

Building the pre-eminent vertically integrated Lithium business in Ontario, Canada

CONTINUED HIGH-GRADE LITHIUM RESULTS RETURNED AT ROOT BAY

HIGHLIGHTS

- All remaining assays have now been received for the Root Bay prospect area Phase 1 drilling with results indicating significant potential for Root Bay to host a maiden mineral resource estimate
- Root Bay's maiden mineral resource estimate will add to the current 14.4Mt JORC Resource base across GT1's tenure¹
- New assay results from Root Bay maiden drilling demonstrate the high-grade quality of the pegmatites and includes downhole drill intercepts near surface and down dip of:
 - o RB-23-152: 16.8m @ 1.57% Li₂O from 152.4m
 - o RB-23-083: 16.5m @ 1.55% Li₂0 from 254.6m
 - o RB-23-156: 15.4m @ 1.65% Li₂0 from 37.1m
 - RB-23-040: 7.8m @ 1.61% Li₂0 from 216.9m
 - o RB-23-042: **5.9 @ 1.59% Li₂0** from **5.6m**
 - o RB-23-148: 5.9m @ 1.46% Li₂0 from 257.7m
- 13 stacked lithium bearing pegmatites along an initial 1.3km trend have been drilled to over 200m depth
- Exploration will focus on highly prospective areas of 1.5km East and 1.7km West along the trend of the current Root Bay deposit
- Two diamond drill rigs have been mobilised to Root Bay to commence Infill drilling starting 6 June 2023 in parallel to a large-scale field exploration program to define further drill targets

Green Technology Metals Limited (**ASX: GT1**)(**GT1 or the Company**), a Canadian-focused multi-asset lithium business, is pleased to announce further lithium assay results returned from the **Root Bay Prospect** at its 100% owned Root Project, located approximately 200km west of the flagship Seymour Project in Ontario, Canada. The Root Project hosts the Morrison and McCombe lithium Deposits in addition to the Root Bay Prospect described in this report (Figure 1).

¹ Seymour has an existing Mineral Resource estimate of 9.9 Mt @ 1.04% Li₂O (comprised of 5.2 Mt at 1.29% Li₂O Indicated and 4.7 Mt at 0.76% Li₂O Inferred).1 and Root has an Inferred Mineral Resource Estimate of 4.5 Mt @ 1.01% Li₂O.

"Root Bay has returned some of the highest-grade results from any of our projects to date with results now indicating significant potential for a maiden mineral resource estimate from the initial 37-hole diamond drill program. We are now working on determining how big the resource potential is at the prospect area and look forward to sharing the results.

Due to the success of the maiden drilling program, we will now commence infill drilling at Root Bay earlier than planned with two drill rigs mobilised to the project area, ready to commence next week, which will run parallel to the large-scale field exploration program that is currently underway at Root."

- GT1 Chief Executive Officer, Luke Cox

ROOT LITHIUM PROJECT

The Root project comprises several pegmatite deposits with varying degrees of exploration development and hosts a maiden Inferred Mineral Resource estimate of **4.5MT @ 1.01% Li₂O**¹ from its most advanced prospect area McCombe, situated at the western end of the 20km long Project (Figure 1). The entire Root Project has significant potential for further Mineral Resource growth along strike and down dip and across the project area.

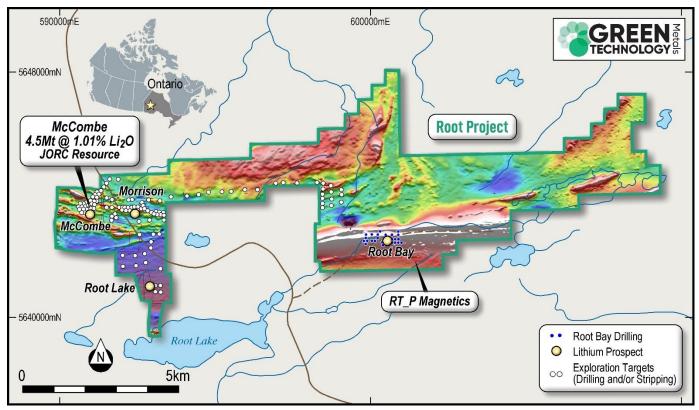


Figure 1: Root Lithium Project exploration target area

1 June 2023

ROOT BAY PROSPECT

Prior to 2023. the Root Bay prospect was only identified as a small pegmatite outcrop showing finer-grained spodumene mineralisation, with no historical drill testing. The Phase 1 maiden diamond drill program undertaken by GT1 commenced on 23 February 2023 and includes 37 holes for 9,378.7m².

Figure 2: Root Bay pegmatite outcrops

Assays have now been received for the remaining 16 holes with thick intercepts extending from near surface and downdip including:

- RB-23-152: 16.8m @ 1.57% Li₂0 from 152.4m
- RB-23-156: 15.4m @ 1.65% Li₂0 from 37.1m
- RB-23-040: 7.8m @ 1.61% Li₂0 from 216.9m
- RB-23-042: **5.9 @ 1.59% Li₂0** from 5.6m
- RB-23-148: 5.9m @ 1.46% Li₂0 from 257.7m

Further assays have been returned from recently reported holes with significant results including:

- RB-23-083: 16.5m @ 1.55% Li₂0 from 254.6m
- RB-23-081: 16.5 @ 1.52% Li₂0 from 298.5m
- RB-23-014: 8.3m @ 1.43% Li₂0 from 227.8m

Results received to date are encouraging and indicate that Root Bay has the potential to host a maiden mineral resource estimate, modelling of the results from Root Bay is currently underway to determine the resource potential at the prospect area.

Significant drill intercept received from the maiden drilling program at Root Bay are included in the table below.

HOLE	EASTING	NORTHING	RL	DIP	AZI	DEPTH	FROM	то	INTERVAL	Li ₂ 0 %
RB-23-088	599897	5642452	429	-45	270	201	99	117	17.8	1.73
RB-23-152	600040	5642544	435	-60	270	300	152	169	16.8	1.57
RB-23-083	600153	5642444	433	-60	267	324	255	271	16.5	1.55
RB-23-156	599846	5642545	422	-60	270	120	37	52	15.4	1.65
RB-23-085	600045	5642458	428	-45	269	228	181	197	16.0	1.58
RB-23-081	600243	5642448	435	-60	268	351	298	315	16.5	1.52
RB-23-091	599785	5642444	425	-45	270	207	33	47	14.3	1.52
RB-23-014	600397	5642444	434	-61	272	321	9	22	13.3	1.40

² Two additional drill holes were logged and one additional hole was assayed following the 1 May 2023 ASX release titled - Further High-Grade Lithium Results Returned at Root Bay.

1 June 2023

HOLE	EASTING	NORTHING	RL	DIP	AZI	DEPTH	FROM	то	INTERVAL	Li₂0 %
RB-23-016	600496	5642451	437	-61	273	162	58	69	11.3	1.52
RB-23-003	600493	5642405	439	-60	270	201	67	80	12.1	1.30
RB-23-040	600393	5642498	432	-60	272	324	217	225	7.8	1.61
RB-23-014	600397	5642444	434	-61	272	321	228	236	8.3	1.43
RB-23-001	600403	5642412	434	-45	90	204	162	169	7.3	1.44
RB-23-007	600686	5642401	435	-60	271	231	171	177	6.6	1.57

Table 1: Significant diamond drilling assays from the maiden diamond drill program at the Root Bay prospect

As shown on the Figure 4 cross section below, drilling is starting to reveal a multiple, shallow-dipping LCT pegmatite system up to 18m thick, with exceptional lithium grades up to 1.73% Li₂0.

13 stacked pegmatites have been identified and defined to over 200m depth and 1,300m along the Root Bay trend, with a northerly strike length of up to 300m. The stacked pegmatites at Root Bay range in thickness from 2m to 17.8m.

The pegmatites are hosted within an Archean package of meta-basalts. The meta-basalts are themselves sandwiched in a 300m wide corridor flanked in the south by meta-sediments and in the north by more meta-sediments hosting Banded Iron Formation units. The contacts between the meta-basalts and the meta-sedimentary units are thought to be steeply dipping to sub-vertical.

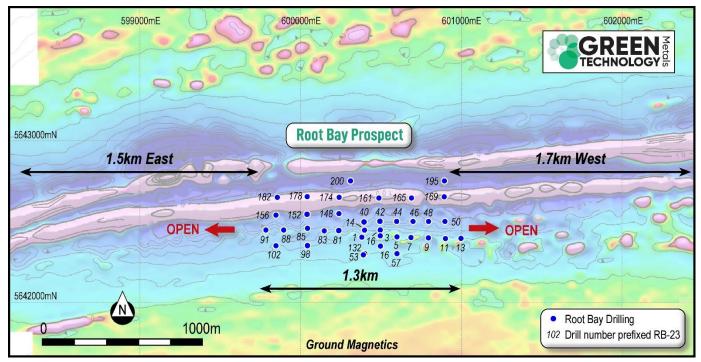


Figure 3: Root Bay diamond drill hole locations

1 June 2023

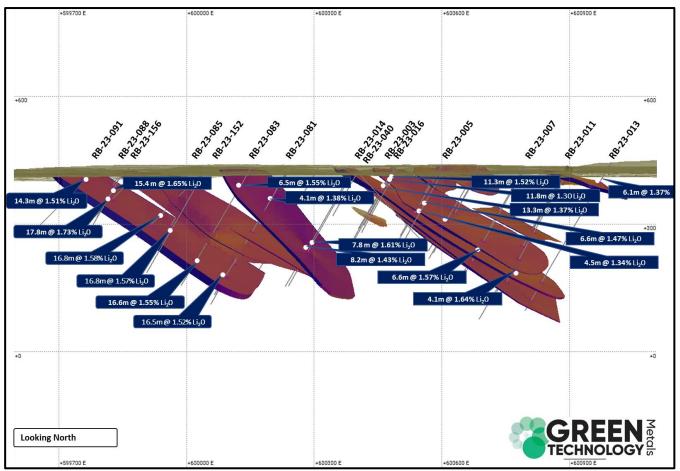


Figure 4: Root Bay stacked pegmatites looking north

2023 EXPLORATION PROGRAM

A large-scale field exploration program including prospecting, mapping, and sampling over the Root project is currently underway to identify new priority drill targets at the Root Project. Focus is on the northern tenement area that has had no previous exploration to date, as well as the areas 1.5km east and 1.7km west along the trend from the current drilling at Root Bay. The trend remains open and highly prospective and can be clearly traced over the entire length of GT1's tenement through the highly magnetic BIF unit that runs along the northern boundary of the Root Bay deposit.

Due to the success of the recent drilling at Root Bay, the company has pushed the restart of drilling forward at Root Bay to now commence on 6 June 2023. On re-commencement of GT1's diamond drilling program, the primary focus will be Resource Definition drilling at Root Bay followed by drill testing of new targets generated from field exploration targets generated across the Root Lithium project area.

1 June 2023

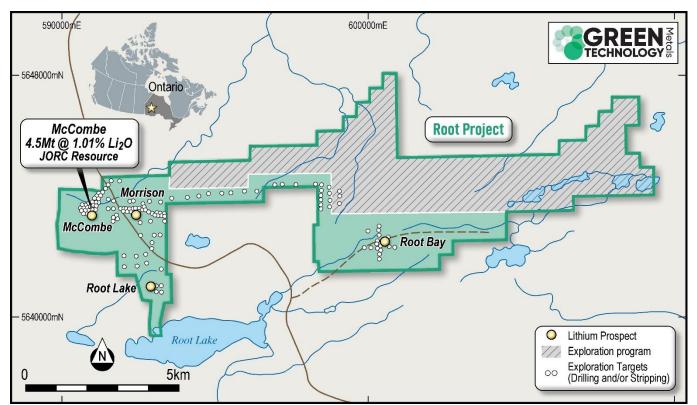


Figure 5: Planned exploration at the Northern Root project ground and trend east and west of Root Bay consisting of prospecting, mapping and sampling

This ASX release has been approved for release by the Board.

KEY CONTACTS

Investors Luke Cox Chief Executive Officer info@greentm.com.au +61 8 6557 6825 Media Jacinta Martino Investor Relations and Media ir@greentm.com.au +61 430 147 046

Green Technology Metals (ASX:GT1)

GT1 is a North American-focussed lithium exploration and development business with a current global resource of 14.4Mt Li₂O at 1.03% Li₂O. The Company's main 100% owned Ontario Lithium Projects comprise high-grade, hard rock spodumene assets (Seymour, Root and Wisa) and lithium exploration claims (Allison and Solstice) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada.

All sites are proximate to excellent existing infrastructure (including clean hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality.

Seymour has an existing Mineral Resource estimate of 9.9 Mt @ 1.04% Li₂O (comprised of 5.2 Mt at 1.29% Li₂O Indicated and 4.7 Mt at 0.76% Li₂O Inferred).1 and Root has an Inferred Mineral Resource Estimate of 4.5 Mt @ 1.01% Li₂O. Accelerated, targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

1 June 2023

¹ For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, *Interim Seymour Mineral Resource Doubles to 9.9Mt*. For full details of the Root Maiden Mineral Resource estimate, see GT1 ASX release dated 19 April 2023, *GT1 Mineral Resources Increased to 14.4MT*. The Company confirms that it is not aware of any new information or data that materially affects the information in that release and that the material assumptions and technical parameters underpinning this estimate continue to apply and have not materially changed.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

The information in this report that relates to Exploration Results pertaining to the Project is based on, and fairly represents, information and supporting documentation either compiled or reviewed by Mr Stephen John Winterbottom who is a member of Australian Institute of Geoscientists (Member 6112). Mr Winterbottom is the General Manager – Technical Services of Green Technology Metals. Mr Winterbottom has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person (CP) as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Winterbottom consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Mr Winterbottom holds securities in the Company.

