

Building the pre-eminent vertically integrated Lithium business in Ontario, Canada

TRANSFORMATIONAL 22.5MT MINERAL RESOURCE BASE REACHED ACROSS ONTARIO LITHIUM PROJECTS

HIGHLIGHTS

- High grade Inferred Maiden MRE of 8.1Mt at 1.32% Li₂0 over the Root Bay Deposit, part of the 20km-wide Root Lithium Project in Ontario, Canada
- Total of 22.5 million tonnes across GT1's 100% owned lithium deposits
- Further Mineral Resource growth anticipated along trend at the Root Bay Deposit, and across the larger Root project area
- Resource definition drilling now underway at Root Bay to test open mineralisation trends and add to spodumene resource base
- Field exploration has commenced over an expanded untested exploration area at Root, to identify additional priority drill targets

Green Technology Metals Limited (**ASX: GT1**) (**GT1** or the **Company**), a Canadian-focused multi-asset lithium business, is pleased to announce an updated Inferred Mineral Resource Estimate (MRE) for its 100% owned Root Project, located approximately 200km west of the flagship Seymour Project in Ontario, Canada.

Project	Tonnes (Mt)	Li₂0 (%)	Ta₂O₅ (ppm)
Root Project			
Root Bay Inferred	8.1	1.32	35
McCombe Inferred	4.5	1.01	110
Total	12.6	1.21	62
Seymour Project ¹			
North Aubry Indicated	5.2	1.29	161
North Aubry Inferred	2.6	0.90	120
South Aubry Inferred	2.1	0.50	90
Total	9.9	1.04	137
Combined Total	22.5	1.14	95

Table 1: Combined Lithium Mineral Resources - 0.2% Li₂0 cut-off

¹ For full details of the Seymour Mineral Resource estimate and Root Maiden Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, Interim Seymour Mineral Resource Doubles to 9.9Mt and GT1 Mineral Resources increased to 14.4MT dated 19 April 2023.

7 June 2023

"This is just the beginning for our Root Lithium Project and we are very pleased with ongoing drilling indicating further extension potential along the East-West trend. We still have a lot of untested ground to cover and with time we hope to continue to grow our quality hard rock spodumene lithium resource base in Ontario.

The Mineral Resource base at Root has now reached critical mass and is transformational for GT1, as it allows us to assess the potential for Root to become a stand-alone project hosting its own concentrator in line with our corporate strategy." - GT1 Chief Executive Officer, Luke Cox

ROOT BAY RESOURCE ESTIMATE SUMMARY

The updated Inferred Mineral Resource Estimate (MRE) for the Root Lithium project (McCombe + Root Bay) is 12.6 million tonnes @ 1.21% Li₂0 and 62 ppm Ta₂O₅ incorporating an additional 8.1 million tonnes @ 1.32% Li₂0 from the Root Bay deposit to the reported **4.5 million tonnes @ 1.01% Li₂0** from the McCombe deposit².

The maiden inferred MRE from the Root Bay deposit includes all drilling that commenced on 23 February 2023, comprising of 36 holes for 9,174.70m. The initial hole drilled at Root Bay testing the down dip mineralisation continuity was not used in the MRE. Drilling is revealing multiple, shallow-dipping LCT pegmatites up to 18m thick, with exceptional lithium grades up to 1.73% Li₂0. 13 stacked pegmatites have been identified and defined to over 200m depth and 1,300m along the Root Bay trend, with a northerly strike length of up to 300m.

The pegmatites are hosted within an Archean package of meta-basalts. The meta-basalts are themselves sandwiched in a 300m wide corridor flanked in the south by meta-sediments and in the north by more meta-sediments hosting Banded Iron Formation units. The contacts between the meta-basalts and the meta-sedimentary units are thought to be steeply dipping to sub-vertical.

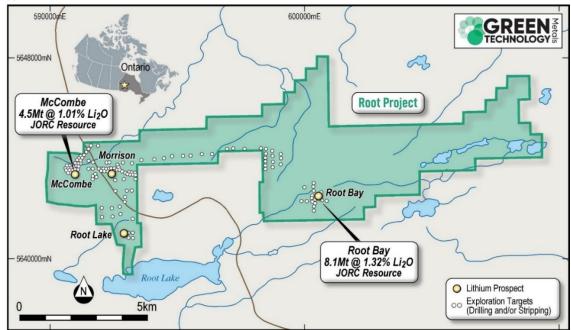


Figure 1: Root Lithium Project exploration target area

²For full details of the Seymour Mineral Resource estimate and Root Maiden Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, Interim Seymour Mineral Resource Doubles to 9.9Mt and GT1 Mineral Resources increased to 14.4MT dated 19 April 2023.

7 June 2023

The MRE has been constrained within a pit shell generated through the Micromine Pit Optimiser module. Pegmatite tonnes and grade are reported above a 0.2% Li₂0 cut-off within the pit shell on a dry basis.

Root Bay 2023 MRE				
Grade cut-off (% Li₂0)	Tonnes (Mt)	Li ₂ 0 (%)		
0.0	8.4	1.28		
0.2	8.1	1.32		
0.4	7.8	1.36		
0.6	7.5	1.40		

Table 1: Root 2023 MRE Grade-Tonnage Data

Infill drilling will be undertaken to improve the MRE confidence for future economic assessment (i.e. Indicated Resources) as well as to increase overall resource tonnage. Studies to support necessary modifying factors, waste characterisation, metallurgical recoveries, and geotechnical assessments will be conducted in concert with the infill drilling.

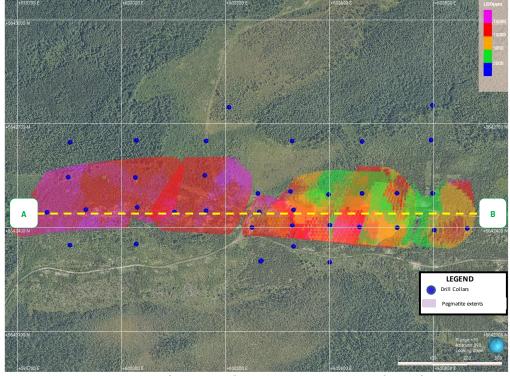


Figure 2: Root Bay plan view showing block model (multi colour), Pegmatite current extents (purple) and collar locations (blue).

Resource Growth Potential

Maiden diamond drilling by GT1 commenced at the Root project only nine months ago and initially focused on the McCombe deposit which has successfully generated a 4.5Mt maiden resource. Drilling has more recently expanded to include Morrison and Root Bay which has returned high-grade intercepts and an inferred maiden resource estimate at Root Bay of 8.1Mt @ **1.32%** $\text{Li}_2\mathbf{0}$ and is demonstrating significant potential for ongoing resource growth.

7 June 2023

Exploration at the Root project has so far focused on three target areas: McCombe, Morrison and Root Bay. However, a large area surrounding these targets remains underexplored and highly prospective for new LCT pegmatite target areas especially considering the recent success at Root Bay, that was a simple outcrop occurrence before GT1 began drill testing at depth.

A large-scale field exploration program over 2,993 Hectares (29.9km²) of prime lithium real estate within the Lake St. Joseph greenstone belt within the Uchi Domain to include prospecting, mapping, and sampling is currently underway by GT1 to identify new priority drill targets at the Root Project. Focus is on the northern tenement area that has had no previous exploration to date, as well as the areas 1.5km east and 1.7km west along the trend from the current drilling at Root Bay. The trend remains open and highly prospective and can be clearly traced over the entire length of GTI's tenement through the highly magnetic BIF unit that runs along the northern boundary of the Root Bay deposit.

An accelerated phase 2 diamond drilling program at Root Bay is now underway including both infill and extension drilling followed by drill testing of new targets generated from field exploration across the Root Lithium project area.

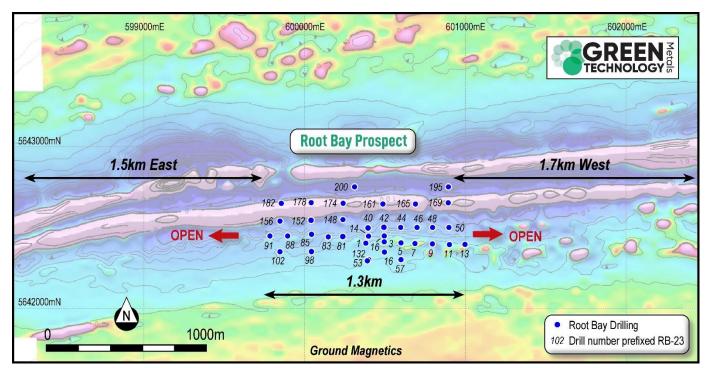


Figure 3: Root Bay diamond drill hole locations

7 June 2023

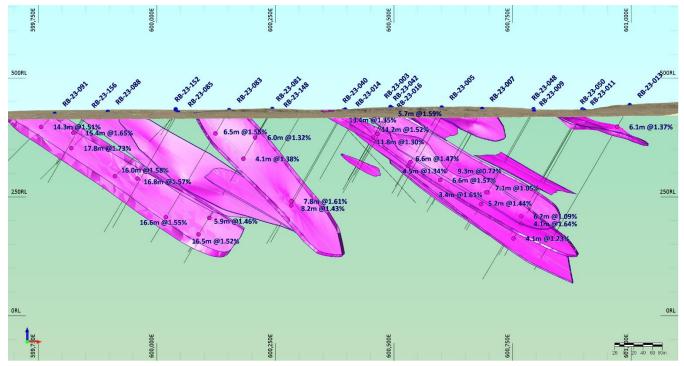


Figure 4: Root Bay stacked pegmatites looking north.

Indigenous Partners Acknowledgement

We would like to say Gchi Miigwech to our Indigenous partners. GT1 appreciates the opportunity to work in these territories and remains committed to the recognition and respect of those who have lived, travelled, and gathered on the lands since time immemorial. Green Technology Metals is committed to stewarding Indigenous heritage and remains committed to building, fostering, and encouraging a respectful relationship with Indigenous Peoples based upon principles of mutual trust, respect, reciprocity, and collaboration in the spirit of reconciliation.

Root Mineral Resource Estimate Detail

Regional and Local Geology

The Root Lake Lithium Project is located the boundary between the Uchi Domain and the English River sub province is defined by the Sydney Lake - Lake St. Joseph Fault, a steeply dipping brittle ductile fault zone over 450km along strike and 1-3km wide. It is estimated that the fault had accommodated 30km dextral, transcurrent displacement and 2.5km of south side up normal movement.

The English River Terrane is an east-west trending sub province composed of highly metamorphosed sedimentary rock, including turbiditic sediments and oxide iron formations, abundant granitoid batholiths, mafic to ultramafic plutons and rare felsic to intermediate metavolcanic rock.

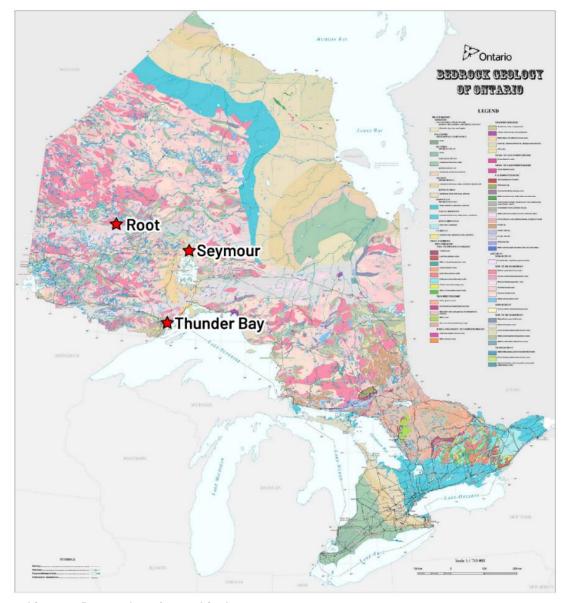


Figure 5: Root and Seymour Property Locations and Geology

Bedrock Geology

McCombe, Morrison and Root Bay project areas bedrock consist primarily of metavolcanic rocks of the Lake St. Joseph greenstone belt within the Uchi Domain, while the Root Lake pegmatite is within metasedimentary rocks of the English River Terrane.

Property Geology

The Root Lake Lithium Project is covered in a veneer of patchy glacial deposits comprising shallow gravelly soils, boulder till and in places thick moraines. In low-lying areas, the bedrock is also obscured by lakes and swamps with the Roadhouse River transecting the southern portion of the McCombe deposit and western Morrison pegmatites.

The local bedrock consists primarily of Archean metavolcanics and intercalated sediments with later cross-cutting felsic intrusions to the east of the McCombe pegmatites. East-west or northeast, steep or moderately dipping lithium bearing pegmatites crosscut the meta-volcanics and sediments. The Root Bay deposit lies along an east-west trending ridge of

7 June 2023

meta-basalts hosting moderately easterly dipping pegmatites and sandwiched between meta-sediments to the south and north. The northern sediments host steeply dipping magnetite rich horizons.

Pegmatites

Four spodumene bearing pegmatite groups are found on GT1's Root Lake land holdings, McCombe, Morrison and Root Bay and Root Lake.

The **McCombe** pegmatites is a combination of several spodumene-bearing granitic pegmatites located on the northwest side of the property. The dykes are exposed over 200m along strike length and vary from east-west to northeast orientations. Dips are the south and southeast and vary from 30-40 degrees to 60-70 degrees. Pegmatite width vary from 2-15m wide.

The Morrison Lake pegmatite is located on the northwest side of the property, 1.7km southeast from the McCombe pegmatite. The pegmatite trends east-west, dips moderately-steeply to the south, is exposed along strike over 195m and is 6.5m wide.

The **Root Bay** pegmatite is located on the south-eastern side of the property. It is exposed approximately 60m along strike, is 10m wide (Smyk et al., 2008; Magyarosi, 2016) and follows the presumed trace of the Lake St. Joseph Fault (Smyk et al., 2008). The pegmatites are hosted in foliated, locally pillowed mafic metavolcanic rock that contain metasomatic near the contact of the pegmatite (Magyarosi, 2016).

The Root Lake pegmatite is located on the southwestern side of the property, south of the McCombe and Morrison pegmatites. The pegmatite is based on an occurrence from a single drill hole. The 168.55m drill hole intersected 7 spodumene-bearing and spodumene-absent granite pegmatite intervals between 0.15-1.22m thick within quartz biotite schists and metagreywackes.

Mineral Resource Estimates

Sampling and sub-sampling techniques

Green Technology Metals Ltd have drilled 187 holes within the Root Lake project area with 116 holes drilled at McCombe, a further 34 holes into the neighbouring Morrison prospect and 37 holes in Root Bay for a total of 34,959.63m as of 15 April 2023.

The bulk of the core is NQ diameter core with some BQTK Ardiden drilled at McCombe. All recent drilling is NQ diameter core. Each 1/2 core sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh) (includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. A proportion of the mineralised pulps were re-tested by an independent laboratory, ACTLABS, Thunder Bay. The sample preparation process is considered representative of the whole core sample.

Drilling Techniques

HQ drilling was undertaken through the thin overburden prior to NQ2 diamond drilling through the primary rock. The holes were drilled used a standard barrel configuration and the core was orientated using a Reflex ACTIII tool located on the rear of the downhole barrel.

Database Integrity

Data was imported into the database directly from source geology logs and laboratory csv files. The data was then passed through a series of validation checks before final acceptance of the data for downstream use.

7 June 2023

Site Visits

A site visit was undertaken by the Competent Person (John Winterbottom) between 14 to 15 March 2023; general site layout, drilling sites, logging practices, and diamond drilling operations were viewed. GT1 store diamond core in a dedicated facility at Thunder Bay. The storage facility was visited on 13 March and several holes reviewed and compared to logging.

Geological interpretation

At Root Bay there is uncertainty as to the exact limits of the pegmatite strike extents due to glacial cover preventing identification of the exact meta-basalt-sediment contacts at the time of the MRE. As a result, the contacts have been determined from aero-magnetic data and last known drill hole limits with the contacts placed mid-way between the last known pegmatite intercept and the next hole along strike with no pegmatite intercept. Interpretation was made directly from pegmatites noted in geological logs with confirmation through core photographs. The overburden lower contact and pegmatite units, as logged in the drilling, were digitised using Leapfrog © software and cut to the Lidar surface to create individual pegmatite and geological solids.

No high-grade envelopes were warranted at Root Bay due to the consistent high-grade nature of the main pegmatites. Pegmatite wireframes were seamlessly utilised in Seequent Leapfrog Edge® software for use in building the sub-blocked block models. Alternative geological interpretations would have a minimal effect on the resource estimate. Root Bay has two main types of pegmatites, thin low-grade pegmatites and thicker higher-grade pegmatites. The thinner low-grade units were interpreted and estimated in the MRE but were not considered as Mineral Resource inventory due to the likely low recovery and low-grade nature of these pegmatites. 2m thickness envelopes were generated for each of the pegmatites, where this was possible, for later MRE reporting purposes.

Dimensions

The Root Bay deposit has a total strike extent of approximately 200m and has been drilled to a down dip extent of over 500m downdip (250m below ground level). The pegmatites all dip to the east at approximately 35 degrees. The pegmatites are stacked and occur along a 1,200m east-west corridor.

Estimation and modelling techniques

An Ordinary Kriging (OK) grade estimation methodology has been used for Li₂O in the Mineral Resource Estimate which is considered appropriate for the style of mineralisation under review. OK was also applied to important potential bi-product or deleterious elements (Ta₂O₅, Fe, K, S). Elements other than Li₂O have not been included in the Mineral Resource figures as they have no economic value. All estimates were made to parent blocks. Leapfrog Edge version 2022.1.0 software was used for estimation, statistical and geostatistical data analysis at Root Bay.

Estimation Methodology

The Root Bay block model used 5mE x 10mN x 5mRL unrotated blocks and sub blocked to ensure they faithfully captured the pegmatite volumes. Variable Orientation searches were used for each pegmatite. Two passes were used to ensure blocks are filled in areas with sparser drilling. Root Bay also used two searches the first at 100m x 100m x 20m and a second at 150m search radii with all blocks filled after the second pass.

Moisture

All tonnages are reported on a dry basis.

Cut-off parameters

The Root Bay Mineral Resource is reported using open-pit mining constraints.

The open-pit Mineral Resource is only the portion of the resource that is constrained within a US\$4,000 / t SC6 optimised shell and above a 0.2% Li20 cut-off grade. The optimised open pit shell

7 June 2023

- \$4/t mining cost
- \$15.19/t processing costs
- Mining loss of 5% with no mining dilution
- 55-degree pit slope angles
- 75% Product Recovery Modifying Factors

Bulk density

1,599 bulk density measurements were made by GT1 on ½ NQ core 20cm billets using water immersion (Archimedes) techniques. 217 of the measurements were directly on pegmatite core. 2 pegmatite measurements were rejected as being anomalously low, 1.3 and 1.96.

2,993 bulk densities were tested on Root Bay ½ NQ drill core billets with 890 measurements made directly on pegmatite core. Results were similar to those measured at McCombe.

Rock Type	Length	Bulk Density
Pegmatite	143.10	2.70
BIF	5.19	2.96
Sediment	116.46	2.77
Basalt	292.85	3.05
Overburden*	0	2.20

^{*} Estimated

Root Bay pegmatite bulk density measurements averaged 2.70. No bulk density data is available for the largely glacial cover over the deposit due to the difficulty in recovering this material in the drilling process. This material is volumetrically negligible ranging in depths from 0 to 19m and averaging around 6m at Root Bay. An assumed bulk density of 2.2 was used for overburden. There is a weak to moderate correlation between bulk density and Li₂O grade (Correlation Coefficient 58%) and so an assumed average pegmatite bulk density was used.

7 June 2023

This ASX release has been approved for release by the Board.

KEY CONTACTS

Investors Media

Jacinta Martino Luke Cox

Chief Executive Officer Investor Relations and Media

info@greentm.com.au ir@greentm.com.au +618 6557 6825 +61 430 147 046

Green Technology Metals (ASX:GT1)

GT1 is a North American-focussed lithium exploration and development business with a current global resource of 22.5Mt Li₂O at 1.14% Li₂O. The Company's main 100% owned Ontario Lithium Projects comprise high-grade, hard rock spodumene assets (Seymour, Root and Wisa) and lithium exploration claims (Allison and Solstice) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada.

All sites are proximate to excellent existing infrastructure (including clean hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality.

Seymour has an existing Mineral Resource estimate of 9.9 Mt @ 1.04% Li₂0 (comprised of 5.2 Mt at 1.29% Li₂0 Indicated and 4.7 Mt at 0.76% Li₂0 Inferred).1 and Root has an Inferred Mineral Resource Estimate of 4.5 Mt @ 1.01% Li₂O. Accelerated, targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

7 June 2023

¹ For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, Interim Seymour Mineral Resource Doubles to 9.9Mt. For full details of the Root Maiden Mineral Resource estimate, see GT1 ASX release dated 19 April 2023, GT1 Mineral Resources Increased to 14.4MT. The Company confirms that it is not aware of any new information or data that materially affects the information in that release and that the material assumptions and technical parameters underpinning this estimate continue to apply and have not materially changed.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

The information in this report that relates to Exploration Results pertaining to the Project is based on, and fairly represents, information and supporting documentation either compiled or reviewed by Mr Stephen John Winterbottom who is a member of Australian Institute of Geoscientists (Member 6112). Mr Winterbottom is the General Manager - Technical Services of Green Technology Metals. Mr Winterbottom has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person (CP) as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Winterbottom consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Mr Winterbottom holds securities in the Company.

No new information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

The information in this report relating to the Mineral Resource estimate for the Seymour Project is extracted from the Company's ASX announcement dated 23 June 2022. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

The information in this report relating to the Mineral Resource estimate for the Root Project is extracted from the Company's ASX announcement dated 19 April 2023. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GT1's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GT1's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GT1's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or guarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and

7 June 2023

do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forwardlooking statements (including, without limitation, liability for negligence).

