Linear Resources completed a regional soil-sampling program which resulted in the identification of a number soil geochemical anomalies. Based on these anomalies, another drilling campaign (completed in 2009), with 12 diamond drill-holes at North Aubry, 2 diamond drill-holes at South Aubry, and further 5 diamond drill-holes peripheral to the Aubry prospects designed to test the main 2008 soil geochemical anomalies. Little work was undertaken between 2010 and 2016 until Ardiden acquired the project from Linear Resources in 2016. Further drilling was carried out by Ardiden between 2017 and 2018 resulting in the completion of an updated mineral resource estimate of the Aubry pegmatites in 2018. Ground Penetrating Radar (GPR) was also undertaken by Ardiden in 2018 to test any further exploration potential beyond the current Aubry pegmatite delineating numerous targets.
Geology	Deposit type, geological setting and style of mineralisation.	 Regional Geology: The general geological setting of the Seymour Lithium Asset consists of the Precambrian Canadian Shield that underlies approximately 60% of Ontario. The Shield can be divided into three major geological and physiographic regions, from the oldest in the northwest to the youngest in the southeast. Local Geology: The Seymour Lithium Asset is located within the eastern part of the Wabigoon Subprovince, near the boundary with the English River Subprovince to the north. These subprovinces are part of the Superior Craton, comprised mainly of Archaean rocks but also containing some Mesoproterozoic rocks such as the Nipigon Diabase. Bedrock Geology: The bedrock is best exposed along the flanks of steep-sided valleys scoured by glaciers during the recent ice ages. The exposed bedrock is commonly metamorphosed basaltic rock, of which some varieties have well-preserved pillows that have been intensely flattened in areas of high tectonic strain. Intercalated between layers of basalt are lesser amounts of schists derived from sedimentary rocks and lesser rocks having felsic volcanic protoliths. These rocks are typical of the Wabigoon Subprovince, host to most of the pegmatites in the region. Ore Geology: Pegmatites are reasonably common in the region intruding the enclosing host rocks after metamorphism, evident from the manner in which the pegmatites cut across the well developed foliation within the metamorphosed host rocks. This post-dating relationship is supported by radiometric dating; an age of 2666 + 6 Ma is given for the timing of

Criteria	JORC Code explanation	Commentary
		 intrusion of the pegmatites (Breaks, et al., 2006). The pegmatites in North Aubry have a northeast plunge direction varying from 10 to 35 degrees from horizontal some 800m downdip extent and 250-300m strike. The North Upper and North Upper high grade component within, appears to wedge towards the south east and is still open down dip and to the north west. Southern pegmatites are thinner and less well developed with higher muscovite content and appear to have a more north to north-westerly trend and dip more shallowly to the east. These pegmatites are also hosted in pillow basalts. The pegmatites are zoned with better developed spodumene crystal appearing as bands, often at an acute angle to the general trend of the pegmatite. The dominant economic minerals are spodumene with varying proportions of muscovite, microcline, and minor petalite and lepidolite. The adjacent pillow basalts contain minor disseminated pyite and pyrrhotite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A total of 199 diamond holes, on a nominal 20m x 20m grid, have been used in the resource modelling at North Aubry and South Aubry. A total of 130 holes were drilled by Ardiden, with the previous owners Linear drilling 42 holes, some of which were excluded from this estimate due to missing logging, assay reliability or re-drills. The 2018 Ardiden drilling was completed by Rugged Aviation Inc. using BTW coring equipment producing 4.20 cm diameter core.