No new information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

1 June 2023

The information in this report relating to the Mineral Resource estimate for the Seymour Project is extracted from the Company's ASX announcement dated 23 June 2022. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

The information in this report relating to the Mineral Resource estimate for the Root Project is extracted from the Company's ASX announcement dated 19 April 2023. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GT1's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GT1's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GT1's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or guarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forwardlooking statements (including, without limitation, liability for negligence).

30 May 2023

APPENDIX A: JORC CODE, 2012 EDITION – TABLE 1 REPORT

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 GT1 commenced a diamond drilling on February 23, 2023 at the Root Bay prospect. GT1 have drilled 37 holes to date for 9,378.70m in the initial Root Bay phase 1 drill program. GT1 has drilled 32 holes for 5,400m within the Morrison prospect. Diamond Drilling Diamond drilling was used to obtain nominally 1m downhole samples of core. NQ core samples were ½ cored using a diamond saw with ½ the core placed in numbered sample bags for assaying and the other half retained in sequence in the core tray. ½ core samples were approximately 3.0kg in weight with a minimum weight of 500grams. Core was cut down the apex of the core and the same downhole side of the core selected for assaying to reduce potential sampling bias. Channel Samples Preparation prior to obtaining the channel samples including grid and geo-references and marking of the pegmatite structures. Samples were there samples are obtained, logged, removed and bagged and secured in accordance with 0A0C procedures. Sampling continued past the Spodumene -Pegmatite zone, even if it is truncated by Mafic Volcanic a later intrusion. Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups. One tag from a triple tag book was inserted in the sample bag.
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 HQ drilling was undertaken through the thin overburden prior to NQ diamond drilling through the primary rock using a standard tube configuration.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample 	 No core was recovered through the overburden tri-coned section of the hole (top 5m of the hole) Core recovery through the primary rock and mineralised pegmatite zones and country rock was 98% or better. No correlation between grade and recovery was observed.

Criteria	JORC Code explanation	Commentary
	recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content, and any structures. Logging is qualitative in nature. Samples are representative of an interval or length. Sampling was taken for the entire cross strike length of the intersected pegmatite unit at nominal 1m intervals with breaks at geological contacts. Sampling extended into the country mafic rock.
Sub- sampling techniques and sample preparatio n	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Each ½ core sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh)(includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. The sample preparation process is considered representative of the whole core sample.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Sample were submitted to AGAT Laboratories in Thunder Bay. AGAT inserted internal standards, blanks and pulp duplicates within each sample batch as part of their own internal monitoring of quality control. GT1 inserted certified lithium standards and blanks into each batch submitted to AGAT to monitor precision and bias performance at a rate of 1:20. The major element oxides and trace elements including Rb, Cs, Nb, Ta and Be were analysed by FUS-ICP and FUS-MS (4Litho-Pegmatite Special) analytical codes which uses a lithium metaborate tetraborate fusion with analysis by ICP and ICPMS. QAQC results to date do not indicate any significant issues with the assays.

Criteria	JORC Code explanation	Commentary							
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	Over,732,0 If the second se							
assaying	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 facilities for further verification if required. The laboratory assay results have been sourced directly from the laboratory and the laboratory file directly imported directly into GTI's SQL database. All north seeking gyroscope surveys are uploaded directly from the survey tool output file and visually validated. Geological logs and supporting data are uploaded directly to the database using custom built importers to ensure no chance of typographical errors. No adjustment to laboratory assay data was made other than conversion of Li ppm to Li₂O ppm using a factor of 2.153 							
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A GPS reading was taken for each sample location using UTM NAD83 Zone15 (for Root); waypoint averaging or dGPS was performed when possible. GT1 undertook a Lidar survey of the Root area in 2022 (+/-0.15m) which underpins the local topographic surface. GT1 has used continuous measurement north seeking gyroscope tools with readings retained every 5m downhole. 							
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation 	 NA – insufficient drilling has been undertaken to estimate the degree of geological and grade continuity to support a Mineral Resource or Ore Reserve. 							

1 June 2023

Criteria	JORC Code explanation	Commentary
	procedure(s) and classifications applied. Whether sample compositing has been applied.	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have 	 The current drilling program is drilled to achieve as close to a representative intersection of the pegmatites as possible which dip moderately to the south. Holes are mostly orientated approximately north and 60 degrees inclination with the exception of hole RB-23-001 which was drilled down the dip of the pegmatites to gauge down dip grade continuity.
	introduced a sampling bias, this should be assessed and reported if material.	 Grab and trench samples were taken where outcrop was available. All attempts were made to ensure trench samples represented traverses across strike of the pegmatite.
Sample security	 The measures taken to ensure sample security. 	 All core and samples were supervised and secured in a locked vehicle, warehouse, or container until delivered to AGAT in Thunder Bay for cutting, preparation and analysis.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	• NA

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Root Lithium Asset consists of 249 boundary Cell mining claims (Exploration Licences), 33 mining license of occupation claims (285 total claims) with a total claim area of 5,377 ha. Generally surface rights to the Root Property remain with the Crown, except for 9 Patent Claims (PAT-51965. PAT-51966. PAT-51967. PAT-51968. PAT-51970. PAT-51974. PAT-51975. PAT-51976 and PAT-51977). All Cell Claims are in good standing. All claims are 100% owned by GT1's wholly owned subsidiary Green TM Resources (Canada) Ltd.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Regional exploration for lithium deposits commenced in the 1950's. In 1955-1956 Capital Lithium Mines Ltd. geologically mapped and sampled dikes near the McCombe Deposit with the highest recorded channel sample of 1.52m at 3.06% Li₂0. 7 drill holes (1,042.26m total) within the McCombe Deposit and Root Lake Prospect yielding low lithium assays. According to Mulligan (1965), Capital Lithium Mines Ltd. reported to Mulligan that they drilled at least 55 holes totalling 10469.88m in 1956. They delineated 4 pegmatite zones and announced a non-compliant NI 41-101 reserve calculation of 2.297 million tons at 1.3% Li₂0. However, none of that information is available on the government database. In 1956, Consolidated Morrison Explorations Ltd drilled 16 holes (1890m total) at the Morrison prospect recording 3.96m at 2.63% Li₂0. In 1956, Three Brothers Mining Exploration southwest of the McCombe Deposit that did not intersect pegmatite In 1957, Geo-Technical Development Company Limited on behalf of Continental Mining Exploration conducted a magnetometer survey and an electromagnetic check survey on the eastern claims of the Root Lithium Project to locate pyrrhotite mineralization In 1977, Northwest Geophysics Limited on behalf of Noranda Exploration Company Ltd. conducted an electromagnetic and magnetometer survey for sulphide conductors on a small package of claims east of the Morrison Prospect. Noranda also conducted a mapping and sampling program over the same area, mapped a new pegmatite dike and sampled a graphitic schist assaying 0.03% Cu and 0.15% Zn. In 1998, Harold A. Watts prospected, trenched and sampled spodumenebearing pegmatites with the Morrison Prospect assaying up to 5.91% Li₂0. In 2002 stripped and blasted 2 more spodumene-bearing pegmatites near

Criteria	JORC Code explanation	Commentary
		 the Morrison prospect. In 2005, Landore Resources Canada Inc. created a reconnaissance survey, mapping and sampling project mostly within the McCombe Deposit, but also in the Morrison and Root Lake Prospects. Highest sample was 3.69% Li₂0 with the McCombe Deposit. In 2008, Rockex Ltd. on behalf of Robert Allan Ross stripped and trenched 40 trenches for iron, gold and base metals associated with oxide iron formation. All Fe assays were above 25% (up to 47.5% Fe). 3 gold zones were discovered with assays up to 4.0g/t Au in Zone A (Root Bay Gold Prospect), 1.3% g/t Au over 0.5m in Trench 9, 0.19% Cu–Zn over 8m and up to 0.14% Li₂0 in Zone B. Best assays of samples collected north-east area of Root Bay had up to 394ppm Zn, 389ppm Cu, 185ppm Ni, 102ppm Co and 57.0ppm Mo. In 2009, Golden Dory Resources along with Harold A. Watts conducted a due diligence sampling program to validate historic data from the Morrison Prospect. Highest grab sample was 5.10% Li₂0 and a channel sample of 5m at 4.44% Li₂0. In 2011, Geo Data Solutions GDS Inc. on behalf of Rockex Ltd. flew a high-resolution helicopter borne aeromagnetic survey intersecting a small portion of the south-central claims owned by GM1. In 2012, Stares Contracting on behalf of Golden Dory Resources Corporation conducted a ground magnetic survey near the Morrison Prospect. Highest Li assays within GM1 claims was 0.0037% Li₂0 and a gold soil assay of 52ppb Au. In 2016, the previous owner conducted a drilled 7 diamond drill holes (469m total) within the Morrison and Root Bay Prospects yielded 0.04% Li₂0. Channel sample within the Morrison Prospect highest Li assays within GM1 claims was 0.0037% Li₂0. An hole drilled down dip intersected 70m at 1.7% Li₂0. An outcrop sampling within the Morrison Prospect highest Li assay was an at 2.09% Li₂0. An hole drilled down dip intersected 70m at 1.7% Li₂0. An outcrop sampling within the Morrison Prospect had 500 Mr² aerial LIDAR acquisition surve
Geology	Deposit type, geological setting and style of mineralisation.	 Regional Geology: The Root Lithium Asset is located within the Uchi Domain, predominately metavolcanic units interwoven with granitoid batholiths and English River Terrane, a highly metamorphosed to migmatized, clastic and chemical metasedimentary rock with abundant granitoid batholiths. They are part of the Superior craton, interpreted to be the amalgamation of Archean aged microcontinents and accretionary events. The boundary between the Uchi Domain and the English River Terrane is defined by the Sydney Lake - Lake St. Joseph fault, an east west trending, steeply dipping brittle ductile shear zone over 450km along strike and 1 - 3m wide. Several S-Type, peraluminous granitic plutons host rare-element mineralization near the Uchi Domain and English River subprovince boundary. These pegmatites include the Root Lake Pegmatite Group, Jubilee Lake Pegmatite. Local Geology: The Root Lithium Asset contains most of the pegmatites within the Root Lake Pegmatite Group including the McCombe Pegmatite, Morrison Prospect, Root Lake Prospect and Root Bay Prospect. The McCombe Pegmatite and Morrison Prospect are hosted in predominately mafic metavolcanic rock of the Uchi Domain. The Root Lake and Root Bay Prospects are hosted in predominately metasedimentary rocks of the English River Terrane. On the eastern end of the Root Lithium Asset there is a gold showing (Root Bay Gold Prospect) hosted in or proximal to silicate, carbonate, sulphide, and oxide iron formations of the English River Terrane. Ore Geology:

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 The Root Pegmatites are internally zoned. These zones are classified by the tourmaline discontinuous zone along the pegmatite contact, white feldsparrich wall zone, tourmaline-bearing, equigranular to porphyritic potassium feldspar sodic apalite zone, tourmaline-being, porphyritic potassium feldspar spodumene pegmatite zone and lepidolite-rich pods and seams (Breaks et al., 2003). Both the McCombe and Morrison have been classified as complextype, spodumene-subtype (Černý 1991a classification) based on the abundance of spodumene, highly evolved potassium feldspar chemistry and presence of petalite, mircolite, lepidolite and lithium-calcium liddicoatite (Breaks et al., 2003). Root Bay pegmatite appear to exhibit similar characteristics. The Root Bay pegmatites are hosted in foliated, locally pillowed mafic metavolcanic rock that contain metasomatic holmquistite near the contact of the pegmatite (Magyarosi, 2016). No historic drilling has been undertaken at Root Bay. To date the 13 stacked spodumene bearing pegmatites, have been intersected and interpreted. The pegmatites strike north-south and dip moderately to the east and vary in thickness from 2-16m thickness. Collar locations are noted below and all coordinates are in North American Datum 1983 (NAD83) Zone 15: GT1 Root Bay and Morrison drill downhole pegmatite intercepts are approximate to true widths, except where explicitly stated otherwise.

