

ASX RELEASE

11 April 2023

ASX | GT1

SEYMOUR EXPLORATION UPDATE

HIGHLIGHTS

- Clear development pathway for GT1's flagship Seymour Lithium project to be construction ready in 2024
- First year of Seymour field exploration covered 2,030 Ha, second year will encompass the unexplored North Seymour tenements covering 15,140 Ha
- North Seymour tenements exhibits similar geology, structure and geophysical features which host the North Aubry deposit MRE 9.9 Mt @ 1.04% Li₂0¹
- Seymour regional geochemical data analysis underway to determine prospectivity and generation of new exploration targets
- In addition to exploration, geotechnical and development drilling has been completed at Seymour, supporting permitting, approvals and infrastructure planning
- Group 2023 exploration plan is currently in development to evaluate and prioritise exploration for the upcoming field season across GT1's large 56,000 Ha project areas that remain underexplored

Green Technology Metals Limited (**ASX: GT1**)(**GT1** or the **Company**), a Canadian-focused multi-asset lithium business, is pleased to provide an update on the exploration activities undertaken at it's flagship Seymour Project in Ontario, Canada.

"Over the past 6 months we have been focused on fast-tracking the Aubry hard rock spodumene deposits at Seymour from exploration into development and have successfully accelerated our development activities at the project to be construction ready next year.

Exploration to date on the Aubry deposits has focused on increasing tonnes and increasing confidence levels of material feeding into a centralised concentrator, however a much larger portion of the Seymour project that sits to the north with the same greenstone belt, remains highly prospective yet unexplored for lithium bearing pegmatites. This year we are looking forward to starting our maiden exploration program as we step out on the Northern tenements proximal to the Seymour hub and believe the area is highly prospective for potential new discoveries".

GT1 Chief Executive Officer, Luke Cox

Project Overview

The Flagship Seymour Project is comprised of 15,140 hectares (151.4km²) of 100% GT1-owned Claims, and is located near the township of Armstrong, approximately 230km north of the major regional township and port of Thunder Bay. The Project has an existing Mineral Resource estimate of 9.9 Mt @ 1.04% Li_2O (comprised of 5.2 Mt at 1.29% Li_2O Indicated and 4.7 Mt at 0.76% Li_2O Inferred)¹ at North and South Aubry Deposit areas.

Exploration has been focused on the southern Seymour Project area which has included accelerated drilling and development activities to fast-track the Seymour Project into production. The company's strategy is to become a first mover in Ontario with first spodumene production targeted for 2025 and first lithium hydroxide production targeted for 2027.

In parallel to the exploration program, additional development activities at Seymour remain on-track including permitting, baseline studies, metallurgical test work programs and project studies, all positioning GT1 to be construction ready by 2024 with the support and approval from our Indigenous partners.

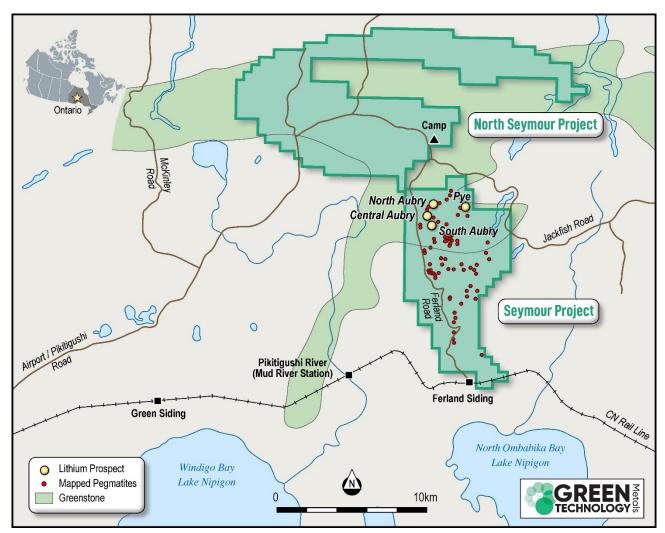


Figure 1: Seymour and North Seymour project area and mapped pegmatites

Seymour Drilling Program

The Seymour project area comprises of 4 high priority target areas; Aubry Complex, Pye East Limb, Pye West Limb and Forsythe, plus a number of highly prospective areas with structural and geophysical similarities to the well mineralised zones at North and South Aubry. Drilling to date has focused on the Aubry target areas with a number of additional targets areas still requiring further drilling and exploration.

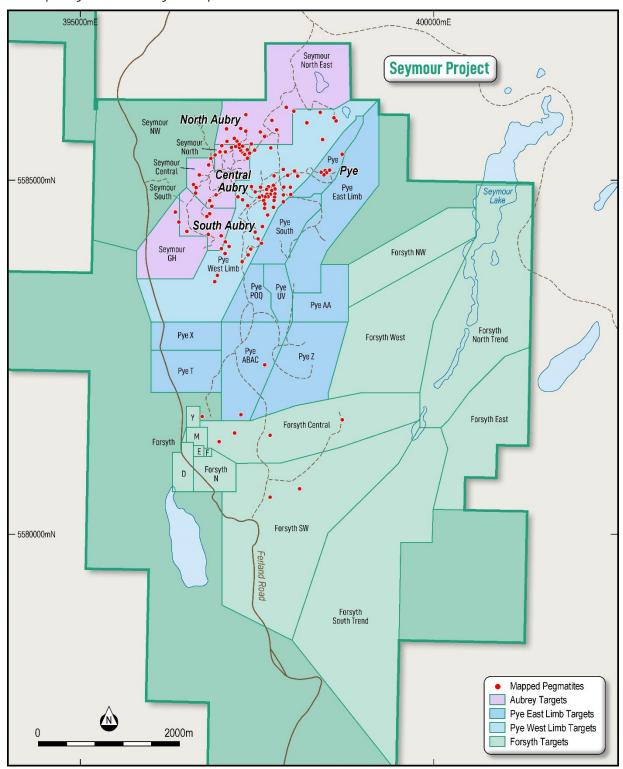


Figure 2: Seymour Project target areas on Southern Seymour tenements

Aubry

Diamond drilling has continued at the North Aubry deposit with a further 9 holes for 2,487m completed. The North Aubry deposit is dominated by a single, large, consistent unit that has the attributes to mine very well with minimal dilution. The sustained focus of drilling at North Aubry has been further expansion of the deposit dimensions, both along strike to the north and with further down dip extension.

The deeper recent holes will not currently add to the Mineral Resource Estimate (**MRE**) as they are below the MRE optimised pit shell, however results highlight that the orebody continues at depth with consistent grade and could be considered for future underground optimisation and inclusion in subsequent mineral resource estimates.

Exploratory holes have been drilled north-west of North Aubry, intersecting the boundary of the Seymour Syncline and delineating the western extent of the Pillow Basalts which host the pegmatites in the Aubry Complex. This is a key boundary for delineating the corridor for potential pegmatite emplacement and is greatly assisting GT1's understanding of mineralisation controls which will be applied to the greater Seymour area and other Lithium Projects held by GT1 in Ontario

Further drilling was completed to the north-east of the Aubry complex which sits along a NE-SW magnetic high structure which is several kilometres long and has distinct magnetic low "breaks" along its strike, the low "breaks" correlated with several pegmatite exposures at surface however the pegmatites didn't extend beneath their surface exposure.

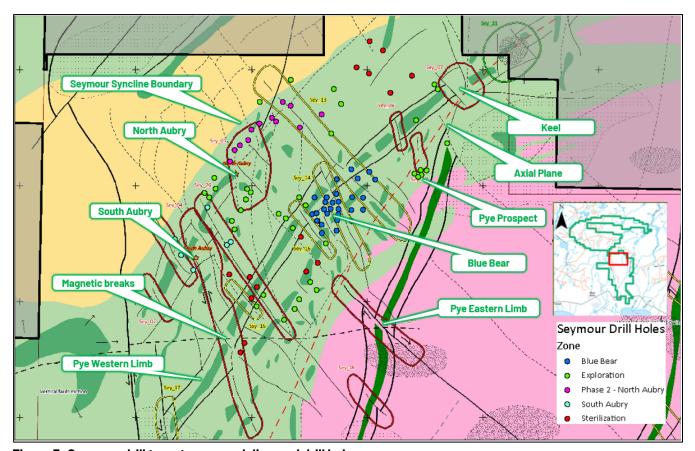


Figure 3: Seymour drill target areas and diamond drill holes

Pye East Limb

GT1 has successfully mapped and drilled several LCT pegmatites hosting minor Spodumene mineralisation over several hundred meters to the north and south of the Pye East Limb outcrop, a total of 29 diamond drill holes totaling 6621m have been completed. Mineralisation is sporadic but confirms the area is fertile and requires further work to determine controls on mineralisation. Regional geochemical data analysis is currently underway to determine prospectivity and zonation of the mineralisation that will be used for vectoring into high-grade zones and generation of new exploration targets for the upcoming field exploration season.

Pye West Limb

Pye West Limb hosts the Blue Bear pegmatite discovered in November 2022, 31 diamond drill holes totaling 6,182m have been completed. Drilling has delineated a pegmatite to a depth of 340m, over 700m down-dip length and a strike-length of nearly 350m. Significant results returned include near-surface thick high-grade intercepts of 13.9m @ 1.53% Li_2O in GTDD-22-0350 and 14.4 @ 1.38% Li_2O in GTDD-22-0360.

Hole	Easting	Northing	RL	Dip	p	Azi	DEPTH	From	То	Interval	Li20%	Including
GTDD- 22-0350	397,571	5,584,696	383	-	50	270	155	13.8	27.7	13.9	1.53%	8.8m @ 2.37%Li20 from 16.9m
GTDD- 22-0359	397,561	5,584,763	381	-	45	280	65	20.4	34.5	14.1	0.66%	8.7m @ 0.86%Li20 from 21.6m
GTDD- 22-0360	397,562	5,584,762	382	-	70	280	65	21.1	35.5	14.4	1.38%	8.0m @ 2.02%Li20 from 25.7m
GTDD- 22-0377	397,869	5,584,789	393	-	60	267	275	155.4	172.6	17.2	0.44%	3.7m @ 1.79%Li20 from 163.3m

Table 1: Significant results returned from Blue Bear diamond drilling

Further results included pegmatite intercepts without significant lithium mineralisation and indicate further work is required to determine controls of mineralisation at Blue Bear, however, finding additional LCT pegmatites within 600m of North Aubry shows the system is still open and spodumene accumulation is generally increasing West, adding critical information to the regional exploration model.

Drilling continued north and south along the magnetic high, Pye West Limb, targeting magnetic breaks that correlate with the regional geological mapping and work completed by the geophysical team in 2022. Several pegmatites have been intersected with mineral assemblages associated with LCT pegmatites and are being assessed geochemically in our vectoring program.

Forsythe

Historical mapping and sampling has been focused on several east-west large magnetic anomalies located south of the Aubry Complex and named Forsyth Central. Channel sampling has indicated lithium mineralisation exists on several sites which future drilling campaigns will be focused on. Recent drilling has intersected thick pegmatites with mineral assemblages that can be used to determine if the area has the potential to become fertile for Spodumene Mineralisation through mineral ratios and vectoring.

Development drilling for major Infrastructure

GT1 has undertaken a variety of drilling campaigns to provide valuable information to the ongoing Preliminary Economic Assessment ('PEA'), focusing on geotechnical data, utilising the exploration diamond rigs onsite. The campaigns have included condemnation (sterilisation) diamond drilling and bedrock mapping, covering all areas where major infrastructure is proposed to be located.

Rig and excavator supported geotechnical soil investigations have been undertaken over the area to characterise foundation conditions where infrastructure is planned, supporting engineering designs of dams, other water management infrastructure and plant site infrastructure. The rigs have also supported pump testing to determine bulk conductivity of the rock units where mining is planned.

Geotechnical diamond drilling has been completed to optimise the design and stability of the open pit through site investigations including;

- Geotechnical material properties testing program
- North Aubry pit walls geotechnical program, including rock mass and oriented structure data
- Material properties testing program on drill core
- Slope design modelling and analysis including kinematic and limit equilibrium slope stability, to develop the slope design parameter recommendations.

Upcoming 2023 Exploration Program

In June 2023 Seymour's field exploration program will re-commence and include prospecting, mapping and soil sampling using a variety of techniques that have yielded positive results across the company's other lithium exploration properties. Ground investigations along interpreted structures throughout the main Seymour block, including North Aubry, Pye, West Limb will continue and GT1 will commence its maiden field exploration on the highly prospective 9,135 hectare (91.35km²) North Seymour tenement blocks that have never been explored for Lithium.

The Northern tenement block lies on the same greenstone belt as the North and South Aubry deposits and exhibits many of the same structural and geophysical features which the company believe are the controls of the spodumene and pegmatite mineralisation and emplacement.

Drilling at Seymour will be paused from mid-April to focus on exploration and targets generated by successful field work will be added to the Priority 1 drill hole targets remaining on the property and will be tested when resource definition drilling resumes in August 2023.

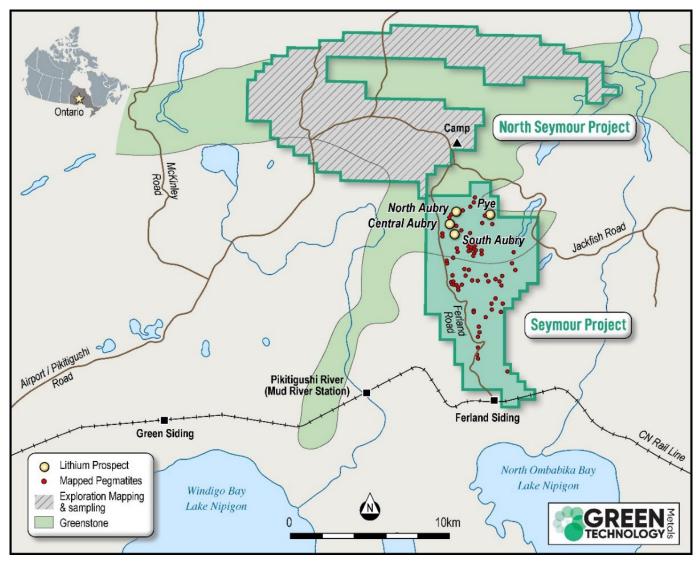


Figure 4: Regional Seymour exploration map

This ASX release has been approved for release by the Board.

KEY CONTACTS

Investors

Luke Cox

Chief Executive Officer

info@greentm.com.au +61 8 6557 6825 Media

Jacinta Martino

Investor Relations and Media

ir@greentm.com.au +61 430 147 046

Green Technology Metals (ASX:GT1)

GT1 is a North American focussed lithium exploration and development business. The Company's 100% owned Ontario Lithium Projects comprise high-grade, hard rock spodumene assets (Seymour, Root and Wisa) and lithium exploration claims (Allison and Solstice) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada.