Criteria	JORC Code explanation	Commentary				
		Hole Eastin	0 0 i		Depth	
		GTDD-21-0004 5,585			341	
		GTDD-21-0005 5,585			372	
		GTDD-22-0001 5,585			201	
		GTDD-22-0002 5,585			312	
		GTDD-22-0003 5,585			403	
		GTDD-22-0006 5,585			341	
		GTDD-22-0007 5,585			336	
		GTDD-22-0008 5,585			345 342	
		GTDD-22-0009 5,585 GTDD-22-0010 5,585	,		342	
		GTDD-22-0010 5,585 GTDD-22-0011 5,585		_	453	
		GTDD-22-0011 5,585 GTDD-22-0012 5,585	,	_	453	
		GTDD-22-0012 5,585 GTDD-22-0013 5,585			389	
		GTDD-22-0013 5,585 GTDD-22-0014 5,585			450	
		GTDD-22-0014 5,585	,		395	
		GTDD-22-0013 5,585			355	
		GTDD-22-0018 5,585			525	
		GTDD-22-0019 5,585			312	
		GTDD-22-0125 5,585	,		396	
		GTDD-22-0317 5,585	,	227	372	
		GTDD-22-0310 5,585	,	220	330	
		GTDD-22-0319 5,584			531	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	Grade cut-offs	d averages and al have not been inc alent values are q	orpor	ated.	ates are tonnage weighted averages
Relationship between mineralisation widths and intercept lengths	 The assumptions used for any reporting of metal equivalent values should be clearly stated. These relationships are particularly important in the reporting of Exploration Results. 	 The historic pi widths. The resource r Holes drilled by downhole inter 	nodelling conside GT1 attempt to p cepts reported ar	Irilling rs the ierce f e app	y with the p intersection the minera roximately	nole lengths. egmatite varies hole by hole so all intersection widths are long ns in 3D and adjusts accordingly. ised pegmatite approximately perpendicular to strike, and the equivalent to the true width of the mineralisation. ed pegmatite outcrop. Some exposure may not be a complete

Criteria	JORC Code explanation	Commentary
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	representation of the total pegmatite width due to recent glacial deposit cover limiting the available material to be sampled.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	The appropriate maps are included in the announcement.

Balanced reporting	• Where comprehensive reporting	•	Pegmatite downhole interval summary with associated assay results are listed in Appendix A
Dulanocu reporting	of all Exploration Results is not		
	of all Exploration Results is not practicable, representative		
	reporting of both low and high		
	arades and/or widths should be		
	grades and/or widths should be practiced to avoid misleading		
	reporting of Exploration Results.		

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 GT1 completed a fixed wing single sensor magnetic/radiometric/VLF airborne geophysical survey. Survey details, 1191 line-km, 75m line spacing, direction 90 degrees to cross cut pegmatite strike, 70m altitude. Preliminary images have been received for Total Count Radiometric, Total Magnetics and VLF. Raw data currently being processed by MPX Geophysics. Interpretation will be completed by Southern Geoscience
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Test further potential downdip extensions and pegmatite stacking at North Aubry. Drilling program commencement at Root and Morssion prospects. Geological field mapping of anomalies and associated pegmatites at Seymour and regional claims. Sampling pegmatites for spodumene Drill targeting and followed by diamond drilling over the next 24 months. Commencement of detailed mining studies

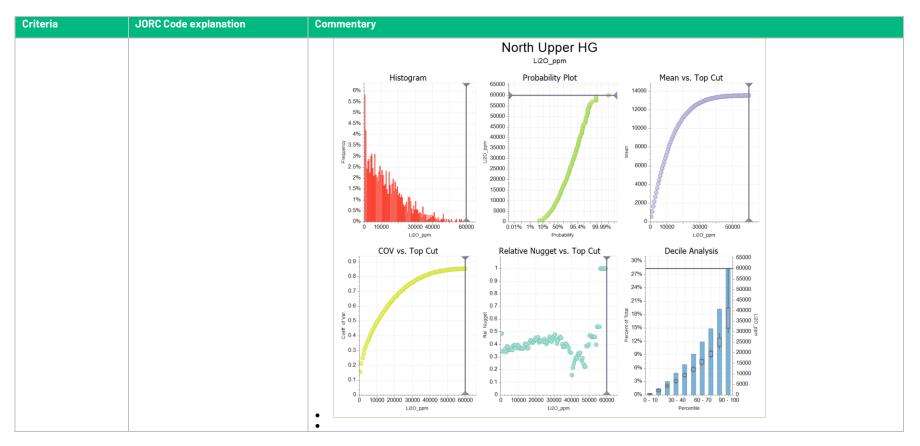
Section 3 Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data was imported into the database directly from source geology logs and laboratory csv files. Was then passed through a series of validation checks before final acceptance of the data for downstream use.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• A site visit was undertaken by the Competent Person (John Winterbottom) between 8th and 9th June 2022; general site layout, drilling sites, diamond drilling operations were viewed, plus diamond core in the storage facility Thunder Bay.