APPENDIX A: JORC CODE, 2012 EDITION – Table 1 Report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary									
Sampling techniques	Sampling • Nature and quality of sampling (eg cut	info cou • In 2 ide Mc(• Gre	oital Lithium and orm the current Muld not be verified 1016 Ardiden drille ntified by earlier Combe was unde ten Technology Muther 34 holes into	IRE as drill hole s I to the requiremoned a total of 8 dian historic drill prog rtaken. etals Ltd have dr	patial location, ents of JORC 20 nond NQ holes : rams. Ardiden o illed 187 holes w g Morrison pros	sampling a 012. and took or confirmed t vithin the R	nd preparation ne channel sa the presence oot Lake proj 7 holes in Roc	on practices mple to test of the pegm ect area wit	or assaying a the historic atites but no h 116 holes d	and QAQC pr McCombe pofurther wor	otocols egmatites rk at ombe, a
			Drilling Used in the June 2023 Mineral Resource Estimate								
	 In cases where 'industry standard' 	Company		Ardiden					nology Metals		
	work has been done this would be relatively simple (eg 'reverse	Туре	СН	DDH		DDH	DDH	DDH	DDH	DDH	T
	circulation drilling was used to obtain 1	Prospect	Root Bay	McCombe	Total	McCombe	McCombe	Morrison	Morrison	Root Bay	Total
	m samples from which 3 kg was pulverised to produce a 30 g charge	Year	2016	2016		2022	2023	2022	2023	2023	
	for fire assay'). In other cases more	Holes	1	8	9	83	37	7	27	37	187
	explanation may be required, such as where there is coarse gold that has	Metres	15.00	468.50	483.50	13,101.93	7,079.00	1,230.00	4,170.00	9,378.70	34,443.13
	inherent sampling problems. Unusual	Proportion			1%						99%
	commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.		s from the 50's were ex concerns. Channel sar				lata and QAQC vali	dation. 3 Ardide	n holes were reje	ected due to spa	tial location or
		Drilling was contracted to G4 drilling using a NQ, standard configuration coring equipment producing 4.76cm diameter core.									
		Historic Grab	Samples								
		■ Gr	ab samples were	not used in the M	IRE						

Criteria	JORC Code explanation	Commentary
		Historic Channel Samples
		 Preparation prior to obtaining the channel samples including grid and geo-references and marking of the pegmatite structures. Samples were cut across the pegmatite with a diamond saw perpendicular to strike. Average 1 metre samples are obtained, logged, removed and bagged and secured in accordance with QAQC procedures. Sampling continued past the Spodumene -Pegmatite zone, even if it is truncated by Mafic Volcanic a later intrusion. Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups. One tag from a triple tag book was inserted in the sample bag.
		As recorded, procedures were consistent with normal industry practices.
		Channel samples were used to aid the pegmatite interpretation but were not used in the estimate.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 HQ drilling was undertaken through the thin overburden prior to NQ2 diamond drilling through the primary rock. 11 holes at MCombe were drilled by Ardiden using BQTK core. Holes were drilled used a standard barrel configuration. GT1 core was orientated using a Reflex ACTIII tool located on the rear of the downhole barrel.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No core was recovered through the overburden, glacial cover, HQ section of the hole, typically the top 5m of the hole. Core recovery through the primary rock and mineralised pegmatite zones was over 97% and considered satisfactory. Recovery was determined by measuring the recovered metres in the core trays against the drillers core block depths for each run. No relationship was observed between grade and core recovery. Minor preferential lower recovery was observed in where micas were thought to have been present in the original rock.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content, and any structures. Logging is qualitative in nature. Samples are representative of an interval or length. Sampling was undertaken for the entire cross strike length of the intersected pegmatite unit at nominal 1m intervals with breaks at geological contacts. Sampling extended into the country mafic rock. Logging is qualitative in nature based on visual estimates of mineral species and geological features. All core was photographed in both a wet and dry condition after metres marks and lithology had been transcribed onto the core surface with wax crayon.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation Quality of assay data and	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and 	 The bulk of the core is N0 diameter core with some BQTK Ardiden at McCombe. All recent drilling is N0 diameter core. Each ½ core sample was dried, crushed to entirety to 90% −10 mesh, riffle split (up to 5 kg) and then pulverized with hardened stee (250 g sample to 95% −150 mesh) (includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. A proportion of the mineralised pulps were re-tested by an independent laboratory, ACTLABS, ThunderBay. The sample preparation process is considered representative of the whole core sample. ■ GT1 inserted certified ORES standards and blanks at a rate of 1:20 or better into each batch of samples submitted to the laboratory. The laboratory tested the control samples in sequence and any control failures were repeated. A failure was
laboratory tests	laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	considered as any control sample that was outside 3 standards deviations from the certified value or where 2 controls samples were outside 2 standards deviations within the same batch. OREAS control samples were lithium certified standards, OREAS 751,752 and 753. Lithium QAOC control data results were acceptable although a slight positive bias was observed in standards around 0.5-0.7% Li and a similar negative bias around 1% Li. The biases are not considered material to the MRE.
		Table 2 QAQC OREAS 751 Statistics

Criteria	JORC Code explanation	Commentary			
			Summary Statistics		reas 751
			No of samples		in Cert Max Cert
			Certified Value	4,675	4,165 5,185
			Actual Mean	4,761	4,350 5,140
			Abs Difference	85	
			Rel. Difference	2%	
			Records Outside 2SD	2	2% Fail Rate
			Records Outside 3SD	0	0% Fail Rate
			gure 2 QAQC OREAS 752 Control Chart		SECURIO NE SE SE MENTAL DE LOS DE DESENHORS DE SE
			Summary Statistics	39	SD
			No of samples	74 M	in Cert Max Cert
			Certified Value	7,070	6,440 7,700
			Actual Mean	7,213	6,680 7,520
			Abs Difference	143	
			Rel. Difference	2%	
			Records Outside 2SD	1	1% Fail Rate

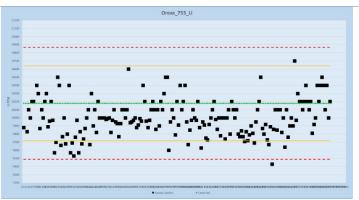


Figure 3 OREAS 753 Li Control Chart

Table 4 OREAS 753 Li Statistics

Summary Statistics	Or	eas 753	
No of samples	191 Mi	n Cert	Max Cert
Certified Value	10,179	9,489	10,869
Actual Mean	9,979	7,620	10,700
Abs Difference	199		
Rel. Difference	2%		
Records Outside 2SD	21	11%	Fail Rate
Records Outside 3SD	3	2%	Fail Rate

- Batches that failed (2 control samples outside 2 SD or 1 control outside 3SD in the same batch) were repeated by the laboratory.
- Tantalum, whilst certified by OREAS in the standards used by GT1, was not the primary element of consideration and therefore is not ideal for economic levels of tantalum but aided in detecting untoward assay batches.
- In addition to the independent controls inserted into each batch by GT1, AGAT also conducted their own internal QAQC protocols. Their results also did not indicate any significant bias.
- The bulk of the samples were dispatched to AGAT laboratories Thunder Bay, Ontario

Criteria	JORC Code explanation	Commentary				
		Bay on ½ NQ core billets.	s were determined	for each of the		e and a further 2,993 measurements at Root ound within the modelled area and applied
			McCombe			1
			Rock Type	Length	Bulk Density	
			Pegmatite	94.58	2.70	
			Felsic	10.49	2.76	
			Sediment	238.39	3.03	
			Basalt	133.95	2.97	
			Root Bay		15.15 1	
			Rock Type	Length	Bulk Density	
			Pegmatite BIF	143.10 5.19	2.70 2.96	_
			Sediment	116.46	2.77	_
			Basalt	292.85	3.05	-
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	to the Thunder Bay core facility to i of likely Li grades and is visually cor assays to the corresponding pegma Geological logs and supporting data typographical errors. Drill and surface sample data is reta Denmark Western Australia. All original assay certificates are re	nspect the core fire nspicuous at higher atite intercepts and a are uploaded direct ained in a purpose- tained on the comp	st hand. Spodur Li grades. Hig I spodumene c ctly to the data built SQL datab panies secure (mene, the principa th grades were gene ontent. abase using custom pase managed by a OneDrive directory.	In the person from core photography and visits of lithium bearing mineral, is a good indicator erally confirmed when comparing returned in built importers to ensure no chance of third-party Database Administrator based in or Li20 and Ta205 using factors of 2.153 and
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	when possible. Lidar survey of the Root area in 202 onto the LIDAR surface to ensure a	21(+/- 0.15m) which ccurate elevation d	underpins the lata for the dril	local topographic s lholes.	waypoint averaging or dGPS was performed surface. All drill collars have been draped

Criteria JORC Code explanation Commentary their entirety with readings downhole every 5m. North Seeking gyroscopes have a typical azimuth accuracy of +/-0.75 degrees and Specification of the grid system used. Quality and adequacy of topographic +/-0.15 degrees for dip. control. Figure 4 McCombe prospect area Figure 5 Root Bay prospect area All collars are picked up and stored in the database in North American Datum of 1983 (NAD83) Zone 15 horizontal and geometric control datum projection for the United States.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing at McCombe was variable ranging from 50 x 50 to 50 x 100 with some more sparsely drilled areas of the deposit. Drill spacing at Root Bay was 100 x100 to 100 x 150m. The drill spacing is sufficient to support the inferred level of Mineral Resource classification applied to the estimate. Im compositing was applied to the Mineral Resource update based on a review of sample interval lengths.

Criteria	JORC Code explanation	Commentary
Orientation of	 Whether the orientation of sampling 	Figure 7 Root Bay Sample Intervals • GT1 drill samples were drilled close to perpendicular to the strike of the pegmatite unit and sampled the entire length of the
data in relation to geological structure	 achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Bit full samples were unlied close to per pendicular to the strike of the pegmatite and sampled the entire length of the pegmatite as well including several metres into the mafic country rock either side of the pegmatite. Hole RB-23-001 was an exception and was drilled down the pegmatite dip direction. This hole was ignored for the Root Bay MRE. Grab and trench samples were taken where outcrop was available. All attempts were made to ensure trench samples represented traverses across strike of the pegmatite.
Sample security	The measures taken to ensure sample security.	All core and samples were supervised and secured in a locked vehicle, warehouse, or container until delivery to AGAT in Thunder Bay for cutting, preparation and analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No independent audits or reviews have been undertaken on this Mineral Resource estimate.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Green Technology Metals (ASX:GT1) owns 100% interest in the Ontario Lithium Projects (Seymour, Root and Wisa). A 1.5% NSR exists over the Root project where 0.5% is held by Primero Holdings, a subsidiary of NRW Holdings Group and 1% is held by Lithium Royalty Corp. The Root Lithium Asset consists of 249 boundary Cell mining claims (Exploration Licences), 33 mining license of occupation claims (285 total claims) with a total claim area of 5,377 ha. Generally surface rights to the Root Property remain with the Crown, except for 9 Patent Claims (PAT-51965. PAT-51966. PAT-51967. PAT-51968. PAT-51970. PAT-51974. PAT-51975. PAT-51976 and PAT-51977). All Cell Claims are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Regional exploration for lithium deposits commenced in the 1950's. In 1955-1956 Capital Lithium Mines Ltd. geologically mapped and sampled dikes near the McCombe Deposit with the highest recorded channel sample of 1.52m at 3.08 %Li-0. 7 drill holes (1,042.26m total) within the McCombe Deposit and Root Lake Prospect yielding low lithium assays. According to Mulligan (1965), Capital Lithium Mines Ltd. reported to Mulligan that they drilled at least 55 holes totalling 10469.88m in 1956. They delineated 4 pegmatite zones and announced a non-compliant NI 41-101 reserve calculation of 2.297 million tons at 1.3% Li₂0. However, none of that information is available on the government database. In 1956, Consolidated Morrison Explorations Ltd drilled 16 holes (1890m total) at the Morrison prospect recording 3.96m at 2.63% Li₂0. In 1956, Three Brothers Mining Explorations Ltd drilled 16 holes (1890m total) at the Morrison prospect recording 3.96m at 2.63% Li₂0. In 1957, Geo-Technical Development Company Limited on behalf of Continental Mining Exploration conducted a magnetometer survey and an electromagnetic check survey on the eastern claims of the Root Lithium Project to locate pyrrhotite mineralization In 1977, Northwest Geophysics Limited on behalf of Noranda Exploration Company Ltd. conducted an electromagnetic and magnetometer survey for sulphide conductors on a small package of claims east of the Morrison Prospect. Noranda also conducted a mapping and sampling program over the same area, mapped a new pegmatite dike and sampled a graphitic schist assaying 0.03% Cu and 0.15% Zn. In 1998, Harold A. Watts prospected, trenched and sampled spodumene-bearing pegmatites with the Morrison Prospect assaying up to 5.91% Li₂0. In 2002 stripped and blasted 2 more spodumene-bearing pegmatites near the Morrison prospect. In 2005, Landore Resources Canada Inc. created a reconnaissance survey, mapping and sampling project

Criteria	JORC Code explanation	Commentary
		Prospect to look for magnetic contrasts between pegmatites and metasedimentary units. They also conducted a prospecting (lithium) and soil sampling (gold) program at the Rook Lake Prospect and east of the Morrison Prospect. Highest Li assays within GM1 claims was 0.0037% Li ₂ 0 and a gold soil assay of 52ppb Au. In 2016, the previous owner conducted a drilled 7 diamond drill holes (469m total) within the McCombe deposit. Highest assay was 1m at 3.8% Li ₂ 0. A hole drilled down dip intersected 70m at 1.7% Li ₂ 0. An outcrop sampling within the Morrison and Root Bay Prospects yielded 0.04% Li ₂ 0. Channel sample within the Morrison Prospect had 5m at 2.09% Li ₂ 0 and within the Root Bay Prospect, 14m at 1.67% Li ₂ 0. In 2021, KBM Resources Group on behalf of Kenorland Minerals North America Ltd. conducted an 800km ² aerial LIDAR acquisition survey over their South Uchi Property which intersects a very small portion of the patented claims held by GM1, just west of the McCombe Deposit.
Geology	Deposit type, geological setting and style of mineralisation.	 Regional Geology: The Root Lithium Asset is located within the Uchi Domain, predominately metavolcanic units interwoven with granitoid batholiths and English River Terrane, a highly metamorphosed to migmatized, clastic and chemical metasedimentary rock with abundant granitoid batholiths. They are part of the Superior craton, interpreted to be the amalgamation of Archean aged microcontinents and accretionary events. The boundary between the Uchi Domain and the English River Terrane is defined by the Sydney Lake - Lake St. Joseph fault, an east west trending, steeply dipping brittle ductile shear zone over 450km along strike and 1 - 3m wide. Several S-Type, peraluminous granitic plutons host rare-element mineralization near the Uchi Domain and English River subprovince boundary. These pegmatites include the Root Lake Pegmatite Group, Jubilee Lake Pegmatite Group, Sandy Creek Pegmatite and East Pashkokogan Lake Lithium Pegmatite. Local Geology: The Root Lithium Asset contains most of the pegmatites within the Root Lake Pegmatite Group including the McCombe Pegmatite, Morrison Prospect, Root Lake Prospect and Root Bay Prospect. The McCombe Pegmatite and Morrison Prospect are hosted in predominately mafic metavolcanic rock of the Uchi Domain. The Root Lake and Root Bay Prospects are hosted in predominately metasedimentary rocks of the English River Terrane. On the eastern end of the Root Lithium Asset there is a gold showing (Root Bay Gold Prospect) hosted in or proximal to silicate, carbonate, sulphide, and oxide iron formations of the English River Terrane. Ore Geology: The McCombe Pegmatite is internally zoned. These zones are classified by the tourmaline discontinuous zone along the pegmatite contact, white feldspar-rich wall zone, tourmaline-bearing, equigranular to porphyritic potassium feldspar sodic apalite zone, tourmaline-being, porphyritic potassium feldspar spodumene pegmatite zone and lepidolite-rich pods and seams (Breaks et al., 2003). Both the McCombe and Morris
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: a easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is	 In 2016 Ardiden drilled a total of 8 diamond NQ holes and took one channel sample to test the historic McCombe pegmatites identified by earlier historic drill programs. Ardiden confirmed the presence of the pegmatites but no further work at McCombe was undertaken. Green Technology Metals Ltd have drilled 116 holes within the McCombe project area, a further 34 holes into the neighbouring Morrison prospect and 37 holes at Root Bay for a total of 34,443.13m as of 15 April 2023. All historic holes from the 50's were excluded from the MRE due to unverifiable spatial location data and QAQC validation. 3 Ardiden holes were rejected due to spatial location or hole orientation concerns and the initial Root Bay hole, RB-23-001. Channel samples were not used in the grade estimation of the MRE Drilling was contracted to G4 drilling using a NQ, standard configuration coring equipment producing 4.76cm diameter core. No visual estimates have been used in the delineation of the MRE Table 6 Drilling Summary table

Criteria	JORC Code explanation	Commen	tary											
	justified on the basis that the information is not Material and this			Drilling	Used i	n the Ju	une 2023	3 Min	era	l Resou	rce Esti	mate		
	exclusion does not detract from the		Company		Ardiden			Green Technology Metals						
	understanding of the report, the Competent Person should clearly		Туре	СН	DDH		DDH	DDH		DDH	DDH	DDH		
	explain why this is the case.		Prospect	Root Bay	McCombe	Total	McCombe	McCor	mbe	Morrison	Morrison	Root Bay	Total	
			Year	2016	2016		2022	2023	1	2022	2023	2023		
			Holes	1	8	9	83		37	7	27	36	187	
			Metres	15.00	468.50	483.50	13,101.93	7,079	9.00	1,230.00	4,170.00	9,3174.0	34,239.1	
			Proportion			1%							99%	
		:	Drilling used in M McCombe MRE D	rill Collars fo				model g	grades	were as foll	ows:			
		Table 7 I	McCombe Drill Co	ollar data 										
				۲	HoleID	Easting	Northing	RL	Dip	Azimuth	Depth			
					RL-16-01A	590,792	5,643,600	398	- 45	357	75			
					RL-16-03	590,725	5,643,582	394	- 45	-	72			
					RL-16-04	590,726	5,643,623	398	- 45	-	41			
					RL-16-05	590,853	5,643,552	393	- 45	-	80			
					RL-16-07	590,848	5,643,594	396	- 45	-	54			
					RL-22-001	590,698	5,643,630	398	- 59	359	60			
					RL-22-002	590,704	5,643,578	394	- 62	1	72			
					RL-22-003	590,699	5,643,517	394	- 58	359	102			
					RL-22-004	590,698	5,643,483	395	- 61	358	144			
					RL-22-005	590,699	5,643,421	394	- 60	360	147			
				 		T I	1							
					RL-22-006	590,800	5,643,605	398	- 59	1	120			

Criteria	JORC Code explanation	Commentary							
			RL-22-008	590,802	5,643,504	392	- 61	0	162
			RL-22-009	590,799	5,643,441	394	- 61	3	186
			RL-22-010	590,792	5,643,407	392	- 61	359	150
			RL-22-011	590,792	5,643,406	392	- 86	89	180
			RL-22-013	590,903	5,643,644	397	- 61	360	132
			RL-22-014	590,902	5,643,596	396	- 59	2	129
			RL-22-015	590,952	5,643,702	392	- 61	1	93
			RL-22-016A	590,899	5,643,546	394	- 61	3	156
			RL-22-017	590,951	5,643,556	397	- 59	348	120
			RL-22-018	591,002	5,643,702	390	- 61	2	90
			RL-22-019	591,002	5,643,575	396	- 60	3	120
			RL-22-020	591,001	5,643,499	388	- 61	359	150
			RL-22-021	590,901	5,643,500	397	- 60	3	150
			RL-22-022	590,648	5,643,529	394	- 59	1	152
			RL-22-023	590,700	5,643,630	398	- 61	3	189
			RL-22-024	590,642	5,643,428	392	- 60	3	150
			RL-22-025	590,851	5,643,597	396	- 60	1	141
			RL-22-027	590,853	5,643,653	397	- 59	359	108
			RL-22-028	591,123	5,643,856	391	- 60	316	150
			RL-22-029	590,850	5,643,475	392	- 60	1	227
			RL-22-033	590,600	5,643,476	395	- 58	5	162
			RL-22-035	590,650	5,643,480	397	- 59	1	162
			RL-22-037	590,598	5,643,421	392	- 60	1	180
			RL-22-038	591,050	5,643,709	390	- 60	1	141
			RL-22-039	590,600	5,643,375	392	- 60	357	201
			RL-22-040	591,048	5,643,679	389	- 62	0	126
			RL-22-041	590,649	5,643,405	391	- 59	0	210
			RL-22-387	590,652	5,643,578	394	- 60	356	123

Criteria	JORC Code explanation	Commentary							
			RL-22-461	590,951	5,643,616	394	- 60	1	107
			RL-22-490	591,053	5,643,521	389	- 60	8	201
			RL-22-499	591,100	5,643,725	389	- 61	1	120
			RL-22-501	591,153	5,643,752	388	- 60	2	201
			RL-22-505	591,198	5,643,775	388	- 59	359	210
			RL-22-521	590,547	5,643,432	391	- 59	360	180
			RL-22-526	590,698	5,643,373	390	- 60	1	180
			RL-22-529	591,152	5,643,808	389	- 59	320	150
			RL-22-530	591,197	5,643,826	390	- 59	322	150
			RL-22-531	591,241	5,643,847	391	- 61	321	150
			RL-22-532	591,199	5,643,775	388	- 85	320	231
			RL-22-533	591,153	5,643,752	388	- 86	313	204
			RL-22-534	591,251	5,643,797	388	- 61	320	201
			RL-22-535	591,300	5,643,864	391	- 60	322	150
			RL-22-536	591,304	5,643,808	390	- 60	320	180
			RL-22-537	591,299	5,643,763	388	- 58	322	201
			RL-22-538	590,619	5,643,435	392	- 45	302	102
			RL-22-539	590,619	5,643,435	392	- 70	300	117
			RL-22-540	591,357	5,643,875	392	- 59	322	150
			RL-22-541	591,353	5,643,831	389	- 59	322	180
			RL-22-542	591,351	5,643,776	388	- 59	318	252
			RL-22-543	591,351	5,643,776	388	- 74	323	252
			RL-22-548	591,394	5,643,851	389	- 60	321	192
			RL-22-549	591,394	5,643,800	388	- 59	319	249
			RL-22-550	591,441	5,643,838	389	- 59	313	150
			RL-22-571	591,735	5,643,768	391	- 49	1	273
			RL-23-044	591,054	5,643,576	397	- 60	1	381
			RL-23-353	591,939	5,643,553	393	- 61	359	221

Criteria	JORC Code explanation	Commentary							
			RL-23-442	590,908	5,643,457	388	- 74	3	168
			RL-23-452	590,905	5,643,706	392	- 60	1	201
			RL-23-454	590,898	5,643,750	391	- 60	320	180
			RL-23-480	591,002	5,643,748	390	- 59	1	201
			RL-23-544A	591,021	5,643,340	393	- 61	319	225
			RL-23-545	591,099	5,643,364	395	- 60	321	225
			RL-23-546	590,957	5,643,327	388	- 59	321	210
			RL-23-553	591,441	5,643,838	389	- 46	318	120
			RL-23-554	591,057	5,643,750	389	- 45	1	150
			RL-23-556	591,103	5,643,360	395	- 60	12	222
			RL-23-558	591,099	5,643,365	395	- 82	314	210
			RL-23-560	591,257	5,643,589	388	- 57	335	351
			RL-23-561	591,103	5,643,360	395	- 45	354	225
			RL-23-567	591,557	5,643,890	388	- 44	350	129
			RL-23-568C	591,499	5,643,851	388	- 75	348	132
			RL-23-569	591,499	5,643,855	388	- 45	353	120
			RL-23-570	591,557	5,643,886	388	- 83	350	120
			RL-23-572	591,705	5,643,654	390	- 60	2	240
			RL-23-573	591,153	5,643,326	394	- 80	13	201
			RL-23-575	591,492	5,643,858	388	- 88	131	324
			RL-23-576	591,595	5,643,696	388	- 55	4	270
		Root Bay Colla	rs						
		Table 8 Root Bay Collar data							
		P	rospect Ho	oleID E	asting No	rthing	RL	Dip	Azi Depth
		R	oot Bay RB-23	3-001* 60	0,403 5,	642,412	434	- 45	91 204

Criteria	JORC Code explanation	Commentary								
			Root Bay	RB-23-003	600,493	5,642,405	439	- 60	271	201
			Root Bay	RB-23-005	600,601	5,642,407	438	- 60	266	210
			Root Bay	RB-23-007	600,686	5,642,401	435	- 60	272	231
			Root Bay	RB-23-009	600,795	5,642,399	430	- 61	271	288
			Root Bay	RB-23-011	600,901	5,642,392	432	- 60	283	353
			Root Bay	RB-23-013	600,997	5,642,397	443	- 60	272	402
			Root Bay	RB-23-014	600,397	5,642,445	434	- 61	273	321
			Root Bay	RB-23-016	600,496	5,642,451	437	- 61	274	162
			Root Bay	RB-23-029	600,496	5,642,345	428	- 60	274	171
			Root Bay	RB-23-040	600,393	5,642,498	432	- 60	273	324
			Root Bay	RB-23-042	600,487	5,642,504	431	- 60	272	168
			Root Bay	RB-23-044	600,597	5,642,495	435	- 60	272	189
			Root Bay	RB-23-046	600,693	5,642,499	438	- 61	272	252
			Root Bay	RB-23-048	600,794	5,642,499	435	- 60	272	291
			Root Bay	RB-23-050	600,897	5,642,499	434	- 60	272	354
			Root Bay	RB-23-053	600,401	5,642,302	394	- 46	71	219
			Root Bay	RB-23-057	600,600	5,642,300	418	- 61	272	192
			Root Bay	RB-23-081	600,243	5,642,448	435	- 60	269	351
			Root Bay	RB-23-083	600,153	5,642,444	433	- 60	268	324
			Root Bay	RB-23-085	600,045	5,642,458	428	- 45	270	228
			Root Bay	RB-23-088	599,897	5,642,452	429	- 45	271	201
			Root Bay	RB-23-091	599,785	5,642,444	425	- 45	271	207
			Root Bay	RB-23-098	600,042	5,642,352	422	- 60	271	273
			Root Bay	RB-23-102	599,851	5,642,349	420	- 59	272	162

Criteria	JORC Code explanation	Commentary									
			Root Bay	RB-23-132	600,403	5,642,304	391	- 60	271	120	
			Root Bay	RB-23-148	600,240	5,642,550	431	- 60	271	369	
			Root Bay	RB-23-152	600,040	5,642,544	435	- 60	271	300	
			Root Bay	RB-23-156	599,846	5,642,545	422	- 60	271	120	
			Root Bay	RB-23-161	600,492	5,642,650	432	- 60	272	201	
			Root Bay	RB-23-165	600,693	5,642,648	434	- 60	272	231	
			Root Bay	RB-23-169	600,892	5,642,653	432	- 61	273	411	
			Root Bay	RB-23-174	600,244	5,642,650	433	- 60	271	347	
			Root Bay	RB-23-178	600,043	5,642,652	432	- 60	273	222	
			Root Bay	RB-23-182	599,851	5,642,646	427	- 60	271	126	
			Root Bay	RB-23-195	600,896	5,642,753	431	- 60	278	312	
			Root Bay	RB-23-200	600,310	5,642,747	434	- 60	272	342	
		* Hole RB-23-001 was not drilled tang not used in the Root Bay MRE.	ential to str	ike and the inte	ervals quoted	l are not represe	entative o	of, or simi	lar to, the	e pegmatite	true widths intercepts. The hole was
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 length weighted averages and Grade cut-offs have not been No metal equivalent values and 	incorpora		are tonnage	e weighted ave	rages				

Criteria	JORC Code explanation	Commentary
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 McCombe holes drilled by GT1 attempt to pierce the mineralised pegmatite approximately perpendicular to strike, and therefore, most of the downhole intercepts reported are approximately equivalent to the true width of the mineralisation. Root Bay intercepts are reported as downhole depths and are generally drilled tangential to pegmatite strike and dip except for hole RB-23-001 which was drilled downdip of the initial pegmatite to confirm downdip mineralisation continuity. Trenches are representative widths of the exposed pegmatite outcrop. Some exposure may not be a complete representation of the total pegmatite width due to recent glacial deposit cover limiting the available material to be sampled.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	The appropriate maps are included in the announcement for the Root deposit.