All sites are proximate to excellent existing infrastructure (including hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality.

Seymour has an existing Mineral Resource estimate of 9.9 Mt @ 1.04% Li₂0 (comprised of 5.2 Mt at 1.29% Li₂0 Indicated and 4.7 Mt at 0.76% Li₂0 Inferred). Accelerated, targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

¹ For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, *Interim Seymour Mineral Resource Doubles to 9.9Mt*. The Company confirms that it is not aware of any new information or data that materially affects the information in that release and that the material assumptions and technical parameters underpinning this estimate continue to apply and have not materially changed.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

Information in this report relating to Exploration Results is based on information reviewed by Mr Luke Cox (Fellow AusIMM). Mr Cox has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Cox consents to the inclusion of the data in the form and context in which it appears in this release. Mr Cox is the Chief Executive Officer of the Company and holds securities in the Company.

No new information

The information in this report relating to the Mineral Resource estimate for the Seymour Project is extracted from the Company's ASX announcement dated 23 June 2022. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GT1's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GTI's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GTI's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or quarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence).

APPENDIX C: JORC CODE, 2012 EDITION - Table 1 Report

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond Drilling Diamond drilling was used to obtain nominally Im downhole samples of core. Core samples were ½ cored using a diamond saw with ½ the core placed in numbered sample bags for assaying and the other half retained in sequence in the core tray. ½ core samples were approximately 2.5kg in weight with a minimum weight of 500grams. Core was cut down the apex of the core and the same downhole side of the core selected for assaying to reduce potential sampling bias. Historic Grab Samples Samples were collected between 16 June and 9 November 2016 by Caracle Creek International Consulting Inc., of Sudbury Ontario on behalf of Ardiden Limited (ASX:ADV) and are noted in the Technical Report for MNDM Assessment, 2016 Surface Exploration Program, dated 28 September 2018. The report was prepared by Caracle Creek International Consulting Inc on behalf of Ardiden and included channel samples collected within the reporting period. Details of the grab sampling and preparation techniques were extracted from this report; Grab Samples were collected using a hammer and/or chisel from a cleaned rock exposure. Samples were tagged and placed in a cotton bag then fastened with a zip tie. Historic Channel Samples Preparation prior to obtaining the channel samples including grid and geo-references and marking of the pegmatite structures. Samples were cut across the pegmatite with a diamond saw perpendicular to strike. Average 1 metre samples are obtained, logged, removed and bagged and secured in accordance with QAQC procedures. Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups. One tag from a triple tag book was inserted in the sample bag.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core	Tri-cone drilling was undertaken through the thin overburden prior to NQ2 diamond drilling through the primary rock.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). • Method of recording and	No core was recovered through the overburden tri-coned section
	assessing core and chip sample recoveries and results assessed. • Measures taken to maximise sample recovery and ensure representative nature of the samples. • Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 of the hole (top 5m of the hole) Core recovery through the primary rock and mineralised pegmatite zones was over 98% and considered satisfactory. Recovery was determined by measuring the recovered metres in the core trays against the drillers core block depths for each run.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content, and any structures. Logging is qualitative in nature. Samples are representative of an interval or length. Sampling was undertaken for the entire cross strike length of the intersected pegmatite unit at nominal 1m intervals with breaks at geological contacts. Sampling extended into the country mafic rock.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Each ½ core sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh) (includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. Field duplicates were taken at a rate of 1:20 taken immediately adjacent to the original sample. The sample preparation process is considered representative of the whole core sample.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying	Actlabs inserted internal standards, blanks and pulp duplicates within each sample batch as part of their own internal monitoring

Criteria	JORC Code explanation	Commentary
	and laboratory procedures used and whether the technique is considered partial or total. • For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. • Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 of quality control. All and blanks and certified reference samples returned acceptable results. GT1 inserted certified lithium standards and blanks into each batch submitted to Actlabs to monitor precision and bias performance at a rate of 1:20. All independent certified reference data returns were within acceptable limits with no discernible bias. The major element oxides and trace elements including Rb, Cs, Nb, Ta and Be were analyzed by FUS-ICP and FUS-MS (4Litho-Pegmatite Special) analytical codes which uses a lithium metaborate tetraborate fusion with analysis by ICP and ICPMS. Historic specific gravity testwork was determined for every 10th sample by RX17-GP analytical code measured on the pulp by a gas pycnometer. GT1 used water immersion (Archimedes) testwork on ½ core -20cm billets to determine core bulk density
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	• NA
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A GPS reading was taken for each sample location using UTM NAD83 Zone16 (for Seymour); waypoint averaging or dGPS was performed when possible. The project area was flown using LIDAR equipment in October 2021 by KBM Resources Group Inc. from Thunder Bay using a Riegl 680i LiDAR system, coupled to a Applanix POSAV 510 positioning system Historic downhole survey data used a Digital Electronic Multi-shot (DEMS) camera for establishing hole orientation for historic holes. GT1 has used continuous measurement north seeking gyroscope tools with readings retained every 5m downhole.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The Seymour North Aubry pegmatites have variable drill spacing from 20Ex20Nm in the shallower areas (<150m) of the deposit to 50mEx50mN at lower depths (150-250m) Im compositing was applied to the historic Seymour Mineral Resource. Blue Bear pegmatite drilling was drilled at 50 x50m spacing at shallower depths (<100m) and over 100x 100m at depth and along strike of the outcrop. Drilling distal to the Aubry deposits was spaced more randomly testing prospective exploration targets or sterilisation potential Seymour infrastructure sites and their distribution is insufficient to establish geological or grade continuity.

Criteria	JORC Code explanation	Commentary				
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	GT1 drill samples were drilled close to perpendicular to the strike of the pegmatite unit and sampled the entire length of the pegmatite as well including several metres into the mafic country rock either side of the pegmatite. Grab and trench samples were taken where outcrop was available. All attempts were made to ensure trench samples represented traverses across strike of the pegmatite.				
Sample security	The measures taken to ensure sample security.	Core and samples were supervised and secured in a locked vehicle, warehouse, or container until delivered to Actlabs or AGAT in Thunder Bay for cutting, preparation and analysis.				
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• NA				

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Seymour Property consists of 736 single and boundary cell mining claims, spanning approximately 15,140 ha. The claims are 100% owned by Green TM Resources (Canada) Ltd, a wholly owned subsidiary of Green Technology Metals Ltd. Surface rights to the Seymour Property remain with the Crown. All Cell Claims are in good standing. An Active Exploration Permit exists over the Seymour Lithium Assets An Early Exploration Agreement is current with the Whitesand First

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Nation who are supportive of GT1 exploration activities. Seymour Mining Claims Seymour Property Boundary Regional exploration for lithium deposits commenced in the 1950's. In 1957, local prospector, Mr Nelson Aubry, discovered the North Aubry and the South Aubry pegmatites. Geological mapping by the Ontario Department of Mines commenced in
		 Regional exploration for lithium deposits commenced in the 1950's. In 1957, local prospector, Mr Nelson Aubry, discovered the North Aubry and the South Aubry pegmatites. Geological mapping by the Ontario Department of Mines commenced in 1959 and was completed in 1962 (Pye, 1968), with the publication of "Map 2100 Crescent Lake Area" in 1965. From the late 1950's to 2002, exploration by the Ontario Department of Mines was generally restricted to geological mapping and surface
		 sampling, although some minor drilling was completed to test the North Aubry pegmatite in late 1957 (Rees, 2011). In 2001, Linear Resources Inc. ("Linear Resources") obtained the Seymour Lake Project with an initial focus on the project's tantalum potential. In 2002, a 23-diamond drill-hole campaign was completed at North Aubry, and a further 8 diamond drill-holes at South Aubry. In 2008, Linear Resources completed a regional soil-sampling program which resulted in the identification of a number of soil geochemical anomalies. Based on these anomalies, another drilling campaign (completed in 2009), with 12 diamond drill-holes at North Aubry, 2 diamond drill-holes at South Aubry, and further 5 diamond drill-holes peripheral to the Aubry prospects designed to test the main 2008 soil geochemical anomalies. Little work was undertaken between 2010 and 2016 until Ardiden acquired the project from Linear Resources in 2016. Further drilling was carried out by Ardiden between 2017 and 2018 resulting in the completion of an updated mineral resource estimate of the Aubry pegmatites in 2018. Ground Penetrating Radar (GPR) was also undertaken by Ardiden in 2018 to test any further exploration potential beyond the current Aubry

JORC Code explanation	Commentary					
	pegmatite delineating numerous targets.					
Deposit type, geological setting and style of mineralisation.	 Regional Geology: The general geological setting of the Seymour Lithium Asset consists of the Precambrian Canadian Shield that underlies approximately 60% of Ontario. The Shield can be divided into three major geological and physiographic regions, from the oldest in the northwest to the youngest in the southeast. Local Geology: The Seymour Lithium Asset is located within the eastern part of the Wabigoon Subprovince, near the boundary with the English River Subprovince to the north. These subprovinces are part of the Superior Craton, comprised mainly of Archaean rocks but also containing some Mesoproterozoic rocks such as the Nipigon Diabase. Bedrock Geology: The bedrock is best exposed along the flanks of steep-sided valleys scoured by glaciers during the recent ice ages. The exposed bedrock is commonly metamorphosed basaltic rock, of which some varieties have well-preserved pillows that have been intensely flattened in areas of high tectonic strain. Intercalated between layers of basalt are lesser amounts of schists derived from sedimentary rocks and lesser rocks having felsic volcanic protoliths. These rocks are typical of the Wabigoon Subprovince, host to most of the pegmatites in the region. Ore Geology: Pegmatites are reasonably common in the region intruding the enclosing host rocks after metamorphism, evident from the manner in which the pegmatites cut across the well developed foliation within the metamorphosed host rocks. This post-dating relationship is supported by radiometric dating; an age of 2666 + 6 Ma is given for the timing of intrusion of the pegmatites (Breaks, et al., 2006). 					
 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	A total of 199 diamond holes, on a nominal 20m x 20m grid, have been used in the resource modelling at North Aubry and South Aubry. A total of 130 holes were drilled by Ardiden, with the previous owners Linear drilling 42 holes, some of which were excluded from this estimate due to missing logging, assay reliability or re-drills. Recent drilling from Phase 2 North Aubry will be used to inform the upcoming Mineral Resource estimate t Seymour. The 2018 Ardiden drilling was completed by Rugged Aviation Inc. using BTW coring equipment producing 4.20 cm diameter core. The earlier drill holes were either vertical or inclined towards the west. Once the pegmatite was determined to be dipping towards the north-east, the later drill holes were inclined towards the south-west Green Technology Metals Ltd has completed 94 NO diamond holes since our previous market update.					
	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:					

						letais		
Criteria JORC Cod	de explanation	Commentary						
							ı	
		GTDD-22-0339	397,418	5,585,501	349	51	205	- 85
		GTDD-22-0359	397,561	5,584,763	381	65	280	- 45
		GTDD-22-0391	397,969	5,584,791	390	263	268	- 66
		GTDD-22-0188	397,643	5,584,502	382	209	219	- 61
		GTDD-22-0355	397,235	5,584,756	380	203	230	- 60
		GTDD-22-0362	397,546	5,584,897	371	191	270	- 60
		GTDD-22-0018	397,712	5,585,832	362	221	218	- 59
		GTDD-22-0387	397,509	5,584,168	376	200	270	- 65
		GTDD-22-0332	397,071	5,585,534	341	344	213	- 71
		GTDD-23-0401	397,751	5,584,752	395	248	270	- 60
		GTDD-23-0409	396,987	5,584,211	361	206	220	- 59
		GTDD-22-0215	396,394	5,584,401	332	255	220	- 56
		GTDD-22-0343	398,446	5,585,075	348	282	88	- 60
		GTDD-22-0365	397,652	5,584,899	386	164	271	- 60
		GTDD-23-0388	397,564	5,584,099	371	92	270	- 65
		GTDD-22-0186	397,525	5,584,754	372	176	94	- 55
		GTDD-22-0198	398,585	5,585,873	361	365	101	- 55
		GTDD-22-0132	397,913	5,586,020	391	330	220	- 59
		GTDD-23-0185	397,000	5,584,028	363	125	220	- 60
		GTDD-23-0289	398,101	5,580,639	319	200	163	- 60
		GTDD-22-0385	398,023	5,585,119	371	335	217	- 65
		GTDD-23-0388B	397,564	5,584,099	371	206	270	- 65
		GTDD-23-0390	397,374	5,583,936	383	215	270	- 63
		GTDD-22-0333	397,001	5,585,483	331	272	219	- 65
		GTDD-22-0127	397,607	5,585,614	367	302	218	- 61
		GTDD-22-0206	396,342	5,584,538	324	240	237	- 61
		GTDD-22-0344	398,472	5,585,091	344	194	270	- 55
		GTDD-22-0367	397,752	5,584,797	398	176	271	- 58
		GTDD-22-0371	398,020	5,585,966	399	144	261	- 61
		GTDD-22-0368	397,740	5,584,701	397	170	267	- 59
		GTDD-22-0181	397,690	5,585,449	369	299	217	- 60
		GTDD-22-0370	398,026	5,586,244	383	150	219	- 57
		GTDD-22-0194	398,074	5,585,052	368	368	217	- 66
		GTDD-23-0250	398,709	5,581,610	338	242	180	- 54
		GTDD-22-0339A	397,418	5,585,501	349	15	206	- 85
		GTDD-22-0360	397,562	5,584,762	382	65	280	- 70
		GTDD-22-0357	397,341	5,585,911	338	302	273	- 67
		GTDD-22-0334	396,973	5,585,391	320	287	215	- 66
		GTDD-22-0338	396,788	5,584,487	379	150	331	- 71
		GTDD-22-0345	398,472	5,585,091	344	83	269	- 71
		GTDD-22-0369	397,736	5,584,611	391	248	270	- 60
		GTDD-22-0337	396,902	5,585,347	325	135	331	- 46
		GTDD-22-0372	398,391	5,585,947	384	192	218	- 62