Criteria	JORC Code explanation	Commentary				
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 There is good confidence in the geological interpretation of the deposit in most areas; there are some areas of uncertain at the outer limits of the deposit where drill spacing is sparse. Interpretation was made directly from pegmatites noted in geological logs and confirmation through core photographs. Alternative geological interpretation would have a minimal effect on the resource estimate. Pegmatite intrusions were used to constrain the mineral resource estimation. Continuity of grade and geology is strongly tied to pegmatite thickness that varies considerably throughout the deposit due to structural elongation and dilation dynamics. 				
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The deposit consists of a number of stacked pegmatite units of varying thicknesses. The deposit consists of two principal areas North and South The Northern area of the deposit thas a maximum horizontal extent of 800m, 390m wide and varies from 2m up to 43m in thickness. 5 mineralised pegmatites that have been interpreted down to a depth of 350m below surface and is still open at depth. Pegmatites dip approximately 30-35 degrees to the northeast. The Southern area consists of an Upper and a Lower pegmatite. The Upper pegmatite is continuous over the entire extent of the Southern area only a 30 strike direction, upto 170m across with thickness varying from 0 to 22m, with a maximum depth of 130m below surface. 				

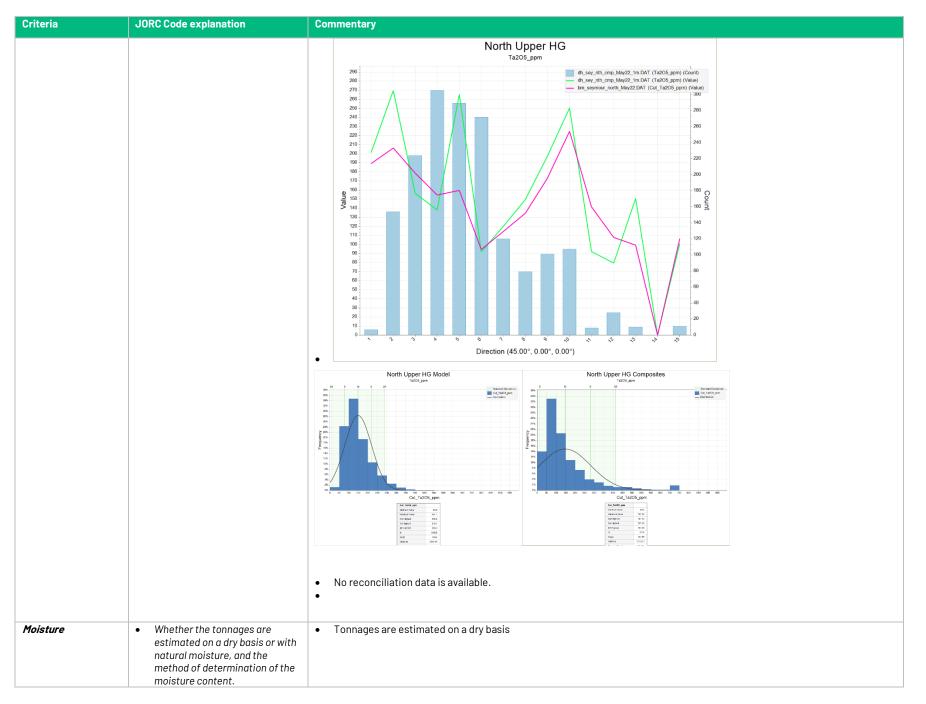
Criteria	JORC Code explanation	Commentary									
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by- products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to 	•	An Ord consid or dele histori Micror A prev 2019. The pr Area North South Geolog	dinary Kriging dered appropr eterious eleme ic areas of the al Resource fie nine 2022.4 s ious estimate revious minera Aubry Aubry Aubry Aubry E gical units wei South Upper: South Lower: North Upper (inc North Minor: North HW: North HW: North HW: North HW Minor Total atite and over yas composite	iate for the ents (Ta2C e resource gures. oftware we of the de al resourc Category Indicated Inferred Infered Inferred I	e style of min D5, Rb20, Cs, I e and thereford (as used for esposit was made e was constrative 2.1 1.7 1.0 4.8 erpreted in Lee Volume 742,546 150,664 2,330,000 565,460 73,568 5,362 106,210 91,656 10,955 4,076,420 reframes wer ength to geolo ample Lengths terval	eralisation unde K, Fe, Mg, Nb). Si e are only approp stimation, statis de by Phillip Jon ined within the p Li ₂ 0(%) 1.29 1.50 0.80 1.25 eapfrog 2021.2 s	e been used for Li ₂ O in the Mineral Resource Estimate which is r review. OK was also applied to important potential bi-product econdary elements were not exhaustively assayed for in the ximations at this stage and have not been included in the tical and geostatistical data analysis. es, an independent consultant employed by Ardiden Ltd in April pegmatite units and reported above a zero cut-off Li ₂ O grade. oftware from geological logs and core photography references.			