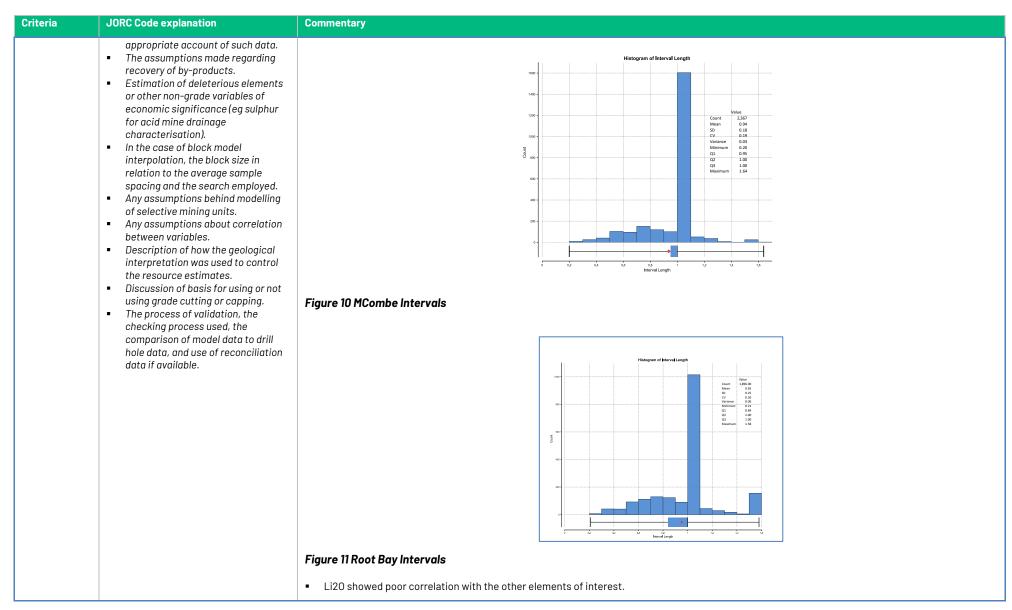
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting 	Downhole interval summary with associated assay results is listed in Appendix B
	practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration	
	Results.	

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further geological field mapping of anomalies and associated pegmatites at Root and regional claims Sampling country rock to assist in LCT pegmatite vector analysis and target generation. Infill drilling at the McCombe deposit to improve the deposits resource confidence. Commencement of detailed mining studies Further exploration and extension of the Root Bay pegmatites discovered to date.

Section 3 Estimation and Reporting of Mineral Resources – (McCombe and Root deposit)

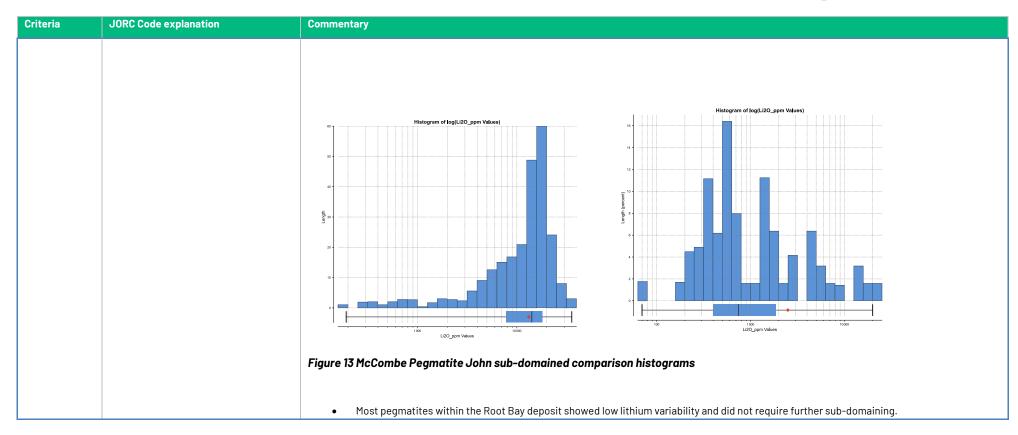
(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data was imported into the database directly from source geology logs and laboratory csv files. Was then passed through a series of validation checks before final acceptance of the data for downstream use.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	A site visit to the Root area was undertaken by the Competent Person (John Winterbottom) between 14th and 15th March 2023; general site layout, drilling sites, diamond drilling operations were viewed, plus diamond core in the storage facility Thunder Bay.



Criteria	JORC Code explanation	Commentary
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 There is sufficient confidence in the geological interpretation of the McCombe and Root Bay deposits in most areas; there are some areas of uncertainty at the outer limits of the deposits where drill spacing is sparse. Interpretation was made directly from pegmatites noted in geological logs and confirmation through core photographs. Alternative geological interpretation would have a minimal effect on the resource estimate. Pegmatite intrusions were used to constrain the mineral resource estimation.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	McCombe The deposit consists of 6 LCT pegmatite units of varying thicknesses and attitudes. The McCombe deposit has a total strike extent of approximately 1,500m and has been drilled to a down dip depth of over 250m. McCombes pegmatites varying in strike direction from east-west to southwest-northeast and all dip towards the south or southeast at varying degrees of inclination ranging from 40 to 70 degrees. Figure 8 McCombe pegmatites – Plan view Root Bay
		The deposit consists of 13 LCT pegmatite units of varying thicknesses and attitudes.

Criteria	JORC Code explanation	Commentary										
		 The Root Bay deposit has a total strike extent of approximately 200m along a 1300m trend and has been drilled to a down dip depth of over 500m (250m from surface) Root Bays pegmatites strike direction from north-south and moderately dip towards the east. 										
		+60000 € +60000 € +60000 € +60000 € +60000 € +60000 € +60000 € +60000 € +60000 € +60000 €										
		RB012 RB013										
		RB005 RB001 RB001 RB002										
		LEGEND Driff Collars Prigmattes Prigmattes Prigmattes 20 100 200 300										
		Figure 9 Root Bay Pegmatites - Looking North										
Estimation and modelling techniques	the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. • The availability of check estimates,	 An Ordinary Kriging (OK) grade estimation methodology has been used for Li₂O in the Mineral Resource Estimate which is considered appropriate for the style of mineralisation under review. OK was also applied to important potential bi-product or deleterious elements (Ta₂O₅, K, Fe, S). Geological units were first interpreted in Leapfrog 2022.1.1 software from geological logs and core photography references. Each pegmatite was assigned its own domain and drill intercepts flagged with the corresponding domain name. Wireframes were also generated for the enclosing country rock including, the glacial overburden, felsic intrusives and the greenstone sediments and basalt units. Data was composited to 1m length to geological contacts and exploratory data analysis was performed each of the pegmatite units. 										
	previous estimates and/or mine production records and whether the Mineral Resource estimate takes											



JORC Code explanation	Commentary											
	Table 9 McCombe Element Correlation											
	Field Name		1:00	T-005	Dh 00	0-00	0		м	V	0	
			Lizo ppm	1 a 2 U 5 p p m	RB2U pp	m CSZU ppm	Ca ppm	reppm	мд ррт	кррт	S ppm	
			100%									
				100%								
					100%							
						100%						
							100%					
								100%				
									100%			
										100%		
											100%	
		o pp		2170	1070	770	10 70	0 170	0070	1170	10070	
	Table 10 Root Bay Element Correlation											
	Field Nove	Li2O	Ta2O5	Rb2O	Cs2O Ca	Fe	Mg	И				
	Field Nam	ppm	ppm	ppm	ppm ppr	n ppn	n ppn	ı K pț	om 2 b	ppm		
	Correlation Matrix											
	Li2O ppm		100%									
	Ta2O5 ppm		-22%	100%								
	Rb2O ppm		14%	17%	100%							
	Cs2O ppm		20%	36%	72%	100%						
	Ca ppm		-38%	-9%	-31%	-21% 100	%					
	Fe ppm		-26%	-12%	-33%	-19% 83%	100	%				
	Mg ppm		-34%	-6%	-35%	-19% 88%	94%	100	%			
	K ppm		7%	-21%	75%	29% -33	% -34%	% -36 ⁹	6 100	%		
	S ppm	-16%	-6%	-15%	-11% 35%	52%	40%	-149	6 10	0%		
Data statistics was evaluated for each element within each domain including mean, coefficient of variation and grade distribution.												
	JORC Code explanation	Table 10 Root Ba Field Nam Correlatio Li2O ppm Ta2O5 pp Rb2O ppn Cs2O ppm Ca ppm Fe ppm Mg ppm K ppm S ppm	Table 9 McCombe Element Correlation Field Name Correlation Matrix Li20 ppm Ta205 ppm Rb20 ppm Cs ppm Ca ppm Fe ppm Mg ppm K ppm S ppm Table 10 Root Bay Element Correlation Field Name Correlation Matrix Li20 ppm Ta205 ppm Ta205 ppm Rb20 ppm Cs20 ppm Cs20 ppm Cs20 ppm Cs20 ppm Cs20 ppm Csppm Cs20 ppm Cs20 ppm Cs20 ppm Csppm Cs20 ppm	Table 9 McCombe Element Correlation	Table 9 McCombe Element Correlation	Table 9 McCombe Element Correlation	Field Name	Field Name	Table 9 McCombe Element Correlation Field Name	Table 9 McCombe Element Correlation	Table 9 McCombe Element Correlation	

Criteria	JORC Code explanation	Commentary
		 Most domains showed a log normal distribution. John Pegmatite, the thickest unit, showed a bimodal distribution of Li₂O. A high-grade subdomain was generated in an attempt to better confine the two populations. A 0.5% Li₂O envelope was created within the John Pegmatite using Leapfrog numerical modelling to better sub-domain the higher-grade zones within the pegmatite. Histograms below demonstrate that the sub-domaining was reasonably effective in achieving this objective.
		Histogram of log(Li2O_ppm Values)
		40 -
		E 200 -
		20-
		1000 10000 Li2O_ppm Values
		Figure 12 McCombe Pegmatite John Li20 Histogram
		•

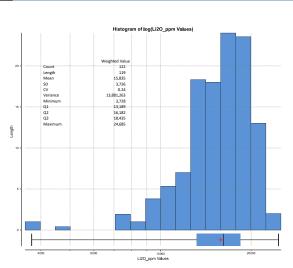
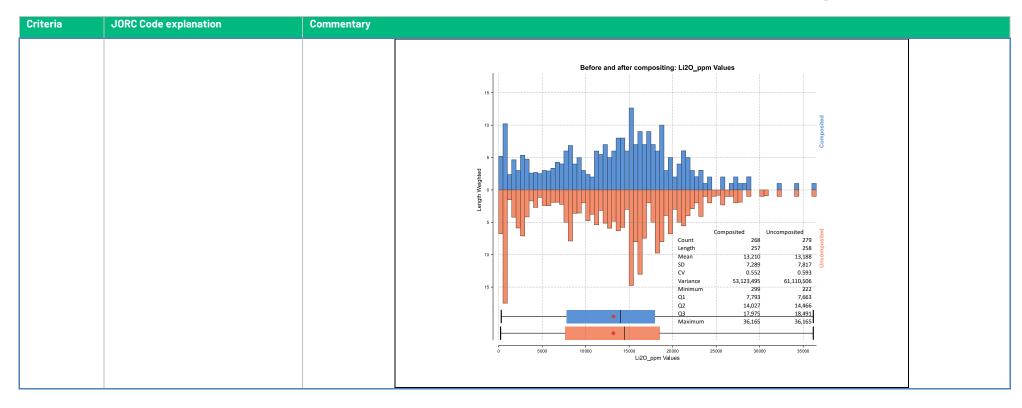
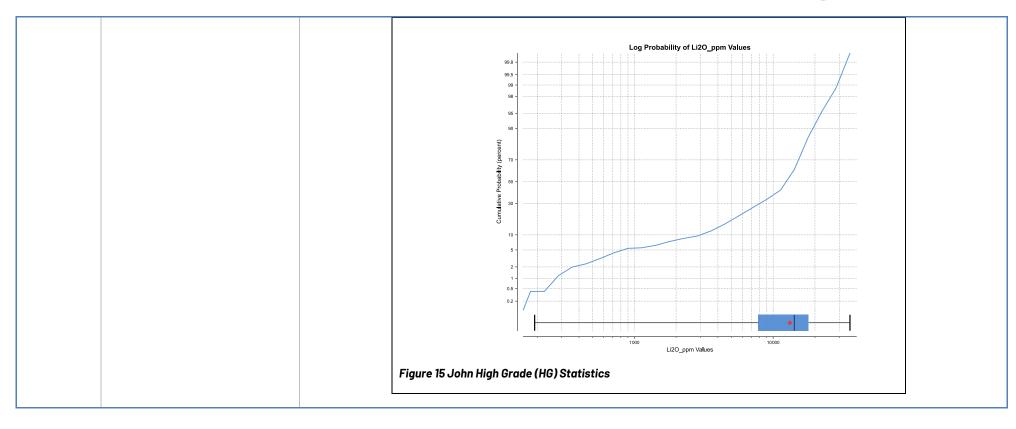


Figure 14 Root Bay - Pegmatite RB006 Li₂O ppm histogram

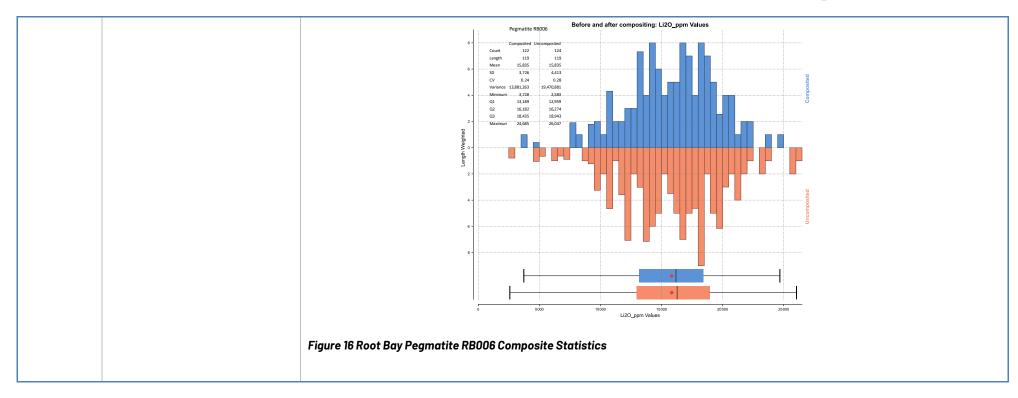
Sample data was composited to 1m down-hole composites, while honouring geological contacts at both deposits. Residual lengths were distributed evenly across the interval.

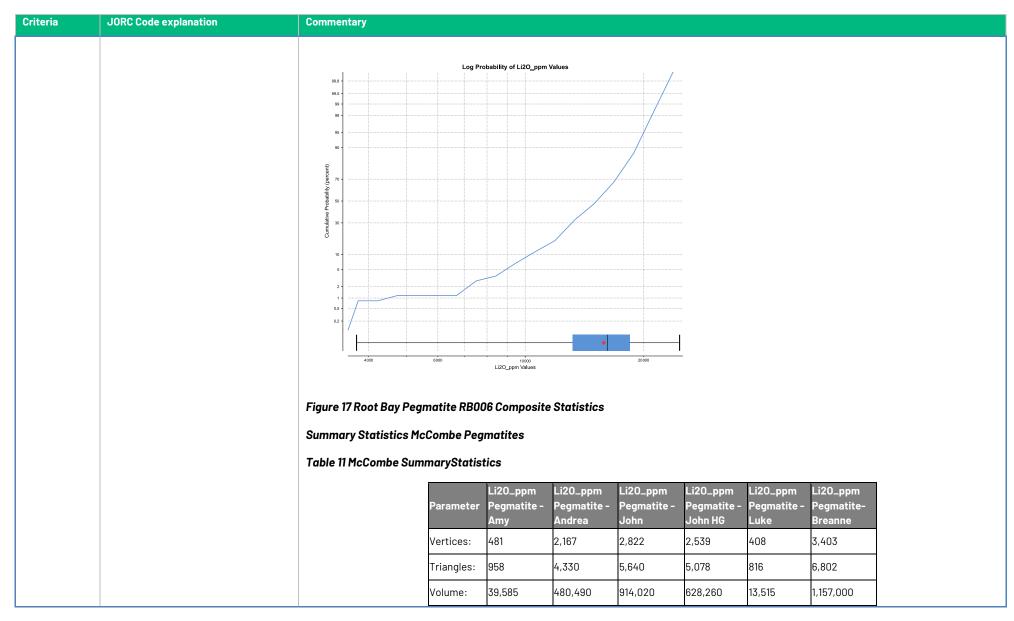

• Variography was carried out to define the variogram models for the Ordinary Kriging (OK) interpolation.

Top cut

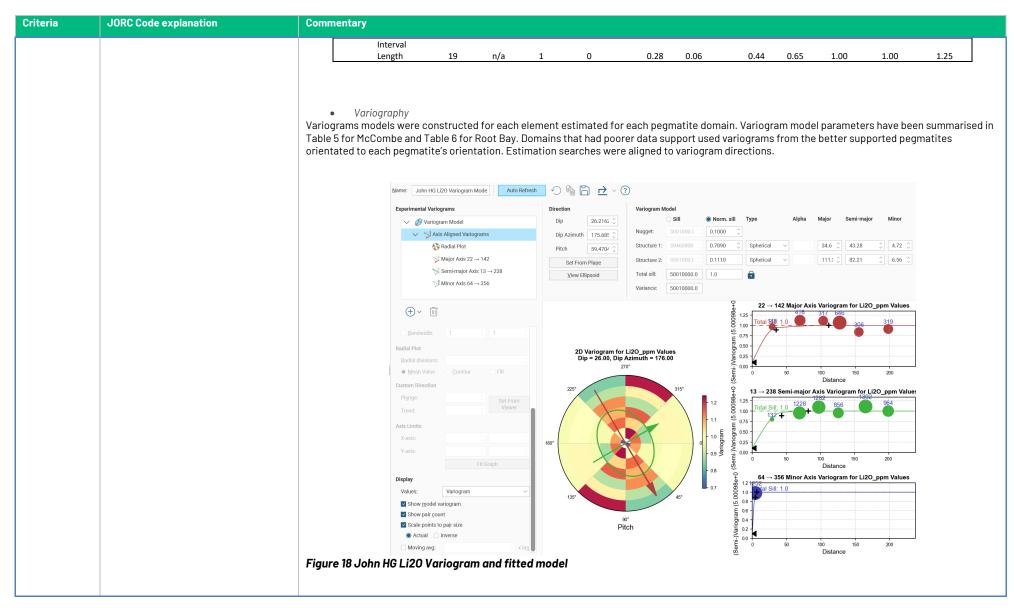

Top cut analysis was carried out to identify extreme outliers, using a combination of plots, and histograms and coefficient of variation. No top cuts have been applied to estimated elements. Instead, outlier values were clamped at 50% of the variogram range above the identified outlier cut-off for each element within each domain.

• Top cuts were applied to some Root Bay pegmatites, Table 4

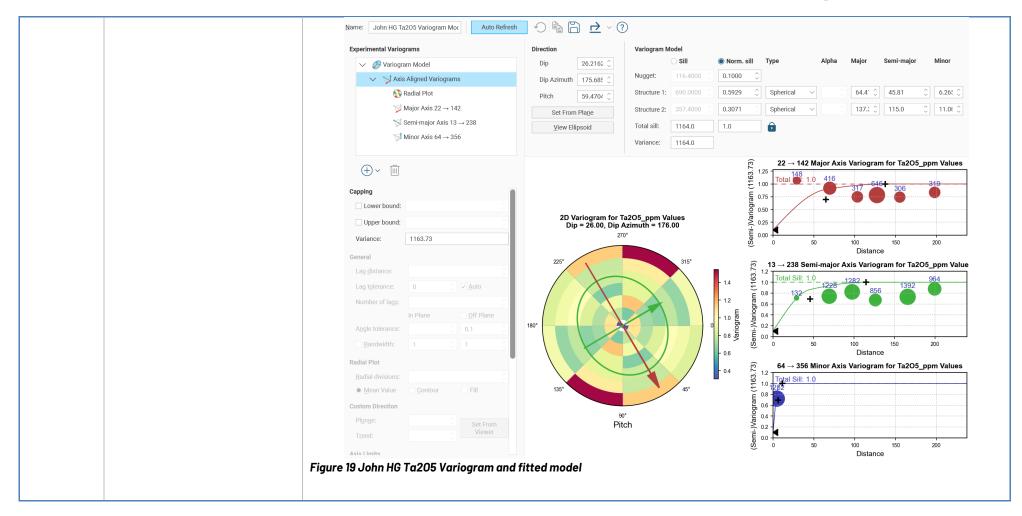




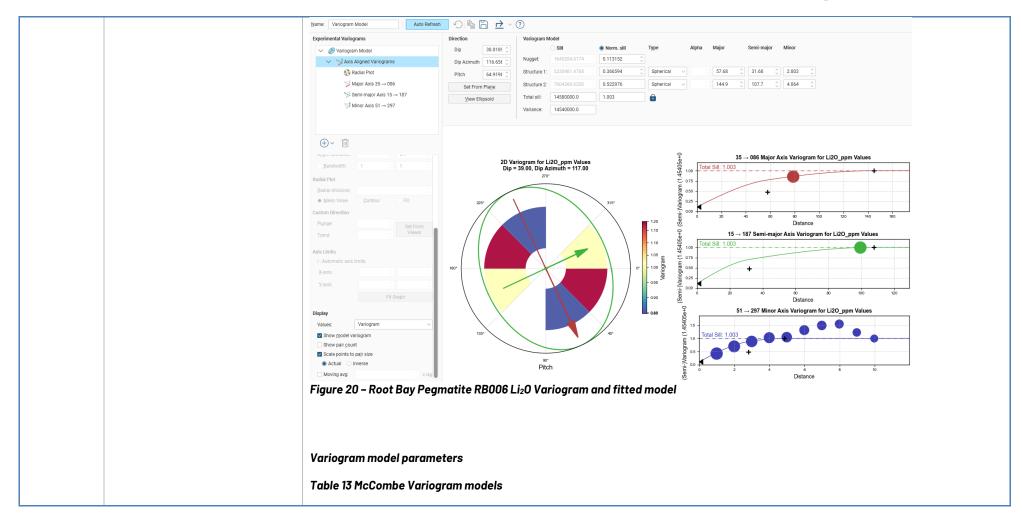
Criteria	JORC Code explanation	Commentary							
			Area:	54,543	273,680	356,080	230,020	14,268	669,830
			Parts:	1	2	1	1	1	1
			Closed:	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
			Consistent:	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
			Manifold:	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
			Number of points:	23	162	64	268	18	150
			Number of Values:	23	162	64	268	18	150
			Min Value:	257	160	69	299	415	77
			Lower Quartile:	483	1,270	483	7,000	2,613	258
			Median:	4,284	7,319	749	13,756	7,313	1,938
			Upper Quartile:	10,753	18,592	2,725	17,836	15,551	13,849
			Max Value:	25,422	40,556	20,924	36,165	21,528	32,721
			Clamped	N/A	35000	18000	30000	N/A	25000
			Mean:	6,297	10,778	3,155	12,835	8,848	6,891
			Cut: Mean	6,297	10,778	3,155	12,835	8,848	6,891
			Declustered Mean	5,960	8,965	2,480	11,607	7,518	6,545
			Std Deviation:	7,199	10,122	5,092	7,406	7,094	8,521
			Variance:	51,821,300	102,444,000	25,932,000	54,855,800	50,320,800	72,608,700