Criteria	JORC Code explanation	Comm	entary											
														Pegmatite
		Prospect	HOLEID	Easting	Northing	RL	Dip	Azi	Depth	From	То	Interval	Lithology	Li20%
		Root Bay	RB-23-001*	600,403	5,642,412	434	- 45	90	204	60.9	128.0	67.1	Pegmatite	1.13
		Root Bay	RB-23-001*	600,403	5,642,412	434	- 45	90	204	162.0	169.3	7.3		1.44
		Root Bay Root Bay	RB-23-001* RB-23-003	600,403 600,493	5,642,412 5,642,405	434 439	- 45 - 60	90 270	204 201	174.3 67.4	179.6 79.5	5.3		1.34 1.30
		Root Bay	RB-23-005	600,601	5,642,406	438	- 60	265	210	45.4	49.0	3.6		0.07
		Root Bay	RB-23-005	600,601	5,642,406	438	- 60	265	210	129.2	135.8	6.6	Pegmatite	1.47
		Root Bay Root Bay	RB-23-005 RB-23-005	600,601 600,601	5,642,406 5,642,406	438 438	- 60 - 60	265 265	210 210	140.5 149.0	145.0 151.1	4.5		1.84 1.09
		Root Bay	RB-23-007	600,686	5,642,400	435	- 60	205	231	147.3	156.6		Pegmatite	0.72
		Root Bay	RB-23-007	600,686	5,642,401	435	- 60	271	231	170.9	177.4	6.6	Pegmatite	1.57
		Root Bay	RB-23-007	600,686	5,642,401	435	- 60	271	231	187.4	190.4		Pegmatite	1.52
		Root Bay Root Bay	RB-23-007 RB-23-009	600,686 600,795	5,642,401 5,642,399	435 430	- 60 - 61	271 270	231 288	199.5 124.6	202.1	2.5 2.6		1.18 1.01
		Root Bay	RB-23-009	600,795	5,642,399	430	- 61	270	288	195.5	198.9	3.4	-	1.61
		Root Bay	RB-23-009	600,795	5,642,399	430	- 61	270	288	222.9	228.1	5.2	Pegmatite	1.44
		Root Bay	RB-23-009	600,795	5,642,399	430	- 61	270	288	250.6	258.5	7.9		1.01
		Root Bay Root Bay	RB-23-011 RB-23-011	600,901 600,901	5,642,392 5,642,392	432 432	- 60 - 60	282 282	353 353	12.8 176.7	17.0 179.3	4.2	Pegmatite Pegmatite	0.81
		Root Bay	RB-23-011	600,901	5,642,392	432	- 60	282	353	274.1	278.1	4.1		1.64
		Root Bay	RB-23-011	600,901	5,642,392	432	- 60	282	353	310.0	314.1	4.1		1.23
		Root Bay	RB-23-013	600,997	5,642,397	443	- 60	271	402	50.1	56.2	6.1	-	1.37
		Root Bay Root Bay	RB-23-013 RB-23-013	600,997 600,997	5,642,397 5,642,397	443 443	- 60 - 60	271 271	402 402	324.5 374.9	329.7 377.1	5.1 2.2	-	0.47 1.49
		Root Bay	RB-23-013	600,397	5,642,397	443	- 60 - 61	271	321	8.5	21.8	13.3		1.49
		Root Bay	RB-23-014	600,397	5,642,444	434	- 61	272	321	227.8	236.1	8.3	Pegmatite	1.4 <mark>3</mark>
		Root Bay	RB-23-016	600,496	5,642,451	437	- 61	273	162	57.8	69.0	11.3		1.52
		Root Bay	RB-23-016	600,496	5,642,451	437	- 61	273	162	75.6	78.8	3.2		0.98
		Root Bay Root Bay	RB-23-016 RB-23-040	600,496 600,393	5,642,451 5,642,498	437 432	- 61 - 60	273 272	162 324	131.4 216.9	138.3 224.7	6.8 7.8	Pegmatite Pegmatite	0.21
		Root Bay	RB-23-042	600,487	5,642,504	431	- 60	270	168	5.6	11.5	5.9	Pegmatite	1.59
		Root Bay	RB-23-044	600,597	5,642,495	435	- 60	271	189	18.4	23.5	5.1	Pegmatite	0.22
		Root Bay Root Bay	RB-23-044 RB-23-046	600,597 600,693	5,642,495 5,642,499	435 438	- 60 - 61	271 271	189 252	73.4 9.1	81.2 11.3	7.8		0.07
		Root Bay	RB-23-046	600,693	5,642,499	438	- 61	271	252	128.0	132.6	4.7	Pegmatite	0.64
		Root Bay	RB-23-048	600,794	5,642,499	435	- 60	271	291	165.4	170.9	5.5	Pegmatite	0.37
		Root Bay	RB-23-048	600,794	5,642,499	435	- 60	271	291	197.9	204.9	7.1		1.05
		Root Bay Root Bay	RB-23-050 RB-23-050	600,897 600,897	5,642,499 5,642,499	434 434	- 60 - 60	270 270	354 354	168.3 213.4	170.5 218.5	2.2 5.1	Pegmatite	0.03
		Root Bay	RB-23-050	600,897	5,642,499	434	- 60	270	354	213.4	224.2	2.1		0.03
		Root Bay	RB-23-050	600,897	5,642,499	434	- 60	270	354	255.4	261.7	6.2	Pegmatite	1.09
		Root Bay	RB-23-050	600,897	5,642,499	434	- 60	270	354	288.6	294.2		Pegmatite	0.60
		Root Bay Root Bay	RB-23-081 RB-23-081	600,243 600,243	5,642,448 5,642,448	435 435	- 60 - 60	268 268	351 351	112.8 119.7	117.3 123.8	1	Pegmatite Pegmatite	0.81 1.38
		Root Bay	RB-23-081	600,243	5,642,448	435	- 60	268	351	176.8	123.8	1	Pegmatite	0.55
		Root Bay	RB-23-081	600,243	5,642,448	435	- 60	268	351	298.5	315.0		Pegmatite	1.52
		Root Bay	RB-23-083	600,153	5,642,444	433	- 60	267	324	54.8	61.4		Pegmatite	1.55
		Root Bay Root Bay	RB-23-083 RB-23-083	600,153 600,153	5,642,444 5,642,444	433 433	- 60 - 60	267 267	324 324	179.0 254.6	181.4 271.2		Pegmatite Pegmatite	0.24
		Root Bay	RB-23-083	600,045	5,642,444	433	- 60 - 45	267	324	181.4	197.4		Pegmatite	1.55
		Root Bay	RB-23-088	599,897	5,642,452	429	- 45	270	201	99.4	117.2		Pegmatite	1.73
		Root Bay	RB-23-091	599,785	5,642,444	425	- 45	270	207	33.1	47.4	1	Pegmatite	1.52
		Root Bay	RB-23-148 RB-23-148	600,240 600,240	5,642,550 5,642,550	431 431	- 60 - 60	270 270	369 369	62.8 221.7	69.7 227.2		Pegmatite	1.18 0.43
		Root Bay Root Bay	RB-23-148 RB-23-148	600,240	5,642,550	431	- 60 - 60	270	369	238.4	227.2	1	Pegmatite	0.43
		Root Bay	RB-23-148	600,240	5,642,550	431	- 60	270	369	251.3	253.5		Pegmatite	1.09
		Root Bay	RB-23-148	600,240	5,642,550	431	- 60	270	369	257.7	263.7		Pegmatite	1.46
		Root Bay	RB-23-148 RB-23-152	600,240 600,040	5,642,550 5,642,544	431 435	- 60 - 60	270 270	369 300	354.4 152.4	356.5 169.2		Pegmatite	1.42 1.57
		Root Bay Root Bay	RB-23-152 RB-23-156	599,846	5,642,544	435	- 60 - 60	270	120	37.1	52.5		Pegmatite Pegmatite	1.65
		Root Bay	RB-23-169	600,892	5,642,653	432	- 61	272	411	322.5	326.4		Pegmatite	0.02
		Root Bay	RB-23-174	600,244	5,642,650	433	- 60	270	347	198.2	201.0	2.8	Pegmatite	0.05
		* In rela	ition to th	e disclo	sure of v	visual	miı	neral	lisatio	n, the	Com	oany ca	utions th	nat visual
			es of min											
		laborat	ory analys	is. Labo	oratory a	ssay	resi	ilts d	are re	quired	to d	etermin	ne the wi	dths and

Criteria	JORC Code explanation	Commentary
		grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available. The reported intersections are down hole measurements and are not necessarily true width. Descriptions of the mineral amounts seen and logged in the core are qualitative, visual estimates only (they are listed in order of abundance of estimated combined percentages). * In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available. The reported intersections are down hole measurements and are not necessarily true width. Descriptions of the mineral amounts seen and logged in the core are qualitative, visual estimates only (they are listed in order of abundance of estimated combined percentages). Hole RB-23-001 was not drilled tangential to strike and the intervals quoted are not representative of, or similar to, the pegmatite true widths intercepts.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Length weighted Li₂O averages are used across the downhole length of intersected pegmatites Grade cut-offs have not been incorporated. No metal equivalent values are quoted.
Relationshi p between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Holes drilled by GT1 attempt to pierce the mineralised pegmatite approximately perpendicular to strike, and therefore, the downhole intercepts reported are approximately equivalent to the true width of the mineralisation except for RB-23-001 which was drilled downdip of the pegmatites to better gauge grade continuity. Trenches are representative widths of the exposed pegmatite outcrop. Some exposure may not be a complete representation of the total pegmatite width due to recent glacial deposit cover limiting the available material to be sampled.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	The appropriate maps are included in the announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• Root Bay drill data is detailed in Appendix B and C of this announcement.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; 	 GT1 completed a high resolution Heliborne Magnetic geophysical survey over the property in July 2022. The survey was undertaken by Propsectair using their Robinson R-44 and EC120B helicopters. Survey details, 1,201 line-km, 50m line spacing, direction 179 degrees to crosscut pegmatite strike, 50m altitude. Control lines were flown perpendicular to these lines at 500m spacing. Images have been received Total Magnetics.

Criteria	JORC Code explanation	Commentary
	potential deleterious or contaminating substances.	 Interpretation was completed by Southern Geoscience Interpretation was completed by Southern Geoscience Several pegmatite targets were identified based on structural interpretation of the magnetic response of basement formations. Lithium vector analysis from existing drill data and surface samples was undertaken by Dr Nigel Brand, a geochemist from Portable Spectral Services in Perth Western Australia. Dr Brand formulated an index for identifying potential LCT hosted pegmatites both in greenstone and pegmatite host rocks. Further regional country rock sampling programs will be conducted to assay for elements of interest to generate the vectoring index to allow further LCT pegmatite targets at Root.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further geological field mapping of anomalies and associated pegmatites at Root and regional claims Sampling country rock to assist in LCT pegmatite vector analysis and target generation. Progress to a maiden mineral resource estimate for Root Bay and further exploration, infill drilling and extension of the Root Bay pegmatites discovered to date followed by commencement of detailed mining studies.

1 June 2023

APPENDIX B - DRILL HOLE COLLARS

Prospect	HoleID	Easting	Northing	RL	Dip	Azi	Depth
Root Bay	RB-23-001	600,403	5,642,412	434	- 45	91	204
Root Bay	RB-23-003	600,493	5,642,405	439	- 60	271	204
Root Bay	RB-23-005	600,601	5,642,407	438	- 60	266	210
Root Bay	RB-23-007	600,686	5,642,407	435	- 60	200	231
,			5,642,399	430	- 61	272	231
Root Bay	RB-23-009	600,795	5,642,399	430		283	
Root Bay	RB-23-011	600,901	, ,				353
Root Bay	RB-23-013	600,997	5,642,397	443	- 60	272	402
Root Bay	RB-23-014	600,397	5,642,445	434	- 61	273	321
Root Bay	RB-23-016	600,496	5,642,451	437	- 61	274	162
Root Bay	RB-23-029	600,496	5,642,345	428	- 60	274	171
Root Bay	RB-23-040	600,393	5,642,498	432	- 60	273	324
Root Bay	RB-23-042	600,487	5,642,504	431	- 60	272	168
Root Bay	RB-23-044	600,597	5,642,495	435	- 60	272	189
Root Bay	RB-23-046	600,693	5,642,499	438	- 61	272	252
Root Bay	RB-23-048	600,794	5,642,499	435	- 60	272	291
Root Bay	RB-23-050	600,897	5,642,499	434	- 60	272	354
Root Bay	RB-23-053	600,401	5,642,302	394	- 46	71	219
Root Bay	RB-23-057	600,600	5,642,300	418	- 61	272	192
Root Bay	RB-23-081	600,243	5,642,448	435	- 60	269	351
Root Bay	RB-23-083	600,153	5,642,444	433	- 60	268	324
Root Bay	RB-23-085	600,045	5,642,458	428	- 45	270	228
Root Bay	RB-23-088	599,897	5,642,452	429	- 45	271	201
Root Bay	RB-23-091	599,785	5,642,444	425	- 45	271	207
Root Bay	RB-23-098	600,042	5,642,352	422	- 60	271	273
Root Bay	RB-23-102	599,851	5,642,349	420	- 59	272	162
Root Bay	RB-23-132	600,403	5,642,304	391	- 60	271	120
Root Bay	RB-23-148	600,240	5,642,550	431	- 60	271	369
Root Bay	RB-23-152	600,040	5,642,544	435	- 60	271	300
Root Bay	RB-23-156	599,846	5,642,545	422	- 60	271	120
Root Bay	RB-23-161	600,492	5,642,650	432	- 60	272	201
Root Bay	RB-23-165	600,693	5,642,648	434	- 60	272	231
Root Bay	RB-23-169	600,892	5,642,653	432	- 61	273	411
Root Bay	RB-23-174	600,244	5,642,650	433	- 60	271	347
Root Bay	RB-23-178	600,043	5,642,652	432	- 60	273	222
Root Bay	RB-23-182	599,851	5,642,646	427	- 60	271	126
Root Bay	RB-23-195	600,896	5,642,753	431	- 60	278	312
Root Bay	RB-23-200	600,310	5,642,747	434	- 60	272	342