Criteria	JORC Code explanation	Commentary	Commentary						
		Parameter	North			Upper			
			Li2O		Li2O	Ta2O5			
				tion Direct					
		Z	315.19		330.22°	330.22°			
		X	0.12		0.14°	0.14°			
		Y	-32.67	-32.67	-30.51°	-30.51°			
		Geostatistic							
		Axis 1	Li2O		Li2O	Ta2O5			
		Azimuth	315.19		330.22°	330.22°			
		Plunge	0.12	0.12	0.14°	0.14°			
		Axis 2							
		Azimuth	45.27	45.27		60.3°			
		Plunge	32.67	32.67	30.51°	30.51°			
		Axis 3							
		Azimuth	225		239.99°	239.99°			
		Plunge	57.33	57.33	59.49°	59.49°			
		Geological							
		Strike	315	315	329.99°	329.99°			
		Dip direction	45	45	59.99°	59.99°			
		Dip	32.67		30.51°	30.51°			
		Pitch (lineat			0.27°	0.27°			
		Sense	NORTH		North	North			
		Plunge	0.12		0.14°	0.14°			
		Modelling C		0.12					
		Nugget 1	5699197	2246	300000	50			
		Component		2246	500000	50			
		Component			Cabariar	Cabariaa			
		Type	SPHERICAL			Spherical			
		Sill 1	47924816	5289	5.35E+06	7465.54			
		Component							
		Туре	SPHERICAL			Spherical			
		Sill 1	62022195	13851	5.56E+07	4662.25			
		Axis 1							
		Component							
		Range	9.1	14	81.8	230.38			
		Component	2						
		Range	32.2	35	335.8	310.55			
		Axis 2							
		Component	1						
		Range	27.9	22.1	36.49	86.81			
		Component				00.01			
		Range	66.1	76.8	72.5	310.55			
		Axis 3	00.1	, 0.8	, 2.5	510.33			
		Component	1						
		Range	2.93	1.32	3	3			
		Component		1.32	3	3			
			6.1	7.54	50	47.93			
		Range							
		 Block size 							
		Neighbou	rhood Ana	lysis (QKN	IA)techni	iques. Two			
		blocks 5m	nE x 10mN	x 2.5mRL	rotated 4	45 from no			
		10mE x 10	m N x 2.5m	n RL blocl	k sizes wi	th no rota			