Criteria	JORC Code explanation	Comn	nentary											
			Statistics weighting: Lengtl weighted	h-										
			Name	Count	Length	Mean	Standard deviation	CoV	Variance	Min	Lower quartile	Median	Upper quartile	Max
			Pegmatite_RB001	84	79.85									
			Li2O_ppm	84	79.85	12,702	5,467	0.43	29,888,759	159	10,354	13,239	16,662	21,354
			Cut_Li2O_ppm Interval	84	79.85	12,702	5,467	0.43	29,888,759	159	10,354	13,239	16,662	21,354
			Length	84	n/a	1	0	0.16	0.02	0.45	0.90	1.00	1.00	1.30
			Pegmatite_RB002	29	26.73									
			Li2O_ppm	29	26.73	11,038	5,351	0.48	28,636,157	301	7,254	11,495	14,746	24,971
			Cut_Li2O_ppm Interval	29	26.73	11,038	5,351	0.48	28,636,157	301	7,254	11,495	14,746	24,971
			Length	29	n/a	1	0	0.21	0.04	0.40	0.80	1.00	1.00	1.20
			Pegmatite_RB003	50	42.72									
			Li2O_ppm	50	42.72	7,233	7,153	0.99	51,159,880	75	506	5,037	13,347	22,388
			Cut_Li2O_ppm Interval	50	42.72	7,233	7,153	0.99	51,159,880	75	506	5,037	13,347	22,388
			Length	50	n/a	1	0	0.24	0.04	0.45	0.70	0.92	1.00	1.25
			Pegmatite_RB004	20	16.88									
			Li2O_ppm	20	16.88	3,351	4,942	1.47	24,421,936	110	319	760	5,188	17,221
			Cut_Li2O_ppm Interval	20	16.88	2,621	3,089	1.18	9,543,299	110	319	760	5,188	9,000
			Length	20	n/a	1	0	0.17	0.02	0.48	0.76	0.85	1.00	1.00
			Pegmatite_RB005	10	8.84									
			Li2O_ppm	10	8.84	12,591	5,456	0.43	29,764,553	6,824	8,266	9,709	17,953	21,268
			Cut_Li2O_ppm Interval Length	10 10	8.84 n/a	12,591 1	5,456 0	0.43	29,764,553 0.02	6,824 0.60	8,266 0.83	9,709 0.84	17,953 1.04	21,268 1.07
			_	124	119.28	1	0	0.10	0.02	0.00	0.65	0.04	1.04	1.07
			Pegmatite_RB006 Li2O ppm	124	119.28	15,835	4,413	0.28	19,470,881	2,583	12,959	16,274	18,943	26,047
			Cut_Li2O_ppm	124	119.28	15,835	4,413	0.28	19,470,881	2,583	12,959	16,274	18,943	26,047



Criteria	JORC Code explanation	Comment	tary											
			Interval Length	124	n/a	1	0	0.14	0.02	0.49	1.00	1.00	1.00	1.38
		Pe	gmatite_RB007	36	32.60									
			Li2O_ppm	36	32.60	14,731	4,967	0.34	24,667,576	2,540	12,270	15,564	18,104	24,110
			Cut_Li2O_ppm Interval	36	32.60	14,731	4,967	0.34	24,667,576	2,540	12,270	15,564	18,104	24,110
			Length	36	n/a	1	0	0.20	0.03	0.57	0.75	1.00	1.00	1.35
		Pe	gmatite_RB008	5	4.51									
			Li2O_ppm	5	4.51	9,012	6,748	0.75	45,529,229	344	385	11,000	12,507	15,714
			Cut_Li2O_ppm Interval	5	4.51	9,012	6,748	0.75	45,529,229	344	385	11,000	12,507	15,714
			Length	5	n/a	1	0	0.33	0.09	0.43	0.90	0.95	0.98	1.25
		Pe	gmatite_RB009	7	6.71									
			Li2O_ppm	7	6.71	7,588	4,703	0.62	22,114,139	1,638	4,973	5,597	11,129	16,102
			Cut_Li2O_ppm	7	6.71	7,588	4,703	0.62	22,114,139	1,638	4,973	5,597	11,129	16,102
			Interval Length	7	n/a	1	0	0.19	0.03	0.67	0.80	1.00	1.00	1.24
		Pe	gmatite_RB010	6	4.36									
			Li2O_ppm	6	4.36	1,748	2,767	1.58	7,654,740	125	159	721	1,666	7,362
			Cut_Li2O_ppm	6	4.36	1,369	1,836	1.34	3,371,601	125	159	721	1,666	5,000
			Interval Length	6	n/a	1	0	0.33	0.06	0.30	0.70	0.70	0.85	1.00
		Per	gmatite RB011	7	5.37	-	Ü	0.55	0.00	0.50	0.70	0.70	0.05	1.00
			Li2O ppm	7	5.37	2,915	5,702	1.96	32,513,328	41	359	424	5,296	19,073
			Cut Li2O ppm	7	5.37	2,915	5,702	1.96	32,513,328	41	359	424	5,296	19,073
			Interval											
			Length	7	n/a	1	0	0.34	0.07	0.45	0.50	0.76	1.00	1.15
		Pe	gmatite_RB012	6	3.73									
			Li2O_ppm	6	3.73	4,532	3,277	0.72	10,736,402	161	198	5,662	7,341	7,341
			Cut_Li2O_ppm Interval	6	3.73	4,532	3,277	0.72	10,736,402	161	198	5,662	7,341	7,341
			Length	6	n/a	1	0	0.33	0.04	0.43	0.50	0.53	0.67	1.01
		Pe	gmatite_RB013	19	16.87									
			Li2O_ppm	19	16.87	7,267	7,893	1.09	62,301,113	125	908	3,552	10,074	24,971
			Cut_Li2O_ppm	19	16.87	7,267	7,893	1.09	62,301,113	125	908	3,552	10,074	24,971



Criteria	JORC Code explanation	Cor	nmentary														
			General	Dire	ction			Struc	ture 1				Struct	ure 2			
			Variogram Name	Dip	Dip Azimuth	Pitch	Normalised Nugget	Normalised sill	Structure	Major	Semi-major	Minor	Normalised sill	Structure	Major	Semi-major	Minor
			Fe_ppm Pegmatite - Amv	41	216	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
			Fe_ppm Pegmatite														4
			- Andrea Fe_ppm Pegmatite	67	157	17	0.14	0.44		50	46	2	0.42	Spherical	150	100	
			- John HG Fe_ppm Pegmatite	26	176	59	0.10	0.66	Spherical	55	112	5	0.24	Spherical	129	116	7
			- John	26	176	59	0.10	0.60	Spherical	64	42	5	0.30	Spherical	137	115	7
			Fe_ppm Pegmatite - Luke	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
			Fe_ppm Pegmatite - Nathan	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
			Fe_ppm Pegmatite- Breanne	69	169	8	0.10	0.03	Spherical	64	80	2	0.87	Spherical	104	102	5
			K_ppm Pegmatite - Amy	49	217	16	0.10	0.38	Spherical	9	39	5	0.52	Spherical	67	67	7
			K_ppm Pegmatite - Andrea	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
			K_ppm Pegmatite	26	176	59	0.10	0.60	Spherical	64	42	5	0.30	Spherical	137	115	7
			K_ppm Pegmatite		176							5			137	115	7
			- John K_ppm Pegmatite - Luke	26 67	157	59 17	0.10	0.60		64 50	42 46	2	0.30	Spherical Spherical	150	100	4
			K_ppm Pegmatite - Nathan	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
			K_ppm Pegmatite- Breanne	69	169	8	0.10	0.03	Spherical	64	80	2	0.87	Spherical	104	102	5
			Li20_ppm Pegmatite - Amy	49	217	16	0.10	0.44		37	42	5	0.46	Spherical	87	51	7
			Li20_ppm Pegmatite - Andrea	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4

Criteria	JORC Code explanation	Commen	tary														
			O_ppm														
		Peg HG	matite - John	26	176	59	0.10	0.79	Spherical	35	43	5	0.11	Spherical	111	82	7
			O_ppm matite - John	26	176	66	0.19	0.29	Spherical	34	27	7	0.52	Spherical	120	138	10
		Li20	O_ppm														
			jmatite - Luke O_ppm	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Peg Nat	ımatite - han	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Li20	O_ppm		.,,			5111	- Spiriorious				07.12	ортотош		.00	
			matite- anne	69	169	8	0.10	0.03	Spherical	64	80	2	0.87	Spherical	104	102	5
			₋ppm ımatite -														
		Nat	han	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		- An		49	217	16	0.10	0.44	Spherical	37	42	5	0.46	Spherical	87	51	7
			pm Pegmatite ndrea	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		S_p	pm Pegmatite ohn HG	26	176	59	0.10	0.60	Spherical	64	42	5	0.30	Spherical	137	115	7
		S_p	pm Pegmatite														
		- Jo	ohn pm Pegmatite	26	176	59	0.10	0.60	Spherical	64	42	5	0.30	Spherical	137	115	7
		- Lu	ike	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		- Na	pm Pegmatite athan	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
			pm Pegmatite- anne	69	169	8	0.10	0.03	Spherical	64	80	2	0.87	Spherical	104	102	5
		Ta2	:05_ppm														
			matite - Amy 05_ppm	49	217	16	0.10	0.44	Spherical	37	42	5	0.46	Spherical	67	51	7
		Peg And	ımatite - Irea	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Ta2	05_ppm	0,	.57	.,	3.11	0.11	Spirorioui	- 00	10		3. 12	Spriorioui		.00	
		HG	ımatite - John	26	176	59	0.10	0.59	Spherical	64	46	6	0.31	Spherical	137	115	11
			:05_ppm matite - John	26	176	66	0.19	0.29	Spherical	34	27	7	0.52	Spherical	120	138	10
		Ta2	05_ppm									-		•			
		Peg	ımatite - Luke	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4

Criteria	JORC Code explanation	Commentary														
		Ta205_ppm Pegmatite - Nathan	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Ta205_ppm Pegmatite- Breanne	69	169	8	0.10	0.03	Spherical	64	80	2	0.87	Spherical	104	102	5

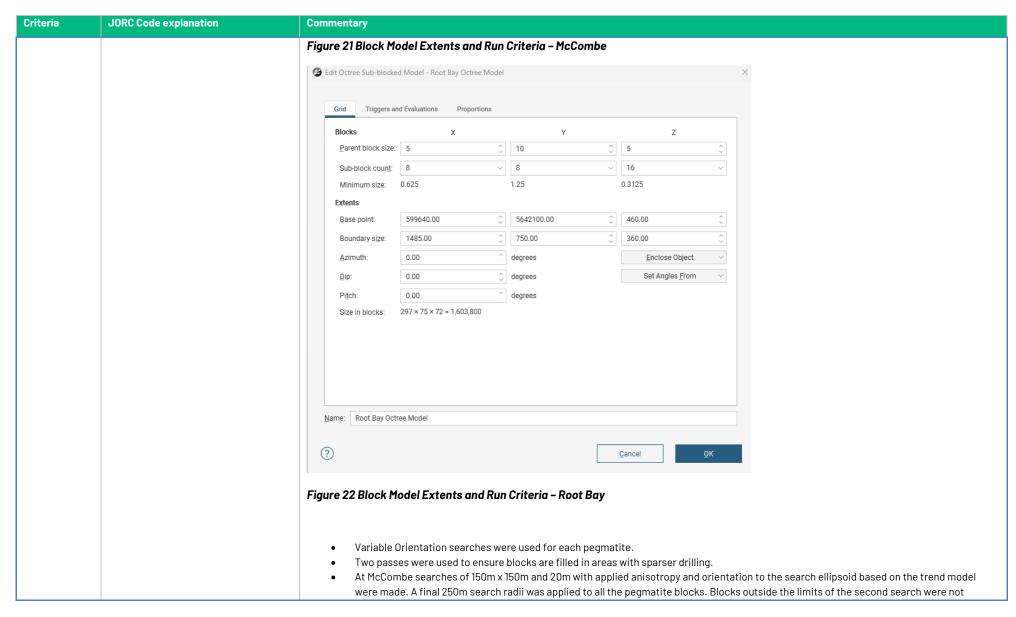
Table 14 Root Bay Variogram model parameters

General	Direc	tion			Structur	e 1				Structur	e 1		major 21 130 9 20 120 6 04 97 6 22 67 6 22 67 6 35 108 5 13 103 1 1 50 1			
Variogram Name	Dip	Dip Azi.	Pitch	Norm. Nugget	Norm. sill	Str	Major	Semi- major	Minor	Norm. sill	Str	Major		Minor		
Ca_ppm Pegmatite_RB001	33	115	67	0.11	0.37	Sph	102	61	5	0.52	Sph	221	130	9		
Ca_ppm Pegmatite_RB002	38	113	79	0.11	0.32	Sph	72	94	3	0.57	Sph	120	120	6		
Ca_ppm Pegmatite_RB003	34	120	72	0.08	0.43	Sph	72	61	5	0.49	Sph	104	97	6		
Ca_ppm Pegmatite_RB004	30	108	82	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6		
Ca_ppm Pegmatite_RB005	39	117	71	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6		
Ca_ppm Pegmatite_RB006	39	117	65	0.11	0.37	Sph	58	32	3	0.52	Sph	145	108	5		
Ca_ppm Pegmatite_RB007	52	119	71	0.11	0.29	Sph	58	13	1	0.60	Sph	113	103	1		
Ca_ppm Pegmatite_RB008	32	128	59	0.11	0.56	Sph	58	13	0	0.33	Sph	71	50	1		
Ca_ppm Pegmatite_RB009	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6		
Ca_ppm Pegmatite_RB010	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6		
Ca_ppm Pegmatite_RB011	36	127	57	0.11	0.31	Sph	58	38	2	0.58	Sph	143	103	4		
Ca_ppm Pegmatite_RB012	39	121	69	0.11	0.30	Sph	58	33	1	0.59	Sph	113	103	3		
Ca_ppm Pegmatite_RB013	19	96	79	0.11	0.29	Sph	58	36	1	0.60	Sph	113	103	2		
Cs2O_ppm Pegmatite_RB001	33	115	67	0.11	0.37	Sph	102	61	5	0.52	Sph	221	130	9		

Criteria	JORC Code explanation	Commentary															
		Cs2O_ppm															
		Pegmatite_RB002	38	113	79	0.11	0.32	Sph	72	94	3	0.57	Sph	120	120	6	4
		Cs2O_ppm Pegmatite RB003	24	120	72	0.08	0.43	Cnk	72	61	5	0.49	Sph	104	97	6	
		Cs2O ppm	34	120	72	0.08	0.43	Sph	/2	91	5	0.49	Spn	104	97	ь	-
		Pegmatite RB004	30	108	82	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	
		Cs2O ppm	30	100	02	0.11	0.50	Spii	30	13	-	0.55	Эрп	122	0,		1
		Pegmatite_RB005	39	117	71	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	
		Cs2O_ppm															
		Pegmatite_RB006	39	117	65	0.11	0.37	Sph	58	32	3	0.52	Sph	145	108	5	
		Cs2O_ppm											l				
		Pegmatite_RB007	52	119	71	0.11	0.29	Sph	58	13	1	0.60	Sph	113	103	1	-
		Cs2O_ppm Pegmatite_RB008	32	128	59	0.11	0.56	Sph	58	13	0	0.33	Sph	71	50	1	
		Cs2O_ppm	32	120	33	0.11	0.30	эрп	30	13	1	0.33	эрп	/1	30		
		Pegmatite RB009	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	
		Cs2O_ppm		Ì				ļ .			1						
		Pegmatite_RB010	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	
		Cs2O_ppm															
		Pegmatite_RB011	36	127	57	0.11	0.31	Sph	58	38	2	0.58	Sph	143	103	4	-
		Cs2O_ppm	20	121	69	0.11	0.20	Cob	Ε0	22	1	0.50	Cob	112	102	2	
		Pegmatite_RB012 Cs2O ppm	39	121	09	0.11	0.30	Sph	58	33	1	0.59	Sph	113	103	3	-
		Pegmatite RB013	19	96	79	0.11	0.29	Sph	58	36	1	0.60	Sph	113	103	2	
		Fe ppm		1							1						1
		Pegmatite_RB001	33	115	67	0.11	0.37	Sph	102	61	5	0.52	Sph	221	130	9	
		Fe_ppm															
		Pegmatite_RB002	38	113	79	0.11	0.32	Sph	72	94	3	0.57	Sph	120	120	6	-
		Fe_ppm	24	120	72	0.00	0.42	C I-	72	C1	_	0.40	C I-	104	07	ć	
		Pegmatite_RB003 Fe ppm	34	120	72	0.08	0.43	Sph	72	61	5	0.49	Sph	104	97	6	-
		Pegmatite_RB004	30	108	82	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	
		Fe ppm	- 55	100		5.22	0.00	55.1		10	†	3.55	٠.١٩٥		Ŭ,		1
		Pegmatite_RB005	39	117	71	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	
		Fe_ppm															
		Pegmatite_RB006	39	117	65	0.11	0.37	Sph	58	32	3	0.52	Sph	145	108	5	
		Fe_ppm		4			0.75		50	42		0.55		445	400	,	
		Pegmatite_RB007	52	119	71	0.11	0.29	Sph	58	13	1	0.60	Sph	113	103	1	-
		Fe_ppm Pegmatite_RB008	32	128	59	0.11	0.56	Sph	58	13	0	0.33	Sph	71	50	1	
		Fe ppm	32	120	39	0.11	0.30	эрп	30	13		0.33	эрп	/1	30	т	1
		Pegmatite_RB009	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	
		Fe_ppm											,				
		Pegmatite_RB010	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	
		Fe_ppm															
		Pegmatite_RB011	36	127	57	0.11	0.31	Sph	58	38	2	0.58	Sph	143	103	4	4
		Fe_ppm	39	121	69	0.11	0.30	Cmh	EO	33	1	0.59	Cmh	112	102	3	
		Pegmatite_RB012	39	121	69	0.11	0.30	Sph	58	33	1	0.59	Sph	113	103	5	

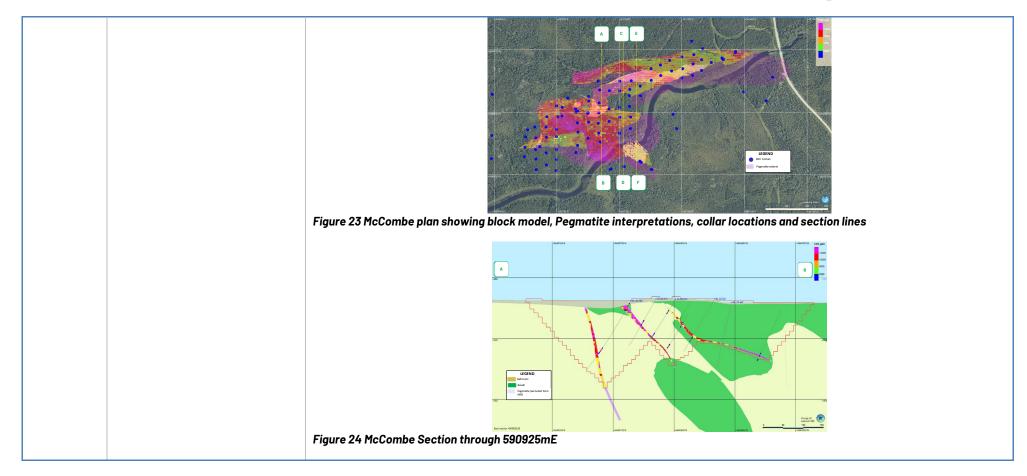
Criteria	JORC Code explanation	Commentary															
		Fe_ppm Pegmatite_RB013	19	96	79	0.11	0.29	Sph	58	36	1	0.60	Sph	113	103	2	
		K_ppm Pegmatite_RB001		115	67	0.11	0.37	Sph	102	61	5	0.52	Sph	221	130	9	
		K_ppm Pegmatite_RB002		113	79	0.11	0.32	Sph	72	94	3	0.57	Sph	120	120	6	
		K_ppm Pegmatite_RB003	34	120	72	0.08	0.43	Sph	72	61	5	0.49	Sph	104	97	6	
		K_ppm Pegmatite_RB004	30	108	82	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	
		K_ppm Pegmatite_RB005	39	117	71	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	
		K_ppm Pegmatite_RB006	39	117	65	0.11	0.37	Sph	58	32	3	0.52	Sph	145	108	5	
		K_ppm Pegmatite_RB007	52	119	71	0.11	0.29	Sph	58	13	1	0.60	Sph	113	103	1	
		K_ppm Pegmatite_RB008	32	128	59	0.11	0.56	Sph	58	13	0	0.33	Sph	71	50	1	
		K_ppm Pegmatite_RB009	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	ł
		K_ppm Pegmatite_RB010	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	1
		K_ppm Pegmatite_RB011	36	127	57	0.11	0.31	Sph	58	38	2	0.58	Sph	143	103	4	
		K_ppm Pegmatite_RB012	39	121	69	0.11	0.30	Sph	58	33	1	0.59	Sph	113	103	3	
		K_ppm Pegmatite_RB013 Li2O_ppm	19	96	79	0.11	0.29	Sph	58	36	1	0.60	Sph	113	103	2	
		Pegmatite_RB001 Li2O_ppm	33	115	67	0.11	0.37	Sph	102	61	5	0.52	Sph	221	130	9	
		Pegmatite_RB002 Li2O_ppm	38	113	79	0.11	0.32	Sph	72	94	3	0.57	Sph	120	120	6	
		Pegmatite_RB003 Li2O_ppm	34	120	72	0.08	0.43	Sph	72	61	5	0.49	Sph	104	97	6	
		Pegmatite_RB004 Li2O_ppm Pegmatite_RB005	30	108	71	0.11	0.30	Sph	38	13	1	0.59	Sph Sph	122	67 67	6	
		Pegmatite_RB005 Li2O_ppm Pegmatite_RB006	39	117	65	0.11	0.37	Sph Sph	58	32	3	0.59	Sph	145	108	5	<u> </u>
		Li2O_ppm Pegmatite_RB007	52	119	71	0.11	0.29	Sph	58	13	1	0.60	Sph	113	103	1	
		Li2O_ppm Pegmatite_RB008	32	128	59	0.11	0.56	Sph		13	0	0.33	Sph	71	50	1	
		Li2O_ppm Pegmatite_RB009	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	
		Li2O_ppm Pegmatite_RB010	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	

Criteria	JORC Code explanation	Commentary															
		Li2O_ppm Pegmatite RB011	36	127	57	0.11	0.31	Sph	58	38	2	0.58	Sph	143	103	4	
		Li2O ppm	30	127	57	0.11	0.31	Spn	36	36	2	0.58	Spri	143	103	4	ł
		Pegmatite RB012	39	121	69	0.11	0.30	Sph	58	33	1	0.59	Sph	113	103	3	
		Li2O_ppm															
		Pegmatite_RB013	19	96	79	0.11	0.29	Sph	58	36	1	0.60	Sph	113	103	2	
		Mg_ppm Pegmatite_RB001	33	115	67	0.11	0.37	Sph	102	61	5	0.52	Sph	221	130	9	
		Mg_ppm	20	442	70	0.44	0.22		70	0.4	2	0.57	6.1	420	420		
		Pegmatite_RB002 Mg_ppm	38	113	79	0.11	0.32	Sph	72	94	3	0.57	Sph	120	120	6	ł
		Pegmatite_RB003	34	120	72	0.08	0.43	Sph	72	61	5	0.49	Sph	104	97	6	
		Mg_ppm	1	1					T		-						
		Pegmatite_RB004	30	108	82	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	1
		Mg_ppm														-	
		Pegmatite_RB005	39	117	71	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	1
		Mg_ppm Pegmatite RB006	39	117	65	0.11	0.37	Sph	58	32	3	0.52	Sph	145	108	5	
		Mg ppm	- 55		- 55	0.11	0.07	- Sp	30		J	0.52	op.,	1.0	100		
		Pegmatite_RB007	52	119	71	0.11	0.29	Sph	58	13	1	0.60	Sph	113	103	1]
		Mg_ppm															
		Pegmatite_RB008	32	128	59	0.11	0.56	Sph	58	13	0	0.33	Sph	71	50	1	
		Mg_ppm Pegmatite RB009	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	
		Mg_ppm	33	11/	03	0.11	0.20	эрп	36	13		0.09	эрп	120	103	0	İ
		Pegmatite RB010	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	
		Mg_ppm															
		Pegmatite_RB011	36	127	57	0.11	0.31	Sph	58	38	2	0.58	Sph	143	103	4	
		Mg_ppm													400		
		Pegmatite_RB012 Mg_ppm	39	121	69	0.11	0.30	Sph	58	33	1	0.59	Sph	113	103	3	ł
		Pegmatite_RB013	19	96	79	0.11	0.29	Sph	58	36	1	0.60	Sph	113	103	2	
		Rb2O_ppm	1	1		<u> </u>			<u> </u>	1	-		٠٠,٠٠	T			
		Pegmatite_RB001	33	115	67	0.11	0.37	Sph	102	61	5	0.52	Sph	221	130	9]
		Rb2O_ppm															
		Pegmatite_RB002	38	113	79	0.11	0.32	Sph	72	94	3	0.57	Sph	120	120	6	
		Rb2O_ppm Pegmatite RB003	34	120	72	0.08	0.43	Sph	72	61	5	0.49	Sph	104	97	6	
		Rb2O_ppm	34	120	12	0.06	0.43	3pii	12	01	3	0.43	Spil	104	31	U	
		Pegmatite_RB004	30	108	82	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	
		Rb2O_ppm											,				
		Pegmatite_RB005	39	117	71	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	
		Rb2O_ppm	20	44-	65	0.44	0.27			22	2	0.53		4.45	400	_	
		Pegmatite_RB006 Rb2O ppm	39	117	65	0.11	0.37	Sph	58	32	3	0.52	Sph	145	108	5	1
		Pegmatite_RB007	52	119	71	0.11	0.29	Sph	58	13	1	0.60	Sph	113	103	1	
		Rb2O ppm		1		5.22	5.25	55.1			<u> </u>	5.00	- Sp.1		100		
		Pegmatite_RB008	32	128	59	0.11	0.56	Sph	58	13	0	0.33	Sph	71	50	1	