1 June 2023

APPENDIX C - GEOLOGY LOG ROOT BAY PROSPECT

HoleID	From	То	Interval	Lithology	Li2O ppm
RB-23-003	0.0	2.9	2.9	Overburden	-
RB-23-003	2.9	67.4	64.6	Mafic	19
RB-23-003	67.4	79.5	12.1	Pegmatite	12,667
RB-23-003	79.5	83.5	4.0	Mafic	535
RB-23-003	83.5	85.0	1.5	Pegmatite	3,813
RB-23-003	85.0	139.2	54.2	Mafic	79
RB-23-003	139.2	140.0	0.8	Pegmatite	125
RB-23-003	140.0	201.0	61.0	Mafic	23
RB-23-005	0.0	3.0	3.0	Overburden	-
RB-23-005	3.0	15.0	12.0	Mafic	107
RB-23-005	15.0	15.5	0.4	Pegmatite	385
RB-23-005	15.5	45.4	30.0	Mafic	220
RB-23-005	45.4	49.0	3.6	Pegmatite	646
RB-23-005	49.0	108.6	59.6	Mafic	101
RB-23-005	108.6	109.9	1.3	Pegmatite	12,585
RB-23-005	109.9	129.2	19.3	Mafic	602
RB-23-005	129.2	135.8	6.6	Pegmatite	14,678
RB-23-005	135.8	140.5	4.7	Mafic	907
RB-23-005	140.5	145.0	4.5	Pegmatite	13,394
RB-23-005	145.0	149.0	4.0	Mafic	893
RB-23-005	149.0	151.1	2.1	Pegmatite	10,936
RB-23-005	151.1	210.0	59.0	Mafic	39
RB-23-007	0.0	0.5	0.5	Overburden	-
RB-23-007	0.5	32.9	32.5	Mafic	94
RB-23-007	32.9	34.8	1.9	Pegmatite	6,520
RB-23-007	34.8	50.6	15.8	Mafic	510
RB-23-007	50.6	51.8	1.2	Felsic	255
RB-23-007	51.8	141.6	89.8	Mafic	31
RB-23-007	141.6	142.1	0.5	Felsic	73
RB-23-007	142.1	147.3	5.2	Mafic	454
RB-23-007	147.3	150.3	3.0	Pegmatite	16,109
RB-23-007	150.3	153.2	2.8	Mafic	595
RB-23-007	153.2	156.7	3.5	Pegmatite	4,884
RB-23-007	156.7	170.9	14.2	Mafic	745
RB-23-007	170.9	177.4	6.6	Pegmatite	15,722
RB-23-007	177.4	187.4	10.0	Mafic	760
RB-23-007	187.4	190.4	3.0	Pegmatite	15,227
RB-23-007	190.4	199.5	9.1	Mafic	680
RB-23-007	199.5	202.1	2.6	Pegmatite	11,771
RB-23-007	202.1	231.0	28.9	Mafic	77
RB-23-009	0.0	6.0	6.0	Overburden	-

RE	8-23-009	6.0	124.6	118.6	Mafic	18
RE	8-23-009	124.6	127.2	2.6	Pegmatite	10,052
RE	8-23-009	127.2	195.5	68.3	Mafic	111
RE	8-23-009	195.5	198.9	3.4	Pegmatite	16,140
RE	3-23-009	198.9	222.9	24.0	Mafic	475
RE	3-23-009	222.9	228.1	5.2	Pegmatite	3,373
RE	3-23-009	228.1	239.5	11.4	Mafic	-
RE	3-23-009	239.5	240.7	1.2	Pegmatite	-
RE	8-23-009	240.7	250.6	9.9	Mafic	-
RE	3-23-009	250.6	253.4	2.8	Pegmatite	-
RE	3-23-009	253.4	256.0	2.5	Mafic	-
RE	8-23-009	256.0	258.5	2.5	Pegmatite	-
RE	8-23-009	258.5	288.0	29.5	Mafic	-
RE	8-23-011	0.0	6.8	6.8	Overburden	-
RE	3-23-011	6.8	12.8	6.0	Mafic	272
RE	8-23-011	12.8	17.0	4.2	Pegmatite	8,133
RE	8-23-011	17.0	21.9	4.9	Mafic	932
RE	8-23-011	21.9	23.1	1.3	Pegmatite	193
RE	8-23-011	23.1	176.7	153.6	Mafic	22
RE	8-23-011	176.7	179.3	2.6	Pegmatite	6,396
RE	8-23-011	179.3	249.1	69.8	Mafic	60
RE	8-23-011	249.1	250.7	1.6	Pegmatite	2,282
RE	8-23-011	250.7	274.1	23.4	Mafic	485
RE	8-23-011	274.1	278.1	4.1	Pegmatite	16,412
RE	8-23-011	278.1	296.2	18.1	Mafic	-
RE	3-23-011	296.2	297.2	0.9	Pegmatite	-
RE	3-23-011	297.2	310.0	12.9	Mafic	-
RE	8-23-011	310.0	314.1	4.1	Pegmatite	-
RE	8-23-011	314.1	320.9	6.8	Mafic	-
RE	8-23-011	320.9	322.6	1.7	Pegmatite	-
RE	8-23-011	322.6	353.0	30.4	Mafic	-
RE	8-23-014	0.0	3.5	3.5	Overburden	-
RE	8-23-014	3.5	8.5	5.0	Mafic	482
RE	3-23-014	8.5	21.8	13.3	Pegmatite	13,742
RE	3-23-014	21.8	227.8	206.0	Mafic	18
RE	8-23-014	227.8	236.1	8.3	Pegmatite	13,995
RE	8-23-014	236.1	247.6	11.6	Mafic	666
RE	3-23-014	247.6	249.4	1.8	Pegmatite	13,918
RE	8-23-014	249.4	320.7	71.3	Mafic	195
RE	8-23-016	0.0	3.2	3.2	Overburden	-
RE	8-23-016	3.2	42.4	39.2	Mafic	90
RE	3-23-016	42.4	44.3	1.9	Pegmatite	12,399
RE	8-23-016	44.3	57.8	13.5	Mafic	1,099
	8-23-016	57.8	69.0	11.3	Pegmatite	15,169
RE	8-23-016	69.0	75.6	6.6	Mafic	519

RB-23-016	75.6	78.8	3.2	Pegmatite	9,457
RB-23-016	78.8	131.5	52.7	Mafic	39
RB-23-016	131.5	138.3	6.8	Pegmatite	1,101
RB-23-016	138.3	162.0	23.7	Mafic	-
RB-23-029	0.0	7.7	7.7	Overburden	-
RB-23-029	7.7	73.7	66.0	Sediment	85
RB-23-029	73.7	74.5	0.8	Pegmatite	1,421
RB-23-029	74.5	171.0	96.5	Sediment	32
RB-23-044	0.0	3.0	3.0	Overburden	-
RB-23-044	3.0	18.4	15.4	Mafic	89
RB-23-044	18.4	23.5	5.1	Pegmatite	1,999
RB-23-044	23.5	36.4	12.9	Mafic	351
RB-23-044	36.4	36.8	0.4	Pegmatite	50
RB-23-044	36.8	73.4	36.6	Mafic	85
RB-23-044	73.4	77.3	3.9	Pegmatite	281
RB-23-044	77.3	78.6	1.3	Mafic	726
RB-23-044	78.6	81.2	2.6	Pegmatite	1,229
RB-23-044	81.2	189.0	107.8	Mafic	82
RB-23-050	0.0	12.0	12.0	Overburden	-
RB-23-050	12.0	46.3	34.3	Mafic	18
RB-23-050	46.3	46.7	0.4	Pegmatite	127
RB-23-050	46.7	157.6	110.9	Mafic	34
RB-23-050	157.6	159.5	1.9	Pegmatite	197
RB-23-050	159.5	168.3	8.8	Mafic	331
RB-23-050	168.3	170.5	2.2	Pegmatite	274
RB-23-050	170.5	213.4	42.9	Mafic	59
RB-23-050	213.4	218.5	5.1	Pegmatite	350
RB-23-050	218.5	222.1	3.6	Mafic	789
RB-23-050	222.1	224.2	2.1	Pegmatite	1,935
RB-23-050	224.2	244.4	20.2	Mafic	130
RB-23-050	244.4	245.6	1.2	Pegmatite	5,391
RB-23-050	245.6	255.5	9.8	Mafic	606
RB-23-050	255.5	261.7	6.2	Pegmatite	10,917
RB-23-050	261.7	288.6	26.9	Mafic	165
RB-23-050	288.6	294.2	5.6	Pegmatite	5,966
RB-23-050	294.2	354.0	59.8	Mafic	62
RB-23-053	0.0	5.0	5.0	Overburden	-
RB-23-053	5.0	219.0	214.0	Sediment	-
RB-23-057	0.0	7.2	7.2	Overburden	-
RB-23-057	7.2	192.0	184.8	Sediment	-
RB-23-081	0.0	1.9	1.9	Overburden	-
RB-23-081	1.9	65.7	63.8	Mafic	33
RB-23-081	65.7	67.3	1.6	Pegmatite	5,978
RB-23-081	67.3	112.8	45.5	Mafic	118
RB-23-081	112.8	113.4	0.6	Pegmatite	1,447

RB-23-081	113.4	115.1	1.7	Mafic	3,003
RB-23-081	115.1	117.3	2.2	Pegmatite	13,932
RB-23-081	117.3	119.7	2.3	Mafic	921
RB-23-081	119.7	123.8	4.1	Pegmatite	13,827
RB-23-081	123.8	176.8	53.0	Mafic	167
RB-23-081	176.8	181.7	4.9	Pegmatite	5,480
RB-23-081	181.7	208.5	26.8	Mafic	548
RB-23-081	208.5	208.9	0.4	Pegmatite	19,073
RB-23-081	208.9	222.8	13.9	Mafic	690
RB-23-081	222.8	223.2	0.4	Pegmatite	4,176
RB-23-081	223.2	234.8	11.6	Mafic	543
RB-23-081	234.8	235.5	0.7	Pegmatite	8,675
RB-23-081	235.5	298.5	63.0	Mafic	61
RB-23-081	298.5	315.0	16.5	Pegmatite	-
RB-23-081	315.0	320.3	5.3	Sediment	-
RB-23-081	320.3	321.6	1.3	Pegmatite	-
RB-23-081	321.6	351.0	29.4	Mafic	-
RB-23-083	0.0	1.7	1.7	Overburden	-
RB-23-083	1.7	54.8	53.2	Mafic	33
RB-23-083	54.8	61.4	6.5	Pegmatite	15,397
RB-23-083	61.4	179.0	117.6	Mafic	59
RB-23-083	179.0	181.4	2.4	Pegmatite	2,390
RB-23-083	181.4	191.9	10.6	Mafic	623
RB-23-083	191.9	192.5	0.6	Pegmatite	161
RB-23-083	192.5	254.6	62.1	Mafic	42
RB-23-083	254.6	271.2	16.6	Pegmatite	-
RB-23-083	271.2	324.0	52.8	Mafic	-
RB-23-085	0.0	3.7	3.7	Overburden	-
RB-23-085	3.7	87.4	83.7	Mafic	5
RB-23-085	87.4	88.0	0.6	Pegmatite	215
RB-23-085	88.0	108.9	20.9	Mafic	77
RB-23-085	108.9	109.6	0.7	Pegmatite	5,662
RB-23-085	109.6	181.4	71.9	Mafic	124
RB-23-085	181.4	197.4	16.0	Pegmatite	15,783
RB-23-085	197.4	223.5	26.1	Mafic	274
RB-23-085	223.5	224.6	1.1	Pegmatite	6,569
RB-23-085	224.6	228.0	3.4	Mafic	470
RB-23-102	0.0	9.3	9.3	Overburden	-
RB-23-102	9.3	162.0	152.7	Sediment	-
RB-23-132	0.0	3.0	3.0	Overburden	-
RB-23-132	3.0	120.0	117.0	Sediment	-
RB-23-165	0.0	12.0	12.0	Overburden	-
RB-23-165	12.0	134.4	122.4	Sediment	-
RB-23-165	134.4	134.4	0.1	Pegmatite	-
RB-23-165	134.4	231.0	96.6	Sediment	-

RB-23-182	0.0	10.5	10.5	Overburden	-
RB-23-182	10.5	126.0	115.5	Sediment	-

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-001	0.0	3.0	3.0	Overburden	-
RB-23-001	3.0	60.9	57.9	Mafic	-
RB-23-001	60.9	128.0	67.1	Pegmatite	11,280
RB-23-001	128.0	162.0	34.0	Mafic	-
RB-23-001	162.0	169.3	7.3	Pegmatite	14,350
RB-23-001	169.3	174.3	5.0	Mafic	-
RB-23-001	174.3	179.6	5.3	Pegmatite	13,420
RB-23-001	179.6	204.0	24.4	Mafic	-
RB-23-003	0.0	2.9	2.9	Overburden	-
RB-23-003	2.9	67.4	2.8	Mafic	19
RB-23-003	67.4	79.5	0.4	Pegmatite	12,667
RB-23-003	79.5	83.5	0.8	Mafic	535
RB-23-003	83.5	85.0	0.3	Pegmatite	3,813
RB-23-003	85.0	139.2	2.5	Mafic	79
RB-23-003	139.2	140.0	0.2	Pegmatite	125
RB-23-003	140.0	201.0	2.7	Mafic	23
RB-23-005	0.0	3.0	3.0	Overburden	-
RB-23-005	3.0	15.0	1.9	Mafic	107
RB-23-005	15.0	15.5	0.4	Pegmatite	385
RB-23-005	15.5	45.4	2.1	Mafic	220
RB-23-005	45.4	49.0	0.2	Pegmatite	646
RB-23-005	49.0	108.6	2.5	Mafic	101
RB-23-005	108.6	109.9	0.2	Pegmatite	12,585
RB-23-005	109.9	129.2	0.3	Mafic	602
RB-23-005	129.2	135.8	0.3	Pegmatite	14,678
RB-23-005	135.8	140.5	0.3	Mafic	907
RB-23-005	140.5	145.0	0.2	Pegmatite	13,394
RB-23-005	145.0	149.0	0.2	Mafic	893
RB-23-005	149.0	151.1	0.3	Pegmatite	10,936
RB-23-005	151.1	210.0	2.8	Mafic	39
RB-23-007	0.0	0.5	0.5	Overburden	-
RB-23-007	0.5	32.9	2.6	Mafic	94
RB-23-007	32.9	34.8	0.2	Pegmatite	6,520
RB-23-007	34.8	50.6	0.3	Mafic	510
RB-23-007	50.6	51.8	0.2	Felsic	255
RB-23-007	51.8	141.6	2.8	Mafic	31
RB-23-007	141.6	142.1	0.2	Felsic	73
RB-23-007	142.1	147.3	0.3	Mafic	454
RB-23-007	147.3	150.3	0.3	Pegmatite	16,109
RB-23-007	150.3	153.2	0.2	Mafic	595