Criteria	JORC Code explanation	Commentary
		 blocks up to 1/5 of the parent blocks to preserve pegmatite volumes. Model dimensions are shown below:
		Model minX maxX minY MaxY minZ maxZ xdim ydim zdim Rotation bm_seymour_north_May22 39655.00 397805.00 5584902.50 5586002.50 - 61.25 418.75 10 5 2.5 45 bm_seymour_south_May22 396295.00 397005.00 5584095.00 151.25 400.00 10 10 2.5 0
		 Recovery of by-products will be determined following detailed metallurgical testwork. Estimated averages for bi product and deleterious elements for North Aubry are tabulated below but are not available for South Aubry as testwork was limited to Li₂O and Ta₂O₅.:
		Bi-product and Deleterious
		elements
		Reported within \$US4000 pit
		shell above 0.2% Li2O
		Tonnes (mt) 7.8
		Li20% 1.17
		Ta2O5ppm 148
		Rb2O ppm 2,550
		К ррм 17,800
		Fe ppm 8,170
		Mg ppm 2,120
		Nb ppm 62
		• Cs ppm 400
		 Acid mine drainage estimates will be made on the return of waste rock samples for multi-elemental analysis, including
		 Acid mine drainage estimates will be made on the return of waste rock samples for multi-elemental analysis, including sulphur.
		• Locally Varying Trend (LVA) models were produced for each pegmatite from Leapfrog footwall surfaces. Multiple passes
		were used to ensure blocks are filled in areas with sparser drilling.
		 Searches of 50m, 100 and 150m with applied anisotropy and orientation to the search ellipsoid based on the trend model were made.
		 Sample data was composited to 1m down-hole composites, while honouring geological contacts.
		• Top cut analysis was carried out to identify extreme outliers, using a combination plots, and histograms and the effect of
		top cuts on cut mean and coefficient of variation. Variable top cuts have been applied by domain and element, as follows:.