		Metals						
Criteria	JORC Code explanation	Commentary						
	· ·		I	I	l	I	I	1 1
		GTDD-23-0246	397,684	5,581,389	329	266	174	- 59
		GTDD-23-0248	398,205	5,581,435	362	206	230	- 60
		GTDD-22-0192	397,736	5,585,054	398	146	219	- 60
		GTDD-22-0346	398,518	5,585,131	341	116	236	- 58
		GTDD-22-0352	397,413	5,584,898	373	326	87	- 60
		GTDD-23-0389	397,414	5,584,019	375	200	270	- 65
		GTDD-22-0098	396,692	5,584,973	362	153	215	- 61
		GTDD-22-0335	396,902	5,585,347	325	254	216	- 66
		GTDD-22-0366	397,875	5,584,900	394	236	266	- 59
		GTDD-23-0408	396,907	5,583,562	385	242	220	- 57
		GTDD-22-0373	398,205	5,585,800	388	213	219	- 60
		GTDD-22-0189	397,735	5,584,928	387	161	238	- 59
		GTDD-22-0351	397,468	5,584,829	368	208	87	- 54
		GTDD-22-0187	397,358	5,584,634	372	233	222	- 60
		GTDD-22-0097	396,681	5,585,066	378	150	217	- 61
		GTDD-22-0336	396,856	5,585,306	329	290	219	- 65
		GTDD-22-0381	397,656	5,584,758	396	185	270	- 60
		GTDD-23-0184	397,283	5,583,842	386	227	270	- 59
		GTDD-22-0377	397,869	5,584,789	393	275	267	- 60
		GTDD-22-0108	396,817	5,585,208	338	133	220	- 60
		GTDD-22-0177	398,614	5,585,830	353	170	95	- 56
		GTDD-22-0354	397,298	5,584,717	372	221	220	- 60
		GTDD-22-0379	397,607	5,584,662	393	86	272	- 60
		GTDD-22-0196	398,427	5,585,563	380	236	219	- 60
		GTDD-22-0378	397,870	5,584,693	389	257	269	- 60
		GTDD-22-0382	397,610	5,584,591	385	128	269	- 60
		GTDD-23-0410	397,105	5,584,056	370	197	220	- 60
		GTDD-22-0361	397,563	5,584,761	382	89	357	- 45
		GTDD-22-0353	397,428	5,584,557	374	221	218	- 59
		GTDD-22-0397	397,639	5,584,856	388	197	272	- 61
		GTDD-23-0180	397,049	5,584,125	367	122	220	- 59
		GTDD-23-0416	396,720	5,581,659	382	230	180	- 85
		GTDD-22-0386	397,574	5,584,333	370	230	219	- 65
		GTDD-22-0398	397,685	5,584,800	399	164	271	- 62
		GTDD-23-0411	397,046	5,583,959	336	152	220	- 60
		GTDD-22-0133	398,141	5,586,166	390	326	224	- 60
		GTDD-22-0350	397,571	5,584,696	383	155	270	- 50
		GTDD-22-0364	397,567	5,584,697	383	203	91	- 45
		GTDD-22-0392	397,970	5,584,895	391	278	269	- 64
		GTDD-22-0399	397,702	5,584,852	397	176	272	- 60
		GTDD-23-0178	396,940	5,583,642	385	248	220	- 59
		GTDD-23-0287	397,681	5,580,523	317	303	163	- 60
		GTDD-23-0407	397,604	5,582,392	326	150	220	- 59
			,					

Criteria	JORC Code explanation	Commentary						
		GTDD-22-0339B	397,418	5,585,501	349	17	205	- 85
		GTDD-22-0339C	397,418	5,585,501	349	470	178	- 84
		GTDD-22-0342	398,446	5,585,075	348	206	91	- 85
		GTDD-22-0363	397,629	5,584,795	396	158	271	- 60
		GTDD-22-0412	397,474	5,584,259	365	152	217	- 60
		GTDD-23-0400	397,752	5,584,861	393	194	270	- 59
		GTDD-22-0396	397,923	5,585,061	386	287	218	- 60
			from Blue Bear are ta					
		Hole Easting GTDD-22-0350 397,571	Northing RL D 5,584,696 383 - 5		om To 13.8 27.7	13.9 1.53		uding i 20 from 16.9m
		GTDD-22-0359 397,561			20.4 34.5	14.1 0.66		
		GTDD-22-0360 397,562 GTDD-22-0377 397,869			21.1 35.5 55.4 172.6	14.4 1.38 17.2 0.44		i 20 from 25.7m i 20 from 163.3m
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	weighted a Grade cut-c No metal ec	offs have not quivalent valu	been incorpo	orated. d.			je
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The historic reported results are stated as down hole lengths. The historic pierce angle of the drilling with the pegmatite varies hole hole so all intersection widths are longer than true widths. The resource modelling considers the intersections in 3D and adjusts accordingly. Holes drilled by GT1 attempt to pierce the mineralised pegmatite approximately perpendicular to strike, and therefore, the downhole intercepts reported are approximately equivalent to the true width of mineralisation. Trenches are representative widths of the exposed pegmatite outcro Some exposure may not be a complete representation of the total pegmatite width due to recent glacial deposit cover limiting the availar material to be sampled. 						djusts enole dth of the utcrop.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	The approp	riate maps al	e included ir	i the ann	nouncemer	nt.	

Balanced reporting

 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.

- All historic data has been previously reported.
- GT1 summarised assay results are listed below:

HOLEID	· · ·			Li2O	Ta2O5	191.4.	
HOLEID	From	То	Int	ppm	ppm	Lithology	
GTDD-22-0191	-	1.4	1.4	-	-	Overburden	
GTDD-22-0191	1.4	70.1	68.7	-	-	Mafic	
GTDD-22-0191	70.1	79.2	9.1	-	-	Felsic	
GTDD-22-0191	79.2	221.6	142.5	-	-	Mafic	
GTDD-22-0191	221.6	222.9	1.2	-	-	Sediment	
GTDD-22-0191	222.9	235.4	12.6	-	-	Mafic	
GTDD-22-0191	235.4	235.9	0.5	-	-	Sediment	
GTDD-22-0191	235.9	338.0	102.1	-	-	Mafic	
GTDD-22-0339	37.2	49.5	12.3	-	-	Felsic	
GTDD-22-0339	49.5	51.0	1.5	-	-	Mafic	
GTDD-22-0359	-	5.2	5.2	-	-	Overburden	
GTDD-22-0359	5.2	20.4	15.1	316	0	Mafic	
GTDD-22-0359	20.4	30.3	10.0	7,922	62	Pegmatite	
GTDD-22-0359	30.3	32.5	2.2	407	7	Lost Core	
GTDD-22-0359	32.5	34.5	2.0	993	33	Pegmatite	
GTDD-22-0359	34.5	34.8	0.3	1,460	5	Fault	
GTDD-22-0359	34.8	65.0	30.2	28	0	Mafic	
GTDD-22-0391	-	1.0	1.0	-	-	Overburden	
GTDD-22-0391	1.0	197.5	196.5	3	0	Mafic	
GTDD-22-0391	197.5	202.2	4.7	294	34	Pegmatite	
GTDD-22-0391	202.2	263.0	60.8	4	0	Mafic	
GTDD-22-0188	-	5.6	5.6	-	-	Overburden	
GTDD-22-0188	5.6	51.0	45.4	5	0	Mafic	
GTDD-22-0188	51.0	51.7	0.6	52	81	Pegmatite	
GTDD-22-0188	51.7	209.0	157.3	2	0	Mafic	
GTDD-22-0355	-	1.0	1.0	-	-	Overburden	
GTDD-22-0355	1.0	198.5	197.5	-	-	Mafic	
GTDD-22-0355	198.5	199.3	0.8	-	-	Fault	
GTDD-22-0355	199.3	203.0	3.7	-	-	Mafic	
GTDD-22-0362	-	5.6	5.6	-	-	Overburden	
GTDD-22-0362	5.6	191.0	185.4	-	-	Mafic	
GTDD-22-0018	-	2.6	2.6		-	Overburden	
GTDD-22-0018	2.6	25.1	22.5	_	-	Mafic	
GTDD-22-0018	25.1	25.9	0.8	-	-	Sediment	
			•	•	-	•	

_							
	GTDD-22-0018	25.9	67.0	41.1	50	0	Mafic
	GTDD-22-0018	67.0	67.5	0.5	269	460	Pegmatite
	GTDD-22-0018	67.5	200.9	133.4	8	0	Mafic
	GTDD-22-0018	200.9	201.7	0.8	3,487	165	Pegmatite
	GTDD-22-0018	201.7	221.0	19.3	45	0	Mafic
	GTDD-22-0387	-	3.8	3.8	-	-	Overburden
	GTDD-22-0387	3.8	4.3	0.5	-	-	Felsic
	GTDD-22-0387	4.3	67.7	63.4	4	0	Mafic
	GTDD-22-0387	67.7	68.1	0.4	97	10	Pegmatite
	GTDD-22-0387	68.1	200.0	131.9	2	0	Mafic
	GTDD-22-0332	-	2.5	2.5	-	-	Overburden
	GTDD-22-0332	2.5	137.0	134.6	-	-	Sediment
	GTDD-22-0332	137.0	156.0	19.0	-	-	Felsic
	GTDD-22-0332	156.0	215.1	59.1	-	-	Sediment
	GTDD-22-0332	215.1	344.0	128.9	-	-	Mafic
	GTDD-23-0401	-	4.0	4.0	-	-	Overburden
	GTDD-23-0401	4.0	91.6	87.7	-	-	Mafic
	GTDD-23-0401	91.6	102.9	11.3	-	-	Sediment
	GTDD-23-0401	102.9	112.9	10.0	-	-	Mafic
	GTDD-23-0401	112.9	114.6	1.7	-	-	Sediment
	GTDD-23-0401	114.6	119.8	5.2	6,639	181	Pegmatite
	GTDD-23-0401	119.8	248.0	128.2	85	18	Mafic
	GTDD-23-0409	-	1.7	1.7	-	-	Overburden
	GTDD-23-0409	1.7	93.5	91.8	-	-	Mafic
	GTDD-23-0409	93.5	93.9	0.4	-	-	Pegmatite
	GTDD-23-0409	93.9	107.9	14.0	-	-	Mafic
	GTDD-23-0409	107.9	108.6	0.7	-	-	Pegmatite
	GTDD-23-0409	108.6	145.4	36.9	-	-	Mafic
	GTDD-23-0409	145.4	146.2	0.7	-	-	Pegmatite
	GTDD-23-0409	146.2	206.0	59.9	-	-	Mafic
	GTDD-22-0215	-	3.5	3.5	-	-	Overburden
	GTDD-22-0215	3.5	97.4	93.9	-	-	Mafic
	GTDD-22-0215	97.4	100.6	3.2	-	-	Felsic
	GTDD-22-0215	100.6	192.2	91.6	-	-	Mafic
	GTDD-22-0215	192.2	192.9	0.7	-	-	Felsic
	GTDD-22-0215	192.9	201.3	8.4	-	-	Mafic
	GTDD-22-0215	201.3	201.7	0.4	-	-	Felsic
	GTDD-22-0215	201.7	214.2	12.5	-	-	Mafic

_							
	GTDD-22-0215	214.2	248.6	34.3	-	-	Sediment
	GTDD-22-0215	248.6	248.9	0.3	-	-	Pegmatite
	GTDD-22-0215	248.9	251.2	2.3	-	-	Sediment
	GTDD-22-0215	251.2	255.0	3.8	-	-	Felsic
	GTDD-22-0343	-	2.0	2.0	-	-	Overburden
	GTDD-22-0343	2.0	3.0	1.0	194	2	Felsic
	GTDD-22-0343	3.0	23.2	20.2	3,048	56	Pegmatite
	GTDD-22-0343	23.2	33.3	10.1	113	0	Felsic
	GTDD-22-0343	33.3	42.6	9.3	-	-	Mafic
	GTDD-22-0343	42.6	46.0	3.4	-	-	Felsic
	GTDD-22-0343	46.0	46.5	0.5	-	-	Mafic
	GTDD-22-0343	46.5	52.5	6.0	-	-	Felsic
	GTDD-22-0343	52.5	54.2	1.7	-	-	Mafic
	GTDD-22-0343	54.2	71.2	17.1	-	-	Felsic
	GTDD-22-0343	71.2	73.3	2.1	282	1	Mafic
	GTDD-22-0343	73.3	75.0	1.6	383	19	Pegmatite
	GTDD-22-0343	75.0	76.2	1.2	730	9	Mafic
	GTDD-22-0343	76.2	77.6	1.4	24	12	Pegmatite
	GTDD-22-0343	77.6	79.2	1.6	191	4	Felsic
	GTDD-22-0343	79.2	82.0	2.8	41	15	Pegmatite
	GTDD-22-0343	82.0	83.4	1.3	215	2	Mafic
	GTDD-22-0343	83.4	86.6	3.2	235	1	Felsic
	GTDD-22-0343	86.6	91.1	4.6	24	11	Pegmatite
	GTDD-22-0343	91.1	109.9	18.7	31	0	Felsic
	GTDD-22-0343	109.9	124.7	14.8	-	-	Mafic
	GTDD-22-0343	124.7	132.0	7.3	55	1	Felsic
	GTDD-22-0343	132.0	134.8	2.8	25	48	Pegmatite
	GTDD-22-0343	134.8	142.5	7.7	330	3	Felsic
	GTDD-22-0343	142.5	149.1	6.6	20	33	Pegmatite
	GTDD-22-0343	149.1	149.8	0.7	641	2	Felsic
	GTDD-22-0343	149.8	162.6	12.8	21	42	Pegmatite
	GTDD-22-0343	162.6	164.9	2.3	400	6	Felsic
	GTDD-22-0343	164.9	168.0	3.1	47	21	Pegmatite
	GTDD-22-0343	168.0	169.0	0.9	418	7	Felsic
	GTDD-22-0343	169.0	169.5	0.5	286	4	Mafic
	GTDD-22-0343	169.5	189.0	19.5	12	1	Felsic
	GTDD-22-0343	189.0	198.4	9.5	16	41	Pegmatite
	GTDD-22-0343	198.4	201.4	3.0	65	3	Felsic