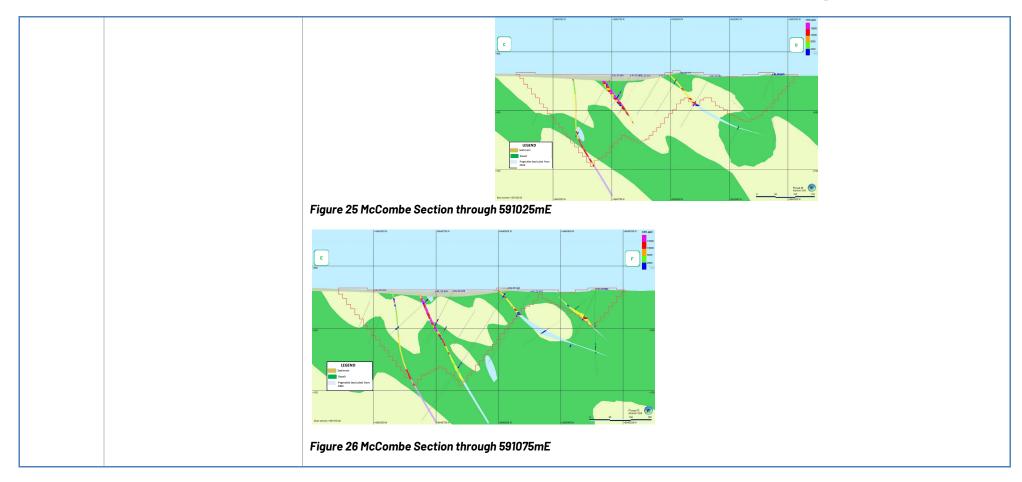


Criteria	JORC Code explanation	Commentary															
		Rb2O_ppm Pegmatite_RB009	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	
		Rb2O_ppm Pegmatite_RB010	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	
		Rb2O_ppm Pegmatite_RB011	36	127	57	0.11	0.31	Sph	58	38	2	0.58	Sph	143	103	4	
		Rb2O_ppm Pegmatite_RB012	39	121	69	0.11	0.30	Sph	58	33	1	0.59	Sph	113	103	3	
		Rb2O_ppm Pegmatite_RB013	19	96	79	0.11	0.29	Sph	58	36	1	0.60	Sph	113	103	2	
		S_ppm Pegmatite_RB001	33	115	67	0.11	0.37	Sph	102	61	5	0.52	Sph	221	130	9	
		S_ppm Pegmatite_RB002	38	113	79	0.11	0.32	Sph	72	94	3	0.57	Sph	120	120	6	_
		S_ppm Pegmatite_RB003	34	120	72	0.08	0.43	Sph	72	61	5	0.49	Sph	104	97	6	
		S_ppm Pegmatite_RB004	30	108	82	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	
		S_ppm Pegmatite_RB005	39	117	71	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	_
		S_ppm Pegmatite_RB006	39	117	65	0.11	0.37	Sph	58	32	3	0.52	Sph	145	108	5	-
		S_ppm Pegmatite_RB007	52	119	71	0.11	0.29	Sph	58	13	1	0.60	Sph	113	103	1	
		S_ppm Pegmatite_RB008	32	128	59	0.11	0.56	Sph	58	13	0	0.33	Sph	71	50	1	
		S_ppm Pegmatite_RB009	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	
		S_ppm Pegmatite_RB010	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6	
		S_ppm Pegmatite_RB011	36	127	57	0.11	0.31	Sph	58	38	2	0.58	Sph	143	103	4	1
		S_ppm Pegmatite_RB012	39	121	69	0.11	0.30	Sph	58	33	1	0.59	Sph	113	103	3	
		S_ppm Pegmatite_RB013 Ta2O5_ppm Pegmatite_RB001	33	96	79 67	0.11	0.29	Sph Sph	102	36 61	5	0.60	Sph Sph	113 221	103	9	
		Ta2O5_ppm Pegmatite_RB002	38	113	79	0.11	0.37	Sph	72	94	3	0.52	Sph	120	120	6	
		Ta2O5_ppm Pegmatite_RB003	34	120	72	0.08	0.43	Sph	72	61	5	0.49	Sph	104	97	6	
		Ta2O5_ppm Pegmatite_RB004	30	108	82	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	
		Ta2O5_ppm Pegmatite_RB005	39	117	71	0.11	0.30	Sph	38	13	1	0.59	Sph	122	67	6	
		Ta2O5_ppm Pegmatite_RB006	39	117	65	0.11	0.37	Sph	58	32	3	0.52	Sph	145	108	5	

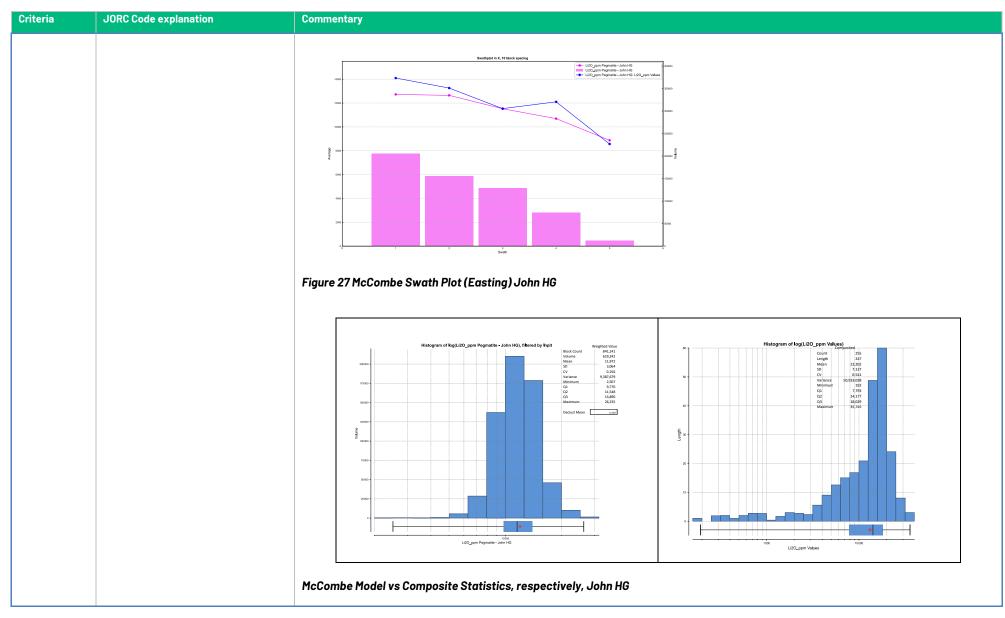
riteria JORC Code explanation	Commentary														
	Ta2O5_ppm													400	
	Pegmatite_RB007	52	119	71	0.11	0.29	Sph	58	13	1	0.60	Sph	113	103	1
	Ta2O5_ppm Pegmatite RB008	32	128	59	0.11	0.56	Sph	58	13	0	0.33	Sph	71	50	1
	Ta2O5_ppm	32	120	33	0.11	0.30	эрп	36	13	0	0.33	эрп	/1	30	
	Pegmatite_RB009	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6
	Ta2O5_ppm														
	Pegmatite_RB010	39	117	65	0.11	0.20	Sph	58	13	2	0.69	Sph	120	103	6
	Ta2O5_ppm	26	127	57	0.11	0.21	Sph	58	38	2	0.50	Cob	143	102	4
	Pegmatite_RB011 Ta2O5 ppm	36	127	57	0.11	0.31	Spii	36	30	2	0.58	Sph	143	103	4
	Pegmatite_RB012	39	121	69	0.11	0.30	Sph	58	33	1	0.59	Sph	113	103	3
	Ta2O5_ppm														
	Pegmatite_RB013	19	96	79	0.11	0.29	Sph	58	36	1	0.60	Sph	113	103	2
	■ The McCombe block McCombe pegmati ■ The Root Bay block ■ Blocks were sub bl ■ Edit Octree Block Model - McCombe Octree Block Grid Triggers and Evaluations ■ Blocks X Parent block size: 10 Sub-block count: 8 Minimum size: 1.25 Extents Base point: 590505.00 Boundary size: 1510.00 Azimuth: 0.00 Dip: 0.000 Pitch: 0.000 Size in blocks: 151 × 79 × 97 = 1,157,113	tes an operation of the state o	ptimal used 5r o ensur	block si mE x 10r	ze that simn x 5mF aithfully of 5 32 0.15625 \$ \$12.50 \$ 485.00	uited ead RL unrota	ch peg ated. I the pe	matite v	/as not p	ossible.					

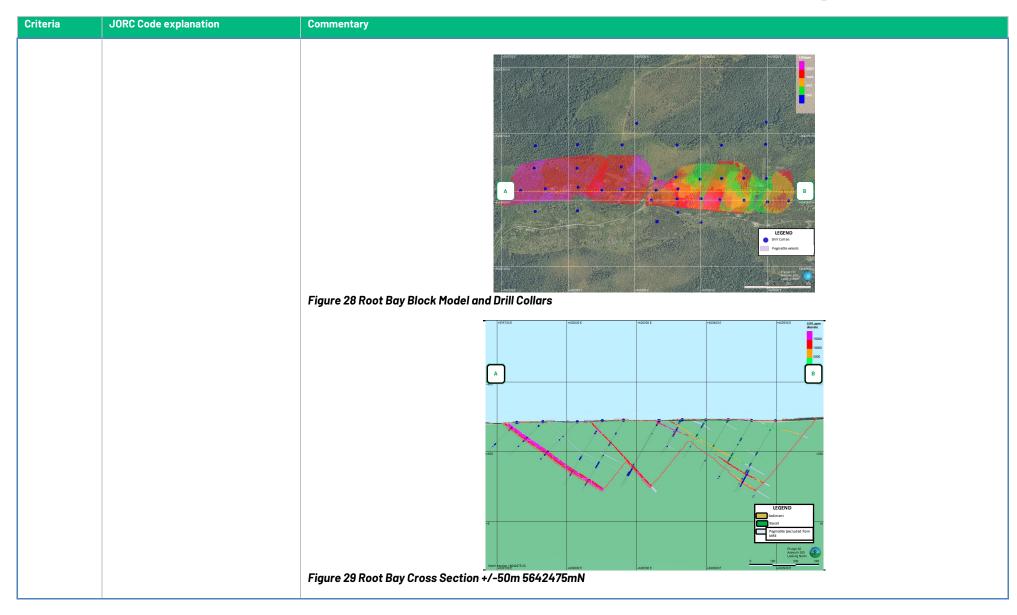


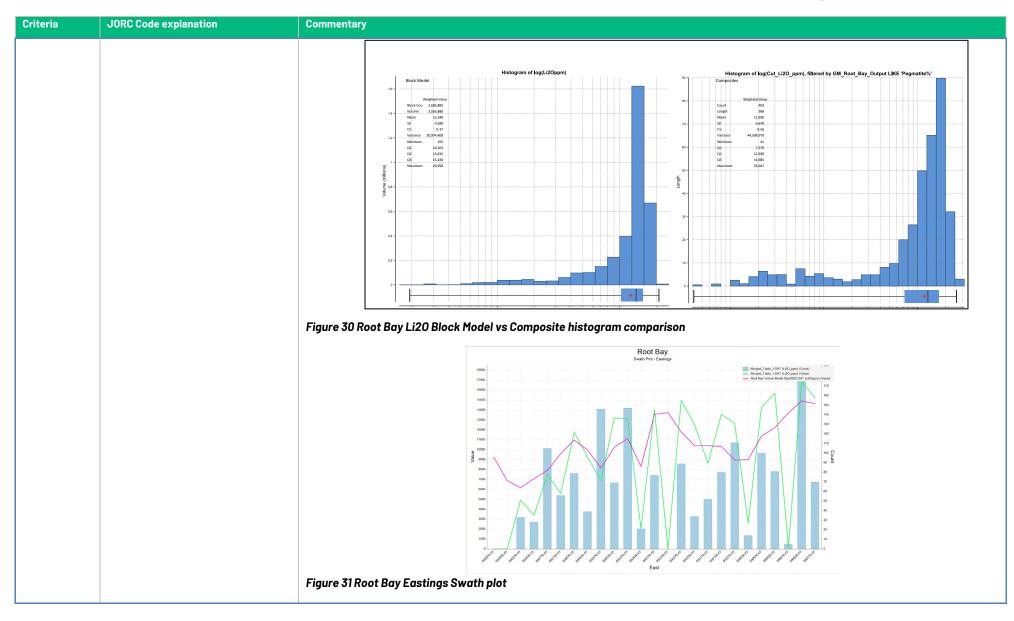
Criteria	JORC Code explanation	Commentary
		estimated. This final estimation run only accounted for 2% of the tonnes at McCombe within the pit optimisation shell. 98% of blocks within the constraining pit shell were estimated within the first estimation run. • Root Bay also used two searches the first at 100m x 100m x 20m and a second at 150m search radii with all blocks filled after the second pass. Root Bay used a smaller search radius due to its more predictable geometry. Table 0-15 - Proportion of MRE by Estimation Run
		Estimation Run % of Reported McCombe Total Tonnes
		Run 1 98%
		Run 2 2%
		Total 100%
		Bi-product and deleterious elements Reported within \$US4000 pit design above 0.2% Li ₂ O cut-off Deleterious elements reported to 2 significant figures
		Tonnes (Mt) 4.5
		Li ₂ O % 1.01
		Ta ₂ O ₅ ppm 106
		Fe ppm 8,500
		K ppm 18,000
		S ppm 160



Criteria	JORC Code explanation	Commentary
		Table 0-17 – Root Bay - Approximate figures for biproduct and deleterious elements
		Bi-product and deleterious elements Reported within \$US4000 pit design above 0.2% Li₂O cut-off Deleterious elements reported
		to 2 significant figures
		Tonnes (Mt) 8.1
		Li ₂ O % 1.32
		Ta ₂ O ₅ ppm 35
		Fe ppm 8,600
		K ppm 21,000
		S ppm 190
		 Validation Validation was carried out in several ways, including visual inspection in plan and cross-section comparing block estimates to composite values, Swath plots and model and composite statistical comparison.







Criteria	JORC Code explanation	Commentary
		No reconciliation data is available.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	Tonnages are estimated on a dry basis
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied. The basis of the adopted cut-off grade(s) or quality parameters.	The Mineral Resource is only the portion of the resource that is constrained within a US\$4,000 / t SC6 optimised shell and above a 0.2% Li ₂ 0 cut-off grade. The optimised open pit shell was generated using: S4/t mining cost S15.19/t processing costs Mining loss of 5% with no mining dilution S5 degree pit slope angles T5% Product Recovery
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 The June 2023 Mineral Resource Estimate is reported above 0.2% Li₂O cut-off. The cut-off is based on lowest potential grade at which a saleable product might be extracted using a conventional DMS and / or flotation plant and employing a TOMRA Xray sorter (or equivalent) on the plant feed. A number of pegmatites outcrop at surface thus the mineral resource is likely to be extracted using a conventional drill and blast, haul and dump mining fleet.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment	■ No metallurgical work has been carried on the Root Lake project mineralised pegmatites to date.

Criteria	JORC Code explanation	Commentary
	processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	Waste rock characterization work has not begun at the Root Lake project to date. Waste rock characterization work has not begun at the Root Lake project to date.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different 	 At McCombe 1,599 bulk density measurements were made by GT1 on ½ NQ core 20cm billets using water immersion (Archimedes) techniques. 217 of the measurements were directly on pegmatite core. 2 pegmatite measurements were rejected as being anomalously low, 1.3 and 1.96. GT1 also tested 2,993 bulk densities on Root Bay ½ NQ drill core with 890 measurements made directly on pegmatite core. Results were similar to those measured at McCombe.

Criteria	JORC Code explanation	Commentary				
	materials.	GT1's Bulk Density Apparatus McCombe Bulk Density results				
			Rock Type	e Lengtl	h Bulk Density	
			Pegmatite	e 94.58	2.70	
			Felsic	10.49	2.76	
			Sediment	238.39	3.03	
			Basalt	133.95	5 2.97	
			Overburder		2.20	
			* Estimate	ed		
		Table 18Root Bay Bulk Density results				
			Rock Type	Length	Bulk Density	
			Pegmatite	143.10	2.70	
			BIF	5.19	2.96	
			Sediment	116.46	2.77	
			Basalt	292.85	3.05	

Criteria	JORC Code explanation	Commentary
		Overburden* 0 2.20
		*Estimated
		 McCombe and Root Bay pegmatites bulk density measurements averaged 2.70. No bulk density data is available for the largely glacial cover over the deposit due to the difficulty in recovering this material in the drilling process. This material is volumetrically negligible ranging in depths from 0 to24m and averaging around 5m. An assumed bulk density of 2.2 was used for overburden. There is a weak to moderate correlation between bulk density and Li20 grade (Correlation Coefficient 58%) and so an assumed average pegmatite bulk density was used.
		56%, 45%, 45%, 36%, 36%, 36%, 36%, 36%, 36%, 36%, 36
		20% 10% 0% 2.5 2.55 2.0 2.65 2.7 2.75 2.8 2.85 2.9 2.85 3 SG (Pegmatite)
		McCombe Bulk Density Breakdown

Criteria	JORC Code explanation	Commentary										
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, 	Figure 32 Root The Mineral Rendered Re	esources models u nposites i the Miner	have been c ses a classi in search ell ral Resource	classified Infe fication sche lipsoid inform e Estimation I	rred based of me based up hing the block reflect the vision of the state of the sta	an drill spacing on drill holes k cell and ave	pacing plus b rage distance	lock estimat e of data to b	ion paramete	rs, including	
	reliability of input data, confidence in continuity of geology and metal				Indicated			Inferred			Total	
	values, quality, quantity and distribution of the data). Whether the result appropriately	Dep	posit	Tonnes (Mt)	Li ₂ O (%)	Ta₂O₅ (ppm)	Tonnes (Mt)	Li ₂ O (%)	Ta₂O₅ (ppm)	Tonnes (Mt)	Li ₂ O (%)	Ta₂O₅ (ppm)
	reflects the Competent Person's view of the deposit.	McCo	ombe	0	0	0	4.5	1.01	110	4.5	1.01	110
		Roo	t Bay	0	0	0	8.1	1.32	35	8.1	1.32	35
		То	otal	0	0	0	12.6	1.21	62	12.6	1.21	62
			Resource 2. Figures	es and Ore F s constraine	Reserves (JOF	RC 2012) 00 open pit s	hell and repo	2 Edition of the price of the p			porting of M	ineral

Criteria	JORC Code explanation	Commentary				
		Table 20 McCombe Grade Tonno	age Table			
				Mo	Combe	
			Cut Off Grade (%Li₂O	Tonnes (Mt)	Grade (% Li₂O)	
			0%	4.6	1.01	
			0.2%	4.5	1.01	
			0.4%	4.2	1.07	
			0.6%	3.6	1.15	
		Table 21 Root Bay Grade Tonnag	ge Table			
				Ro	oot Bay	
			Cut Off Grade (%Li₂O	Tonnes (Mt)	Grade (% Li ₂ O)	
			0%	8.4	1.28	
			0.2%	8.1	1.32	
			0.4%	7.8	1.36	
			0.6%	7.5	1.40	
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	No audits or reviews have been	undertaken by GT1			
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed	JORC Code. The statement relates to local es	·	eference made to	resources above a	ng in line with the guidelines of the 20 certain cut-off that are intended to a

Criteria	JORC Code explanation	Commentary
	appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	
	These statements of relative accuracy and confidence of the	
	estimate should be compared with production data, where available.	

Appendix B

Interpreted Downhole Intercepts

McCombe Geology Summary

HoleId	From	То	Interval	Lithology	Li2O ppm
RL-16-01A	0.0	5.0	5.0	Overburden	_
RL-16-01A	5.0	25.2	18.3	Extrusive	329
RL-16-01A	25.2	33.9	1.0	Pegmatite	12,515
RL-16-01A	33.9	75.0	37.2	Extrusive	125
RL-16-02	0.0	6.0	6.0	Overburden	-
RL-16-02	6.0	10.0	2.5	Extrusive	2,287
RL-16-02	10.0	21.4	0.9	Pegmatite	10,640
RL-16-02	21.4	26.5	3.5	Extrusive	1,693
RL-16-03	0.0	6.0	6.0	Overburden	-
RL-16-03	6.0	52.5	22.3	Extrusive	113
RL-16-03	52.5	61.5	1.0	Pegmatite	12,485
RL-16-03	61.5	72.0	8.7	Extrusive	215
RL-16-04	0.0	2.0	2.0	Overburden	-
RL-16-04	2.0	18.0	14.1	Extrusive	147
RL-16-04	18.0	32.0	0.9	Pegmatite	10,533
RL-16-04	32.0	41.0	7.2	Extrusive	121
RL-16-05	0.0	6.0	6.0	Overburden	-
RL-16-05	6.0	68.4	30.4	Extrusive	45
RL-16-05	68.4	76.1	0.9	Pegmatite	10,346
RL-16-05	76.1	80.0	2.5	Extrusive	596
RL-16-07	0.0	4.0	4.0	Overburden	-
RL-16-07	4.0	28.0	22.1	Extrusive	525
RL-16-07	28.0	35.3	1.1	Pegmatite	2,049
RL-16-07	35.3	41.0	5.7	Extrusive	-
RL-16-07	41.0	46.1	1.0	Pegmatite	11,391
RL-16-07	46.1	54.0	6.3	Extrusive	112
RL-22-001	0.0	2.3	2.1	Overburden	-
RL-22-001	2.3	11.8	2.8	Sediment	811
RL-22-001	11.8	24.2	0.9	Pegmatite	17,687
RL-22-001	24.2	60.0	2.9	Sediment	106
RL-22-002	0.0	11.3	11.3	Overburden	-
RL-22-002	11.3	42.2	0.7	Sediment	111
RL-22-002	42.2	57.5	0.7	Pegmatite	12,022
RL-22-002	57.5	72.0	0.6	Mafic	62
RL-22-003	0.0	5.7	5.7	Overburden	-
RL-22-003	5.7	72.0	2.9	Sediment	41
RL-22-003	72.0	83.5	1.0	Pegmatite	20,350
RL-22-003	83.5	102.0	2.6	Sediment	27
RL-22-004	0.0	3.0	3.0	Overburden	-
RL-22-004	3.0	12.3	0.6	Sediment	-
RL-22-004	12.3	17.8	0.9	Mafic	-
RL-22-004	17.8	80.3	0.7	Sediment	44
RL-22-004	80.3	80.5	0.2	Mafic	3,444
RL-22-004	80.5	87.4	0.7	Pegmatite	14,139
RL-22-004	87.4	144.0	0.6	Sediment	21
RL-22-005	0.0	3.5	1.8	Overburden	-
RL-22-005	3.5	90.8	2.9	Sediment	58
RL-22-005	90.8	100.7	0.8	Pegmatite	2,462
RL-22-005	100.7	106.5	1.6	Sediment	91
RL-22-005	106.5	135.8	2.7	Mafic	8
RL-22-005	135.8	136.7	0.8	Pegmatite	279
RL-22-005	136.7	147.0	2.4	Mafic	16
RL-22-006	0.0	5.0	4.6	Overburden	-