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-007	153.2	156.7	0.2	Pegmatite	4,884
RB-23-007	156.7	170.9	0.3	Mafic	745
RB-23-007	170.9	177.4	0.2	Pegmatite	15,722
RB-23-007	177.4	187.4	0.3	Mafic	760
RB-23-007	187.4	190.4	0.2	Pegmatite	15,227
RB-23-007	190.4	199.5	0.3	Mafic	680
RB-23-007	199.5	202.1	0.2	Pegmatite	11,771
RB-23-007	202.1	231.0	2.6	Mafic	77
RB-23-009	0.0	6.0	6.0	Overburden	-
RB-23-009	6.0	124.6	2.8	Mafic	18
RB-23-009	124.6	127.2	0.2	Pegmatite	10,052
RB-23-009	127.2	195.5	2.2	Mafic	111
RB-23-009	195.5	198.9	0.3	Pegmatite	16,140
RB-23-009	198.9	222.9	0.3	Mafic	475
RB-23-009	222.9	228.1	0.3	Pegmatite	14,363
RB-23-009	228.1	239.5	0.3	Mafic	685
RB-23-009	239.5	240.7	0.2	Pegmatite	11,786
RB-23-009	240.7	250.6	0.2	Mafic	777
RB-23-009	250.6	253.4	0.2	Pegmatite	13,215
RB-23-009	253.4	256.0	0.2	Mafic	959
RB-23-009	256.0	258.5	0.2	Pegmatite	15,754
RB-23-009	258.5	288.0	1.9	Mafic	253
RB-23-011	0.0	6.8	6.8	Overburden	
RB-23-011	6.8	12.8	1.0	Mafic	272
RB-23-011	12.8	17.0	0.3	Pegmatite	8,133
RB-23-011	17.0	21.9	0.4	Mafic	932
RB-23-011	21.9	23.1	0.1	Pegmatite	193
RB-23-011	23.1	176.7	2.7	Mafic	22
RB-23-011	176.7	179.3	0.2	Pegmatite	6,396
RB-23-011	179.3	249.1	2.3		60
-				Mafic	
RB-23-011	249.1	250.7	0.2	Pegmatite	2,282
RB-23-011	250.7	274.1	0.4	Mafic	485
RB-23-011	274.1	278.1	0.3	Pegmatite	16,412
RB-23-011	278.1	296.2	0.5	Mafic	598
RB-23-011	296.2	297.2	0.2	Pegmatite	5,683
RB-23-011	297.2	310.0	0.5	Mafic	603
RB-23-011	310.0	314.1	0.3	Pegmatite	12,335
RB-23-011	314.1	320.9	0.4	Mafic	980
RB-23-011	320.9	322.6	0.3	Pegmatite	11,120
RB-23-011	322.6	353.0	2.6	Mafic	118
RB-23-013	0.0	3.2	2.8	Overburden	-
RB-23-013	3.2	50.1	2.7	Mafic	130
RB-23-013	50.1	56.2	0.3	Pegmatite	13,706

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-013	56.2	196.8	2.8	Mafic	56
RB-23-013	196.8	198.1	0.3	Pegmatite	635
RB-23-013	198.1	245.0	2.3	Mafic	515
RB-23-013	245.0	297.0	2.9	Sediment	16
RB-23-013	297.0	324.6	2.7	Mafic	71
RB-23-013	324.6	329.7	0.4	Pegmatite	4,657
RB-23-013	329.7	374.9	1.9	Mafic	337
RB-23-013	374.9	377.1	0.4	Pegmatite	14,864
RB-23-013	377.1	402.0	1.5	Mafic	1,876
RB-23-014	0.0	3.5	3.5	Overburden	-
RB-23-014	3.5	8.5	0.9	Mafic	439
RB-23-014	8.5	21.8	0.4	Pegmatite	13,523
RB-23-014	21.8	227.8	2.9	Mafic	18
RB-23-014	227.8	236.1	0.4	Pegmatite	14,302
RB-23-014	236.1	247.6	0.7	Mafic	769
RB-23-014	247.6	249.4	0.3	Pegmatite	13,339
RB-23-014	249.4	320.7	2.1	Mafic	223
RB-23-016	0.0	3.2	3.2	Overburden	-
RB-23-016	3.2	42.4	2.7	Mafic	90
RB-23-016	42.4	44.3	0.4	Pegmatite	12,399
RB-23-016	44.3	57.8	0.6	Mafic	1,099
RB-23-016	57.8	69.0	0.4	Pegmatite	15,169
RB-23-016	69.0	75.6	0.8	Mafic	519
RB-23-016	75.6	78.8	0.9	Pegmatite	9,457
RB-23-016	78.8	131.5	2.7	Mafic	39
RB-23-016	131.5	138.3	1.5	Pegmatite	1,101
RB-23-016	138.3	162.0	3.0	Mafic	-
RB-23-029	0.0	7.7	5.6	Overburden	-
RB-23-029	7.7	73.7	2.1	Sediment	85
RB-23-029	73.7	74.5	0.2	Pegmatite	1,421
RB-23-029	74.5	171.0	2.9	Sediment	32
RB-23-040	0.0	3.0	3.0	Overburden	-
RB-23-040	3.0	216.9	2.9	Mafic	7
RB-23-040	216.9	218.8	0.4	Pegmatite	13,822
RB-23-040	218.8	219.7	0.5	Mafic	6,716
RB-23-040	219.7	224.7	0.4	Pegmatite	18,622
RB-23-040	224.7	256.2	2.3	Mafic	218
RB-23-040	256.2	257.4	0.6	Pegmatite	856
RB-23-040	257.4	324.0	2.4	Mafic	251
RB-23-042	0.0	5.6	5.6	Overburden	-
RB-23-042	5.6	11.5	0.4	Pegmatite	15,396
RB-23-042	11.5	168.0	2.9	Mafic	31
RB-23-044	0.0	3.0	3.0	Overburden	-