_				,	,		ı
	GTDD-22-0343	201.4	202.0	0.6	16	18	Pegmatite
	GTDD-22-0343	202.0	210.0	8.0	75	1	Felsic
	GTDD-22-0343	210.0	221.5	11.5	25	1	Pegmatite
	GTDD-22-0343	221.5	224.8	3.4	116	1	Felsic
	GTDD-22-0343	224.8	229.0	4.1	88	1	Pegmatite
	GTDD-22-0343	229.0	234.1	5.1	24	0	Felsic
	GTDD-22-0343	234.1	234.6	0.5	16	1	Pegmatite
	GTDD-22-0343	234.6	241.4	6.8	38	1	Felsic
	GTDD-22-0343	241.4	242.0	0.7	56	1	Pegmatite
	GTDD-22-0343	242.0	242.3	0.3	67	1	Felsic
	GTDD-22-0343	242.3	243.3	1.0	73	1	Pegmatite
	GTDD-22-0343	243.3	250.7	7.3	56	1	Felsic
	GTDD-22-0343	250.7	251.8	1.1	194	1	Pegmatite
	GTDD-22-0343	251.8	256.9	5.1	55	0	Felsic
	GTDD-22-0343	256.9	257.2	0.4	16	1	Pegmatite
	GTDD-22-0343	257.2	259.1	1.9	106	1	Felsic
	GTDD-22-0343	259.1	259.4	0.3	18	8	Pegmatite
	GTDD-22-0343	259.4	259.8	0.3	86	6	Felsic
	GTDD-22-0343	259.8	261.5	1.7	16	21	Pegmatite
	GTDD-22-0343	261.5	262.5	1.1	88	3	Felsic
	GTDD-22-0343	262.5	264.0	1.5	16	37	Pegmatite
	GTDD-22-0343	264.0	274.8	10.8	14	1	Felsic
	GTDD-22-0343	274.8	277.9	3.1	-	-	Mafic
	GTDD-22-0343	277.9	282.0	4.1	-	-	Felsic
	GTDD-22-0365	-	2.4	2.4	-	-	Overburden
	GTDD-22-0365	2.4	63.3	60.9	17	0	Mafic
	GTDD-22-0365	63.3	63.8	0.5	960	120	Pegmatite
	GTDD-22-0365	63.8	67.9	4.1	1,017	0	Mafic
	GTDD-22-0365	67.9	78.1	10.2	1,581	33	Pegmatite
	GTDD-22-0365	78.1	164.0	85.9	11	0	Mafic
	GTDD-23-0388	-	4.1	4.1	-	-	Overburden
	GTDD-23-0388	4.1	74.8	70.8	5	0	Mafic
	GTDD-23-0388	74.8	75.8	1.0	75	132	Pegmatite
	GTDD-23-0388	75.8	92.0	16.2	18	0	Mafic
	GTDD-22-0186	-	7.4	7.4	-	-	Overburden
	GTDD-22-0186	7.4	7.6	0.2	-	-	Felsic
	GTDD-22-0186	7.6	23.6	16.0	151	1	Mafic
	GTDD-22-0186	23.6	24.8	1.2	83	27	Pegmatite

_						,	
	GTDD-22-0186	24.8	27.5	2.7	3,495	1	Mafic
	GTDD-22-0186	27.5	28.5	0.9	835	103	Pegmatite
	GTDD-22-0186	28.5	28.8	0.4	8,912	29	Mafic
	GTDD-22-0186	28.8	30.7	1.8	857	180	Pegmatite
	GTDD-22-0186	30.7	176.0	145.4	16	0	Mafic
	GTDD-22-0198	-	5.6	5.6	-	-	Overburden
	GTDD-22-0198	5.6	54.4	48.7	-	-	Mafic
	GTDD-22-0198	54.4	59.3	4.9	-	-	Sediment
	GTDD-22-0198	59.3	83.4	24.2	-	-	Mafic
	GTDD-22-0198	83.4	85.4	2.0	-	-	Sediment
	GTDD-22-0198	85.4	94.1	8.6	-	-	Mafic
	GTDD-22-0198	94.1	95.1	1.0	-	-	Sediment
	GTDD-22-0198	95.1	165.8	70.8	-	-	Mafic
	GTDD-22-0198	165.8	166.7	0.9	-	-	Sediment
	GTDD-22-0198	166.7	169.8	3.1	-	-	Mafic
	GTDD-22-0198	169.8	170.8	1.0	-	-	Sediment
	GTDD-22-0198	170.8	188.2	17.3	-	-	Mafic
	GTDD-22-0198	188.2	210.2	22.0	-	-	Sediment
	GTDD-22-0198	210.2	286.8	76.6	-	-	Mafic
	GTDD-22-0198	286.8	291.9	5.2	-	-	Sediment
	GTDD-22-0198	291.9	313.9	22.0	-	-	Mafic
	GTDD-22-0198	313.9	314.6	0.7	-	-	Sediment
	GTDD-22-0198	314.6	315.9	1.3	-	-	Mafic
	GTDD-22-0198	315.9	317.6	1.7	-	-	Sediment
	GTDD-22-0198	317.6	343.7	26.1	-	-	Mafic
	GTDD-22-0198	343.7	344.0	0.3	-	-	Lost Core
	GTDD-22-0198	344.0	365.0	21.0	-	-	Mafic
	GTDD-22-0132	-	3.5	3.5	-	-	Overburden
	GTDD-22-0132	3.5	36.5	33.0	-	-	Mafic
	GTDD-22-0132	36.5	38.8	2.3	-	-	Felsic
	GTDD-22-0132	38.8	57.6	18.8	79	0	Mafic
	GTDD-22-0132	57.6	58.2	0.6	183	432	Felsic
	GTDD-22-0132	58.2	203.6	145.4	5	0	Mafic
	GTDD-22-0132	203.6	204.8	1.2	-	-	Quartz
	GTDD-22-0132	204.8	234.3	29.6	-	-	Mafic
	GTDD-23-0185	-	2.6	2.6	-	-	Overburden
	GTDD-23-0185	2.6	125.0	122.5	-	-	Mafic
	GTDD-23-0289	-	24.7	24.7	-	-	Overburden
		_	_			_	

_							
	GTDD-23-0289	24.7	25.6	0.9	-	-	Felsic
	GTDD-23-0289	25.6	26.5	0.9	-	-	Mafic
	GTDD-23-0289	26.5	27.0	0.5	-	-	Lost Core
	GTDD-23-0289	27.0	28.4	1.4	-	-	Felsic
	GTDD-23-0289	28.4	29.6	1.2	-	-	Mafic
	GTDD-23-0289	29.6	30.1	0.5	-	-	Pegmatite
	GTDD-23-0289	30.1	30.8	0.7	-	-	Felsic
	GTDD-23-0289	30.8	31.4	0.6	-	-	Pegmatite
	GTDD-23-0289	31.4	33.1	1.7	-	-	Mafic
	GTDD-23-0289	33.1	33.5	0.4	-	-	Pegmatite
	GTDD-23-0289	33.5	37.2	3.7	-	-	Felsic
	GTDD-23-0289	37.2	39.1	1.9	-	-	Pegmatite
	GTDD-23-0289	39.1	40.0	0.9	-	-	Lost Core
	GTDD-23-0289	40.0	43.6	3.6	-	-	Pegmatite
	GTDD-23-0289	43.6	49.4	5.8	-	-	Felsic
	GTDD-23-0289	49.4	49.7	0.4	-	-	Mafic
	GTDD-23-0289	49.7	51.3	1.6	-	-	Felsic
	GTDD-23-0289	51.3	52.8	1.5	-	-	Mafic
	GTDD-23-0289	52.8	53.4	0.6	-	-	Felsic
	GTDD-23-0289	53.4	55.8	2.4	-	-	Mafic
	GTDD-23-0289	55.8	58.1	2.3	-	-	Felsic
	GTDD-23-0289	58.1	58.6	0.5	-	-	Mafic
	GTDD-23-0289	58.6	59.6	1.0	-	-	Felsic
	GTDD-23-0289	59.6	60.0	0.4	-	-	Mafic
	GTDD-23-0289	60.0	62.3	2.3	-	-	Felsic
	GTDD-23-0289	62.3	63.2	0.9	-	-	Mafic
	GTDD-23-0289	63.2	66.4	3.3	-	-	Felsic
	GTDD-23-0289	66.4	70.2	3.8	-	-	Mafic
	GTDD-23-0289	70.2	70.6	0.4	-	-	Pegmatite
	GTDD-23-0289	70.6	79.3	8.7	-	-	Mafic
	GTDD-23-0289	79.3	79.6	0.3	-	-	Felsic
	GTDD-23-0289	79.6	83.5	3.9	-	-	Mafic
	GTDD-23-0289	83.5	85.7	2.2	-	-	Pegmatite
	GTDD-23-0289	85.7	92.6	6.9	-	-	Mafic
	GTDD-23-0289	92.6	95.1	2.5	-	-	Pegmatite
	GTDD-23-0289	95.1	99.0	3.9	-	-	Mafic
	GTDD-23-0289	99.0	99.4	0.4	-	-	Pegmatite
	GTDD-23-0289	99.4	100.2	0.8	-	-	Mafic

_							
	GTDD-23-0289	100.2	106.8	6.5	-	-	Sediment
	GTDD-23-0289	106.8	112.2	5.4	-	-	Mafic
	GTDD-23-0289	112.2	112.5	0.3	-	-	Pegmatite
	GTDD-23-0289	112.5	131.6	19.2	-	-	Mafic
	GTDD-23-0289	131.6	136.8	5.2	-	-	Pegmatite
	GTDD-23-0289	136.8	141.0	4.1	-	-	Mafic
	GTDD-23-0289	141.0	141.2	0.2	-	-	Pegmatite
	GTDD-23-0289	141.2	145.0	3.8	-	-	Mafic
	GTDD-23-0289	145.0	146.1	1.1	-	-	Pegmatite
	GTDD-23-0289	146.1	149.9	3.8	-	-	Mafic
	GTDD-23-0289	149.9	150.1	0.2	-	-	Pegmatite
	GTDD-23-0289	150.1	165.5	15.4	-	-	Mafic
	GTDD-23-0289	165.5	166.1	0.6	-	-	Pegmatite
	GTDD-23-0289	166.1	179.7	13.6	-	-	Mafic
	GTDD-23-0289	179.7	180.0	0.3	-	-	Felsic
	GTDD-23-0289	180.0	192.4	12.5	-	-	Mafic
	GTDD-23-0289	192.4	193.4	0.9	-	-	Felsic
	GTDD-23-0289	193.4	193.5	0.1	-	-	Mafic
	GTDD-23-0289	193.5	193.8	0.3	-	-	Felsic
	GTDD-23-0289	193.8	199.3	5.5	-	-	Mafic
	GTDD-23-0289	199.3	200.0	0.7	-	-	Felsic
	GTDD-22-0385	-	8.5	8.5	-	-	Overburden
	GTDD-22-0385	8.5	30.1	21.6	-	-	Mafic
	GTDD-22-0385	30.1	39.2	9.1	-	-	Felsic
	GTDD-22-0385	39.2	48.9	9.7	-	-	Mafic
	GTDD-22-0385	48.9	50.0	1.1	-	-	Quartz
	GTDD-22-0385	50.0	166.6	116.6	-	-	Mafic
	GTDD-22-0385	166.6	170.5	3.9	-	-	Sediment
	GTDD-22-0385	170.5	289.4	119.0	7	0	Mafic
	GTDD-22-0385	289.4	299.5	10.1	927	16	Pegmatite
	GTDD-22-0385	299.5	320.1	20.6	34	0	Mafic
	GTDD-22-0385	320.1	322.5	2.5	-	-	Sediment
	GTDD-22-0385	322.5	335.0	12.5	-	-	Mafic
	GTDD-23- 0388B	-	0.6	0.6	-	-	Overburden
	GTDD-23- 0388B	0.6	33.1	32.5	-	-	Mafic
	GTDD-23- 0388B	33.1	34.6	1.5	-	-	Quartz
	GTDD-23- 0388B	34.6	35.2	0.6	-	-	Mafic
	GTDD-23- 0388B	35.2	35.5	0.4	-	-	Quartz

GTDD-23- 0388B	35.5	72.7	37.2	10	0	Mafic
GTDD-23- 0388B	72.7	74.0	1.3	172	100	Pegmatite
GTDD-23- 0388B	74.0	84.5	10.5	45	0	Mafic
GTDD-23- 0388B	84.5	84.8	0.3	-	-	Quartz
GTDD-23- 0388B	84.8	142.1	57.3	-	-	Mafic
GTDD-23- 0388B	142.1	149.0	6.9	-	-	Sediment
GTDD-23- 0388B	149.0	152.9	3.9	-	-	Mafic
GTDD-23- 0388B	152.9	153.5	0.6	-	-	Quartz
GTDD-23- 0388B	153.5	206.0	52.5	-	-	Mafic
GTDD-23-0390	-	3.5	3.5	-	-	Overburden
GTDD-23-0390	3.5	82.3	78.9	-	-	Mafic
GTDD-23-0390	82.3	83.0	0.7	-	-	Fault
GTDD-23-0390	83.0	96.6	13.6	-	-	Mafic
GTDD-23-0390	96.6	98.2	1.6	-	-	Sediment
GTDD-23-0390	98.2	166.3	68.2	-	-	Mafic
GTDD-23-0390	166.3	166.8	0.5	-	-	Quartz
GTDD-23-0390	166.8	187.3	20.4	24	0	Mafic
GTDD-23-0390	187.3	187.6	0.3	151	103	Pegmatite
GTDD-23-0390	187.6	212.6	25.1	24	0	Mafic
GTDD-23-0390	212.6	215.0	2.4	-	-	Sediment
GTDD-22-0333	-	3.0	3.0	-	-	Overburden
GTDD-22-0333	3.0	46.0	43.0	-	-	Mafic
GTDD-22-0333	46.0	56.2	10.2	-	-	Sediment
GTDD-22-0333	56.2	75.0	18.8	-	-	Mafic
GTDD-22-0333	75.0	95.7	20.7	13	0	Sediment
GTDD-22-0333	95.7	96.9	1.2	30	71	Pegmatite
GTDD-22-0333	96.9	102.2	5.3	60	0	Sediment
GTDD-22-0333	102.2	113.4	11.2	-	-	Mafic
GTDD-22-0333	113.4	118.4	5.0	-	-	Sediment
GTDD-22-0333	118.4	120.9	2.6	-	-	Amphibolite
GTDD-22-0333	120.9	130.4	9.4	-	-	Mafic
GTDD-22-0333	130.4	131.0	0.6	-	-	Amphibolite
GTDD-22-0333	131.0	141.0	10.0	-	-	Sediment
		185.2	44.2	-	-	Mafic
GTDD-22-0333	141.0				ì	Î.
GTDD-22-0333 GTDD-22-0333	185.2	185.9	0.7	-	-	Felsic
			0.7 86.1	-	-	Felsic Mafic
GTDD-22-0333	185.2	185.9		-	-	