HoleId	From	То	Interval	Lithology	Li2O ppm
RL-22-006	5.0	21.7	0.6	Sediment	504
RL-22-006	21.7	31.2	0.8	Pegmatite	15,360
RL-22-006	31.2	72.8	0.7	Sediment	261
RL-22-006	72.8	75.5	0.8	Pegmatite	1,545
RL-22-006	75.5	120.0	0.7	Sediment	94
RL-22-007	0.0	5.0	5.0	Overburden	-
RL-22-007	5.0	64.9	2.9	Sediment	61
RL-22-007	64.9	74.7	0.9	Pegmatite	15,122
RL-22-007	74.7	117.0	2.8	Sediment	72
RL-22-008	0.0	15.8	12.5	Overburden	-
RL-22-008	15.8	71.5	0.7	Sediment	108
RL-22-008	71.5	80.3	0.8	Pegmatite	18,050
RL-22-008	80.3	87.3	0.7	Sediment	306
RL-22-008	87.3	87.3	0.1	Pegmatite	-
RL-22-008	87.3	91.3	0.6	Sediment	389
RL-22-008	91.3	92.1	0.3	Pegmatite	2,504
RL-22-008	92.1	162.0	0.6	Sediment	9
RL-22-009	0.0	1.2	1.2	Overburden	-
RL-22-009	1.2	33.0	2.9	Sediment	-
RL-22-009	33.0	84.4	3.0	Mafic	-
RL-22-009	84.4	91.7	2.2	Sediment	1,175
RL-22-009	91.7	99.4	0.9	Pegmatite	5,346
RL-22-009	99.4	123.0	2.8	Sediment	200
RL-22-009	123.0	130.5	2.7	Mafic	-
RL-22-009	130.5	186.0	3.0	Sediment	-
RL-22-010	0.0	9.0	3.2	Overburden	-
RL-22-010	9.0	107.8	0.6	Mafic	33
RL-22-010	107.8	114.7	0.8	Pegmatite	7,947
RL-22-010	114.7	135.1	0.7	Mafic	171
RL-22-010	135.1	135.7	0.6	Pegmatite	254
RL-22-010	135.7	150.0	0.6	Mafic	41
RL-22-011	0.0	9.0	7.5	Overburden	-
RL-22-011	9.0	97.1	2.9	Mafic	-
RL-22-011	97.1	130.6	2.8	Sediment	47
RL-22-011	130.6	132.4	0.7	Pegmatite	417
RL-22-011	132.4	180.0	2.9	Sediment	27
RL-22-012	0.0	0.3	0.3	Overburden	-
RL-22-012	0.3	111.0	2.9	Mafic	-
RL-22-013	0.0	5.2	5.2	Overburden	-
RL-22-013	5.2	64.0	2.8	Sediment	58
RL-22-013	64.0	72.0	0.7	Pegmatite	17,213
RL-22-013	72.0	132.0	2.8	Sediment	43
RL-22-014	0.0	3.9	1.7	Overburden	-
RL-22-014	3.9	36.2	0.7	Sediment	143
RL-22-014	36.2	38.9	0.6	Pegmatite	11,297
RL-22-014	38.9	55.5	0.7	Sediment	309
RL-22-014	55.5	75.0	0.7	Mafic	-
RL-22-014	75.0	102.0	1.3	Sediment	150
RL-22-014	102.0	110.4	0.7	Pegmatite	13,181
RL-22-014	110.4	129.0	2.5	Sediment	322
RL-22-015	0.0	10.9	10.8	Overburden	-
RL-22-015	10.9	28.9	2.3	Sediment	283
RL-22-015	28.9	42.3	0.8	Pegmatite	12,233
RL-22-015	42.3	92.0	2.8	Sediment	62
RL-22-015	92.0	93.0	1.0		-
RL-22-016A	0.0	8.1	8.1	Overburden	-
RL-22-016A	8.1	67.3	2.8	Sediment	224
RL-22-016A	67.3	73.6	0.9	Pegmatite	15,696
RL-22-016A	73.6	130.2	2.7	Sediment	326
RL-22-016A	130.2	133.8	0.6	Pegmatite	14,624
RL-22-016A	133.8	156.0	2.6	Mafic	284
RL-22-017	0.0	2.7	2.7	Overburden	-
RL-22-017	2.7	53.9	2.8	Mafic	253
	E2 0	60.0	0.8	Pegmatite	12,856
RL-22-017	53.9	00.0	0.0	i eginatite	12,030

HoleId	From	То	Interval	Lithology	Li2O ppm
RL-22-017	91.8	120.0	2.9	Sediment	-
RL-22-018	0.0	17.3	17.3	Overburden	-
RL-22-018	17.3	51.8	0.7	Mafic	144
RL-22-018	51.8	64.5	0.9	Pegmatite	11,320
RL-22-018	64.5	90.0	0.8	Sediment	127
RL-22-019	0.0	23.1	2.6	Mafic	264
RL-22-019	23.1	26.7	0.9	Pegmatite	10,749
RL-22-019	26.7	120.0	2.9	Sediment	82
RL-22-020	0.0	5.1	4.9	Overburden	-
RL-22-020	5.1	78.0	0.7	Sediment	69
RL-22-020	78.0	82.8	0.8	Pegmatite	11,786
RL-22-020	82.8	150.0	0.7	Sediment	35
RL-22-021	0.0	4.0	4.0	Overburden	-
RL-22-021	4.0	111.3	0.7	Mafic	26
RL-22-021	111.3	118.7	0.9	Pegmatite	8,362
RL-22-021	118.7	150.0	0.7	Mafic	240
RL-22-022	0.0	3.5	3.5	Overburden	
RL-22-022	3.5	47.4	2.7	Mafic	12.479
RL-22-022	47.4	61.4	0.8	Pegmatite	13,478
RL-22-022 RL-22-022	61.4 150.0	150.0 152.3	2.9	Mafic	34
RL-22-022 RL-22-023	0.0	3.3	3.3	Overburden	-
	3.3	12.4	1.8	Sediment	
RL-22-023 RL-22-023	12.4	25.5	0.8		648 13,873
RL-22-023	25.5	76.6	2.7	Pegmatite Sediment	13,873
RL-22-023	76.6	78.3	1.2	Felsic	142
RL-22-023	78.3	108.4	2.9	Sediment	-
RL-22-023	108.4	111.5	2.9	Felsic	
RL-22-023	111.5	120.0	2.8	Sediment	
RL-22-023	120.0	189.0	69.0	Sediment	
RL-22-025	0.0	3.0	3.0	Overburden	
RL-22-025	3.0	29.8	2.4	Mafic	44
RL-22-025	29.8	30.1	0.2	Amphibolite	4,779
RL-22-025	30.1	37.8	0.9	Pegmatite	10,533
RL-22-025	37.8	47.8	0.9	Mafic	2,569
RL-22-025	47.8	49.7	0.8	Pegmatite	4,787
RL-22-025	49.7	71.0	2.5	Mafic	243
RL-22-025	71.0	103.0	2.9	Sediment	_
RL-22-025	103.0	104.0	1.0	Felsic	-
RL-22-025	104.0	137.8	2.9	Mafic	-
RL-22-025	137.8	141.0	2.8	Felsic	-
RL-22-027	0.0	3.4	3.4	Overburden	-
RL-22-027	3.4	4.2	0.8	Pegmatite	2,777
RL-22-027	4.2	4.7	0.5	Sediment	5,339
RL-22-027	4.7	15.6	0.9	Pegmatite	15,314
RL-22-027	15.6	26.0	0.8	Mafic	878
RL-22-027	26.0	27.0	1.0	Felsic	932
RL-22-027	27.0	64.5	2.8	Mafic	8
RL-22-027	64.5	66.0	1.5	Felsic	
RL-22-027	66.0	78.4	2.9	Mafic	_
RL-22-027	78.4	80.2	1.8	Felsic	-
RL-22-027	80.2	88.2	2.5	Mafic	-
RL-22-027	88.2	89.0	0.9	Felsic	-
RL-22-027	89.0	90.9	1.0	Mafic	-
RL-22-027	90.9	93.6	1.8	Felsic	-
RL-22-027	93.6	108.0	2.9	Mafic	-
RL-22-029	0.0	6.4	6.4	Overburden	-
	6.4	9.1	2.5	Mafic	-
RL-22-029		19.7	2.8	Felsic	-
RL-22-029 RL-22-029	9.1			Mafic	-
	9.1	30.9	2.4	IVIATIC	_
RL-22-029			1.2	Felsic	-
RL-22-029 RL-22-029	19.7	30.9			-
RL-22-029 RL-22-029 RL-22-029	19.7 30.9	30.9 32.1	1.2	Felsic	-
RL-22-029 RL-22-029 RL-22-029 RL-22-029	19.7 30.9 32.1	30.9 32.1 75.0	1.2 3.0	Felsic Mafic	- - - 365

HoleId	From	То	Interval	Lithology	Li2O ppm
RL-22-029	92.9	94.4	0.7	Mafic	2,711
RL-22-029	94.4	95.6	0.6	Felsic	3,863
RL-22-029	95.6	106.4	1.7	Mafic	443
RL-22-029	106.4	112.3	0.8	Pegmatite	10,858
RL-22-029	112.3	141.5	2.6	Felsic	241
RL-22-029	141.5	151.8	2.7	Mafic	-
RL-22-029	151.8	156.1	2.4	Felsic	-
RL-22-029	156.1	210.0	3.0	Mafic	-
RL-22-029	210.0	226.7	16.7		-
RL-22-032	0.0	6.0	6.0	Overburden	-
RL-22-032	6.0	141.0	3.0	Mafic	-
RL-22-033	0.0	2.9	2.9	Overburden	-
RL-22-033	2.9	8.0	0.8	Pegmatite	14,141
RL-22-033	8.0	162.0	2.9	Mafic	7
RL-22-035	0.0	3.2	3.2	Overburden	-
RL-22-035	3.2	66.5	2.8	Mafic	32
RL-22-035	66.5	79.2	1.0	Pegmatite	12,758
RL-22-035	79.2	162.0	2.9	Mafic	23
RL-22-037	0.0	2.0	2.0	Overburden	- 402
RL-22-037	2.0	40.1	2.7	Sediment	193
RL-22-037	40.1	43.9	0.9	Pegmatite	8,210
RL-22-037	43.9	97.8	2.8	Sediment	196
RL-22-037	97.8	138.0	2.9	Mafic	-
RL-22-037	138.0	153.4	2.9	Sediment	-
RL-22-037	153.4	180.0	3.0	Mafic	-
RL-22-038	0.0	15.0	15.0	Overburden	-
RL-22-038	15.0	69.9	0.7	Sediment	-
RL-22-038	69.9	73.4	0.6	Felsic	- 096
RL-22-038	73.4	81.5	0.8	Sediment	986
RL-22-038 RL-22-038	81.5 90.0	90.0 141.0	0.8	Pegmatite Mafic	11,820 149
RL-22-038	0.0	6.0	6.0	Overburden	149
					-
RL-22-039 RL-22-039	6.0 16.1	16.1 34.8	2.8	Sediment Mafic	-
RL-22-039	34.8	60.6	2.9	Sediment	_
RL-22-039	60.6	71.2	2.7	Mafic	_
RL-22-039	71.2	80.2	2.6	Sediment	_
RL-22-039	80.2	111.6	2.6	Mafic	93
RL-22-039	111.6	112.8	0.6	Pegmatite	69
RL-22-039	112.8	127.0	2.3	Mafic	182
RL-22-039	127.0	136.5	2.6	Sediment	-
RL-22-039	136.5	137.8	1.2	Mafic	_
RL-22-039	137.8	200.0	3.0	Sediment	_
RL-22-039	200.0	201.0	1.0	Mafic	_
RL-22-040	0.0	15.0	15.0	Overburden	_
RL-22-040	15.0	99.5	2.9	Mafic	20
RL-22-040	99.5	107.8	1.1	Pegmatite	4,917
RL-22-040	107.8	117.5	1.8	Sediment	2,899
RL-22-040	117.5	126.0	2.9	Mafic	-,555
RL-22-041	0.0	8.4	8.4	Overburden	_
RL-22-041	8.4	87.6	3.0	Sediment	_
RL-22-041	87.6	98.1	1.9	Mafic	1,077
RL-22-041	98.1	114.0	1.0	Pegmatite	10,714
RL-22-041	114.0	138.6	2.5	Sediment	145
RL-22-041	138.6	201.0	3.0	Mafic	-
RL-22-041	201.0	210.0	9.0	-	-
	0.0	7.9	7.9	Overburden	-
RL-22-042			2.9	Sediment	-
RL-22-042 RL-22-042	7.9	41.5 I	5		+
RL-22-042	7.9 41.5	41.5 156.0	3.0	Mafic	-
RL-22-042 RL-22-042	41.5	156.0	3.0 2.4	Mafic Overburden	-
RL-22-042 RL-22-042 RL-22-043	41.5 0.0	156.0 2.4	2.4	Overburden	-
RL-22-042 RL-22-042 RL-22-043 RL-22-043	41.5 0.0 2.4	156.0 2.4 141.0	2.4 3.0	Overburden Mafic	-
RL-22-042 RL-22-042 RL-22-043 RL-22-043 RL-22-045	41.5 0.0 2.4 0.0	156.0 2.4 141.0 3.0	2.4 3.0 3.0	Overburden Mafic Overburden	-
RL-22-042 RL-22-042 RL-22-043 RL-22-043	41.5 0.0 2.4	156.0 2.4 141.0	2.4 3.0	Overburden Mafic	-

RL-22-047 0.0 5.5		Lithology	Li2O ppm
	5.9	Overburden	_
RL-22-047 5.9 148.		Sediment	_
RL-22-047 148.4 178.		Mafic	-
RL-22-047 178.5 204.		Sediment	86
RL-22-387 0.0 11.	11.4	Overburden	-
RL-22-387 11.4 31.	3 2.4	Mafic	307
RL-22-387 31.8 41.	5 0.9	Pegmatite	11,540
RL-22-387 41.5 123.	0 2.9	Mafic	23
RL-22-461 0.0 4.:	3 4.8	Overburden	-
RL-22-461 4.8 5.	5 0.7	Mafic	-
RL-22-461 5.5 8.4	1 0.8	Pegmatite	7,725
RL-22-461 8.4 107.	0 2.9	Mafic	81
RL-22-475 0.0 5.	5.5	Overburden	-
RL-22-475 5.5 28.	3 2.9	sediment	-
RL-22-475 28.3 43.		mafic	-
RL-22-475 43.0 53.		Sediment	-
RL-22-475 53.2 99.	1	Mafic	-
RL-22-475 99.1 109.		Sediment	-
RL-22-475 109.7 120.		Mafic	-
RL-22-490 0.0 3.0		Overburden	- 405
RL-22-490 3.0 61.		Mafic	105
RL-22-490 61.7 66.		Pegmatite	11,799
RL-22-490 66.0 122.		Mafic	123
RL-22-490 122.3 124.		Felsic	-
RL-22-490 124.5 162.		Mafic	-
RL-22-490 162.0 176.		Shear	-
RL-22-490 176.5 191. RL-22-490 191.2 195.		Mafic Felsic	<u> </u>
RL-22-490 191.2 193. RL-22-490 195.0 198.		Shear	
RL-22-490 198.5 201.		Felsic	
RL-22-497 0.0 12.		Overburden	_
RL-22-497 12.4 19.		Mafic	_
RL-22-497 19.6 25.		Felsic	_
RL-22-497 25.5 124.		Mafic	-
RL-22-499 0.0 14.		Overburden	-
RL-22-499 14.8 90.	5 2.9	Mafic	20
RL-22-499 90.6 97.	7 1.0	Pegmatite	13,050
RL-22-499 97.7 114.	0 2.5	Sediment	416
RL-22-499 114.0 120.	0 6.0		-
RL-22-501 0.0 9.0	9.0	Overburden	-
RL-22-501 9.0 53.	7 2.8	Sediment	59
RL-22-501 53.7 53.	9 0.2	Pegmatite	1,386
RL-22-501 53.9 56.	3 0.9	Sediment	1,709
RL-22-501 56.3 62.	1 0.7	Pegmatite	12,339
RL-22-501 62.1 150.		Sediment	72
RL-22-501 150.4 155.		Pegmatite	5,143
RL-22-501 155.0 171.		Sediment	229
RL-22-501 171.2 181.		Felsic	-
RL-22-501 181.2 201.		Mafic	-
RL-22-505 0.0 5.9		Overburden	-
RL-22-505 5.9 12.		Felsic	- 70
RL-22-505 12.0 118. RL-22-505 118.8 123.		Mafic	11 204
		Pegmatite	11,294 122
RL-22-505 123.2 169. RL-22-505 169.3 170.		Mafic Felsic	
RL-22-505 170.4 210.		Mafic	-
RL-22-503 170.4 210. RL-22-521 0.0 7.4		Overburden	-
RL-22-521 0.0 7.4 15.		Sediment	263
RL-22-521 15.2 16.		Pegmatite	415
RL-22-521 16.3 58.		Mafic	42
		Felsic	-
RL-22-521 58.1 59.			
RL-22-521 58.1 59. RL-22-521 59.0 66.	1 2.7	Mafic	-
		Mafic Sediment	-
RL-22-521 59.0 66.	2 2.9		

HoleId	From	То	Interval	Lithology	Li2O ppm
RL-22-521	136.7	147.8	2.6	Felsic	-
RL-22-521	147.8	151.1	1.9	Mafic	-
RL-22-521	151.1	160.9	2.6	Felsic	-
RL-22-521	160.9	180.0	2.9	Mafic	-
RL-22-522	0.0	10.5	10.5	Overburden	-
RL-22-522 RL-22-522	10.5 44.2	44.2 44.3	2.7 0.1	Sediment Pegmatite	7 243
RL-22-522	44.3	50.1	1.7	Sediment	54
RL-22-522	50.1	53.4	1.1	Felsic	108
RL-22-522	53.4	53.6	0.2	Pegmatite	327
RL-22-522	53.6	56.8	1.6	Felsic	120
RL-22-522	56.8	67.7	2.6	Sediment	11
RL-22-522	67.7	67.8	0.1	Pegmatite	157
RL-22-522	67.8	69.8	1.0	Sediment	180
RL-22-522	69.8	131.6	3.0	Felsic	-
RL-22-522	131.6	140.9	2.8	Sediment	-
RL-22-522	140.9	147.4	2.3	Felsic	-
RL-22-522	147.4	153.4	2.7	Sediment	-
RL-22-522	153.4	154.7	1.3	Felsic	-
RL-22-522	154.7	175.6	2.8	Sediment	-
RL-22-522	175.6	177.1	1.3	Felsic	-
RL-22-522 RL-22-522	177.1 192.5	192.5	2.9 0.6	Sediment Felsic	-
RL-22-522 RL-22-522	193.1	193.1 201.0	2.7	Sediment	-
RL-22-524	0.0	6.0	6.0	Overburden	_
RL-22-524	6.0	105.0	3.0	Sediment	_
RL-22-524	105.0	180.0	2.8	Felsic	51
RL-22-524	180.0	201.0	3.0	Sediment	-
RL-22-525	0.0	4.5	4.5	Overburden	-
RL-22-525	4.5	56.7	2.9	sediment	-
RL-22-525	56.7	58.9	1.6	Felsic	-
RL-22-525	58.9	94.6	2.8	Sediment	-
RL-22-525	94.6	97.5	1.4	Felsic	-
RL-22-525	97.5	102.5	1.5	Sediment	-
RL-22-525	102.5	108.5	2.6	Felsic	-
RL-22-525	108.5	112.9	2.3	Sediment	-
RL-22-525 RL-22-525	112.9 114.6	114.6 116.4	1.0	Felsic	-
RL-22-525	116.4	110.4	2.1	sediment Felsic	-
RL-22-525	119.4	136.2	2.8	sediment	_
RL-22-525	136.2	137.0	0.7	Felsic	-
RL-22-525	137.0	138.6	0.9	sediment	-
RL-22-525	138.6	139.5	0.9	Felsic	-
RL-22-525	139.5	198.6	2.9	sediment	-
RL-22-525	198.6	200.1	1.5	Felsic	-
RL-22-525	200.1	208.3	2.5	sediment	-
RL-22-525	208.3	211.4	1.6	Felsic	-
RL-22-525	211.4	225.0	2.6	sediment	-
RL-22-526	0.0	8.9	8.9	Overburden	-
RL-22-526	8.9	12.3	2.9	Sediment	-
RL-22-526	12.3	18.2	2.8	Felsic	-
RL-22-526	18.2	21.1	2.7	Sediment	-
RL-22-526 RL-22-526	21.1	21.8 39.7	0.7 2.8	Felsic	-
RL-22-526 RL-22-526	39.7	42.8	1.9	Sediment Felsic	-
RL-22-526	42.8	58.0	2.8	Sediment	_
RL-22-526	58.0	61.6	1.8	Felsic	-
RL-22-526	61.6	82.3	2.8	Sediment	-
RL-22-526	82.3	86.3	2.0	Felsic	-
RL-22-526	86.3	120.4	2.7	Sediment	356
RL-22-526	120.4	122.5	0.8	Pegmatite	736
RL-22-526	122.5	171.8	2.8	Sediment	84
RL-22-526	171.8	172.0	0.2	Pegmatite	159
RL-22-526	172.0	180.0	2.5	Sediment	5
RL-22-527	0.0	3.0	3.0	Overburden	-

HoleId	From	То	Interval	Lithology	Li2O ppm
RL-22-527	3.0	9.5	2.8	Sediment	-
RL-22-527	9.5	10.4	0.8	Felsic	-
RL-22-527	10.4	18.9	2.5	Sediment	-
RL-22-527	18.9	20.8	1.9	Felsic	-
RL-22-527	20.8	22.8	1.6	Sediment	-
RL-22-527	22.8	24.1	1.1	Felsic	-
RL-22-527 RL-22-527	24.1 32.2	32.2 33.0	2.7 0.8	Sediment Lost Core	-
RL-22-527	33.0	42.4	2.9	Sediment	_
RL-22-527	42.4	50.5	2.7	Felsic	-
RL-22-527	50.5	58.8	2.6	Sediment	-
RL-22-527	58.8	68.3	2.6	Felsic	-
RL-22-527	68.3	83.5	2.8	Sediment	-
RL-22-527	83.5	83.8	0.3	Lost Core	-
RL-22-527	83.8	87.4	2.6	Sediment	-
RL-22-527	87.4	88.2	0.8	Lost Core	-
RL-22-527	88.2	130.1	2.9	Sediment	-
RL-22-527	130.1	151.8	2.8	Mafic	-
RL-22-527	151.8	153.0	1.2	Lost Core	-
RL-22-527	153.0	165.1	3.0	Mafic	-
RL-22-527	165.1	169.9	2.5	Sediment	-
RL-22-527	169.9	170.4	0.5	Mafic	-
RL-22-527	170.4	174.8	2.3	Sediment	- 21
RL-22-527 RL-22-527	174.8 192.6	192.6 193.3	2.7 0.7	Felsic	21 114
RL-22-527	193.3	200.1	1.8	Pegmatite Felsic	94
RL-22-527	200.1	200.1	0.1	Pegmatite	267
RL-22-527	200.2	230.9	2.9	Felsic	11
RL-22-527	230.9	236.8	2.9	Sediment	-
RL-22-527	236.8	241.0	2.4	Mafic	-
RL-22-527	241.0	249.0	2.8	Sediment	-
RL-22-528	0.0	3.0	3.0	Overburden	-
RL-22-528	3.0	125.0	3.0	Sediment	-
RL-22-528	125.0	201.0	3.0	Mafic	-
RL-22-529	0.0	3.9	3.9	Overburden	-
RL-22-529	3.9	73.9	2.8	Mafic	106
RL-22-529	73.9	80.4	0.9	Pegmatite	2,304
RL-22-529	80.4	142.5	2.7	Mafic	65
RL-22-529	142.5	144.0	1.5	Lost Core	-
RL-22-529	144.0	150.0	3.0	Mafic	-
RL-22-530	0.0	9.0	9.0	Overburden	- 10
RL-22-530	9.0	46.7	2.9 0.2	Mafic	18
RL-22-530 RL-22-530	46.7 47.0	47.0 51.7	2.2	Pegmatite Mafic	618 316
RL-22-530	51.7	52.2	0.5	Pegmatite	263
RL-22-530	52.2	56.7	1.2	Mafic	399
RL-22-530	56.7	57.0	0.3	Pegmatite	553
RL-22-530	57.0	62.2	1.3	Mafic	673
RL-22-530	62.2	64.0	0.5	Felsic	1,759
RL-22-530	64.0	64.5	0.5	Mafic	3,853
RL-22-530	64.5	67.7	0.8	Pegmatite	223
RL-22-530	67.7	106.2	2.7	Mafic	287
RL-22-530	106.2	111.4	2.4	Felsic	-
RL-22-530	111.4	150.0	3.0	Mafic	-
RL-22-531	0.0	6.1	6.1	Overburden	-
RL-22-531	6.1	9.2	2.7	Mafic	-
RL-22-531	9.2	22.6	2.2	Felsic	194
RL-22-531	22.6	28.8	0.8	Pegmatite	13,215
RL-22-531	28.8	104.5	2.9	Felsic Mafic	62
RL-22-531 RL-22-531	104.5 131.9	131.9 150.0	2.9 3.0	Mafic Felsic	-
RL-22-531 RL-22-532	0.0	90.1	3.0	Mafic	40
RL-22-532 RL-22-532	90.1	101.8	0.3	Pegmatite	9,120
RL-22-532	101.8	113.0	0.3	Sediment	5,477
RL-22-532	113.0	133.7	0.3	Pegmatite	10,842
552		200.7	0.5	0	20,072