NoteNoteNoteNoteNoteNoteNoteRB-23-0443.018.42.2.Mafic97RB-23-04418.423.50.2.Pegmatite2.193RB-23-04436.436.80.2.Pegmatite368RB-23-04436.87.3.0.2.Pegmatite2.252RB-23-04477.37.8.60.2.Mafic7.62RB-23-0447.3.7.8.60.2.Mafic7.62RB-23-0447.8.68.1.20.3.0Pegmatite1.381RB-23-0451.8.1.8.10.44Pegmatite1.2.974RB-23-0461.8.9.10.7.7Mafic2.2.1RB-23-0461.8.9.10.7.7Mafic1.2.974RB-23-0461.8.11.2.801.2.8Mafic1.2.974RB-23-0451.3.21.3.20.2.7Mafic1.2.974RB-23-0461.3.21.3.20.2.7Mafic1.2.974RB-23-0481.3.21.3.20.2.7Mafic1.2.974RB-23-0481.3.29.9.51.3.30.2.7Mafic1.2.994RB-23-0481.3.11.3.40.2.1Pegmatite1.3.91RB-23-0481.3.11.3.40.3.1Pegmatite1.3.91RB-23-0481.3.11.3.4Pegmatite1.3.91RB-23-0481.3.11.3.4Pegmatite1.3.91RB-23-0481.3.11.3.8Pegmatite1.3.91 <th>HeleiD</th> <th>From</th> <th></th> <th>Internal</th> <th>Lithelesu</th> <th>1:20</th>	HeleiD	From		Internal	Lithelesu	1:20
RB-23-04418.423.50.02Pegmatite2.193RB-23-04436.436.80.02Pegmatite369RB-23-04436.873.42.4Mafic88RB-23-04436.873.42.4Mafic762RB-23-04473.477.30.0Pegmatite292RB-23-04477.378.60.0Mafic762RB-23-04478.681.20.3Pegmatite1.381RB-23-04481.2189.02.7Mafic94RB-23-0451.89.10.7Mafic214RB-23-0461.89.10.7Mafic212RB-23-0461.89.10.7Mafic212RB-23-0461.312.802.8Mafic42RB-23-0461.32132.61.0Pegmatite16.374RB-23-0461.32132.61.0Pegmatite16.374RB-23-0481.31.29.0Mafic597RB-23-0489.59.1.50.3Pegmatite2.992RB-23-0489.1.59.40.0Pegmatite2.992RB-23-04819.59.40.0Pegmatite3.733RB-23-04819.59.40.0Pegmatite3.733RB-23-04819.59.40.1Pegmatite3.733RB-23-04819.59.40.3Pegmatite3.733RB-23-04819.517.6A.8A.9	HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-04436.436.436.40.0.5Mafic36.9RB-23-04436.873.42.4.4Mafic8.8RB-23-0447.3.47.7.30.0.2Pegmatite0.292RB-23-0447.7.37.8.60.0.2Mafic7.7.6RB-23-0447.8.681.20.0.3Pegmatite0.1.381RB-23-04481.218.00.7.7Mafic0.94RB-23-0450.01.80.4.7Mafic0.1.2.974RB-23-0461.1.31.2.800.4.8Mafic0.1.2.974RB-23-0461.1.31.2.800.2.8Mafic0.4.2.974RB-23-0461.1.31.2.800.2.8Mafic0.1.2.974RB-23-0451.1.31.2.800.2.8Mafic0.1.2.974RB-23-0461.3.81.3.80.2.7Mafic0.1.2.974RB-23-0451.3.81.3.80.2.7Mafic0.1.2.974RB-23-0451.3.91.3.80.2.7Mafic0.1.5.9RB-23-0481.9.91.9.1Mafic1.9.2.992RB-23-0481.9.11.9.10.1.2Pegmatite1.9.2.992RB-23-0491.9.11.9.11.9.2Mafic1.9.3.9RB-23-0481.9.11.9.11.9.2Mafic1.9.3.9RB-23-0481.9.11.9.11.9.2Mafic1.9.3.9RB-23-0481.9.11.9.11.9.1Mafic1.9.3.9RB-23-0481.9.11.9.1						
RB-23-04436.436.836.873.42.2.4MaficA.8.8RB-23-04473.477.30.0.2Pegmatite2.920RB-23-04477.378.60.0.2Mafic7.6.2RB-23-04478.681.20.0.3Pegmatite1.3.81RB-23-04481.218.00.7.7Mafic1.9.4RB-23-0450.01.1.81.1.8Overburden						
RB-23-04436.873.473.473.473.373.673.473.373.673.473.373.673.473.373.673.473.473.373.673.473.473.473.573.673.473.473.673.4<						
RB-23-04473.477.378.60.2Pegmatite292RB-23-04478.681.20.3Pegmatite1,381RB-23-04481.2189.02.7Mafic94RB-23-04418.1189.02.7Mafic214RB-23-0450.01.81.8OverburdenRB-23-0461.89.10.7Mafic214RB-23-0461.13128.02.8Mafic422RB-23-0461.13128.02.8Mafic6.374RB-23-0461.26132.62.7Mafic522RB-23-0461.26132.62.7Mafic52RB-23-0451.3252.02.7Mafic52RB-23-0461.3890.52.7Mafic58RB-23-0489.03.80.49.29.6RB-23-0489.99.10.3Pegmatite2.992RB-23-048119.4119.40.1Pegmatite2.000RB-23-048119.4119.40.1Pegmatite3.733RB-23-048119.4165.42.6Mafic3.733RB-23-048119.4165.42.6Mafic3.733RB-23-048119.4165.42.6Mafic3.733RB-23-048119.4165.42.6Mafic3.733RB-23-048187.1188.30.2Pegmatite3.135RB-23-048187.1188.30.2 <td>RB-23-044</td> <td>36.4</td> <td></td> <td></td> <td></td> <td></td>	RB-23-044	36.4				
RB-23-04477.378.60.0.2Mafic76.2RB-23-04478.681.20.0.3Pegmatite1.381RB-23-04481.2189.02.7.7Mafic94RB-23-0450.01.81.8.8Overburden7.1RB-23-0461.1.89.10.7.7Mafic214RB-23-0461.1.81.2.802.2.8Mafic12.974RB-23-0461.1.31.2.602.2.8Mafic6.3.74RB-23-0461.3.2.62.2.00.2.7Mafic6.3.74RB-23-0451.3.2.62.2.00.2.7Mafic5.2RB-23-0461.3.2.62.5.00.2.7Mafic5.2RB-23-0481.0.03.8.83.8.8OverburdenRB-23-0489.0.59.1.50.3.8Pegmatite2.992RB-23-0489.9.410.0.10.2Pegmatite2.992RB-23-04811.9.410.10.2Pegmatite2.992RB-23-04811.9.410.5Mafic3.733RB-23-04811.9.410.5Mafic3.733RB-23-04811.9.410.5Mafic3.733RB-23-04811.9.410.5Mafic3.733RB-23-04811.9.410.5Mafic3.733RB-23-04817.617.80.5Mafic3.733RB-23-04817.917.8Mafic3.95RB-23-04817.917.817.83.96<	RB-23-044	36.8	73.4	2.4	Mafic	88
RB-23-04478.681.20.0.3Pegmatite1,381RB-23-04481.2189.02.7Mafic94RB-23-0460.01.81.80verburden.RB-23-0461.89.10.7Mafic2144RB-23-0469.111.30.4Pegmatite12,974RB-23-0461.13128.02.8Mafic42RB-23-046132.6252.02.7Mafic52RB-23-046132.6252.02.7Mafic.RB-23-0480.03.83.80verburden.RB-23-0489.59.50.3Pegmatite.RB-23-0489.59.50.3Pegmatite.RB-23-0489.59.40.0Mafic.RB-23-0489.4100.10.2Pegmatite.RB-23-04811.511.87.2Mafic.RB-23-04811.511.810.1Pegmatite.RB-23-04811.611.8RB-23-04811.811.8RB-23-04811.910.1Pegmatite.RB-23-04811.911.8RB-23-04811.911.8RB-23-04811.911.8RB-23-04811.9RB-23-04811.9 <t< td=""><td>RB-23-044</td><td>73.4</td><td>77.3</td><td>0.2</td><td>Pegmatite</td><td>292</td></t<>	RB-23-044	73.4	77.3	0.2	Pegmatite	292
RB-23-044 81.2 189.0 2.7 Mafic 94 RB-23-046 0.0 1.8 1.8 Overburden . RB-23-046 1.8 9.1 0.7 Mafic 2144 RB-23-046 9.1 11.3 0.4 Pegmatite 12,974 RB-23-046 11.3 128.0 2.8 Mafic 42 RB-23-046 132.6 252.0 2.7 Mafic 6,374 RB-23-048 10.0 3.8 3.8 Overburden . . RB-23-048 9.0.5 91.5 0.3 Pegmatite . . RB-23-048 9.0.5 91.5 0.3 Pegmatite . . RB-23-048 9.0.5 91.5 0.3 Pegmatite . . RB-23-048 100.1 118.7 2.2 Mafic . . RB-23-048 101.1 165.4 2.6 Mafic . . RB-23-048 1	RB-23-044	77.3	78.6	0.2	Mafic	762
RB-23-046 0.0 1.8 1.8 Overburden RB-23-046 1.8 9.1 0.7 Mafic 214 RB-23-046 9.1 11.3 0.4 Pegmatite 12,974 RB-23-046 11.3 1280 2.8 Mafic 42 RB-23-046 132.6 252.0 2.7 Mafic 52 RB-23-048 0.0 3.8 3.8 Overburden RB-23-048 0.0 3.8 3.8 Overburden RB-23-048 9.05 91.5 0.3 Pegmatite 58 RB-23-048 91.5 99.4 0.9 Mafic 597 RB-23-048 10.1 18.7 2.2 Mafic 2.992 RB-23-048 118.7 119.4 0.1 Pegmatite 3.733 RB-23-048 118.7 119.4 0.1 Pegmatite 3.733 RB-23-048 118.7 118.7 0.5 Mafic 3.733	RB-23-044	78.6	81.2	0.3	Pegmatite	1,381
RB-23-046 1.8 9.1 0.7 Mafic 214 RB-23-046 9.1 11.3 0.4 Pegmatite 12,974 RB-23-046 11.3 128.0 2.8 Mafic 42 RB-23-046 132.6 12.0 Pegmatite 6,374 RB-23-046 132.6 252.0 2.7 Mafic 52 RB-23-048 0.0 3.8 3.8 Overburden - RB-23-048 90.5 91.5 0.3 Pegmatite 58 RB-23-048 91.5 99.4 0.9 Mafic 597 RB-23-048 91.5 99.4 0.0 Mafic 2,992 RB-23-048 100.1 118.7 2.2 Mafic 73 RB-23-048 119.4 105.4 2.6 Mafic 73 RB-23-048 119.4 165.4 2.6 Mafic 3733 RB-23-048 170.9 176.8 0.5 Mafic 3733 RB-	RB-23-044	81.2	189.0	2.7	Mafic	94
RB-23-046 9.1 11.3 0.4 Pegmatite 12,974 RB-23-046 11.3 128.0 2.8 Mafic 42 RB-23-046 128.0 132.6 1.0 Pegmatite 6,374 RB-23-046 132.6 252.0 2.7 Mafic 52 RB-23-048 0.0 3.8 3.8 Overburden - RB-23-048 3.8 90.5 2.7 Mafic 26 RB-23-048 9.0 91.5 0.3 Pegmatite 58 RB-23-048 91.5 99.4 0.9 Mafic 597 RB-23-048 91.5 99.4 0.9 Mafic 2992 RB-23-048 100.1 118.7 2.2 Mafic 73 RB-23-048 108.1 119.4 0.1 Pegmatite 3.733 RB-23-048 155.4 170.9 0.3 Pegmatite 3.733 RB-23-048 176.8 176.8 0.5 Mafic 318	RB-23-046	0.0	1.8	1.8	Overburden	-
RB-23-046 11.3 128.0 2.8 Mafic 42 RB-23-046 128.0 132.6 1.00 Pegmatite 6,374 RB-23-046 132.6 252.0 2.7 Mafic 52 RB-23-048 0.0 3.8 3.8 Overburden - RB-23-048 3.8 90.5 2.7 Mafic 26 RB-23-048 90.5 91.5 0.3 Pegmatite 58 RB-23-048 90.5 91.5 0.3 Pegmatite 2,992 RB-23-048 91.5 99.4 0.0 Mafic 93 RB-23-048 100.1 118.7 2.2 Mafic 93 RB-23-048 119.4 165.4 2.6 Mafic 73 RB-23-048 119.4 165.4 2.6 Mafic 318 RB-23-048 176.8 176.8 0.5 Mafic 318 RB-23-048 178.4 178.4 0.5 Mafic 318	RB-23-046	1.8	9.1	0.7	Mafic	214
RB-23-046 128.0 132.6 1.0 Pegmatite 6,374 RB-23-046 132.6 252.0 2.7 Mafic 52 RB-23-048 0.0 3.8 3.8 Overburden - RB-23-048 3.8 90.5 2.7 Mafic 26 RB-23-048 90.5 91.5 0.3 Pegmatite 58 RB-23-048 90.5 91.5 0.3 Pegmatite 2,992 RB-23-048 91.5 99.4 0.9 Mafic 597 RB-23-048 100.1 118.7 2.2 Mafic 2,992 RB-23-048 100.1 118.7 2.2 Mafic 33 RB-23-048 119.4 165.4 2.6 Mafic 373 RB-23-048 165.4 170.9 0.3 Pegmatite 3,733 RB-23-048 176.8 178.4 0.3 Pegmatite 318 RB-23-048 187.1 188.3 0.2 Pegmatite 314<	RB-23-046	9.1	11.3	0.4	Pegmatite	12,974
RB-23-046 132.6 252.0 2.7 Mafic 52 RB-23-048 0.0 3.8 3.8 Overburden - RB-23-048 3.8 90.5 91.5 0.3 Pegmatite 58 RB-23-048 90.5 91.5 0.3 Pegmatite 58 RB-23-048 90.5 91.5 0.3 Pegmatite 2,992 RB-23-048 90.5 91.5 0.2 Mafic 997 RB-23-048 90.1 118.7 2.2 Mafic 93 RB-23-048 100.1 118.7 2.2 Mafic 93 RB-23-048 119.4 165.4 2.6 Mafic 73 RB-23-048 119.4 165.4 2.6 Mafic 3733 RB-23-048 176.8 178.4 0.3 Pegmatite 3,733 RB-23-048 176.8 178.4 0.3 Pegmatite 318 RB-23-048 187.1 188.3 0.2 Pegmatite	RB-23-046	11.3	128.0	2.8	Mafic	42
RB-23-048 0.0 3.8 3.8 Overburden . RB-23-048 3.8 90.5 2.7 Mafic 26 RB-23-048 90.5 91.5 0.3 Pegmatite 58 RB-23-048 90.5 91.5 9.0 Mafic 597 RB-23-048 91.5 99.4 0.0 Mafic 597 RB-23-048 100.1 118.7 2.2 Mafic 93 RB-23-048 100.1 118.7 2.2 Mafic 73 RB-23-048 119.4 165.4 2.6 Mafic 73 RB-23-048 170.9 176.8 0.5 Mafic 3733 RB-23-048 176.8 178.4 0.3 Pegmatite 3188 RB-23-048 176.8 178.4 0.5 Mafic 456 RB-23-048 178.4 187.1 0.5 Mafic 696 RB-23-048 187.1 188.3 0.2 Pegmatite 10,463	RB-23-046	128.0	132.6	1.0	Pegmatite	6,374
RB-23-048 3.8 90.5 2.7 Mafic 26 RB-23-048 90.5 91.5 0.3 Pegmatite 58 RB-23-048 91.5 99.4 0.0 Mafic 597 RB-23-048 99.4 100.1 0.2 Pegmatite 2,992 RB-23-048 100.1 118.7 2.2 Mafic 93 RB-23-048 100.1 118.7 2.2 Mafic 93 RB-23-048 118.7 119.4 0.1 Pegmatite 2000 RB-23-048 119.4 165.4 2.6 Mafic 73 RB-23-048 165.4 170.9 0.3 Pegmatite 3,733 RB-23-048 176.8 178.4 0.5 Mafic 318 RB-23-048 178.4 187.1 0.5 Mafic 456 RB-23-048 187.1 188.3 0.2 Pegmatite 10,463 RB-23-048 197.9 204.9 0.3 Pegmatite 10,	RB-23-046	132.6	252.0	2.7	Mafic	52
RB-23-048 90.5 91.5 0.3 Pegmatite 58 RB-23-048 91.5 99.4 0.9 Mafic 597 RB-23-048 99.4 100.1 0.2 Pegmatite 2,992 RB-23-048 100.1 118.7 2.2 Mafic 93 RB-23-048 100.1 118.7 2.2 Mafic 93 RB-23-048 119.4 165.4 2.6 Mafic 73 RB-23-048 119.4 165.4 2.6 Mafic 373 RB-23-048 165.4 170.9 0.3 Pegmatite 3,733 RB-23-048 176.8 176.8 0.5 Mafic 395 RB-23-048 176.4 178.4 0.3 Pegmatite 3,183 RB-23-048 187.1 188.3 0.2 Pegmatite 8,157 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 278.0 278.7 0.2 Pegmatite	RB-23-048	0.0	3.8	3.8	Overburden	-
RB-23-048 91.5 99.4 0.9 Mafic 597 RB-23-048 99.4 100.1 0.2 Pegmatite 2,992 RB-23-048 100.1 118.7 2.2 Mafic 93 RB-23-048 118.7 119.4 0.1 Pegmatite 200 RB-23-048 118.7 119.4 0.1 Pegmatite 200 RB-23-048 119.4 165.4 2.6 Mafic 73 RB-23-048 165.4 170.9 0.3 Pegmatite 3,733 RB-23-048 170.9 176.8 0.5 Mafic 395 RB-23-048 176.8 178.4 0.3 Pegmatite 3,733 RB-23-048 178.4 187.1 0.5 Mafic 456 RB-23-048 187.1 188.3 0.2 Pegmatite 8,157 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 278.0 278.7 0.2 Pegmatite </td <td>RB-23-048</td> <td>3.8</td> <td>90.5</td> <td>2.7</td> <td>Mafic</td> <td>26</td>	RB-23-048	3.8	90.5	2.7	Mafic	26
RB-23-048 99.4 100.1 0.2 Pegmatite 2,992 RB-23-048 100.1 118.7 2.2 Mafic 93 RB-23-048 118.7 119.4 0.1 Pegmatite 200 RB-23-048 118.7 119.4 0.1 Pegmatite 200 RB-23-048 119.4 165.4 2.6 Mafic 73 RB-23-048 165.4 170.9 0.3 Pegmatite 3,733 RB-23-048 165.4 170.9 0.3 Pegmatite 3,733 RB-23-048 176.8 178.4 0.3 Pegmatite 318 RB-23-048 176.8 178.4 0.3 Pegmatite 8,157 RB-23-048 187.1 188.3 0.2 Pegmatite 8,157 RB-23-048 188.3 197.9 0.7 Mafic 39 RB-23-048 278.7 291.0 1.7 Mafic 39 RB-23-048 278.7 291.0 1.7 Mafic <td>RB-23-048</td> <td>90.5</td> <td>91.5</td> <td>0.3</td> <td>Pegmatite</td> <td>58</td>	RB-23-048	90.5	91.5	0.3	Pegmatite	58
RB-23-048 100.1 118.7 2.2 Mafic 93 RB-23-048 118.7 119.4 0.1 Pegmatite 200 RB-23-048 119.4 165.4 2.6 Mafic 73 RB-23-048 119.4 165.4 2.6 Mafic 73 RB-23-048 165.4 170.9 0.3 Pegmatite 3,733 RB-23-048 165.4 170.9 0.3 Pegmatite 318 RB-23-048 176.8 176.8 0.5 Mafic 395 RB-23-048 176.8 178.4 0.3 Pegmatite 318 RB-23-048 178.4 187.1 0.5 Mafic 456 RB-23-048 187.1 188.3 0.2 Pegmatite 31,157 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 278.0 278.7 0.2 Pegmatite 10,463 RB-23-050 10.0 12.0 12.0 Overburden	RB-23-048	91.5	99.4	0.9	Mafic	597
RB-23-048 118.7 119.4 0.1 Pegmatite 200 RB-23-048 119.4 165.4 2.6 Mafic 73 RB-23-048 165.4 170.9 0.3 Pegmatite 3,733 RB-23-048 165.4 170.9 0.3 Pegmatite 3,733 RB-23-048 170.9 176.8 0.5 Mafic 395 RB-23-048 176.8 178.4 0.3 Pegmatite 318 RB-23-048 178.4 187.1 0.5 Mafic 456 RB-23-048 187.1 188.3 0.2 Pegmatite 8,157 RB-23-048 187.1 188.3 0.2 Pegmatite 10,463 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 278.0 2.78 Mafic 39 RB-23-048 278.0 278.7 0.2 Pegmatite 1,137 RB-23-050 12.0 46.3 2.7 Mafic 18	RB-23-048	99.4	100.1	0.2	Pegmatite	2,992
RB-23-048 119.4 165.4 2.6 Mafic 73 RB-23-048 165.4 170.9 0.3 Pegmatite 3,733 RB-23-048 165.4 170.9 0.3 Pegmatite 3,733 RB-23-048 170.9 176.8 0.5 Mafic 395 RB-23-048 176.8 178.4 0.3 Pegmatite 318 RB-23-048 176.8 178.4 0.5 Mafic 456 RB-23-048 187.1 188.3 0.2 Pegmatite 8,157 RB-23-048 187.1 188.3 0.2 Pegmatite 10,463 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 278.0 278.0 2.8 Mafic 39 RB-23-048 278.7 291.0 1.7 Mafic 299 RB-23-050 0.0 12.0 12.0 Overburden - RB-23-050 16.3 46.7 0.4 Pegmatite <td>RB-23-048</td> <td>100.1</td> <td>118.7</td> <td>2.2</td> <td>Mafic</td> <td>93</td>	RB-23-048	100.1	118.7	2.2	Mafic	93
RB-23-048 165.4 170.9 0.3 Pegmatite 3,733 RB-23-048 170.9 176.8 0.5 Mafic 395 RB-23-048 170.9 176.8 0.5 Mafic 318 RB-23-048 176.8 178.4 0.3 Pegmatite 318 RB-23-048 178.4 187.1 0.5 Mafic 456 RB-23-048 187.1 188.3 0.2 Pegmatite 8,157 RB-23-048 188.3 197.9 0.7 Mafic 696 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 204.9 278.0 2.8 Mafic 39 RB-23-048 278.0 2.78 0.2 Pegmatite 1,137 RB-23-050 10.0 12.0 12.0 Overburden - RB-23-050 12.0 46.3 2.7 Mafic	RB-23-048	118.7	119.4	0.1	Pegmatite	200
RB-23-048 170.9 176.8 0.5 Mafic 395 RB-23-048 176.8 178.4 0.3 Pegmatite 318 RB-23-048 176.8 178.4 10.3 Pegmatite 318 RB-23-048 178.4 187.1 0.5 Mafic 456 RB-23-048 187.1 188.3 0.2 Pegmatite 8,157 RB-23-048 188.3 197.9 0.7 Mafic 696 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 197.9 278.0 2.8 Mafic 39 RB-23-048 278.0 278.7 0.2 Pegmatite 1,137 RB-23-048 278.7 291.0 1.7 Mafic 299 RB-23-050 0.0 12.0 12.0 Overburden - RB-23-050 12.0 46.3 2.7 Mafic 125 RB-23-050 46.7 157.6 2.8 Mafic <	RB-23-048	119.4	165.4	2.6	Mafic	73
RB-23-048 176.8 178.4 0.3 Pegmatite 318 RB-23-048 178.4 187.1 0.5 Mafic 456 RB-23-048 187.1 188.3 0.2 Pegmatite 8,157 RB-23-048 187.1 188.3 0.2 Pegmatite 8,157 RB-23-048 188.3 197.9 0.7 Mafic 696 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 204.9 278.0 2.8 Mafic 399 RB-23-048 278.0 278.7 0.2 Pegmatite 1,137 RB-23-048 278.7 291.0 1.7 Mafic 299 RB-23-050 0.0 12.0 12.0 Overburden - RB-23-050 12.0 46.3 2.7 Mafic 125 RB-23-050 157.6 159.5 0.3 Pegmatite<	RB-23-048	165.4	170.9	0.3	Pegmatite	3,733
RB-23-048 178.4 187.1 0.5 Mafic 456 RB-23-048 187.1 188.3 0.2 Pegmatite 8,157 RB-23-048 187.1 188.3 0.2 Pegmatite 8,157 RB-23-048 188.3 197.9 0.7 Mafic 696 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 204.9 278.0 2.8 Mafic 39 RB-23-048 278.0 278.7 0.2 Pegmatite 1,137 RB-23-048 278.7 291.0 1.7 Mafic 299 RB-23-050 0.0 12.0 12.0 Overburden - RB-23-050 12.0 46.3 2.7 Mafic 18 RB-23-050 46.7 157.6 2.8 Mafic 35 RB-23-050 46.7 157.6 2.8 Mafic 35 RB-23-050 157.6 159.5 0.3 Pegmatite	RB-23-048	170.9	176.8	0.5	Mafic	395
RB-23-048 178.4 187.1 0.5 Mafic 456 RB-23-048 187.1 188.3 0.2 Pegmatite 8,157 RB-23-048 188.3 197.9 0.7 Mafic 696 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 204.9 278.0 2.8 Mafic 39 RB-23-048 278.0 278.7 0.2 Pegmatite 1,137 RB-23-048 278.7 291.0 1.7 Mafic 299 RB-23-050 0.0 12.0 12.0 Overburden - RB-23-050 12.0 46.3 2.77 Mafic 125 RB-23-050 46.3 46.7 0.4 Pegmatite 125 RB-23-050 157.6 159.5 0.3 Pegmatite 208 RB-23-050 159.5 168.3 0.6 Mafic	RB-23-048	176.8	178.4	0.3	Pegmatite	318
RB-23-048 188.3 197.9 0.7 Mafic 696 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 204.9 278.0 2.8 Mafic 39 RB-23-048 278.0 278.7 0.2 Pegmatite 1,137 RB-23-048 278.7 291.0 1.7 Mafic 299 RB-23-050 0.0 12.0 12.0 Overburden - RB-23-050 12.0 46.3 2.7 Mafic 18 RB-23-050 12.0 46.3 2.7 Mafic 18 RB-23-050 46.7 157.6 2.8 Mafic 35 RB-23-050 46.7 157.6 2.8 Mafic 35 RB-23-050 157.6 159.5 0.3 Pegmatite 208 RB-23-050 159.5 168.3 0.6 Mafic 321	RB-23-048	178.4	187.1	0.5	Mafic	456
RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 204.9 278.0 2.8 Mafic 39 RB-23-048 278.0 278.7 0.2 Pegmatite 1,137 RB-23-048 278.7 291.0 1.7 Mafic 299 RB-23-048 278.7 291.0 1.7 Mafic 299 RB-23-050 0.0 12.0 12.0 Overburden - RB-23-050 12.0 46.3 2.7 Mafic 188 RB-23-050 46.3 46.7 0.4 Pegmatite 125 RB-23-050 46.3 46.7 0.4 Pegmatite 125 RB-23-050 46.7 157.6 2.8 Mafic 35 RB-23-050 157.6 159.5 0.3 Pegmatite 208 RB-23-050 159.5 168.3 0.6 Mafic 321 RB-23-050 168.3 170.5 0.2 Pegmatite 2	RB-23-048	187.1	188.3	0.2	Pegmatite	8,157
RB-23-048 197.9 204.9 0.3 Pegmatite 10,463 RB-23-048 204.9 278.0 2.8 Mafic 39 RB-23-048 278.0 278.7 0.2 Pegmatite 1,137 RB-23-048 278.7 291.0 1.7 Mafic 299 RB-23-050 0.0 12.0 12.0 Overburden - RB-23-050 12.0 46.3 2.77 Mafic 188 RB-23-050 12.0 46.3 2.77 Mafic 188 RB-23-050 146.3 46.7 0.4 Pegmatite 125 RB-23-050 46.3 46.7 0.4 Pegmatite 208 RB-23-050 157.6 159.5 0.3 Pegmatite 208 RB-23-050 159.5 168.3 0.6 Mafic 321 RB-23-050 159.5 168.3 0.6 Mafic 321 RB-23-050 168.3 170.5 0.2 Pegmatite <t< td=""><td>RB-23-048</td><td>188.3</td><td>197.9</td><td>0.7</td><td>Mafic</td><td>696</td></t<>	RB-23-048	188.3	197.9	0.7	Mafic	696
RB-23-048 204.9 278.0 2.8 Mafic 39 RB-23-048 278.0 278.7 0.2 Pegmatite 1,137 RB-23-048 278.7 291.0 1.7 Mafic 299 RB-23-048 278.7 291.0 1.7 Mafic 299 RB-23-050 0.0 12.0 12.0 Overburden - RB-23-050 12.0 46.3 2.7 Mafic 18 RB-23-050 12.0 46.3 2.7 Mafic 18 RB-23-050 46.3 46.7 0.4 Pegmatite 125 RB-23-050 46.7 157.6 2.8 Mafic 35 RB-23-050 157.6 159.5 0.3 Pegmatite 208 RB-23-050 159.5 168.3 0.6 Mafic 321 RB-23-050 168.3 170.5 0.2 Pegmatite 273 RB-23-050 170.5 213.4 2.6 Mafic 57 </td <td>RB-23-048</td> <td>197.9</td> <td></td> <td>0.3</td> <td></td> <td>10,463</td>	RB-23-048	197.9		0.3		10,463
RB-23-048 278.0 278.7 0.2 Pegmatite 1,137 RB-23-048 278.7 291.0 1.7 Mafic 299 RB-23-050 0.0 12.0 11.7 Mafic 299 RB-23-050 10.0 12.0 12.0 Overburden - RB-23-050 12.0 46.3 2.7 Mafic 188 RB-23-050 46.3 46.7 0.4 Pegmatite 125 RB-23-050 46.7 157.6 2.8 Mafic 35 RB-23-050 157.6 159.5 0.3 Pegmatite 208 RB-23-050 157.6 159.5 0.3 Pegmatite 208 RB-23-050 159.5 168.3 0.6 Mafic 321 RB-23-050 168.3 170.5 0.2 Pegmatite 273 RB-23-050 170.5 213.4 2.6 Mafic 57	RB-23-048	204.9	278.0	2.8		39
RB-23-048 278.7 291.0 1.7 Mafic 299 RB-23-050 0.0 12.0 12.0 Overburden - RB-23-050 12.0 46.3 2.7 Mafic 18 RB-23-050 12.0 46.3 2.7 Mafic 18 RB-23-050 46.3 46.7 0.4 Pegmatite 125 RB-23-050 46.7 157.6 2.8 Mafic 35 RB-23-050 157.6 159.5 0.3 Pegmatite 208 RB-23-050 159.5 168.3 0.6 Mafic 321 RB-23-050 159.5 168.3 0.6 Mafic 321 RB-23-050 168.3 170.5 0.2 Pegmatite 273 RB-23-050 170.5 213.4 2.6 Mafic 57	RB-23-048		278.7			1.137
RB-23-050 0.0 12.0 12.0 Overburden - RB-23-050 12.0 46.3 2.7 Mafic 18 RB-23-050 46.3 46.7 0.4 Pegmatite 125 RB-23-050 46.7 157.6 2.8 Mafic 35 RB-23-050 157.6 159.5 0.3 Pegmatite 208 RB-23-050 159.5 168.3 0.6 Mafic 321 RB-23-050 168.3 170.5 0.2 Pegmatite 273 RB-23-050 168.3 170.5 0.2 Pegmatite 273 RB-23-050 170.5 213.4 2.6 Mafic 57						
RB-23-050 12.0 46.3 2.7 Mafic 18 RB-23-050 46.3 46.7 0.4 Pegmatite 125 RB-23-050 46.7 157.6 2.8 Mafic 35 RB-23-050 157.6 159.5 0.3 Pegmatite 208 RB-23-050 159.5 168.3 0.6 Mafic 321 RB-23-050 168.3 170.5 0.2 Pegmatite 273 RB-23-050 170.5 213.4 2.6 Mafic 57						
RB-23-050 46.3 46.7 0.4 Pegmatite 125 RB-23-050 46.7 157.6 2.8 Mafic 35 RB-23-050 157.6 159.5 0.3 Pegmatite 208 RB-23-050 159.5 168.3 0.6 Mafic 321 RB-23-050 168.3 170.5 0.2 Pegmatite 273 RB-23-050 170.5 213.4 2.6 Mafic 57						18
RB-23-050 46.7 157.6 2.8 Mafic 35 RB-23-050 157.6 159.5 0.3 Pegmatite 208 RB-23-050 159.5 168.3 0.6 Mafic 321 RB-23-050 168.3 170.5 0.2 Pegmatite 273 RB-23-050 168.3 170.5 21.4 2.6 Mafic 57						
RB-23-050 157.6 159.5 0.3 Pegmatite 208 RB-23-050 159.5 168.3 0.6 Mafic 321 RB-23-050 168.3 170.5 0.2 Pegmatite 273 RB-23-050 170.5 213.4 2.6 Mafic 57						
RB-23-050 159.5 168.3 0.6 Mafic 321 RB-23-050 168.3 170.5 0.2 Pegmatite 273 RB-23-050 170.5 213.4 2.6 Mafic 57						
RB-23-050 168.3 170.5 0.2 Pegmatite 273 RB-23-050 170.5 213.4 2.6 Mafic 57						
RB-23-050 170.5 213.4 2.6 Mafic 57						
10 20 000 210.7 210.0 0.0 reginatic 52/						
RB-23-050 218.5 222.1 0.6 Mafic 772						