_							
	GTDD-22-0127	265.0	274.0	9.0	-	-	Felsic
	GTDD-22-0127	274.0	302.0	28.0	-	-	Mafic
	GTDD-22-0206	-	3.5	3.5	-	-	Overburden
	GTDD-22-0206	3.5	47.6	44.1	-	-	Mafic
	GTDD-22-0206	47.6	63.4	15.8	-	-	Sediment
	GTDD-22-0206	63.4	70.4	7.0	-	-	Mafic
	GTDD-22-0206	70.4	81.6	11.3	-	-	Sediment
	GTDD-22-0206	81.6	117.2	35.6	10	0	Mafic
	GTDD-22-0206	117.2	117.6	0.4	71	256	Felsic
	GTDD-22-0206	117.6	159.1	41.4	9	0	Mafic
	GTDD-22-0206	159.1	169.8	10.7	-	-	Sediment
	GTDD-22-0206	169.8	171.1	1.3	-	-	Felsic
	GTDD-22-0206	171.1	219.8	48.8	-	-	Sediment
	GTDD-22-0206	219.8	221.4	1.5	-	-	Felsic
	GTDD-22-0206	221.4	240.0	18.6	-	-	Sediment
	GTDD-22-0344	-	21.4	21.4	89	0	Felsic
	GTDD-22-0344	21.4	28.8	7.5	378	43	Pegmatite
	GTDD-22-0344	28.8	63.7	34.9	65	0	Felsic
	GTDD-22-0344	63.7	64.7	0.9	16	11	Pegmatite
	GTDD-22-0344	64.7	66.0	1.3	677	2	Felsic
	GTDD-22-0344	66.0	66.4	0.5	108	21	Pegmatite
	GTDD-22-0344	66.4	68.9	2.5	276	1	Felsic
	GTDD-22-0344	68.9	69.3	0.4	103	1	Pegmatite
	GTDD-22-0344	69.3	69.8	0.5	812	1	Felsic
	GTDD-22-0344	69.8	70.0	0.2	368	20	Pegmatite
	GTDD-22-0344	70.0	74.6	4.6	321	2	Felsic
	GTDD-22-0344	74.6	75.1	0.6	47	35	Pegmatite
	GTDD-22-0344	75.1	87.8	12.7	61	1	Felsic
	GTDD-22-0344	87.8	88.2	0.4	16	21	Pegmatite
	GTDD-22-0344	88.2	116.8	28.6	34	0	Felsic
	GTDD-22-0344	116.8	120.5	3.7	183	25	Pegmatite
	GTDD-22-0344	120.5	150.2	29.7	83	1	Felsic
	GTDD-22-0344	150.2	161.6	11.4	22	51	Pegmatite
	GTDD-22-0344	161.6	167.0	5.4	171	1	Felsic
	GTDD-22-0344	167.0	168.6	1.6	16	16	Pegmatite
	GTDD-22-0344	168.6	173.7	5.1	103	1	Felsic
	GTDD-22-0344	173.7	174.1	0.4	16	96	Pegmatite
	GTDD-22-0344	174.1	174.8	0.7	151	11	Felsic

_							
	GTDD-22-0344	174.8	175.2	0.4	58	58	Pegmatite
	GTDD-22-0344	175.2	190.0	14.9	46	9	Felsic
	GTDD-22-0344	190.0	190.5	0.5	16	1	Pegmatite
	GTDD-22-0344	190.5	194.0	3.5	30	0	Felsic
	GTDD-22-0367	-	3.2	3.2	-	-	Overburden
	GTDD-22-0367	3.2	67.5	64.3	-	-	Mafic
	GTDD-22-0367	67.5	71.8	4.2	-	-	Sediment
	GTDD-22-0367	71.8	125.8	54.0	28	0	Mafic
	GTDD-22-0367	125.8	133.5	7.7	4,833	316	Pegmatite
	GTDD-22-0367	133.5	176.0	42.5	23	0	Mafic
	GTDD-22-0371	-	5.5	5.5	-	-	Overburden
	GTDD-22-0371	5.5	89.9	84.5	-	-	mafic
	GTDD-22-0371	89.9	92.1	2.2	-	-	Sediment
	GTDD-22-0371	92.1	122.1	30.0	-	-	mafic
	GTDD-22-0371	122.1	126.3	4.2	-	-	felsic
	GTDD-22-0371	126.3	144.0	17.8	-	-	mafic
	GTDD-22-0368	-	1.3	1.3	-	-	Overburden
	GTDD-22-0368	1.3	100.3	99.0	50	0	Mafic
	GTDD-22-0368	100.3	101.5	1.2	1,209	131	Pegmatite
	GTDD-22-0368	101.5	132.4	30.9	225	0	mafic
	GTDD-22-0368	132.4	136.9	4.5	-	-	Sediment
	GTDD-22-0368	136.9	162.8	26.0	-	-	Mafic
	GTDD-22-0368	162.8	163.8	0.9	-	-	Sediment
	GTDD-22-0368	163.8	170.0	6.2	-	-	mafic
	GTDD-22-0181	-	0.9	0.9	-	-	Overburden
	GTDD-22-0181	0.9	234.8	233.9	-	-	Mafic
	GTDD-22-0181	234.8	242.9	8.0	-	-	Felsic
	GTDD-22-0181	242.9	299.0	56.1	-	-	Mafic
	GTDD-22-0370	-	3.1	3.1	-	-	Overburden
	GTDD-22-0370	3.1	138.4	135.2	2	0	Mafic
	GTDD-22-0370	138.4	138.9	0.5	146	309	Pegmatite
	GTDD-22-0370	138.9	150.0	11.1	22	0	Mafic
	GTDD-22-0194	-	8.2	8.2	-	-	Overburden
	GTDD-22-0194	8.2	8.5	0.3	565	54	Pegmatite
	GTDD-22-0194	8.5	85.2	76.7	7	0	Mafic
	GTDD-22-0194	85.2	86.0	0.8	-	-	Sediment
	GTDD-22-0194	86.0	130.4	44.4	-	-	Mafic
	GTDD-22-0194	130.4	140.3	9.8	-	-	Felsic

_				,	,	•	,
	GTDD-22-0194	140.3	146.4	6.2	-	-	Mafic
	GTDD-22-0194	146.4	147.5	1.0	-	-	Felsic
	GTDD-22-0194	147.5	158.9	11.5	-	-	Mafic
	GTDD-22-0194	158.9	160.0	1.1	-	-	Sediment
	GTDD-22-0194	160.0	169.7	9.7	-	-	Mafic
	GTDD-22-0194	169.7	171.8	2.1	-	-	Sediment
	GTDD-22-0194	171.8	174.9	3.0	-	-	Mafic
	GTDD-22-0194	174.9	177.4	2.5	-	-	Sediment
	GTDD-22-0194	177.4	196.0	18.6	-	-	Mafic
	GTDD-22-0194	196.0	197.6	1.7	-	-	Sediment
	GTDD-22-0194	197.6	279.8	82.2	4	0	Mafic
	GTDD-22-0194	279.8	293.5	13.8	555	39	Pegmatite
	GTDD-22-0194	293.5	296.7	3.2	900	4	Mafic
	GTDD-22-0194	296.7	305.2	8.5	95	41	Pegmatite
	GTDD-22-0194	305.2	368.0	62.8	9	0	Mafic
	GTDD-23-0250	-	11.0	11.0	-	-	Overburden
	GTDD-23-0250	11.0	20.5	9.5	-	-	Pegmatite
	GTDD-23-0250	20.5	37.1	16.7	-	-	Mafic
	GTDD-23-0250	37.1	39.1	2.0	-	-	Felsic
	GTDD-23-0250	39.1	83.7	44.6	-	-	Mafic
	GTDD-23-0250	83.7	84.1	0.3	-	-	Sediment
	GTDD-23-0250	84.1	113.8	29.7	-	-	Mafic
	GTDD-23-0250	113.8	114.1	0.3	-	-	Sediment
	GTDD-23-0250	114.1	155.8	41.7	-	-	Mafic
	GTDD-23-0250	155.8	157.5	1.7	-	-	Pegmatite
	GTDD-23-0250	157.5	158.6	1.1	-	-	Mafic
	GTDD-23-0250	158.6	169.5	10.9	-	-	Pegmatite
	GTDD-23-0250	169.5	184.2	14.6	-	-	Mafic
	GTDD-23-0250	184.2	190.9	6.8	-	-	Pegmatite
	GTDD-23-0250	190.9	207.8	16.9	-	-	Mafic
	GTDD-23-0250	207.8	208.1	0.3	-	-	Sediment
	GTDD-23-0250	208.1	209.0	0.8	-	-	Mafic
	GTDD-23-0250	209.0	211.1	2.2	-	-	Sediment
	GTDD-23-0250	211.1	223.6	12.5	-	-	Mafic
	GTDD-23-0250	223.6	225.7	2.0	-	-	Sediment
	GTDD-23-0250	225.7	226.7	1.1	-	-	Mafic
	GTDD-23-0250	226.7	227.3	0.6	-	-	Quartz
	GTDD-23-0250	227.3	228.1	0.7	-	-	Sediment

	GTDD-23-0250	228.1	228.4	0.3	-	-	Quartz
	GTDD-23-0250	228.4	230.3	1.9	-	-	Sediment
	GTDD-23-0250	230.3	230.8	0.5	-	-	Quartz
	GTDD-23-0250	230.8	242.0	11.2	-	-	Sediment
	GTDD-22-0360	-	3.0	3.0	-	-	Overburden
	GTDD-22-0360	3.0	21.1	18.1	130	0	Mafic
	GTDD-22-0360	21.1	24.6	3.5	6,926	87	Pegmatite
	GTDD-22-0360	24.6	25.3	0.8	-	-	Lost Core
	GTDD-22-0360	25.3	35.5	10.1	16,10 2	120	Pegmatite
	GTDD-22-0360	35.5	65.0	29.6	84	0	Mafic
	GTDD-22-0357	-	5.0	5.0	-	-	Overburden
	GTDD-22-0357	5.0	296.3	291.3	-	-	Mafic
	GTDD-22-0357	296.3	298.4	2.1	-	-	Felsic
	GTDD-22-0357	298.4	302.0	3.6	-	-	Mafic
	GTDD-22-0334	-	7.1	7.1	-	-	Overburden
	GTDD-22-0334	7.1	134.0	126.9	4	0	Mafic
	GTDD-22-0334	134.0	135.2	1.2	132	182	Pegmatite
	GTDD-22-0334	135.2	170.0	34.8	39	0	Mafic
	GTDD-22-0334	170.0	170.8	0.8	403	97	Pegmatite
	GTDD-22-0334	170.8	173.8	2.9	393	1	Mafic
	GTDD-22-0334	173.8	174.2	0.4	243	83	Pegmatite
	GTDD-22-0334	174.2	287.0	112.8	6	0	Mafic
	GTDD-22-0338	-	150.0	150.0	-	-	Mafic
	GTDD-22-0345	-	20.9	20.9	13	0	Felsic
	GTDD-22-0345	20.9	21.0	0.2	60	1	Pegmatite
	GTDD-22-0345	21.0	30.1	9.0	51	0	Felsic
	GTDD-22-0345	30.1	31.1	1.0	204	0	Mafic
	GTDD-22-0345	31.1	31.6	0.6	1,470	3	Felsic
	GTDD-22-0345	31.6	34.6	2.9	107	72	Pegmatite
	GTDD-22-0345	34.6	34.9	0.3	2,928	27	Felsic
	GTDD-22-0345	34.9	36.1	1.2	16	148	Pegmatite
	GTDD-22-0345	36.1	37.7	1.7	2,006	22	Felsic
	GTDD-22-0345	37.7	38.8	1.0	190	42	Pegmatite
	GTDD-22-0345	38.8	45.8	7.0	225	0	Felsic
	GTDD-22-0345	45.8	45.9	0.1	84	64	Pegmatite
	GTDD-22-0345	45.9	63.2	17.3	79	0	Felsic
	GTDD-22-0345	63.2	63.6	0.4	43	30	Pegmatite
_							

_						•	
	GTDD-22-0345	63.6	68.5	4.9	283	0	Felsic
	GTDD-22-0345	68.5	68.9	0.5	16	12	Pegmatite
	GTDD-22-0345	68.9	75.8	6.9	142	1	Felsic
	GTDD-22-0345	75.8	76.2	0.4	114	49	Pegmatite
	GTDD-22-0345	76.2	83.0	6.8	45	2	Felsic
	GTDD-22-0369	-	8.2	8.2	-	-	Overburden
	GTDD-22-0369	8.2	87.2	79.0	-	-	Mafic
	GTDD-22-0369	87.2	92.2	5.0	-	-	Felsic
	GTDD-22-0369	92.2	121.8	29.6	-	-	Mafic
	GTDD-22-0369	121.8	122.4	0.7	-	-	Quartz
	GTDD-22-0369	122.4	159.3	36.9	-	-	Mafic
	GTDD-22-0369	159.3	166.1	6.8	-	-	Felsic
	GTDD-22-0369	166.1	169.9	3.8	-	-	Mafic
	GTDD-22-0369	169.9	170.6	0.7	-	-	Felsic
	GTDD-22-0369	170.6	172.0	1.4	-	-	Mafic
	GTDD-22-0369	172.0	172.7	0.7	-	-	Felsic
	GTDD-22-0369	172.7	248.0	75.3	-	-	Mafic
	GTDD-22-0337	-	3.7	3.7	-	-	Overburden
	GTDD-22-0337	3.7	57.4	53.7	-	-	Mafic
	GTDD-22-0337	57.4	60.0	2.6	-	-	Felsic
	GTDD-22-0337	60.0	135.0	75.0	-	-	Mafic
	GTDD-22-0372	-	2.8	2.8	-	-	Overburden
	GTDD-22-0372	2.8	192.0	189.2	-	-	Mafic
	GTDD-23-0246	-	5.6	5.6	-	-	Overburden
	GTDD-23-0246	5.6	26.1	20.6	-	-	Mafic
	GTDD-23-0246	26.1	26.9	0.8	-	-	Pegmatite
	GTDD-23-0246	26.9	42.1	15.2	-	-	Mafic
	GTDD-23-0246	42.1	42.5	0.4	-	-	Pegmatite
	GTDD-23-0246	42.5	45.8	3.2	-	-	Mafic
	GTDD-23-0246	45.8	46.0	0.2	-	-	Pegmatite
	GTDD-23-0246	46.0	53.7	7.8	-	-	Mafic
	GTDD-23-0246	53.7	53.9	0.2	-	-	Pegmatite
	GTDD-23-0246	53.9	56.9	3.0	-	-	Mafic
	GTDD-23-0246	56.9	60.8	3.9	-	-	Pegmatite
	GTDD-23-0246	60.8	66.8	6.0	-	-	Mafic
	GTDD-23-0246	66.8	67.4	0.6	-	-	Pegmatite
	GTDD-23-0246	67.4	158.6	91.2	-	-	Mafic
	GTDD-23-0246	158.6	164.2	5.6	-	-	Sediment