HoleId	From	То	Interval	Lithology	Li2O ppm
RL-22-532	133.7	156.0	1.7	Sediment	3,270
RL-22-532	156.0	176.8	0.4	Pegmatite	8,344
RL-22-532	176.8	231.0	2.8	Mafic	121
RL-22-533	0.0	5.6	5.6	Overburden	-
RL-22-533	5.6	63.0	3.0	Sediment	-
RL-22-533	63.0	87.3	3.0	Felsic	-
RL-22-533	87.3	111.8	2.9	Mafic	-
RL-22-533	111.8	118.2	2.4	Felsic	-
RL-22-533	118.2	153.0	2.7	Mafic	182
RL-22-533	153.0	162.6	1.0	Pegmatite	6,046
RL-22-533	162.6	201.0	2.8	Mafic	297
RL-22-533	201.0	204.0	3.0		-
RL-22-534	0.0	6.0	6.0	Overburden	-
RL-22-534	6.0	117.0	2.8	Mafic	178
RL-22-534	117.0	120.5	0.8	Pegmatite	9,279
RL-22-534	120.5	136.8	2.2	Felsic	252
RL-22-534	136.8	201.0	3.0	Mafic	-
RL-22-535	0.0	3.2	3.2	Overburden	-
RL-22-535	3.2	3.7	0.5	Mafic	-
RL-22-535	3.7	4.5	0.9	Felsic	_
RL-22-535	4.5	15.3	2.7	Mafic	_
RL-22-535	15.3	16.8	1.5	Felsic	_
RL-22-535	16.8	30.8	2.1	Mafic	292
RL-22-535	30.8	36.3	0.3	Pegmatite	10,055
RL-22-535	36.3	142.8	2.8	Mafic	38
RL-22-535	142.8	144.0	1.2	Felsic	37
RL-22-535	144.0	150.0	2.0	Mafic	57
RL-22-536	0.0	6.3	6.3	Overburden	
RL-22-536	6.3	91.9	2.9	Felsic	301
RL-22-536	91.9	96.1	0.9	Pegmatite	2,267
RL-22-536	96.1	127.6	2.6	Felsic	123
RL-22-536	127.6	138.8	2.6	Mafic	123
RL-22-536	138.8	162.2	2.9	Felsic	_
RL-22-536	162.2	176.7	2.9	Mafic	_
RL-22-536	176.7	180.0	2.8	Felsic	_
RL-22-537	0.0	6.3	6.3	Overburden	_
RL-22-537	6.3	172.4	2.9	Mafic	91
RL-22-537	172.4	175.9	0.9	Pegmatite	11,330
RL-22-537	175.9	201.0	2.7	Mafic	158
RL-22-537	0.0	7.2	7.2	Overburden	- 136
RL-22-538	7.2	28.2	2.8	Sediment	_
RL-22-538	28.2	38.2	1.8	Felsic	1 102
RL-22-538	38.2	42.8	0.7	Pegmatite	1,193 9,192
RL-22-538	42.8	102.0	2.8	Sediment	48
		6.0	6.0		40
RL-22-539 RL-22-539	0.0 6.0	53.2	2.8	Overburden Sediment	258
	53.2				
RL-22-539		55.4	0.7	Pegmatite Sediment	2,947
RL-22-539 RL-22-539	55.4 59.2	59.2 75.1	0.9 2.9	Felsic	1,446 37
	75.1	117.0		Sediment	3/
RL-22-539 RL-22-540			3.0		_
RL-22-540 RL-22-540	0.0	3.0 32.6	3.0 2.7	Overburden	- 51
	3.0		0.9	Felsic	6 710
RL-22-540	32.6	39.1		Pegmatite	6,719
RL-22-540	39.1	150.0	2.7	Felsic	35
RL-22-541	0.0	10.0	9.2	Overburden	
RL-22-541	10.0	79.5	2.8	Felsic	10.105
RL-22-541	79.5	83.8	0.9	Pegmatite	10,195
RL-22-541	83.8	180.0	2.9	Felsic	47
RL-22-542	0.0	7.9	7.9	Overburden	-
RL-22-542	7.9	51.5	2.9	Sediment	-
RL-22-542	51.5	114.9	2.9	Mafic	8
RL-22-542	114.9	115.9	1.0	Pegmatite	194
RL-22-542	115.9	146.9	2.4	Mafic	159
RL-22-542	146.9	151.1	0.9	Pegmatite	1,907
RL-22-542	151.1	210.7	2.8	Sediment	112

HoleId	From	То	Interval	Lithology	Li2O ppm
RL-22-542	210.7	212.0	1.3	Mafic	-
RL-22-542	212.0	219.0	2.7	Sediment	-
RL-22-542	219.0	252.0	3.0	Mafic	-
RL-22-543	0.0	7.7	7.7	Overburden	-
RL-22-543	7.7	57.4	2.9	Sediment	-
RL-22-543	57.4	61.4	2.2	Felsic	-
RL-22-543 RL-22-543	61.4 137.6	137.6 139.3	0.4	Sediment Pegmatite	281
RL-22-543	139.3	187.5	2.7	Mafic	528
RL-22-543	187.5	195.5	1.0	Pegmatite	8,387
RL-22-543	195.5	249.0	2.8	Mafic	149
RL-22-543	249.0	252.0	3.0		-
RL-22-547	0.0	4.5	4.5	Overburden	-
RL-22-547	4.5	45.5	2.9	Sediment	-
RL-22-547	45.5	57.3	2.8	Felsic	-
RL-22-547	57.3	67.0	2.7	Sediment	-
RL-22-547	67.0	79.9	2.7	Felsic	-
RL-22-547	79.9	92.3	2.7	Sediment	-
RL-22-547	92.3	126.0	3.0	Felsic	-
RL-22-548	0.0	3.0	3.0	Overburden	-
RL-22-548	3.0	6.7	2.6	Mafic	-
RL-22-548	6.7	14.0	2.5	Felsic	-
RL-22-548	14.0	64.8	2.9	Mafic	- 404
RL-22-548 RL-22-548	64.8 70.0	70.0 74.0	1.1 0.7	Felsic Pegmatite	481 4,352
RL-22-548	74.0	96.8	2.6	Felsic	99
RL-22-548	96.8	131.1	2.8	Mafic	4
RL-22-548	131.1	132.5	0.8	Pegmatite	38
RL-22-548	132.5	163.3	2.5	Mafic	25
RL-22-548	163.3	167.3	0.8	Pegmatite	30
RL-22-548	167.3	192.0	2.7	Mafic	9
RL-22-549	0.0	9.0	9.0	Overburden	-
RL-22-549	9.0	124.3	2.9	Felsic	63
RL-22-549	124.3	128.6	0.9	Pegmatite	9,380
RL-22-549	128.6	220.9	2.9	Felsic	47
RL-22-549	220.9	249.0	2.9		-
RL-22-550	0.0	3.6	3.6	Overburden	-
RL-22-550	3.6	97.5	2.9	Felsic	25
RL-22-550	97.5	101.7	0.7	Pegmatite	9,272
RL-22-550	101.7	150.0	2.7	Felsic Overburden	59
RL-22-551 RL-22-551	7.7	7.7 35.6	7.7 2.9	Sediment	_
RL-22-551	35.6	39.5	2.4	Felsic	_
RL-22-551	39.5	99.7	3.0	Sediment	-
RL-22-551	99.7	102.2	2.1	Felsic	-
RL-22-551	102.2	126.0	3.0	Sediment	-
RL-23-452	0.0	6.0	6.0	Overburden	-
RL-23-452	6.0	10.2	1.1	Mafic	2,321
RL-23-452	10.2	22.8	1.0	Pegmatite	16,087
RL-23-452	22.8	90.3	2.7	Mafic	137
RL-23-452	90.3	104.1	2.8	Sediment	-
RL-23-452	104.1	137.7	2.7	Mafic	279
RL-23-452	137.7	149.1	0.8	Pegmatite	13,205
RL-23-452	149.1	201.0	2.8	Sediment	51
RL-23-454	0.0	24.0	24.0	Overburden	167
RL-23-454 RL-23-454	24.0 71.3	71.3 77.7	2.8 0.9	Mafic Pegmatite	167 15,329
RL-23-454 RL-23-454	77.7	180.0	2.9	Mafic	15,329
RL-23-434 RL-23-480	0.0	16.1	14.0	Overburden	44
RL-23-480	16.1	27.3	0.3	Pegmatite	8,424
RL-23-480	27.3	92.1	2.8	Mafic	41
RL-23-480	92.1	100.8	2.5	Felsic	-
RL-23-480	100.8	159.9	2.9	Mafic	-
RL-23-480	159.9	172.9	1.9	Felsic	342