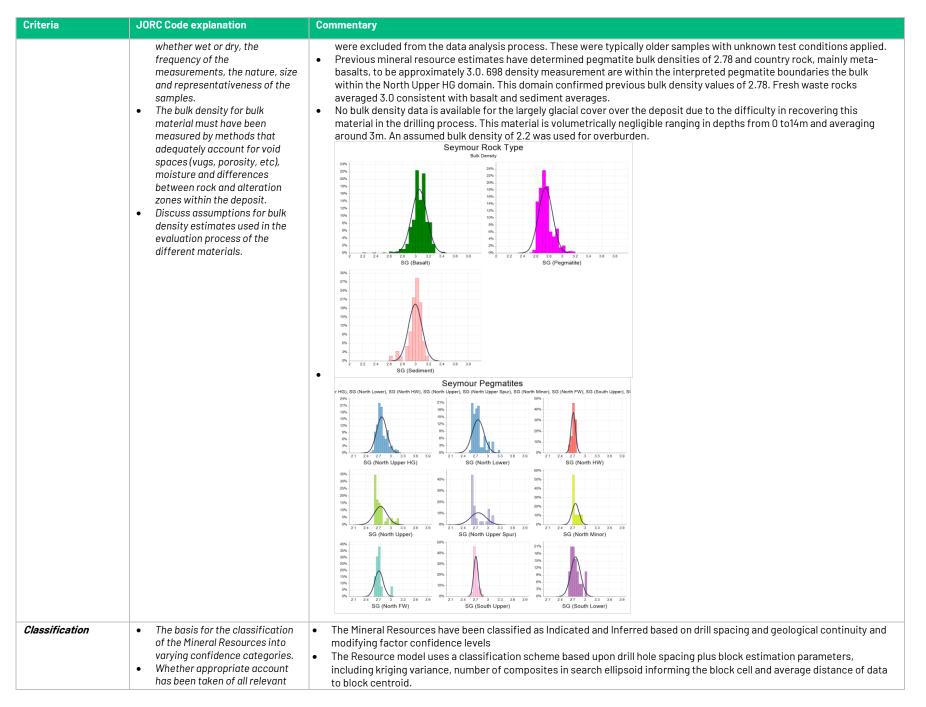


Criteria	JORC Code explanation	Cor	Commentary						
			Seymour Top	Cuts					
			Field Name	Кеу	Top Cut	Mean	Coeff. of	Mean	Coeff. of
			Li2O_ppm	North FW	17,749	4,224	Variation 1.2	4,213	Variation 1.19
			Ta2O5_ppm		817	156	1.1	156	1.11
			Rb2O_ppm		4,980	2,113	0.5	2,105	0.50
			K_ppm Fe_ppm	North FW North FW	44,230 20,091	21,587 5,876	0.5	21,383 5,765	0.47
				North FW	4,984	1,091	1.1	1,058	0.98
			Nb_ppm	North FW	122	57	0.5	56	0.50
			Cs_ppm	North FW	1,352	254	1.4	230	0.99
			Li2O_ppm	North HW	4,895	736	1.9	695	1.76
			Ta2O5_ppm	North HW	551	187	0.8	185	0.73
				North HW	5,238	1,705	0.9	1,697	0.85
			K_ppm	North HW North HW	33,566 79,473	13,372 11,162	0.7	13,332 10,942	0.73
			Fe_ppm Mg_ppm	North HW	34,420	3,620	2.6	3,177	2.24
			Nb_ppm	North HW	143	5,020	0.7	56	0.52
			Cs_ppm	North HW	535	137	1.1	135	1.07
			1120	No. who I a	26.05-	0.105		0.055	
				North Lower North Lower	36,955 710	8,423 195	1.2	8,358 184	1.17 0.76
				North Lower	8,137	2,390	1.1	2,360	0.76
			K_ppm	North Lower	60,479	19,204	0.7	19,017	0.68
			Fe_ppm	North Lower	82,207	12,216	1.5	12,104	1.46
			Mg_ppm	North Lower	39,912	4,179	2.1	4,116	2.10
			Nb_ppm Cs_ppm	North Lower North Lower	159 1,250	59 355	0.7	57 340	0.56
			Li2O_ppm	North Minor	14,246	4,260	1.2	4,254	1.24
				North Minor	241	132	0.4	132	0.44
			Rb2O_ppm K_ppm	North Minor North Minor	5,693 57,145	2,211 19,282	0.7	2,194 19,215	0.65
				North Minor	27,068	8,547	0.8	8,547	0.77
				North Minor	15,018	2,644	1.5	2,644	1.53
			Nb_ppm	North Minor	104	60	0.3	60	0.27
			Cs_ppm	North Minor	612	266	0.7	266	0.68
			Li2O_ppm	North Upper	6,572	1,284	1.2	1,241	1.09
			Ta2O5_ppm	North Upper	553	1,204	0.9	1,241	0.88
			Rb2O_ppm	North Upper	11,621	3,021	1.0	3,006	1.00
			K_ppm	North Upper	87,187	25,278	1.0		1.04
			Fe_ppm	North Upper North Upper	91,781 43,706	16,587 6,073	1.6 2.0	16,491 6,041	1.61 1.98
			Mg_ppm Nb_ppm	North Upper	43,706	6,073	2.0	63	0.93
			Cs_ppm	North Upper	2,984	453	1.6	411	1.17
			Li2O_ppm	North Upper HG	44,654	13,208	0.9	13,102	0.84
				North Upper HG North Upper HG	747 8,862	175 3,057	2.5 0.7	148 3,030	0.90
			K_ppm	North Upper HG	79,228		0.7		0.69
				North Upper HG	46,838	8,990	1.1	8,526	0.77
			Mg_ppm	North Upper HG	17,630	1,575	2.9	1,322	1.91
			Nb_ppm	North Upper HG	243	63	0.9	61	0.74
			Cs_ppm	North Upper HG	1,535	432	0.8	420	0.62
			Li2O_ppm	North Upper Spur	15,609	3,374	1.2	3,272	1.13
			Ta2O5_ppm	North Upper Spur	256	112	0.7	111	0.67
				North Upper Spur		875	0.6	864	0.62
			K_ppm	North Upper Spur		7,390	0.7	7,270	0.68
			Fe_ppm Mg_ppm	North Upper Spur North Upper Spur		24,697 10,319	1.4 1.5	24,657 10,292	1.40
			Nb_ppm	North Upper Spur	112	49	0.7	49	0.65
			Cs_ppm	North Upper Spur	422	163	0.7	163	0.64
				South Lower	20,000	9,709	0.92	9,641	0.91
			Ta2O5_ppm		863	123	1.41	100	0.67
			Li2O_ppm Ta2O5_ppm	South Upper South Upper	18,000 331	5,932 118	0.96	5,930 118	0.96
		•	1.9502 ^{bbu}	south opper	1 531	1 110	0.08	110	0.08