_							
	GTDD-23-0246	164.2	175.9	11.7	-	-	Mafic
	GTDD-23-0246	175.9	179.7	3.8	-	-	Sediment
	GTDD-23-0246	179.7	192.6	13.0	-	-	Mafic
	GTDD-23-0246	192.6	193.6	1.0	-	-	Sediment
	GTDD-23-0246	193.6	194.0	0.4	-	-	Mafic
	GTDD-23-0246	194.0	194.7	0.7	-	-	Quartz
	GTDD-23-0246	194.7	196.2	1.5	-	-	Mafic
	GTDD-23-0246	196.2	196.6	0.4	-	-	Quartz
	GTDD-23-0246	196.6	198.7	2.1	-	-	Mafic
	GTDD-23-0246	198.7	199.3	0.6	-	-	Quartz
	GTDD-23-0246	199.3	199.7	0.4	-	-	Mafic
	GTDD-23-0246	199.7	201.3	1.6	-	-	Quartz
	GTDD-23-0246	201.3	201.9	0.6	-	-	Mafic
	GTDD-23-0246	201.9	202.2	0.4	-	-	Quartz
	GTDD-23-0246	202.2	206.2	4.0	-	-	Felsic
	GTDD-23-0246	206.2	207.8	1.5	-	-	Mafic
	GTDD-23-0246	207.8	208.6	0.8	-	-	Felsic
	GTDD-23-0246	208.6	209.0	0.4	-	-	Pegmatite
	GTDD-23-0246	209.0	216.2	7.2	-	-	Felsic
	GTDD-23-0246	216.2	217.0	0.7	-	-	Amphibolite
	GTDD-23-0246	217.0	217.2	0.2	-	-	Pegmatite
	GTDD-23-0246	217.2	222.3	5.1	-	-	Felsic
	GTDD-23-0246	222.3	222.5	0.3	-	-	Pegmatite
	GTDD-23-0246	222.5	223.7	1.2	-	-	Felsic
	GTDD-23-0246	223.7	225.5	1.8	-	-	Mafic
	GTDD-23-0246	225.5	227.1	1.7	-	-	Pegmatite
	GTDD-23-0246	227.1	228.5	1.4	-	-	Mafic
	GTDD-23-0246	228.5	229.3	0.7	-	-	Pegmatite
	GTDD-23-0246	229.3	232.4	3.2	-	-	Mafic
	GTDD-23-0246	232.4	234.6	2.1	-	-	Felsic
	GTDD-23-0246	234.6	241.1	6.5	-	-	Pegmatite
	GTDD-23-0246	241.1	251.4	10.4		-	Felsic
	GTDD-23-0246	251.4	254.8	3.3	-	-	Mafic
	GTDD-23-0246	254.8	260.4	5.6	-	-	Felsic
	GTDD-23-0246	260.4	262.1	1.7	-	-	Mafic
	GTDD-23-0246	262.1	266.0	3.9	-	-	Felsic
	GTDD-23-0248	-	5.8	5.8	-	-	Overburden
	GTDD-23-0248	5.8	138.6	132.7	-	-	Mafic

_				ı	ı	ı	
	GTDD-23-0248	138.6	140.2	1.7	-	-	Pegmatite
	GTDD-23-0248	140.2	159.2	18.9	-	-	Mafic
	GTDD-23-0248	159.2	160.6	1.4	-	-	Pegmatite
	GTDD-23-0248	160.6	183.4	22.8	-	-	Mafic
	GTDD-23-0248	183.4	184.9	1.5	-	-	Pegmatite
	GTDD-23-0248	184.9	206.0	21.1	-	-	Mafic
	GTDD-22-0192	-	3.8	3.8	-	-	Overburden
	GTDD-22-0192	3.8	4.6	0.9	56	1	Mafic
	GTDD-22-0192	4.6	4.8	0.2	62	1	Pegmatite
	GTDD-22-0192	4.8	5.5	0.7	140	1	Felsic
	GTDD-22-0192	5.5	136.5	131.0	0	0	Mafic
	GTDD-22-0192	136.5	137.1	0.6	-	-	Quartz
	GTDD-22-0192	137.1	137.7	0.6	-	-	Mafic
	GTDD-22-0192	137.7	138.8	1.1	-	-	Fault
	GTDD-22-0192	138.8	146.0	7.2	-	-	Mafic
	GTDD-22-0346	-	3.6	3.6	-	-	Overburden
	GTDD-22-0346	3.6	14.4	10.8	-	-	Felsic
	GTDD-22-0346	14.4	15.4	1.0	-	-	Mafic
	GTDD-22-0346	15.4	24.6	9.1	-	-	Felsic
	GTDD-22-0346	24.6	24.8	0.3	-	-	Mafic
	GTDD-22-0346	24.8	29.2	4.4	202	2	Felsic
	GTDD-22-0346	29.2	29.4	0.2	105	81	Pegmatite
	GTDD-22-0346	29.4	29.6	0.2	385	1	Felsic
	GTDD-22-0346	29.6	33.9	4.3	76	0	Mafic
	GTDD-22-0346	33.9	34.1	0.3	-	-	Felsic
	GTDD-22-0346	34.1	35.5	1.4	-	-	Mafic
	GTDD-22-0346	35.5	36.5	1.0	-	-	Felsic
	GTDD-22-0346	36.5	40.9	4.4	-	-	Mafic
	GTDD-22-0346	40.9	41.4	0.6	-	-	Felsic
	GTDD-22-0346	41.4	45.2	3.7	-	-	Mafic
	GTDD-22-0346	45.2	49.1	3.9	-	-	Felsic
	GTDD-22-0346	49.1	54.0	4.9	217	0	Mafic
	GTDD-22-0346	54.0	54.6	0.6	258	29	Pegmatite
	GTDD-22-0346	54.6	54.9	0.3	913	4	Mafic
	GTDD-22-0346	54.9	57.6	2.7	461	2	Felsic
	GTDD-22-0346	57.6	58.6	1.1	174	79	Pegmatite
	GTDD-22-0346	58.6	59.4	0.7	579	3	Felsic
	GTDD-22-0346	59.4	59.5	0.1	82	131	Pegmatite

_	,					,	
	GTDD-22-0346	59.5	72.7	13.2	144	1	Felsic
	GTDD-22-0346	72.7	78.6	5.9	96	20	Pegmatite
	GTDD-22-0346	78.6	85.6	6.9	150	1	Felsic
	GTDD-22-0346	85.6	86.2	0.7	62	1	Pegmatite
	GTDD-22-0346	86.2	88.4	2.1	253	2	Felsic
	GTDD-22-0346	88.4	89.1	0.7	101	2	Pegmatite
	GTDD-22-0346	89.1	92.3	3.2	73	2	Felsic
	GTDD-22-0346	92.3	95.0	2.8	-	-	Mafic
	GTDD-22-0346	95.0	97.4	2.4	-	-	Felsic
	GTDD-22-0346	97.4	101.4	4.0	-	-	Mafic
	GTDD-22-0346	101.4	101.9	0.5	-	-	Felsic
	GTDD-22-0346	101.9	102.7	0.7	-	-	Mafic
	GTDD-22-0346	102.7	112.0	9.3	-	-	Felsic
	GTDD-22-0346	112.0	114.3	2.3	-	-	Mafic
	GTDD-22-0346	114.3	116.0	1.7	-	-	Felsic
	GTDD-22-0352	-	3.0	3.0	-	-	Overburden
	GTDD-22-0352	3.0	161.2	158.1	-	-	Mafic
	GTDD-22-0352	161.2	171.4	10.2	-	-	Sediment
	GTDD-22-0352	171.4	171.5	0.2	-	-	Quartz
	GTDD-22-0352	171.5	171.8	0.3	-	-	Mafic
	GTDD-22-0352	171.8	175.5	3.7	-	-	Sediment
	GTDD-22-0352	175.5	326.0	150.5	-	-	Mafic
	GTDD-23-0389	-	2.4	2.4	-	-	Overburden
	GTDD-23-0389	2.4	200.0	197.6	-	-	Mafic
	GTDD-22-0098	-	6.4	6.4	-	-	Overburden
	GTDD-22-0098	6.4	153.0	146.6	-	-	Mafic
	GTDD-22-0335	-	7.4	7.4	-	-	Overburden
	GTDD-22-0335	7.4	121.3	113.9	6	0	Mafic
	GTDD-22-0335	121.3	123.4	2.1	2,913	124	Pegmatite
	GTDD-22-0335	123.4	254.0	130.6	6	0	Mafic
	GTDD-22-0366	-	5.5	5.5	-	-	Overburden
	GTDD-22-0366	5.5	46.0	40.5	-	-	mafic
	GTDD-22-0366	46.0	56.9	10.9	-	-	Sediment
	GTDD-22-0366	56.9	159.0	102.1	-	-	Mafic
	GTDD-22-0366	159.0	163.3	4.3	-	-	Sediment
	GTDD-22-0366	163.3	183.7	20.4	38	0	Mafic
	GTDD-22-0366	183.7	184.0	0.3	157	37	Pegmatite
	GTDD-22-0366	184.0	184.2	0.2	2,060	5	Mafic

_							
	GTDD-22-0366	184.2	184.7	0.6	844	86	Pegmatite
	GTDD-22-0366	184.7	190.2	5.5	209	0	Mafic
	GTDD-22-0366	190.2	199.9	9.7	833	23	Pegmatite
	GTDD-22-0366	199.9	208.6	8.7	360	0	Mafic
	GTDD-22-0366	208.6	209.5	0.9	495	72	Pegmatite
	GTDD-22-0366	209.5	236.0	26.5	26	0	Mafic
	GTDD-23-0408	-	3.0	3.0	-	-	Overburden
	GTDD-23-0408	3.0	7.8	4.8	342	20	Pegmatite
	GTDD-23-0408	7.8	65.2	57.4	23	0	Mafic
	GTDD-23-0408	65.2	69.9	4.7	219	22	Pegmatite
	GTDD-23-0408	69.9	74.6	4.8	78	0	Mafic
	GTDD-23-0408	74.6	93.2	18.6	-	-	Felsic
	GTDD-23-0408	93.2	196.3	103.0	5	0	Mafic
	GTDD-23-0408	196.3	201.2	5.0	51	44	Pegmatite
	GTDD-23-0408	201.2	202.8	1.5	344	0	Mafic
	GTDD-23-0408	202.8	207.4	4.6	-	-	Sediment
	GTDD-23-0408	207.4	242.0	34.6	-	-	Mafic
	GTDD-22-0373	-	4.8	4.8	-	-	Overburden
	GTDD-22-0373	4.8	170.8	166.0	-	-	Mafic
	GTDD-22-0373	170.8	173.7	2.9	-	-	Felsic
	GTDD-22-0373	173.7	185.6	11.9	-	-	Mafic
	GTDD-22-0373	185.6	187.9	2.3	-	-	Felsic
	GTDD-22-0373	187.9	202.5	14.6	-	-	Mafic
	GTDD-22-0373	202.5	204.1	1.6	-	-	Felsic
	GTDD-22-0373	204.1	213.0	8.9	-	-	Mafic
	GTDD-22-0189	-	3.5	3.5	-	-	Overburden
	GTDD-22-0189	3.5	113.7	110.2	10	0	Mafic
	GTDD-22-0189	113.7	117.0	3.4	127	72	Pegmatite
	GTDD-22-0189	117.0	118.2	1.2	1,724	5	Sediment
	GTDD-22-0189	118.2	120.2	2.0	443	46	Pegmatite
	GTDD-22-0189	120.2	127.5	7.3	399	0	Mafic
	GTDD-22-0189	127.5	127.7	0.2	792	90	Pegmatite
	GTDD-22-0189	127.7	161.0	33.3	26	0	Mafic
	GTDD-22-0351	-	8.5	8.5	-	-	Overburden
	GTDD-22-0351	8.5	74.9	66.3	1	0	Mafic
	GTDD-22-0351	74.9	75.1	0.2	82	1	Pegmatite
	GTDD-22-0351	75.1	207.9	132.8	0	0	Mafic
	GTDD-22-0187	-	1.5	1.5	-	-	Overburden

_							
	GTDD-22-0187	1.5	21.4	19.9	-	-	Mafic
	GTDD-22-0187	21.4	24.1	2.7	-	-	Sediment
	GTDD-22-0187	24.1	119.8	95.7	-	-	Mafic
	GTDD-22-0187	119.8	124.7	4.9	-	-	Sediment
	GTDD-22-0187	124.7	125.8	1.1	-	-	Mafic
	GTDD-22-0187	125.8	126.3	0.6	-	-	Sediment
	GTDD-22-0187	126.3	233.0	106.7	-	-	Mafic
	GTDD-22-0097	-	2.5	2.5	-	-	Overburden
	GTDD-22-0097	2.5	120.0	117.5	-	-	Mafic
	GTDD-22-0336	-	6.9	6.9	-	-	Overburden
	GTDD-22-0336	6.9	154.4	147.5	6	0	Mafic
	GTDD-22-0336	154.4	156.2	1.8	191	195	Pegmatite
	GTDD-22-0336	156.2	290.0	133.8	8	0	Mafic
	GTDD-22-0381	-	2.4	2.4	-	-	Overburden
	GTDD-22-0381	2.4	69.6	67.2	126	0	Mafic
	GTDD-22-0381	69.6	71.0	1.4	4,023	131	Pegmatite
	GTDD-22-0381	71.0	71.9	0.9	90	28	Quartz
	GTDD-22-0381	71.9	75.1	3.2	1,148	266	Pegmatite
	GTDD-22-0381	75.1	78.1	3.0	1,506	24	Mafic
	GTDD-22-0381	78.1	78.6	0.5	476	288	Pegmatite
	GTDD-22-0381	78.6	185.0	106.4	8	0	Mafic
	GTDD-23-0184	-	0.8	0.8	-	-	Overburden
	GTDD-23-0184	0.8	84.4	83.6	8	0	Mafic
	GTDD-23-0184	84.4	84.5	0.2	99	48	Pegmatite
	GTDD-23-0184	84.5	191.3	106.8	6	0	Mafic
	GTDD-23-0184	191.3	192.9	1.6	-	-	Quartz
	GTDD-23-0184	192.9	224.1	31.3	-	-	Mafic
	GTDD-23-0184	224.1	225.5	1.3	-	-	Sediment
	GTDD-23-0184	225.5	226.1	0.6	-	-	Mafic
	GTDD-23-0184	226.1	226.5	0.4	-	-	Sediment
	GTDD-23-0184	226.5	227.0	0.5	-	-	Mafic
	GTDD-22-0377	-	5.5	5.5	-	-	Overburden
	GTDD-22-0377	5.5	26.4	20.9	-	-	Mafic
	GTDD-22-0377	26.4	29.4	3.0	-	-	Felsic
	GTDD-22-0377	29.4	33.5	4.1	-	-	Mafic
	GTDD-22-0377	33.5	34.4	0.9	-	-	Felsic
	GTDD-22-0377	34.4	98.1	63.7	-	-	Mafic
	GTDD-22-0377	98.1	108.2	10.1	-	-	Felsic