		•-	Internel	Linkstern	1:20
HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-050	222.1	224.2	0.4	Pegmatite	2,051
RB-23-050	224.2	244.4	2.3	Mafic	130
RB-23-050	244.4	245.6	0.4	Pegmatite	5,391
RB-23-050	245.6	255.5	0.7	Mafic	606
RB-23-050	255.5	261.7	0.3	Pegmatite	10,917
RB-23-050	261.7	288.6	2.3	Mafic	165
RB-23-050	288.6	294.2	0.4	Pegmatite	5,966
RB-23-050	294.2	354.0	2.6	Mafic	62
RB-23-053	0.0	5.0	5.0	Overburden	-
RB-23-053	5.0	219.0	2.9	Sediment	-
RB-23-057	0.0	7.2	7.2	Overburden	-
RB-23-057	7.2	192.0	3.0	Sediment	-
RB-23-081	0.0	1.9	1.9	Overburden	-
RB-23-081	1.9	65.7	2.6	Mafic	33
RB-23-081	65.7	67.3	0.2	Pegmatite	5,978
RB-23-081	67.3	112.8	2.3	Mafic	118
RB-23-081	112.8	113.4	0.2	Pegmatite	1,447
RB-23-081	113.4	115.1	0.2	Mafic	3,003
RB-23-081	115.1	117.3	0.2	Pegmatite	13,932
RB-23-081	117.3	119.7	0.2	Mafic	921
RB-23-081	119.7	123.8	0.2	Pegmatite	13,827
RB-23-081	123.8	176.8	2.5	Mafic	167
RB-23-081	176.8	181.7	0.3	Pegmatite	5,480
RB-23-081	181.7	208.5	2.3	Mafic	548
RB-23-081	208.5	208.9	0.2	Pegmatite	19,073
RB-23-081	208.9	222.8	0.5	Mafic	690
RB-23-081	222.8	223.2	0.1	Pegmatite	4,176
RB-23-081	223.2	234.8	0.6	Mafic	543
RB-23-081	234.8	235.5	0.1	Pegmatite	8,675
RB-23-081	235.5	298.5	2.6	Mafic	153
RB-23-081	298.5	315.0	0.3	Pegmatite	15,236
RB-23-081	315.0	320.3	0.4	Sediment	2,182
RB-23-081	320.3	321.6	0.2	Pegmatite	7,642
RB-23-081	321.6	351.0	2.5	Mafic	138
RB-23-083	0.0	1.7	1.7	Overburden	-
RB-23-083	1.7	54.8	2.7	Mafic	33
RB-23-083	54.8	61.4	0.2	Pegmatite	15,397
RB-23-083	61.4	179.0	2.8	Mafic	59
RB-23-083	179.0	181.4	0.2	Pegmatite	2,390
RB-23-083	181.4	191.9	0.6	Mafic	623
RB-23-083	191.9	192.5	0.1	Pegmatite	161
RB-23-083	192.5	254.6	2.5	Mafic	101
RB-23-083	254.6	271.2	0.3	Pegmatite	15,491