Criteria	JORC Code explanation	Commentary
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	The Seymour Mineral Resource is reported using open-pit mining constraints. The open-pit Mineral Resource is only the portion of the resource that is constrained within a US\$4,000 / t SC6 optimised shell and above a 0.2% Li ₂ O cut-off grade. The optimised open pit shell was generated using: \$4/t mining cost \$15.19/t processing costs Mining loss of 5% with no mining dilution 55 degree pit slope angles 75% Product Recovery
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 The 2022 Mineral Resource Estimate is reported above 0.2% Li₂0 cut-off. The cut-off is based on lowest potential grade at which a saleable product might be extracted using a conventional DMS and / or flotation plant and employing a TOMRA Xray sorter (or equivalent) on the plant feed. A number of pegmatites outcrop at surface thus the mineral resource is likely to be extracted using a conventional drill and blast, haul and dump mining fleet.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Ardiden undertook preliminary metallurgical sampling in 2017 as follows: Metallurgical Dense Media Cyclone Separation (DMCS): Ardiden's Chinese strategic partner, Yantai Jinyuan Mining Machinery Co. Ltd., carried out metallurgical test work on a 2,500 kg bulk sample collected using a large rock breaker and excavator from a trench at Aubry North. Using this equipment to collect the bulk sample avoided problems associated with natural particle size distribution (PSD) as a result of drilling and blasting. After mining, the large rocks were hand broken and homogenised, then using a number of highly controlled staged crushing and sample preparation procedures Yantai generated a 500 kg sample of <6 mm particles, which is a typical size range for lithium chemical plants. The crushed head sample size distribution of the particles achieved was 86.5% ranging from 0.5 mm to 6.0 mm at an average head grade of 1.37% Li20 and 13.5% of the particles <0.5mm at an average head grade of 0.84% Li20. The overall average head grade was 1.29% Li20. The coarse particle size used for the testing showed that crushed ore, without using a roller crusher, reduces the crushing and processing times and costs while still producing a high quality marketable lithium concentrate. Heavy Liquid Separation (HLS) The HLS tests on the North Aubry pegmatite material showed that, with a heavy liquid density of 2.95g/ml, a very impressive spodumene concentrate of up to 7.04% Li20 at a recovery of 91.6% is produced. Detailed metallurgical studies have only just begun but preliminary metallurgical test work undertaken by IMO in Perth Western Australia on behalf of Ardiden Ltd inApril and again in December 2017 suggest a 2 phase Dense Media Separation processing plant may be sufficient to achieve acceptable spodumene recoveries.

Criteria	JORC Code explanation	Commentary
		 Dense Media Cyclone Separation (DMCS) Dense Media Cyclone mineral separation tests were conducted under a number of different operating conditions on the 0.5mm to 6mm size fraction only. This testwork indicated that a lithium concentrate grade of 6.05% Li20 can be achieved at a recovery rate of 85.6%. It was noted that should it be needed, the lithium concentrate grades can be
		 Different medium densities were also tested with one lithium concentrate producing a grade of 6.92% Li20 with a strong recovery rate of 81.7%. The most encouraging results occurred when using: Feeding density of 2400kg/m; Ore feeding pressure 0.045Mpa; Ratio of ore and medium at 1:6; and Feed size of 0.5mm to 6.0mm.
		Metallurgical Testwork Conclusions
		Ardiden concluded the following from their testwork:
		 It was concluded from this initial metallurgical testwork that gravity separation is a viable method of producing a high grade commercial lithium concentrate from Seymour Lake pegmatites. The North Aubry spodumene concentrate quality appears to contain only traces amounts of deleterious minerals. The North Aubry spodumene appears to have a low iron content which will positively impact down-stream processing hence enhancing the commercial value of the lithium concentrate produced. HLS tests produced high-grade lithium concentrates up to 7.04% Li20 at a recovery rate of 91.6%.
		Green Technology Metals Ltd
		• GT1 has undertaken a comprehensive metallurgical sampling and testing program for North Aubry using historic and recent drill core from 60 holes distributed throughout the mineral resource and within the optimised pit boundaries, see figure below.