				1	1	1	
GTDD-22	-0377	108.2	150.4	42.2	-	-	Mafic
GTDD-22	-0377	150.4	151.2	0.8	-	-	Sediment
GTDD-22	-0377	151.2	155.4	4.2	-	-	Mafic
GTDD-22	-0377	155.4	172.6	17.2	4,414	45	Pegmatite
GTDD-22	-0377	172.6	179.8	7.2	384	0	Mafic
GTDD-22	-0377	179.8	180.0	0.2	327	118	Pegmatite
GTDD-22	-0377	180.0	213.7	33.6	18	0	Mafic
GTDD-22	-0377	213.7	214.1	0.4	-	-	Quartz
GTDD-22	-0377	214.1	275.0	60.9	-	-	Mafic
GTDD-22	-0108	-	2.0	2.0	-	-	Overburden
GTDD-22	-0108	2.0	70.9	68.9	13	1	Mafic
GTDD-22	-0108	70.9	71.5	0.6	566	201	Pegmatite
GTDD-22	-0108	71.5	132.9	61.4	10	0	Mafic
GTDD-22	-0177	-	5.3	5.3	-	-	Overburden
GTDD-22	-0177	5.3	5.5	0.2	-	-	Mafic
GTDD-22	-0177	5.5	5.6	0.1	-	-	Felsic
GTDD-22	-0177	5.6	129.0	123.4	-	-	Mafic
GTDD-22	-0177	129.0	152.3	23.3	-	-	Sediment
GTDD-22	-0177	152.3	170.0	17.7	-	-	Mafic
GTDD-22	-0354	-	4.4	4.4	-	-	Overburden
GTDD-22-	-0354	4.4	221.0	216.6	-	-	Mafic
GTDD-22-	-0379	-	2.7	2.7	-	-	Overburden
GTDD-22-	-0379	2.7	48.5	45.8	17	0	Mafic
GTDD-22	-0379	48.5	48.8	0.3	-	-	Lost Core
GTDD-22	-0379	48.8	49.2	0.4	969	15	Mafic
GTDD-22	-0379	49.2	51.6	2.4	679	76	Pegmatite
GTDD-22	.0379	51.6	52.9	1.3	10,74 5	28	Mafic
GTDD-22-		52.9	54.7	1.9	387	25	Pegmatite
GTDD-22		54.7	55.5	0.8	2,090	24	Mafic
GTDD-22-		55.5	55.8	0.2	702	62	Pegmatite
GTDD-22		55.8	86.0	30.3	18	0	Mafic
GTDD-22		-	4.5	4.5	_	_	Overburden
GTDD-22		4.5	13.3	8.9	_	_	Mafic
GTDD-22-		13.3	13.7	0.3	_	_	Quartz
GTDD-22-		13.7	22.2	8.6	_	_	Mafic
GTDD-22-		22.2	23.0	0.8	_	_	Lost Core
GTDD-22		23.0	236.0	213.0	_	_	Mafic
3100-22	3130	23.0	230.0	213.0	I	I	ividit

_				,	,	1	
	GTDD-22-0378	-	4.5	4.5	-	-	Overburden
	GTDD-22-0378	4.5	91.0	86.5	-	-	Mafic
	GTDD-22-0378	91.0	91.7	0.6	-	-	Quartz
	GTDD-22-0378	91.7	164.7	73.1	5	0	Mafic
	GTDD-22-0378	164.7	166.8	2.1	401	47	Pegmatite
	GTDD-22-0378	166.8	187.6	20.9	39	0	Mafic
	GTDD-22-0378	187.6	188.0	0.4	58	169	Pegmatite
	GTDD-22-0378	188.0	200.8	12.7	19	0	Mafic
	GTDD-22-0378	200.8	203.7	2.9	-	-	Felsic
	GTDD-22-0378	203.7	207.5	3.8	-	-	Mafic
	GTDD-22-0378	207.5	209.3	1.8	-	-	Sediment
	GTDD-22-0378	209.3	257.0	47.7	-	-	Mafic
	GTDD-22-0382	-	5.1	5.1	-	-	Overburden
	GTDD-22-0382	5.1	113.3	108.2	-	-	Mafic
	GTDD-22-0382	113.3	113.7	0.5	-	-	Quartz
	GTDD-22-0382	113.7	128.0	14.3	-	-	Mafic
	GTDD-23-0410	1	2.5	2.5	-	-	Overburden
	GTDD-23-0410	2.5	4.3	1.8	-	-	Mafic
	GTDD-23-0410	4.3	5.0	0.7	-	-	Quartz
	GTDD-23-0410	5.0	23.1	18.1	-	-	Mafic
	GTDD-23-0410	23.1	26.3	3.2	-	-	Felsic
	GTDD-23-0410	26.3	27.9	1.6	-	-	Mafic
	GTDD-23-0410	27.9	28.5	0.6	-	-	Felsic
	GTDD-23-0410	28.5	32.0	3.5	-	-	Mafic
	GTDD-23-0410	32.0	33.4	1.4	-	-	Felsic
	GTDD-23-0410	33.4	41.2	7.8	-	-	Mafic
	GTDD-23-0410	41.2	41.6	0.4	_	_	Quartz
	GTDD-23-0410	41.6	99.4	57.9	-	-	Mafic
	GTDD-23-0410	99.4	101.0	1.6	_	_	Felsic
	GTDD-23-0410	101.0	110.1	9.1	-	-	Mafic
	GTDD-23-0410	110.1	111.6	1.6	-	-	Felsic
	GTDD-23-0410	111.6	120.7	9.1	_	_	Mafic
	GTDD-23-0410	120.7	126.3	5.7	-	-	Felsic
	GTDD-23-0410	126.3	143.2	16.9	-	-	Mafic
	GTDD-23-0410	143.2	143.5	0.3	_	_	Quartz
	GTDD-23-0410	143.5	160.7	17.2	_	_	Mafic
	GTDD-23-0410	160.7	161.4	0.7	_	_	Felsic
	GTDD-23-0410	161.4	197.0	35.7	_	_	Mafic
_	3100 23-0410	101.4	1 137.0	1 33.7	l .	l .	Manc

_	1	,					,
	GTDD-22-0361	-	6.1	6.1	-	-	Overburden
	GTDD-22-0361	6.1	34.9	28.8	108	0	Mafic
	GTDD-22-0361	34.9	36.0	1.1	404	85	Pegmatite
	GTDD-22-0361	36.0	37.5	1.5	4,728	10	Mafic
	GTDD-22-0361	37.5	45.0	7.5	2,724	199	Pegmatite
	GTDD-22-0361	45.0	46.1	1.1	-	-	Lost Core
	GTDD-22-0361	46.1	48.1	2.0	2,329	50	Pegmatite
	GTDD-22-0361	48.1	89.0	40.9	50	0	Mafic
	GTDD-22-0353	-	5.6	5.6	-	-	Overburden
	GTDD-22-0353	5.6	31.4	25.8	-	-	Mafic
	GTDD-22-0353	31.4	31.8	0.4	-	-	Quartz
	GTDD-22-0353	31.8	221.0	189.3	-	-	Mafic
	GTDD-22-0397	-	2.1	2.1	-	-	Overburden
	GTDD-22-0397	2.1	56.8	54.7	41	0	Mafic
	GTDD-22-0397	56.8	59.0	2.2	7,344	49	Pegmatite
	GTDD-22-0397	59.0	61.3	2.3	4,492	2	Mafic
	GTDD-22-0397	61.3	68.0	6.7	2,393	66	Pegmatite
	GTDD-22-0397	68.0	197.0	129.0	7	0	Mafic
	GTDD-23-0180	-	2.4	2.4	-	-	Overburden
	GTDD-23-0180	2.4	72.6	70.2	-	-	Mafic
	GTDD-23-0180	72.6	72.8	0.2	-	-	Pegmatite
	GTDD-23-0180	72.8	85.6	12.8	-	-	Mafic
	GTDD-23-0180	85.6	85.9	0.3	-	-	Pegmatite
	GTDD-23-0180	85.9	116.4	30.5	-	-	Mafic
	GTDD-23-0180	116.4	116.8	0.3	-	-	Quartz
	GTDD-23-0180	116.8	122.0	5.2	-	-	Mafic
	GTDD-22-0386	-	1.6	1.6	-	-	Overburden
	GTDD-22-0386	1.6	230.0	228.4	-	-	Mafic
	GTDD-22-0398	-	2.4	2.4	-	-	Overburden
	GTDD-22-0398	2.4	88.9	86.4	22	0	Mafic
	GTDD-22-0398	88.9	89.8	1.0	800	65	Pegmatite
	GTDD-22-0398	89.8	90.1	0.3	4,219	55	Mafic
	GTDD-22-0398	90.1	91.0	0.9	932	44	Pegmatite
	GTDD-22-0398	91.0	93.1	2.0	2,822	5	Mafic
	GTDD-22-0398	93.1	99.5	6.4	1,188	102	Pegmatite
	GTDD-22-0398	99.5	115.2	15.8	423	0	Mafic
	GTDD-22-0398	115.2	115.7	0.5	75	30	Pegmatite
	GTDD-22-0398	115.7	164.0	48.3	11	0	Mafic

_				,		,	1
	GTDD-23-0411	-	2.6	2.6	-	-	Overburden
	GTDD-23-0411	2.6	21.1	18.5	-	-	Mafic
	GTDD-23-0411	21.1	24.1	3.0	-	-	Sediment
	GTDD-23-0411	24.1	152.0	127.9	-	-	Mafic
	GTDD-22-0133	-	1.5	1.5	-	-	Overburden
	GTDD-22-0133	1.5	1.9	0.4	-	-	Mafic
	GTDD-22-0133	1.9	2.6	0.7	276	244	Pegmatite
	GTDD-22-0133	2.6	326.0	323.4	0	0	Mafic
	GTDD-22-0350	-	8.0	8.0	-	-	Overburden
	GTDD-22-0350	8.0	13.8	5.8	140	0	Mafic
		40.0			15,25		
	GTDD-22-0350	13.8	27.7	13.9	9	197	Pegmatite
	GTDD-22-0350	27.7	155.0	127.3	13	0	Mafic
	GTDD-22-0364	-	6.0	6.0	-	-	Overburden
	GTDD-22-0364	6.0	15.5	9.5	-	-	Mafic
	GTDD-22-0364	15.5	16.0	0.5	-	-	Lost Core
	GTDD-22-0364	16.0	66.9	50.9	49	0	Mafic
	GTDD-22-0364	66.9	80.4	13.5	1,162	116	Pegmatite
	GTDD-22-0364	80.4	80.8	0.4	5,145	11	Mafic
	GTDD-22-0364	80.8	89.4	8.6	318	87	Pegmatite
	GTDD-22-0364	89.4	197.1	107.7	18	0	Mafic
	GTDD-22-0364	197.1	200.0	3.0	-	-	Felsic
	GTDD-22-0364	200.0	203.0	3.0	-	-	Mafic
	GTDD-22-0392	-	0.9	0.9	-	-	Overburden
	GTDD-22-0392	0.9	85.7	84.8	-	-	Mafic
	GTDD-22-0392	85.7	99.1	13.4	-	-	Felsic
	GTDD-22-0392	99.1	107.1	8.0	-	-	Mafic
	GTDD-22-0392	107.1	127.5	20.4	-	-	Felsic
	GTDD-22-0392	127.5	218.2	90.6	7	0	Mafic
	GTDD-22-0392	218.2	225.7	7.5	226	52	Pegmatite
	GTDD-22-0392	225.7	278.0	52.4	22	0	Mafic
	GTDD-22-0399	-	2.8	2.8	-	-	Overburden
	GTDD-22-0399	2.8	91.4	88.5	10	0	Mafic
	GTDD-22-0399	91.4	92.5	1.1	364	134	Pegmatite
	GTDD-22-0399	92.5	92.8	0.3	1,533	5	Mafic
	GTDD-22-0399	92.8	93.6	0.8	200	105	Pegmatite
	GTDD-22-0399	93.6	97.6	3.9	349	0	Mafic
	GTDD-22-0399	97.6	102.0	4.5	-	-	Sediment
_							

_					,		
	GTDD-22-0399	102.0	109.3	7.3	356	0	Mafic
	GTDD-22-0399	109.3	112.6	3.3	258	110	Pegmatite
	GTDD-22-0399	112.6	176.0	63.4	37	0	Mafic
	GTDD-23-0178	-	0.5	0.5	-	-	Overburden
	GTDD-23-0178	0.5	0.9	0.3	-	-	Quartz
	GTDD-23-0178	0.9	2.2	1.4	-	-	Mafic
	GTDD-23-0178	2.2	3.6	1.3	-	-	Quartz
	GTDD-23-0178	3.6	64.1	60.6	-	-	Mafic
	GTDD-23-0178	64.1	64.3	0.2	-	-	Pegmatite
	GTDD-23-0178	64.3	67.2	2.8	-	-	Mafic
	GTDD-23-0178	67.2	67.5	0.4	-	-	Quartz
	GTDD-23-0178	67.5	95.8	28.3	-	-	Mafic
	GTDD-23-0178	95.8	99.3	3.5	-	-	Pegmatite
	GTDD-23-0178	99.3	140.8	41.5	-	-	Mafic
	GTDD-23-0178	140.8	141.1	0.3	-	-	Quartz
	GTDD-23-0178	141.1	176.5	35.4	-	-	Mafic
	GTDD-23-0178	176.5	176.9	0.4	-	-	Quartz
	GTDD-23-0178	176.9	197.1	20.2	-	-	Mafic
	GTDD-23-0178	197.1	198.5	1.4	-	-	Pegmatite
	GTDD-23-0178	198.5	200.9	2.4	-	-	Sediment
	GTDD-23-0178	200.9	204.5	3.5	-	-	Mafic
	GTDD-23-0178	204.5	205.4	0.9	-	-	Pegmatite
	GTDD-23-0178	205.4	206.8	1.4	-	-	Mafic
	GTDD-23-0178	206.8	207.3	0.4	-	-	Lost Core
	GTDD-23-0178	207.3	211.2	3.9	-	-	Mafic
	GTDD-23-0178	211.2	215.2	4.0	-	-	Pegmatite
	GTDD-23-0178	215.2	248.0	32.8	-	-	Mafic
	GTDD-23-0287	-	18.0	18.0	-	-	Overburden
	GTDD-23-0287	18.0	18.1	0.1	-	-	Mafic
	GTDD-23-0287	18.1	18.3	0.2	-	-	Felsic
	GTDD-23-0287	18.3	19.0	0.7	-	-	Mafic
	GTDD-23-0287	19.0	21.4	2.4	-	-	Felsic
	GTDD-23-0287	21.4	25.1	3.8	-	-	Mafic
	GTDD-23-0287	25.1	26.6	1.5	-	-	Felsic
	GTDD-23-0287	26.6	34.2	7.5	-	-	Mafic
	GTDD-23-0287	34.2	34.5	0.3	-	-	Felsic
	GTDD-23-0287	34.5	44.8	10.3	-	-	Mafic
	GTDD-23-0287	44.8	45.4	0.6	-	-	Felsic