HoleID	From	to	Interval	Lithology	1:20 nom
	From 271.2			Lithology Mafic	Li2O ppm 48
RB-23-083		324.0	2.7 3.7	Overburden	40
RB-23-085	0.0	3.7			-
RB-23-085	3.7	87.4	2.9	Mafic	5
RB-23-085	87.4	88.0	0.2	Pegmatite	215
RB-23-085	88.0	108.9	2.4	Mafic	77
RB-23-085	108.9	109.6	0.2	Pegmatite	5,662
RB-23-085	109.6	181.4	2.7	Mafic	124
RB-23-085	181.4	197.4	0.3	Pegmatite	15,783
RB-23-085	197.4	223.5	2.0	Mafic	274
RB-23-085	223.5	224.6	0.2	Pegmatite	6,569
RB-23-085	224.6	228.0	0.9	Mafic	470
RB-23-088	0.0	3.8	3.8	Overburden	-
RB-23-088	3.8	23.8	2.6	Mafic	27
RB-23-088	23.8	24.3	0.1	Pegmatite	198
RB-23-088	24.3	99.4	2.6	Mafic	82
RB-23-088	99.4	117.2	0.3	Pegmatite	17,321
RB-23-088	117.2	148.7	2.4	Mafic	148
RB-23-088	148.7	149.8	0.2	Pegmatite	211
RB-23-088	149.8	201.0	2.8	Mafic	20
RB-23-091	0.0	3.0	3.0	Overburden	-
RB-23-091	3.0	33.1	2.5	Mafic	95
RB-23-091	33.1	47.4	0.3	Pegmatite	15,149
RB-23-091	47.4	128.7	2.8	Mafic	207
RB-23-091	128.7	129.1	0.1	Pegmatite	153
RB-23-091	129.1	135.9	0.5	Mafic	346
RB-23-091	135.9	136.1	0.2	Pegmatite	207
RB-23-091	136.1	191.7	2.6	Mafic	46
RB-23-091	191.7	192.8	0.2	Pegmatite	7,814
RB-23-091	192.8	207.0	2.6	Mafic	86
RB-23-098	0.0	8.2	8.2	Overburden	-
RB-23-098	8.2	273.0	2.6	Sediment	20
RB-23-102	0.0	9.3	9.3	Overburden	-
RB-23-102	9.3	162.0	2.9	Sediment	-
RB-23-132	0.0	3.0	3.0	Overburden	-
RB-23-132	3.0	120.0	2.8	Sediment	-
RB-23-148	0.0	1.5	1.5	Overburden	-
RB-23-148	1.5	62.9	2.7	Pyroxenite	26
RB-23-148	62.9	68.8	0.2	Pegmatite	13,247
RB-23-148	68.8	69.4	0.2	Mafic	3,100
RB-23-148	69.4	69.7	0.2	Pegmatite	372
RB-23-148	69.7	166.3	2.6	Mafic	209
RB-23-148	166.3	167.1	0.3	Pegmatite	359
RB-23-148	167.1	182.3	0.3	Mafic	619

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-148	182.3	183.3	0.2	Pegmatite	7,341
RB-23-148	183.3	189.5	0.2	Mafic	525
RB-23-148	189.5	189.8	0.2	Pegmatite	319
RB-23-148	189.8	221.7	2.2	Mafic	146
RB-23-148	221.7	222.7	0.3	Pegmatite	364
RB-23-148	222.7	225.3	0.2	Mafic	1,673
RB-23-148	225.3	227.2	0.2	Pegmatite	10,014
RB-23-148	227.2	238.4	0.3	Mafic	5,762
RB-23-148	238.4	238.9	0.2	Pegmatite	196
RB-23-148	238.9	239.3	0.2	Mafic	11,194
RB-23-148	239.3	240.4	0.2	Pegmatite	614
RB-23-148	240.4	242.0	0.2	Mafic	5,070
RB-23-148	242.0	242.8	0.3	Pegmatite	764
RB-23-148	242.8	250.9	0.2	Mafic	2,526
RB-23-148	250.9	251.0	0.1	Pegmatite	1,199
RB-23-148	251.0	251.3	0.2	Mafic	2,260
RB-23-148	251.3	253.5	0.2	Pegmatite	10,878
RB-23-148	253.5	257.7	0.2	Mafic	5,136
RB-23-148	257.7	263.7	0.2	Pegmatite	14,566
RB-23-148	263.7	268.2	0.2	Mafic	2,442
RB-23-148	268.2	270.1	0.2	Pegmatite	9,145
RB-23-148	270.1	275.2	0.2	Mafic	3,661
RB-23-148	275.2	275.4	0.2	Pegmatite	2,519
RB-23-148	275.4	276.8	0.2	Mafic	13,674
RB-23-148	276.8	278.6	0.2	Pegmatite	6,713
RB-23-148	278.6	281.8	0.2	Mafic	4,455
RB-23-148	281.8	282.0	0.2	Pegmatite	1,150
RB-23-148	282.0	284.8	0.2	Mafic	6,405
RB-23-148	284.8	285.1	0.2	Pegmatite	2,519
RB-23-148	285.1	291.8	0.3	Mafic	2,099
RB-23-148	291.8	292.4	0.2	Pegmatite	3,057
RB-23-148	292.4	310.7	0.3	Mafic	1,068
RB-23-148	310.7	310.9	0.1	Pegmatite	506
RB-23-148	310.9	313.8	0.2	Mafic	588
RB-23-148	313.8	314.0	0.1	Pegmatite	366
RB-23-148	314.0	342.0	2.4	Mafic	69
RB-23-148	342.0	342.8	0.2	Felsic	1,348
RB-23-148	342.8	354.4	0.3	Mafic	928
RB-23-148	354.4	356.6	0.2	Pegmatite	14,278
RB-23-148	356.6	358.4	0.2	Mafic	10,126
RB-23-148	358.4	359.2	0.2	Sediment	1,010
RB-23-148	359.2	360.3	0.2	Mafic	676
RB-23-148	360.3	360.7	0.2	Pegmatite	153

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-148	360.7	369.0	0.3	Mafic	984
RB-23-152	0.0	4.4	4.4	Overburden	
RB-23-152	4.4	29.2	2.5	Mafic	140
RB-23-152	29.2	30.8	0.2	Pegmatite	879
RB-23-152	30.8	48.6	2.4	Mafic	80
RB-23-152	48.6	76.6	2.1	Pyroxenite	213
RB-23-152	76.6	77.1	0.1	Pegmatite	6,996
RB-23-152	77.1	96.9	2.1	Pyroxenite	282
RB-23-152	96.9	97.3	0.2	pegmatite	329
RB-23-152	97.3	101.0	0.2		323
RB-23-152	101.0	101.0	0.4	Pyroxenite	265
				Pegmatite	
RB-23-152	101.3	102.2	0.2	Pyroxenite	389
RB-23-152	102.2	152.4	3.0	Mafic	102
RB-23-152	152.4	169.2	0.3	Pegmatite	15,656
RB-23-152	169.2	210.7	2.2	Mafic	800
RB-23-152	210.7	212.1	0.3	Pegmatite	1,982
RB-23-152	212.1	261.0	2.1	Mafic	242
RB-23-156	0.0	7.0	3.8	Overburden	-
RB-23-156	7.0	29.5	2.6	Mafic	81
RB-23-156	29.5	31.0	0.3	Pegmatite	14,989
RB-23-156	31.0	37.1	0.6	Mafic	1,846
RB-23-156	37.1	52.5	0.3	Pegmatite	16,506
RB-23-156	52.5	82.9	1.5	Mafic	407
RB-23-156	82.9	83.8	0.2	Pegmatite	159
RB-23-156	83.8	120.0	2.8	Mafic	37
RB-23-161	0.0	14.5	14.5	Overburden	-
RB-23-161	14.5	150.5	2.8	Sediment	32
RB-23-161	150.5	152.2	0.2	Pegmatite	4,332
RB-23-161	152.2	201.0	2.8	BIF	25
RB-23-165	0.0	12.2	11.8	Overburden	-
RB-23-165	12.2	134.4	2.8	Sediment	14
RB-23-165	134.4	134.4	0.1	Pegmatite	428
RB-23-165	134.4	231.0	2.8	Sediment	13
RB-23-169	0.0	15.0	15.0	Overburden	-
RB-23-169	15.0	95.0	2.7	BIF	5
RB-23-169	95.0	95.9	0.2	Pegmatite	30
RB-23-169	95.9	146.0	2.4	BIF	18
RB-23-169	146.0	317.8	2.6	Sediment	36
RB-23-169	317.8	319.5	0.2	Pegmatite	187
RB-23-169	319.5	322.5	0.3	BIF	2,219
RB-23-169	322.5	326.4	0.3	Pegmatite	227
RB-23-169	326.4	379.7	1.8	Sediment	305
RB-23-169	379.7	380.7	0.2	Pegmatite	97

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-169	380.7	411.0	2.6	Sediment	125
RB-23-174	0.0	16.2	16.2	Overburden	-
RB-23-174	16.2	89.1	2.7	Sediment	20
RB-23-174	89.1	89.9	0.2	Pegmatite	73
RB-23-174	89.9	198.2	2.6	Sediment	40
RB-23-174	198.2	199.1	0.3	Pegmatite	144
RB-23-174	199.1	200.9	0.2	Sediment	470
RB-23-174	200.9	201.0	0.1	Pegmatite	407
RB-23-174	201.0	203.8	0.2	Sediment	496
RB-23-174	203.8	204.0	0.2	Pegmatite	278
RB-23-174	204.0	218.3	0.3	Sediment	588
RB-23-174	218.3	218.6	0.2	Pegmatite	155
RB-23-174	218.6	347.0	2.8	Sediment	16
RB-23-178	0.0	18.0	18.0	Overburden	-
RB-23-178	18.0	103.5	2.7	Sediment	18
RB-23-178	103.5	103.9	0.3	Pegmatite	77
RB-23-178	103.9	222.0	2.7	Sediment	12
RB-23-182	0.0	10.5	10.5	Overburden	-
RB-23-182	10.5	126.0	2.9	Sediment	-
RB-23-195	0.0	12.3	12.3	Overburden	-
RB-23-195	12.3	106.0	2.7	Sediment	11
RB-23-195	106.0	106.3	0.1	Pegmatite	131
RB-23-195	106.3	127.0	1.9	Sediment	128
RB-23-195	127.0	128.2	0.2	Pegmatite	43
RB-23-195	128.2	145.3	0.3	Sediment	275
RB-23-195	145.3	145.8	0.2	Pegmatite	45
RB-23-195	145.8	145.9	0.1	Sediment	185
RB-23-195	145.9	146.5	0.2	Pegmatite	38
RB-23-195	146.5	266.6	2.4	Sediment	56
RB-23-195	266.6	267.5	0.2	Pegmatite	41
RB-23-195	267.5	312.0	2.0	Sediment	77
RB-23-200	0.0	18.9	18.9	Overburden	-
RB-23-200	18.9	68.7	2.7	Sediment	19
RB-23-200	68.7	69.2	0.2	Pegmatite	60
RB-23-200	69.2	342.0	2.5	Sediment	24