Criteria	JORC Code explanation	Commentary
		Fan View of Metallurgical sample locations within the optimised pit boundaries



Criteria	JORC Code explanation	Commentary
		TOP 22-013 CONTRACTOR OF THE C
		Cross section through Deposit with Metallurgical Samples Selected Samples were selected from ¼ NQ ₂ or BTW drill core and the entire pegmatite interval assigned to one of four composite groups. The groups represent the different mineralisation phases seen in the pegmatite within, what GT1 expect to be, the final open pit mine shell at Seymour. Results are tabulated below:
		Group Kg's Proposition of Total Avg. Li2O ppm Mid Low 255 26% 9,559 Low 149 15% 5,397 Mid Hi 324 33% 13,431 High 240 25% 19,889 Total 968 100% 12,779
		Heavy liquid separation (HLS) test work was undertaken at SGS Canada's facilities in Lakefield, Ontario. SGS compiled a master composite, based on the four samples selected, to provide a preliminary indication of the lithium beneficiation performance by dense media separation (DMS), DMS crush size, and requirement for a back-end flotation plant. Below summary table of the 8 mm HLS test results to achieve an HLS concentrate grade of 6.0% Li20 and 1.2 % Fe203. The resulting global HLS recovery, post magnetic separation including losses to HLS fines bypass, is 73%.

Criteria	JORC Code explanation	Commentary							
		HLS on master composite - crush size 8 mm			Grade		Distribution		
		Description	HLS SG	Mass Distribution	% Li ₂ 0	% Fe ₂ O ₃	Li ₂ 0	Fe ₂ 0 ₃	
		HLS non-mag ¹ product	2.82	12.7	6.0	1.2	72.6	19.2	
		HLS mag ¹ product	2.82	3.6	1.3	9.1	4.5	34.7	
		HLS tailings	-2.65	46.7	0.0	0.2	2.0	9.3	
		Flotation feed (fines and middlings)	-	37.0	0.6	0.9	20.9	36.9	
		Total feed	-	100	1.1	0.9	100	100	
Environmental factors or	Assumptions made regarding possible waste and process	Bulk sample pilot test work has been approved by MNDM and sampling is planned to begin in January 2023 where we extracting approximately ninety-nine tonnes from the North Aubry pegmatite outcrop within the Seymour project spodumene concentrate produced through the pilot work will be used as feed stock for the Lithium Hydroxide Convergeram (LHCP), all forming part of the ongoing feasibility study.							Seymour project. The Hydroxide Conversion
assumptions	residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 writing. Some sulphur results are available from assaying of diamond core with low level Sulphur haloing observed several metres adjacent to the pegmatite contacts. More exhaustive waste rock testing is currently underway in order to be able to characterise all the waste rock types and their likely environmental impacts. 							
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used,	• 1, 518 density measurements exist in the database of which 226 are from recent water immersion testwork undertaken by Actlabs Thunder Bay Ontario on ½ NO core samples with intervals consistent with the assay intervals submitted to the laboratory (nominally 1m). 1181 results are from laboratory pycnometer tests and the remainder are unrecorded. No obvious bias was noted between the measurements based on method, however samples whose test method was not recorded							

Green Technology Metals

www.greentm.com.au

Criteria	JORC Code explanation	Commentary
	 factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	• The results of the Mineral Resource Estimation reflect the views of the Competent Person.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No audits or reviews have been undertaken by GT1
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to nages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The relative accuracy of the Mineral Resource is reflected in the reporting of the Mineral Resource as being in line with the guidelines of the 2012 JORC Code. The statement relates to local estimates of tonnes and grade, with reference made to resources above a certain cut-off that are intended to assist mining studies.