				1	ı	1	1
	GTDD-23-0287	45.4	48.6	3.2	-	-	Mafic
	GTDD-23-0287	48.6	48.8	0.2	-	-	Felsic
	GTDD-23-0287	48.8	50.4	1.6	-	-	Mafic
	GTDD-23-0287	50.4	50.8	0.4	-	-	Felsic
	GTDD-23-0287	50.8	51.4	0.6	-	-	Mafic
	GTDD-23-0287	51.4	51.7	0.3	-	-	Pegmatite
	GTDD-23-0287	51.7	52.1	0.4	-	-	Mafic
	GTDD-23-0287	52.1	53.1	1.1	-	-	Pegmatite
L	GTDD-23-0287	53.1	54.2	1.1	-	-	Mafic
L	GTDD-23-0287	54.2	54.6	0.4	-	-	Felsic
L	GTDD-23-0287	54.6	58.8	4.2	-	-	Mafic
L	GTDD-23-0287	58.8	59.1	0.3	-	-	Pegmatite
L	GTDD-23-0287	59.1	61.3	2.2	-	-	Mafic
L	GTDD-23-0287	61.3	61.7	0.4	-	-	Pegmatite
L	GTDD-23-0287	61.7	62.6	1.0	-	-	Mafic
L	GTDD-23-0287	62.6	63.8	1.2	-	-	Pegmatite
L	GTDD-23-0287	63.8	66.0	2.2	-	-	Mafic
L	GTDD-23-0287	66.0	66.5	0.5	-	-	Pegmatite
L	GTDD-23-0287	66.5	67.2	0.7	-	-	Mafic
L	GTDD-23-0287	67.2	67.6	0.3	-	-	Pegmatite
L	GTDD-23-0287	67.6	71.2	3.6	-	-	Mafic
L	GTDD-23-0287	71.2	71.7	0.5	-	-	Pegmatite
L	GTDD-23-0287	71.7	74.4	2.7	-	-	Mafic
L	GTDD-23-0287	74.4	74.7	0.2	-	-	Pegmatite
	GTDD-23-0287	74.7	81.4	6.7	-	-	Mafic
L	GTDD-23-0287	81.4	83.7	2.3	-	-	Pegmatite
L	GTDD-23-0287	83.7	88.7	5.0	-	-	Mafic
L	GTDD-23-0287	88.7	88.9	0.2	-	-	Pegmatite
L	GTDD-23-0287	88.9	89.3	0.4	-	-	Mafic
	GTDD-23-0287	89.3	90.0	0.7	-	-	Pegmatite
	GTDD-23-0287	90.0	93.4	3.4	-	-	Mafic
	GTDD-23-0287	93.4	94.5	1.1	-	-	Pegmatite
	GTDD-23-0287	94.5	99.8	5.3	-	-	Mafic
	GTDD-23-0287	99.8	100.2	0.3	-	-	Pegmatite
	GTDD-23-0287	100.2	106.6	6.5	-	-	Mafic
	GTDD-23-0287	106.6	107.1	0.5	-	-	Felsic
	GTDD-23-0287	107.1	110.7	3.5	-	-	Mafic
	GTDD-23-0287	110.7	111.5	0.8	-	-	Pegmatite

_							
	GTDD-23-0287	111.5	128.3	16.8	-	-	Mafic
	GTDD-23-0287	128.3	128.7	0.4	-	-	Pegmatite
	GTDD-23-0287	128.7	129.0	0.3	-	-	Mafic
	GTDD-23-0287	129.0	130.9	1.9	-	-	Pegmatite
	GTDD-23-0287	130.9	133.3	2.3	-	-	Mafic
	GTDD-23-0287	133.3	135.4	2.1	-	-	Pegmatite
	GTDD-23-0287	135.4	146.4	11.0	-	-	Mafic
	GTDD-23-0287	146.4	146.7	0.3	-	-	Pegmatite
	GTDD-23-0287	146.7	154.1	7.4	-	-	Mafic
	GTDD-23-0287	154.1	156.3	2.2	-	-	Felsic
	GTDD-23-0287	156.3	157.5	1.3	-	-	Mafic
	GTDD-23-0287	157.5	158.0	0.5	-	-	Felsic
	GTDD-23-0287	158.0	160.2	2.2	-	-	Mafic
	GTDD-23-0287	160.2	160.5	0.3	-	-	Felsic
	GTDD-23-0287	160.5	162.0	1.5	-	-	Mafic
	GTDD-23-0287	162.0	162.9	0.9	-	-	Felsic
	GTDD-23-0287	162.9	167.0	4.1	-	-	Mafic
	GTDD-23-0287	167.0	167.4	0.4	-	-	Pegmatite
	GTDD-23-0287	167.4	171.0	3.6	-	-	Mafic
	GTDD-23-0287	171.0	171.5	0.5	-	-	Pegmatite
	GTDD-23-0287	171.5	174.1	2.5	-	-	Mafic
	GTDD-23-0287	174.1	179.3	5.2	-	-	Pegmatite
	GTDD-23-0287	179.3	182.3	3.0	-	-	Mafic
	GTDD-23-0287	182.3	182.8	0.5	-	-	Felsic
	GTDD-23-0287	182.8	186.9	4.1	-	-	Mafic
	GTDD-23-0287	186.9	187.7	0.8	-	-	Pegmatite
	GTDD-23-0287	187.7	193.7	6.0	-	-	Mafic
	GTDD-23-0287	193.7	194.0	0.3	-	-	Pegmatite
	GTDD-23-0287	194.0	194.8	0.8	-	-	Mafic
	GTDD-23-0287	194.8	195.1	0.3	-	-	Felsic
	GTDD-23-0287	195.1	204.1	9.0	-	-	Mafic
	GTDD-23-0287	204.1	207.7	3.5	-	-	Felsic
	GTDD-23-0287	207.7	210.1	2.4	-	-	Mafic
	GTDD-23-0287	210.1	210.5	0.4	-	-	Felsic
	GTDD-23-0287	210.5	211.6	1.1	-	-	Mafic
	GTDD-23-0287	211.6	212.6	1.0	-	-	Felsic
	GTDD-23-0287	212.6	213.7	1.1	-	-	Mafic
	GTDD-23-0287	213.7	215.0	1.3	-	-	Felsic

GTDD-23-0287	215.0	215.5	0.5	-	-	Mafic
GTDD-23-0287	215.5	215.8	0.3	-	-	Felsic
GTDD-23-0287	215.8	216.5	0.8	-	-	Mafic
GTDD-23-0287	216.5	217.4	0.8	-	-	Felsic
GTDD-23-0287	217.4	224.4	7.0	-	-	Mafic
GTDD-23-0287	224.4	231.1	6.7	-	-	Pegmatite
GTDD-23-0287	231.1	237.3	6.3	-	-	Felsic
GTDD-23-0287	237.3	250.0	12.7	-	-	Mafic
GTDD-23-0287	250.0	250.4	0.4	-	-	Pegmatite
GTDD-23-0287	250.4	252.4	2.0	-	-	Felsic
GTDD-23-0287	252.4	253.0	0.6	-	-	Mafic
GTDD-23-0287	253.0	253.2	0.3	-	-	Pegmatite
GTDD-23-0287	253.2	253.6	0.3	-	-	Mafic
GTDD-23-0287	253.6	253.9	0.3	-	-	Pegmatite
GTDD-23-0287	253.9	255.3	1.4	-	-	Mafic
GTDD-23-0287	255.3	256.2	0.9	-	-	Pegmatite
GTDD-23-0287	256.2	258.8	2.6	-	-	Mafic
GTDD-23-0287	258.8	259.0	0.2	-	-	Pegmatite
GTDD-23-0287	259.0	261.9	2.9	-	-	Mafic
GTDD-23-0287	261.9	267.5	5.5	-	-	Pegmatite
GTDD-23-0287	267.5	268.0	0.5	-	-	Mafic
GTDD-23-0287	268.0	268.3	0.4	-	-	Pegmatite
GTDD-23-0287	268.3	268.9	0.6	-	-	Mafic
GTDD-23-0287	268.9	271.8	2.9	-	-	Pegmatite
GTDD-23-0287	271.8	272.3	0.5	-	-	Felsic
GTDD-23-0287	272.3	274.2	1.9	-	-	Mafic
GTDD-23-0287	274.2	275.4	1.1	-	-	Pegmatite
GTDD-23-0287	275.4	276.9	1.5	-	-	Mafic
GTDD-23-0287	276.9	278.5	1.6	-	-	Felsic
GTDD-23-0287	278.5	279.6	1.1	-	-	Mafic
GTDD-23-0287	279.6	285.3	5.7	-	-	Felsic
GTDD-23-0287	285.3	285.7	0.4	-	-	Mafic
GTDD-23-0287	285.7	286.0	0.4	-	-	Felsic
GTDD-23-0287	286.0	290.5	4.4	-	-	Pegmatite
GTDD-23-0287	290.5	303.0	12.5	-	-	Felsic
GTDD-22- 0339C	-	8.0	8.0	-	-	Overburden
GTDD-22- 0339C	8.0	56.1	48.1	-	-	mafic
GTDD-22- 0339C	56.1	69.8	13.7	-	-	Felsic

		ı	1	ı	I	Ī
GTDD-22- 0339C	69.8	120.1	50.3	13	0	Mafic
GTDD-22- 0339C	120.1	120.5	0.3	573	131	Pegmatite
GTDD-22- 0339C	120.5	366.8	246.4	26	0	Mafic
GTDD-22- 0339C	366.8	367.4	0.6	870	41	Pegmatite
GTDD-22- 0339C	367.4	368.0	0.6	6,027	95	Mafic
GTDD-22-						
0339C GTDD-22-	368.0	369.4	1.4	7,777	75	Pegmatite
0339C GTDD-22-	369.4	374.2	4.7	484	1	Mafic
0339C GTDD-22-	374.2	374.5	0.4	-	-	Fault
0339C	374.5	399.9	25.4	204	0	Mafic
GTDD-22- 0339C	399.9	403.6	3.7	6,470	64	Pegmatite
GTDD-22- 0339C	403.6	470.0	66.4	29	0	Mafic
GTDD-22-0342	-	0.8	0.8	-	-	Overburden
GTDD-22-0342	0.8	13.5	12.7	1,784	62	Pegmatite
GTDD-22-0342	13.5	35.9	22.4	124	0	Felsic
GTDD-22-0342	35.9	39.8	3.9	_	_	Mafic
GTDD-22-0342	39.8	44.3	4.5	_	_	Felsic
GTDD-22-0342	44.3	48.0	3.7	-	-	Mafic
GTDD-22-0342	48.0	49.6	1.6	-	-	Felsic
GTDD-22-0342	49.6	51.6	2.0	854	4	Mafic
GTDD-22-0342	51.6	53.6	2.0	38	30	Pegmatite
GTDD-22-0342	53.6	59.2	5.6	211	1	Felsic
GTDD-22-0342	59.2	71.1	12.0	-	-	Mafic
GTDD-22-0342	71.1	72.5	1.4	-	-	Felsic
GTDD-22-0342	72.5	73.8	1.3	-	-	Amphibolite
GTDD-22-0342	73.8	78.1	4.3	-	-	Felsic
GTDD-22-0342	78.1	79.8	1.7	-	-	Mafic
GTDD-22-0342	79.8	107.3	27.5	58	1	Felsic
GTDD-22-0342	107.3	108.7	1.4	269	1	Mafic
GTDD-22-0342	108.7	109.2	0.5	112	4	Quartz
GTDD-22-0342	109.2	112.0	2.8	235	1	Mafic
GTDD-22-0342	112.0	128.0	16.0	47	1	Felsic
GTDD-22-0342	128.0	131.7	3.7	33	54	Pegmatite
GTDD-22-0342	131.7	133.0	1.3	258	13	Felsic
GTDD-22-0342	133.0	133.8	0.8	82	116	Pegmatite
GTDD-22-0342	133.8	137.9	4.1	134	5	Felsic
GTDD-22-0342	137.9	147.5	9.6	53	21	Pegmatite
GTDD-22-0342	147.5	154.8	7.3	93	3	Felsic
GTDD-22-0342	154.8	186.6	31.7	88	28	Pegmatite

1		ı	1	1	1	1
GTDD-22-0342	186.6	206.0	19.4	20	1	Felsic
GTDD-22-0363	-	2.4	2.4	-	-	Overburden
GTDD-22-0363	2.4	38.0	35.6	41	0	Mafic
GTDD-22-0363	38.0	49.1	11.1	3,321	50	Pegmatite
GTDD-22-0363	49.1	70.0	20.8	114	0	Mafic
GTDD-22-0363	70.0	74.5	4.5	674	83	Pegmatite
GTDD-22-0363	74.5	158.0	83.5	47	0	Mafic
GTDD-22-0412	-	1.1	1.1	-	-	Overburden
GTDD-22-0412	1.1	152.0	150.9	-	-	Mafic
GTDD-23-0400	-	2.3	2.3	-	-	Overburden
GTDD-23-0400	2.3	109.7	107.4	-	-	Mafic
GTDD-23-0400	109.7	110.0	0.3	-	-	Lost Core
GTDD-23-0400	110.0	116.4	6.4	365	3	Mafic
GTDD-23-0400	116.4	123.8	7.3	3,483	95	Pegmatite
GTDD-23-0400	123.8	137.3	13.6	184	0	Mafic
GTDD-23-0400	137.3	138.7	1.4	471	26	Pegmatite
GTDD-23-0400	138.7	194.0	55.3	27	0	Mafic
GTDD-22-0396	-	10.2	10.2	-	-	Overburden
GTDD-22-0396	10.2	191.5	181.3	7	0	Mafic
GTDD-22-0396	191.5	193.4	1.9	296	60	Pegmatite
GTDD-22-0396	193.4	248.7	55.3	17	0	Mafic
GTDD-22-0396	248.7	251.6	2.8	922	100	Pegmatite
GTDD-22-0396	251.6	281.7	30.1	8	0	Mafic
GTDD-22-0396	281.7	285.7	4.0	-	_	Sediment
GTDD-22-0396	285.7	287.0	1.3	_	_	Mafic
3.55 22 0330	203.7	207.0	1 1.5	1	1	Marie

Criteria JORC Code explanation		Commentary				
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 GT1 completed a fixed wing single sensor magnetic/radiometric/VLF airborne geophysical survey. Survey details, 1191 line-km, 75m line spacing, direction 90 degrees to cross cut pegmatite strike, 70m altitude. Images have been received for Total Count Radiometric, Total Magne and VLF. Raw data was processed and interpretated by Southern Geoscience Consultants, Perth Western Australia. 				
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Geological field mapping of anomalies and associated pegmatites at Seymour and regional claims. Sampling pegmatites for spodumene Drill targeting and followed by diamond drilling over the next 24 months. Continuation of detailed mining studies 				