RL-23-480	Holold	From	To	Interval	Lithology	Li2O nnm
RL-23-644	HoleId	From	То	Interval	Lithology	Li2O ppm
RL-23-544 0.0 2.0 2.0 Overburden						1,177
RL-23-544						-
RI-23-544A 0.0						-
RL-23-544A 2.0 159.4 2.9 mafic 21 RL-23-544A 159.4 162.8 0.9 Pegmatite 15.467 RL-23-544 162.8 225.0 2.7 Mafic 54 RL-23-545 1.9 70.3 2.9 Mafic						-
RL-23-544A 159.4 162.8 225.0 2.7 Mafic 54 RL-23-545 0.0 1.9 1.9 Overburden RL-23-545 1.9 70.3 2.9 Mafic RL-23-545 70.3 83.3 1.0 Pegmatite 6,739 RL-23-545 159.0 160.1 0.9 Pegmatite 145 RL-23-545 159.0 160.1 0.9 Pegmatite 145 RL-23-546 0.0 3.0 3.0 Overburden RL-23-546 3.0 62.6 3.0 Mafic RL-23-546 60.1 225.0 2.8 Mafic 14 RL-23-546 60.1 225.0 2.8 Mafic RL-23-546 60.1 62.6 3.0 Mafic RL-23-546 67.8 149.4 2.8 Mafic 26 RL-23-546 67.8 149.4 2.8 Mafic 26 RL-23-546 162.1 152.3 0.8 Pegmatite 17,202 RL-23-553 3.6 31.5 2.9 Felsic RL-23-553 3.1 80.0 2.5 Felsic RL-23-553 80.0 85.0 1.0 Pegmatite 170 RL-23-553 85.0 87.7 0.9 Sediment 819 RL-23-553 89.6 120.0 2.7 Felsic 66 RL-23-554 18.5 20.9 2.5 Mafic RL-23-554 31.6 39.9 0.9 Pegmatite 183 RL-23-554 31.6 39.9 0.9 Pegmatite 5.61 RL-23-554 31.6 39.9 0.9 Pegmatite 5.61 RL-23-554 31.6 39.9 0.9 Pegmatite 5.61 RL-23-555 4.5 68.8 2.9 Mafic RL-23-555 4.5 68.8 2.9 Mafic RL-23-556 3.3 5.0 2.5 Sediment 5.1 RL-23-557 3.0 3.0 3.0 Overburden RL-23-558 3.0 3.0 3.0 Overburden RL-23-556 5.0 5.8 3.0 0.9 Pegmatite 5.615						- 24
RI-23-544A 162.8 225.0 2.7 Mafic 54 RI-23-545 0.0 1.9 1.9 Overburden						
RL-23-545 0.0 1.9 1.9 Overburden						·
RL-23-545 1.9						54
RL-23-545 70.3 83.3 1.0 Pegmatite 6,739 RL-23-545 83.3 159.0 2.8 Mafic 90 RL-23-545 159.0 160.1 0.9 Pegmatite 145 RL-23-545 160.1 225.0 2.8 Mafic 14 RL-23-546 0.0 3.0 3.0 Overburden - RL-23-546 62.6 67.8 2.4 Felsic - RL-23-546 62.6 67.8 2.4 Felsic - RL-23-546 62.6 67.8 2.4 Felsic - RL-23-546 152.3 210.0 2.7 Mafic 89 RL-23-546 152.3 210.0 2.7 Mafic 89 RL-23-554 152.3 210.0 2.7 Mafic 89 RL-23-553 3.6 31.5 2.9 Felsic - RL-23-553 3.6 31.5 2.9 Felsic - RL-23-553 3.1.5 37.1 2.2 Mafic - RL-23-553 37.1 80.0 2.5 Felsic 52 RL-23-553 85.0 87.7 0.9 Sediment 819 RL-23-553 87.7 89.6 1.0 Pegmatite 170 RL-23-553 87.7 89.6 1.0 Pegmatite 183 RL-23-554 0.0 18.5 18.5 Overburden - RL-23-554 0.0 18.5 18.5 Overburden - RL-23-554 0.0 18.5 18.5 Overburden - RL-23-554 0.0 31.6 2.1 Felsic 6 RL-23-554 31.6 39.9 0.9 Pegmatite 183 RL-23-554 31.6 39.9 0.9 Pegmatite 184 RL-23-554 31.6 39.9 0.9 Pegmatite 5,615 RL-23-555 4.5 68.8 2.9 Mafic - RL-23-555 4.5 68.8 2.9 Mafic - RL-23-555 31.1 150.0 2.5 Sediment 51 RL-23-555 31.1 30.1 150.0 2.5 Sediment 5.6 RL-23-555 31.1 30.1 30.0 Sediment - RL-23-556 30.0 30.0 30.0 Overburden - RL-23-556 30.0 30.0 30.0 Overburden - RL-23-556 30.0 30.0 30.0 Over						-
RL-23-545 159.0 160.1 0.9 Pegmatite 145						- 6 720
RL-23-545 150.0 160.1 0.9 Pegmatite 145 RL-23-545 160.1 225.0 2.8 Mafic 14 RL-23-546 0.0 3.0 3.0 Overburden - RL-23-546 3.0 62.6 3.0 Mafic - RL-23-546 62.6 67.8 2.4 Felsic - RL-23-546 149.4 152.3 0.8 Pegmatite 17,202 RL-23-546 149.4 152.3 0.8 Pegmatite 17,202 RL-23-546 149.4 152.3 0.8 Pegmatite 17,202 RL-23-554 149.4 152.3 0.8 Pegmatite 17,202 RL-23-554 152.3 210.0 2.7 Mafic 89 RL-23-553 3.6 31.5 2.9 Felsic - RL-23-553 3.6 31.5 2.9 Felsic - RL-23-553 31.5 37.1 2.2 Mafic - RL-23-553 31.5 37.1 2.2 Mafic - RL-23-553 80.0 85.0 1.0 Pegmatite 170 RL-23-553 85.0 87.7 0.9 Sediment 819 RL-23-553 89.6 120.0 2.7 Felsic 66 RL-23-554 89.6 120.0 2.7 Felsic 402 RL-23-554 18.5 20.9 2.5 Mafic - RL-23-554 18.5 20.9 2.5 Mafic - RL-23-554 31.6 39.9 0.9 Pegmatite 18,168 RL-23-554 31.6 39.9 0.9 Pegmatite 18,168 RL-23-554 126.8 130.1 0.8 Pegmatite 5,615 RL-23-555 4.5 68.8 2.9 Mafic - RL-23-555 68.8 171.9 3.0 Sediment - RL-23-555 68.8 171.9 3.0 Sediment - RL-23-555 68.8 171.9 3.0 Sediment - RL-23-555 58.0 127.9 2.7 Mafic - RL-23-556 58.0 127.9 2.7 Mafic - RL-23-556 58.0 127.9 2.7 Mafic 111 RL-23-556 58.0 127.9 2.7 Mafic - RL-23-556 58.0 127.9 2.7 Mafic 1.0 RL-23-558 136.6 150.1 1.1 Mafic 2.0 2.0 Mafic 2.5 RL-23-558 136.6 150.1 1.1 Mafic 2.0 2.					-	
RL-23-545						
RL-23-546 0.0 3.0 3.0 Overburden						1
RL-23-546 3.0 62.6 3.0 Mafic - RL-23-546 67.8 149.4 2.8 Mafic 26 RL-23-546 67.8 149.4 2.8 Mafic 26 RL-23-546 149.4 152.3 0.8 Pegmatite 17,202 RL-23-546 152.3 210.0 2.7 Mafic 89 RL-23-553 3.6 31.5 2.9 Felsic - RL-23-553 3.6 31.5 2.9 Felsic - RL-23-553 31.5 37.1 2.2 Mafic 52 RL-23-553 31.5 37.1 2.2 Mafic 52 RL-23-553 80.0 85.0 1.0 Pegmatite 170 RL-23-553 87.7 89.6 1.0 Pegmatite 183 RL-23-553 87.7 89.6 1.0 Pegmatite 183 RL-23-553 88.0 87.7 0.9 Sediment 819 RL-23-554 88.5 120.0 2.7 Felsic 66 RL-23-554 88.6 120.0 2.7 Felsic 66 RL-23-554 89.6 120.0 2.7 Felsic 402 RL-23-554 31.6 39.9 0.9 Pegmatite 18,168 RL-23-554 31.6 39.9 0.9 Pegmatite 5,615 RL-23-554 130.1 150.0 2.5 Sediment 51 RL-23-555 4.5 68.8 2.9 Mafic - RL-23-555 4.5 68.8 2.9 Mafic - RL-23-555 171.9 182.1 2.6 Mafic - RL-23-556 3.3 55.0 2.8 Mafic 142 RL-23-556 3.3 55.0 2.8 Mafic - RL-23-556 3.3 55.0 2.8 Mafic - RL-23-556 3.0 210.0 3.0 Mafic - RL-23-557 3.0 210.0 3.0 Mafic - RL-23-558 3.5 3.6 3.6 0.9 Pegmatite 302 RL-23-558 15.1 22.0 2.9 Mafic - RL-23-558 3.5 3.6 3.6 0.9 Pegmatite 302 RL-23-558 3.5 3.6 3.6 0.9 Pegmatite 302 RL-23-558 3.5 3.6 5.7 6.9 0.9 Pegmatite 302 RL-23-558 3.5 3.6 5.7 6.9 0.7 Pegmatite 5.672 RL-23-551 15.9 56.7 6.9 0.7 Pegmatite 5.672 RL-23-561						14
RL-23-546 62.6 67.8 2.4 Felsic -						-
RI-23-546 67.8 149.4 2.8 Mafic 26 RI-23-546 149.4 152.3 0.8 Pegmatite 17,202 RI-23-546 152.3 201.0 2.7 Mafic 89 RI-23-553 3.6 31.5 2.9 Felsic - RI-23-553 3.6 31.5 2.9 Felsic - RI-23-553 3.15 37.1 2.2 Mafic - RI-23-553 37.1 80.0 2.5 Felsic 52 RI-23-553 80.0 85.0 1.0 Pegmatite 170 RI-23-553 87.7 89.6 1.0 Pegmatite 183 RI-23-553 87.7 89.6 1.0 Pegmatite 183 RI-23-553 89.6 120.0 2.7 Felsic 66 RI-23-554 18.5 0.0 18.5 18.5 Overburden - RI-23-554 18.5 0.0 18.5 18.5 Overburden - RI-23-554 18.5 0.9 2.5 Mafic - RI-23-554 18.5 0.9 0.9 Pegmatite 18,168 RI-23-554 31.6 39.9 0.9 Pegmatite 18,168 RI-23-554 31.6 39.9 0.9 Pegmatite 5,615 RI-23-554 130.1 0.8 Pegmatite 5,615 RI-23-555 4.5 68.8 2.9 Mafic - RI-23-555 171.9 182.1 2.6 Mafic - RI-23-555 182.1 210.0 2.9 Sediment - RI-23-555 182.1 210.0 2.9 Sediment - RI-23-556 3.3 5.5.0 2.8 Mafic - RI-23-556 5.0 3.3 2.8 Overburden - RI-23-556 5.0 3.3 2.8 Overburden - RI-23-556 5.0 3.3 2.8 Overburden - RI-23-556 5.0 3.0 3.0 Overburden - RI-23-556 58.0 17.9 2.7 Mafic 111 RI-23-556 58.0 12.9 2.9 Mafic - RI-23-556 58.0 12.9 2.9 Mafic - RI-23-556 58.0 12.9 2.9 Mafic - RI-23-558 150.1 15.5 0.5 Pegmatite 302 RI-23-558 315.3 316.6 0.6 Pegmatite 302 RI-23-558						-
RI-23-546						-
RI-23-546 152.3 210.0 2.7 Maftic 89						
RL-23-553 0.0 3.6 3.6 Overburden - RL-23-553 3.6 31.5 2.9 Felsic - RL-23-553 31.5 37.1 2.2 Mafic - RL-23-553 37.1 80.0 2.5 Felsic 52 RL-23-553 80.0 85.0 1.0 Pegmatite 170 RL-23-553 85.0 87.7 0.9 Sediment 819 RL-23-553 89.6 120.0 2.7 Felsic 66 RL-23-554 0.0 18.5 18.5 Overburden - RL-23-554 18.5 20.9 31.6 2.1 Felsic 402 RL-23-554 18.5 20.9 31.6 2.1 Felsic 402 RL-23-554 31.6 39.9 0.9 Pegmatite 18.168 RL-23-554 31.6 31.1 0.8 Pegmatite 5.15 RL-23-554 130.1 150.0 2.5 Sed						·
RL-23-553 3.6 31.5 2.9 Felsic - RL-23-553 31.5 37.1 2.2 Mafic - RL-23-553 37.1 80.0 2.5 Felsic 52 RL-23-553 80.0 85.0 1.0 Pegmatite 170 RL-23-553 87.7 89.6 1.0 Pegmatite 183 RL-23-553 89.6 120.0 2.7 Felsic 66 RL-23-554 0.0 18.5 18.5 Overburden - RL-23-554 18.5 20.9 2.5 Mafic - RL-23-554 18.5 20.9 2.5 Mafic - RL-23-554 31.6 39.9 0.9 Pegmatite 18,168 RL-23-554 31.6 39.9 0.9 Pegmatite 5,615 RL-23-554 31.0 150.0 2.5 Sediment 5,615 RL-23-554 130.1 150.0 2.5 Sediment 5,615						89
RL-23-553 31.5 37.1 2.2 Mafic - RL-23-553 37.1 80.0 2.5 Felsic 52 RL-23-553 85.0 85.0 1.0 Pegmatite 170 RL-23-553 85.0 87.7 0.9 Sediment 819 RL-23-553 88.6 120.0 2.7 Felsic 66 RL-23-554 0.0 18.5 18.5 Overburden - RL-23-554 10.0 18.5 18.5 Overburden - RL-23-554 18.5 20.9 2.5 Mafic - RL-23-554 18.5 20.9 31.6 2.1 Felsic 402 RL-23-554 31.6 39.9 0.9 Pegmatite 18,168 RL-23-554 31.0 150.0 2.5 Sediment 5615 RL-23-554 130.1 150.0 2.5 Sediment 5615 RL-23-555 15.0 4.5 4.5 Overburden						-
RL-23-553 37.1 80.0 2.5 Felsic 52 RL-23-553 80.0 85.0 1.0 Pegmatite 170 RL-23-553 85.0 87.7 0.9 Sediment 819 RL-23-553 87.7 89.6 1.0 Pegmatite 183 RL-23-554 0.0 18.5 18.5 Overburden - RL-23-554 18.5 20.9 2.5 Mafic - RL-23-554 18.5 20.9 31.6 2.1 Felsic 402 RL-23-554 31.6 39.9 0.9 Pegmatite 18,168 RL-23-554 31.6 39.9 0.9 Pegmatite 51 RL-23-554 31.6 39.9 0.9 Pegmatite 56 RL-23-554 31.6 39.9 0.9 Pegmatite 56 RL-23-554 13.0.1 10.0 2.5 Sediment 51 RL-23-555 13.0 14.5 4.5 Overburden						-
R1-23-553 80.0 85.0 1.0 Pegmatite 170 R1-23-553 85.0 87.7 0.9 Sediment 819 R1-23-553 85.0 87.7 0.9 Sediment 183 R1-23-553 89.6 120.0 2.7 Felsic 66 R1-23-554 0.0 18.5 18.5 Overburden - R1-23-554 18.5 20.9 2.5 Mafic - R1-23-554 18.5 20.9 2.5 Mafic - R1-23-554 31.6 39.9 0.9 Pegmatite 18,168 R1-23-554 31.6 39.9 0.9 Pegmatite 51 R1-23-554 31.0 150.0 2.5 Sediment 51 R1-23-554 130.1 150.0 2.5 Sediment 51 R1-23-554 130.1 150.0 2.5 Sediment - R1-23-555 4.5 68.8 2.9 Mafic -						-
RI-23-553 85.0 87.7 0.9 Sediment 819 RI-23-553 87.7 89.6 1.0 Pegmatite 183 RI-23-553 89.6 120.0 2.7 Felsic 66 RI-23-554 0.0 18.5 18.5 Overburden - RI-23-554 18.5 20.9 2.5 Mafic - RI-23-554 18.5 20.9 2.5 Mafic - RI-23-554 31.6 39.9 0.9 Pegmatite 18,168 RI-23-554 39.9 126.8 2.8 Sediment 51 RI-23-554 130.1 150.0 2.5 Sediment 5,615 RI-23-554 130.1 150.0 2.5 Sediment - RI-23-555 10.0 4.5 4.5 Overburden - RI-23-555 4.5 68.8 171.9 3.0 Sediment - RI-23-555 182.1 210.0 2.9 Sediment						
RI-23-553 87.7 89.6 1.0 Pegmatite 183 RI-23-553 89.6 120.0 2.7 Felsic 66 RI-23-554 0.0 18.5 18.5 Overburden - RI-23-554 18.5 20.9 2.5 Mafic - RI-23-554 20.9 31.6 2.1 Felsic 402 RI-23-554 31.6 39.9 0.9 Pegmatite 18,168 RI-23-554 31.6 39.9 0.9 Pegmatite 5,615 RI-23-554 130.1 150.0 2.5 Sediment 56 RI-23-554 130.1 150.0 2.5 Sediment - RI-23-555 0.0 4.5 4.5 Overburden - RI-23-555 0.0 4.5 4.5 Overburden - RI-23-555 182.1 210.0 2.9 Sediment - RI-23-555 182.1 210.0 2.9 Sediment -						1
RL-23-553 89.6 120.0 2.7 Felsic 66 RL-23-554 0.0 18.5 18.5 Overburden - RL-23-554 18.5 20.9 2.5 Mafic - RL-23-554 20.9 31.6 2.1 Felsic 402 RL-23-554 31.6 39.9 0.9 Pegmatite 18,168 RL-23-554 31.6 39.9 1.0 Pegmatite 5,615 RL-23-554 130.1 150.0 2.5 Sediment 5.1 RL-23-554 130.1 150.0 2.5 Sediment - RL-23-555 130.1 150.0 2.5 Sediment - RL-23-555 0.0 4.5 4.5 Overburden - RL-23-555 15.1 210.0 2.9 Sediment - RL-23-555 171.9 182.1 2.6 Mafic - RL-23-555 182.1 210.0 2.9 Sediment - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
RL-23-554 0.0 18.5 18.5 Overburden - RL-23-554 18.5 20.9 2.5 Mafic - RL-23-554 20.9 31.6 2.1 Felsic 402 RL-23-554 31.6 39.9 0.9 Pegmatite 18,168 RL-23-554 39.9 126.8 2.8 Sediment 51 RL-23-554 126.8 130.1 0.8 Pegmatite 5,615 RL-23-554 130.1 150.0 2.5 Sediment 6 RL-23-555 0.0 4.5 4.5 Overburden - RL-23-555 0.0 4.5 4.5 Overburden - RL-23-555 68.8 171.9 182.1 2.6 Mafic - RL-23-555 182.1 210.0 2.9 Sediment - RL-23-556 10.0 3.3 2.8 Overburden - RL-23-556 55.0 58.0 1.0 Pegmatite						
RI-23-554 18.5 20.9 31.6 2.1 Felsic 402 RI-23-554 30.9 31.6 2.1 Felsic 402 RI-23-554 31.6 39.9 0.9 Pegmatite 18,168 RI-23-554 130.1 150.0 2.5 Sediment 51 RI-23-554 130.1 150.0 2.5 Sediment 86 RI-23-555 0.0 4.5 4.5 Overburden - RI-23-555 4.5 68.8 2.9 Mafic - RI-23-555 4.5 68.8 2.9 Mafic - RI-23-555 4.5 68.8 2.9 Mafic - RI-23-555 17.1 182.1 2.6 Mafic - RI-23-555 182.1 210.0 2.9 Sediment - RI-23-556 3.3 55.0 2.8 Mafic 142 RI-23-556 3.3 55.0 2.8 Mafic 142 <td></td> <td></td> <td></td> <td></td> <td></td> <td>66</td>						66
RI-23-554 20.9 31.6 2.1 Felsic 402 RI-23-554 31.6 39.9 0.9 Pegmatite 18,168 RI-23-554 39.9 126.8 2.8 Sediment 51 RI-23-554 130.1 150.0 2.5 Sediment 86 RI-23-555 0.0 4.5 4.5 Overburden - RI-23-555 4.5 68.8 2.9 Mafic - RI-23-555 4.5 68.8 2.9 Mafic - RI-23-555 4.5 68.8 171.9 3.0 Sediment - RI-23-555 4.5 68.8 171.9 3.0 Sediment - RI-23-555 68.8 171.9 182.1 2.6 Mafic - RI-23-555 182.1 210.0 2.9 Sediment - RI-23-556 182.1 210.0 2.9 Sediment - RI-23-556 5.0 58.0 1.0	RL-23-554	0.0	18.5	18.5	Overburden	-
RI-23-554 31.6 39.9 0.9 Pegmatite 18,168 RI-23-554 39.9 126.8 2.8 Sediment 51 RI-23-554 126.8 130.1 0.8 Pegmatite 5,615 RI-23-554 130.1 150.0 2.5 Sediment 86 RI-23-555 0.0 4.5 4.5 Overburden - RI-23-555 4.5 68.8 2.9 Mafic - RI-23-555 68.8 171.9 3.0 Sediment - RI-23-555 182.1 210.0 2.9 Sediment - RI-23-555 182.1 210.0 2.9 Sediment - RI-23-555 182.1 210.0 2.9 Sediment - RI-23-556 182.1 210.0 2.9 Sediment - RI-23-556 3.3 55.0 2.8 Mafic 142 RI-23-556 58.0 127.9 2.7 Mafic 111 <	RL-23-554	18.5	20.9	2.5	Mafic	-
RI-23-554 39.9 126.8 2.8 Sediment 51 RI-23-554 126.8 130.1 0.8 Pegmatite 5,615 RI-23-554 130.1 150.0 2.5 Sediment 86 RI-23-555 0.0 4.5 4.5 Overburden - RI-23-555 4.5 68.8 2.9 Mafic - RI-23-555 4.5 68.8 2.9 Mafic - RI-23-555 4.5 68.8 2.9 Mafic - RI-23-555 171.9 182.1 2.6 Mafic - RI-23-556 10.0 3.3 2.8 Overburden - RI-23-556 3.3 55.0 2.8 Mafic 142 RI-23-556 55.0 58.0 1.0 Pegmatite 13,970 RI-23-556 58.0 127.9 2.7 Mafic 111 RI-23-556 127.9 129.1 0.5 Pegmatite 410 <tr< td=""><td>RL-23-554</td><td>20.9</td><td>31.6</td><td>2.1</td><td>Felsic</td><td>402</td></tr<>	RL-23-554	20.9	31.6	2.1	Felsic	402
RI-23-554 126.8 130.1 0.8 Pegmatite 5,615 RI-23-554 130.1 150.0 2.5 Sediment 86 RI-23-555 0.0 4.5 4.5 Overburden - RI-23-555 4.5 68.8 2.9 Mafic - RI-23-555 68.8 171.9 3.0 Sediment - RI-23-555 171.9 182.1 2.6 Mafic - RI-23-555 182.1 210.0 2.9 Sediment - RI-23-556 0.0 3.3 2.8 Overburden - RI-23-556 3.3 55.0 2.8 Mafic 142 RI-23-556 55.0 58.0 1.0 Pegmatite 13,970 RI-23-556 58.0 127.9 2.7 Mafic 111 RI-23-556 127.9 129.1 0.5 Pegmatite 410 RI-23-556 129.1 222.0 2.9 Mafic 25	RL-23-554	31.6	39.9	0.9	Pegmatite	18,168
RI-23-554 130.1 150.0 2.5 Sediment 86 RI-23-555 0.0 4.5 4.5 Overburden - RI-23-555 4.5 68.8 2.9 Mafic - RI-23-555 68.8 171.9 3.0 Sediment - RI-23-555 171.9 182.1 2.6 Mafic - RI-23-555 182.1 210.0 2.9 Sediment - RI-23-556 0.0 3.3 2.8 Overburden - RI-23-556 3.3 55.0 2.8 Mafic 142 RI-23-556 55.0 58.0 1.0 Pegmatite 13,970 RI-23-556 58.0 127.9 2.7 Mafic 11 RI-23-556 127.9 129.1 0.5 Pegmatite 410 RI-23-556 129.1 222.0 2.9 Mafic 25 RI-23-557 0.0 3.0 3.0 Overburden - <tr< td=""><td>RL-23-554</td><td>39.9</td><td>126.8</td><td>2.8</td><td>Sediment</td><td>51</td></tr<>	RL-23-554	39.9	126.8	2.8	Sediment	51
RL-23-555 0.0 4.5 4.5 Overburden - RL-23-555 4.5 68.8 2.9 Mafic - RL-23-555 68.8 171.9 3.0 Sediment - RL-23-555 171.9 182.1 2.6 Mafic - RL-23-555 182.1 210.0 2.9 Sediment - RL-23-556 0.0 3.3 2.8 Overburden - RL-23-556 3.3 55.0 2.8 Mafic 142 RL-23-556 55.0 58.0 1.0 Pegmatite 13,970 RL-23-556 58.0 127.9 2.7 Mafic 111 RL-23-556 129.1 129.1 0.5 Pegmatite 410 RL-23-556 129.1 222.0 2.9 Mafic 25 RL-23-557 3.0 210.0 3.0 Overburden - RL-23-558 1.5 85.8 2.7 Mafic 51	RL-23-554	126.8	130.1	0.8	Pegmatite	5,615
RL-23-555 4.5 68.8 2.9 Mafic - RL-23-555 68.8 171.9 3.0 Sediment - RL-23-555 171.9 182.1 2.6 Mafic - RL-23-555 182.1 210.0 2.9 Sediment - RL-23-556 0.0 3.3 2.8 Overburden - RL-23-556 3.3 55.0 2.8 Mafic 142 RL-23-556 55.0 58.0 1.0 Pegmatite 13,970 RL-23-556 58.0 127.9 2.7 Mafic 111 RL-23-556 129.1 129.1 0.5 Pegmatite 410 RL-23-556 129.1 222.0 2.9 Mafic 25 RL-23-557 0.0 3.0 3.0 Overburden - RL-23-557 3.0 210.0 3.0 Mafic - RL-23-558 1.5 85.8 2.7 Mafic 51	RL-23-554	130.1	150.0	2.5	Sediment	86
RI-23-555 68.8 171.9 3.0 Sediment - RI-23-555 171.9 182.1 2.6 Mafic - RI-23-555 182.1 210.0 2.9 Sediment - RI-23-555 182.1 210.0 2.9 Sediment - RI-23-556 0.0 3.3 2.8 Overburden - RI-23-556 3.3 55.0 2.8 Mafic 142 RI-23-556 55.0 58.0 1.0 Pegmatite 13,970 RI-23-556 58.0 127.9 2.7 Mafic 111 RI-23-556 129.1 222.0 2.9 Mafic 25 RI-23-556 129.1 222.0 2.9 Mafic 25 RI-23-557 3.0 210.0 3.0 Overburden - RI-23-558 0.0 1.5 1.5 Overburden - RI-23-558 1.5 85.8 2.7 Mafic 51	RL-23-555	0.0	4.5	4.5	Overburden	-
RL-23-555 171.9 182.1 2.6 Mafic - RL-23-555 182.1 210.0 2.9 Sediment - RL-23-556 0.0 3.3 2.8 Overburden - RL-23-556 3.3 55.0 2.8 Mafic 142 RL-23-556 55.0 58.0 1.0 Pegmatite 13,970 RL-23-556 58.0 127.9 2.7 Mafic 111 RL-23-556 129.1 129.1 0.5 Pegmatite 410 RL-23-556 129.1 222.0 2.9 Mafic 25 RL-23-557 0.0 3.0 3.0 Overburden - RL-23-557 3.0 210.0 3.0 Mafic - RL-23-558 0.0 1.5 1.5 Overburden - RL-23-558 1.5 85.8 2.7 Mafic 51 RL-23-558 89.0 135.3 2.6 Mafic 97	RL-23-555	4.5	68.8	2.9	Mafic	-
RI-23-555 182.1 210.0 2.9 Sediment - RI-23-556 0.0 3.3 2.8 Overburden - RI-23-556 3.3 55.0 2.8 Mafic 142 RI-23-556 55.0 58.0 1.0 Pegmatite 13,970 RI-23-556 58.0 127.9 2.7 Mafic 111 RI-23-556 129.1 129.1 0.5 Pegmatite 410 RI-23-556 129.1 222.0 2.9 Mafic 25 RI-23-557 0.0 3.0 3.0 Overburden - RI-23-557 3.0 210.0 3.0 Mafic - RI-23-558 0.0 1.5 1.5 Overburden - RI-23-558 1.5 85.8 2.7 Mafic 51 RI-23-558 1.5 85.8 89.0 0.9 Pegmatite 302 RI-23-558 135.3 136.6 0.6 Pegmatite 3	RL-23-555	68.8	171.9	3.0	Sediment	-
RI-23-556 0.0 3.3 2.8 Overburden - RI-23-556 3.3 55.0 2.8 Mafic 142 RI-23-556 55.0 58.0 1.0 Pegmatite 13,970 RI-23-556 58.0 127.9 2.7 Mafic 111 RI-23-556 129.1 129.1 0.5 Pegmatite 410 RI-23-556 129.1 222.0 2.9 Mafic 25 RI-23-557 0.0 3.0 3.0 Overburden - RI-23-557 3.0 210.0 3.0 Mafic - RI-23-558 0.0 1.5 1.5 Overburden - RI-23-558 1.5 85.8 2.7 Mafic 51 RI-23-558 1.5 85.8 89.0 0.9 Pegmatite 302 RI-23-558 135.3 136.6 0.6 Pegmatite 316 RI-23-558 135.3 136.6 0.6 Pegmatite <t< td=""><td>RL-23-555</td><td>171.9</td><td>182.1</td><td>2.6</td><td>Mafic</td><td>-</td></t<>	RL-23-555	171.9	182.1	2.6	Mafic	-
RL-23-556 3.3 55.0 2.8 Mafic 142 RL-23-556 55.0 58.0 1.0 Pegmatite 13,970 RL-23-556 58.0 127.9 2.7 Mafic 111 RL-23-556 127.9 129.1 0.5 Pegmatite 410 RL-23-556 129.1 222.0 2.9 Mafic 25 RL-23-557 0.0 3.0 3.0 Overburden - RL-23-557 3.0 210.0 3.0 Mafic - RL-23-558 0.0 1.5 1.5 Overburden - RL-23-558 1.5 85.8 2.7 Mafic 51 RL-23-558 1.5 85.8 89.0 0.9 Pegmatite 302 RL-23-558 89.0 135.3 2.6 Mafic 97 RL-23-558 135.3 136.6 0.6 Pegmatite 316 RL-23-558 135.3 136.6 0.6 Pegmatite <td< td=""><td>RL-23-555</td><td>182.1</td><td>210.0</td><td>2.9</td><td>Sediment</td><td>-</td></td<>	RL-23-555	182.1	210.0	2.9	Sediment	-
RL-23-556 55.0 58.0 1.0 Pegmatite 13,970 RL-23-556 58.0 127.9 2.7 Mafic 111 RL-23-556 127.9 129.1 0.5 Pegmatite 410 RL-23-556 129.1 222.0 2.9 Mafic 25 RL-23-557 0.0 3.0 3.0 Overburden - RL-23-557 3.0 210.0 3.0 Mafic - RL-23-558 0.0 1.5 1.5 Overburden - RL-23-558 1.5 85.8 2.7 Mafic 51 RL-23-558 85.8 89.0 0.9 Pegmatite 302 RL-23-558 89.0 135.3 2.6 Mafic 97 RL-23-558 135.3 136.6 0.6 Pegmatite 316 RL-23-558 136.6 150.1 1.1 Mafic 2,023 RL-23-558 136.6 150.1 1.1 Mafic 2,023 <td>RL-23-556</td> <td>0.0</td> <td>3.3</td> <td>2.8</td> <td>Overburden</td> <td>-</td>	RL-23-556	0.0	3.3	2.8	Overburden	-
RL-23-556 58.0 127.9 2.7 Mafic 111 RL-23-556 127.9 129.1 0.5 Pegmatite 410 RL-23-556 129.1 222.0 2.9 Mafic 25 RL-23-557 0.0 3.0 3.0 Overburden - RL-23-557 3.0 210.0 3.0 Mafic - RL-23-558 0.0 1.5 1.5 Overburden - RL-23-558 1.5 85.8 2.7 Mafic 51 RL-23-558 1.5 85.8 89.0 0.9 Pegmatite 302 RL-23-558 89.0 135.3 2.6 Mafic 97 97 RL-23-558 135.3 136.6 0.6 Pegmatite 316	RL-23-556	3.3	55.0	2.8	Mafic	142
RL-23-556 127.9 129.1 0.5 Pegmatite 410 RL-23-556 129.1 222.0 2.9 Mafic 25 RL-23-557 0.0 3.0 3.0 Overburden - RL-23-557 3.0 210.0 3.0 Mafic - RL-23-558 0.0 1.5 1.5 Overburden - RL-23-558 1.5 85.8 2.7 Mafic 51 RL-23-558 85.8 89.0 0.9 Pegmatite 302 RL-23-558 89.0 135.3 2.6 Mafic 97 RL-23-558 135.3 136.6 0.6 Pegmatite 316 RL-23-558 136.6 150.1 1.1 Mafic 2,023 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-551 0.0 1.5 1.5 Overburden -	RL-23-556	55.0	58.0	1.0	Pegmatite	13,970
RI-23-556 129.1 222.0 2.9 Mafic 25 RI-23-557 0.0 3.0 3.0 Overburden - RI-23-557 3.0 210.0 3.0 Mafic - RI-23-558 0.0 1.5 1.5 Overburden - RI-23-558 1.5 85.8 2.7 Mafic 51 RI-23-558 85.8 89.0 0.9 Pegmatite 302 RI-23-558 89.0 135.3 2.6 Mafic 97 RI-23-558 135.3 136.6 0.6 Pegmatite 316 RI-23-558 136.6 150.1 1.1 Mafic 2,023 RI-23-558 150.1 152.4 0.8 Pegmatite 5,672 RI-23-558 150.1 152.4 0.8 Pegmatite 5,672 RI-23-558 150.1 152.4 0.8 Pegmatite 5,672 RI-23-561 0.0 1.5 1.5 Overburden -	RL-23-556	58.0	127.9	2.7	Mafic	111
RL-23-557 0.0 3.0 3.0 Overburden - RL-23-557 3.0 210.0 3.0 Mafic - RL-23-558 0.0 1.5 1.5 Overburden - RL-23-558 1.5 85.8 2.7 Mafic 51 RL-23-558 85.8 89.0 0.9 Pegmatite 302 RL-23-558 89.0 135.3 2.6 Mafic 97 RL-23-558 135.3 136.6 0.6 Pegmatite 316 RL-23-558 136.6 150.1 1.1 Mafic 2,023 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-561 0.0 1.5 1.5 Overburden - RL-23-561 1.5 65.7 2.8 Mafic 154	RL-23-556	127.9	129.1	0.5	Pegmatite	410
RL-23-557 3.0 210.0 3.0 Mafic - RL-23-558 0.0 1.5 1.5 Overburden - RL-23-558 1.5 85.8 2.7 Mafic 51 RL-23-558 85.8 89.0 0.9 Pegmatite 302 RL-23-558 89.0 135.3 2.6 Mafic 97 RL-23-558 135.3 136.6 0.6 Pegmatite 316 RL-23-558 136.6 150.1 1.1 Mafic 2,023 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-551 10.0 1.5 1.5 Overburden - RL-23-561 0.0 1.5 1.5 Overburden - RL-23-561 1.5 65.7 2.8 Mafic 154 RL-23-561 65.7 69.5 0.7 Pegmatite 1,378	RL-23-556	129.1	222.0	2.9	Mafic	25
RL-23-558 0.0 1.5 1.5 Overburden - RL-23-558 1.5 85.8 2.7 Mafic 51 RL-23-558 85.8 89.0 0.9 Pegmatite 302 RL-23-558 89.0 135.3 2.6 Mafic 97 RL-23-558 135.3 136.6 0.6 Pegmatite 316 RL-23-558 136.6 150.1 1.1 Mafic 2,023 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-551 0.0 1.5 1.5 Overburden - RL-23-561 1.5 65.7 2.8 Mafic 154 RL-23-561 65.7 69.5 0.7 Pegmatite 1,378 RL-23-561 69.5 114.6 2.7 Mafic 82 </td <td>RL-23-557</td> <td>0.0</td> <td>3.0</td> <td>3.0</td> <td>Overburden</td> <td>-</td>	RL-23-557	0.0	3.0	3.0	Overburden	-
RL-23-558 1.5 85.8 2.7 Mafic 51 RL-23-558 85.8 89.0 0.9 Pegmatite 302 RL-23-558 89.0 135.3 2.6 Mafic 97 RL-23-558 135.3 136.6 0.6 Pegmatite 316 RL-23-558 136.6 150.1 1.1 Mafic 2,023 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-558 152.4 210.0 2.8 mafic 103 RL-23-561 0.0 1.5 1.5 Overburden - RL-23-561 1.5 65.7 2.8 Mafic 154 RL-23-561 65.7 69.5 0.7 Pegmatite 1,378 RL-23-561 69.5 114.6 2.7 Mafic 82 RL-23-561 114.6 155.9 2.7 Sediment 138 RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 <td>RL-23-557</td> <td>3.0</td> <td>210.0</td> <td>3.0</td> <td>Mafic</td> <td>-</td>	RL-23-557	3.0	210.0	3.0	Mafic	-
RL-23-558 85.8 89.0 0.9 Pegmatite 302 RL-23-558 89.0 135.3 2.6 Mafic 97 RL-23-558 135.3 136.6 0.6 Pegmatite 316 RL-23-558 136.6 150.1 1.1 Mafic 2,023 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-558 152.4 210.0 2.8 mafic 103 RL-23-561 0.0 1.5 1.5 Overburden - RL-23-561 1.5 65.7 2.8 Mafic 154 RL-23-561 65.7 69.5 0.7 Pegmatite 1,378 RL-23-561 69.5 114.6 2.7 Mafic 82 RL-23-561 114.6 155.9 2.7 Sediment 138 RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 RL-23-561 157.9 172.1 1.0 Sediment	RL-23-558	0.0	1.5	1.5	Overburden	-
RL-23-558 85.8 89.0 0.9 Pegmatite 302 RL-23-558 89.0 135.3 2.6 Mafic 97 RL-23-558 135.3 136.6 0.6 Pegmatite 316 RL-23-558 136.6 150.1 1.1 Mafic 2,023 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-558 152.4 210.0 2.8 mafic 103 RL-23-561 0.0 1.5 1.5 Overburden - RL-23-561 1.5 65.7 2.8 Mafic 154 RL-23-561 65.7 69.5 0.7 Pegmatite 1,378 RL-23-561 69.5 114.6 2.7 Mafic 82 RL-23-561 114.6 155.9 2.7 Sediment 138 RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 RL-23-561 157.9 172.1 1.0 Sediment	RL-23-558	1.5	85.8	2.7	Mafic	51
RL-23-558 135.3 136.6 0.6 Pegmatite 316 RL-23-558 136.6 150.1 1.1 Mafic 2,023 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-558 152.4 210.0 2.8 mafic 103 RL-23-561 0.0 1.5 1.5 Overburden - RL-23-561 1.5 65.7 2.8 Mafic 154 RL-23-561 65.7 69.5 0.7 Pegmatite 1,378 RL-23-561 69.5 114.6 2.7 Mafic 82 RL-23-561 114.6 155.9 2.7 Sediment 138 RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 RL-23-561 157.9 172.1 1.0 Sediment 719 RL-23-561 172.1 174.0 0.9 Pegmatite 576	RL-23-558	85.8	89.0	0.9	Pegmatite	302
RL-23-558 136.6 150.1 1.1 Mafic 2,023 RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-558 152.4 210.0 2.8 mafic 103 RL-23-561 0.0 1.5 1.5 Overburden - RL-23-561 1.5 65.7 2.8 Mafic 154 RL-23-561 65.7 69.5 0.7 Pegmatite 1,378 RL-23-561 69.5 114.6 2.7 Mafic 82 RL-23-561 114.6 155.9 2.7 Sediment 138 RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 RL-23-561 157.9 172.1 1.0 Sediment 719 RL-23-561 172.1 174.0 0.9 Pegmatite 576	RL-23-558	89.0	135.3	2.6	Mafic	97
RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-558 152.4 210.0 2.8 mafic 103 RL-23-561 0.0 1.5 1.5 Overburden - RL-23-561 1.5 65.7 2.8 Mafic 154 RL-23-561 65.7 69.5 0.7 Pegmatite 1,378 RL-23-561 69.5 114.6 2.7 Mafic 82 RL-23-561 114.6 155.9 2.7 Sediment 138 RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 RL-23-561 157.9 172.1 1.0 Sediment 719 RL-23-561 172.1 174.0 0.9 Pegmatite 576	RL-23-558	135.3	136.6	0.6	Pegmatite	316
RL-23-558 150.1 152.4 0.8 Pegmatite 5,672 RL-23-558 152.4 210.0 2.8 mafic 103 RL-23-561 0.0 1.5 1.5 Overburden - RL-23-561 1.5 65.7 2.8 Mafic 154 RL-23-561 65.7 69.5 0.7 Pegmatite 1,378 RL-23-561 69.5 114.6 2.7 Mafic 82 RL-23-561 114.6 155.9 2.7 Sediment 138 RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 RL-23-561 157.9 172.1 1.0 Sediment 719 RL-23-561 172.1 174.0 0.9 Pegmatite 576	RL-23-558	136.6	150.1	1.1		
RL-23-558 152.4 210.0 2.8 mafic 103 RL-23-561 0.0 1.5 1.5 Overburden - RL-23-561 1.5 65.7 2.8 Mafic 154 RL-23-561 65.7 69.5 0.7 Pegmatite 1,378 RL-23-561 69.5 114.6 2.7 Mafic 82 RL-23-561 114.6 155.9 2.7 Sediment 138 RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 RL-23-561 157.9 172.1 1.0 Sediment 719 RL-23-561 172.1 174.0 0.9 Pegmatite 576	RL-23-558	150.1	152.4	0.8	Pegmatite	
RL-23-561 0.0 1.5 1.5 Overburden - RL-23-561 1.5 65.7 2.8 Mafic 154 RL-23-561 65.7 69.5 0.7 Pegmatite 1,378 RL-23-561 69.5 114.6 2.7 Mafic 82 RL-23-561 114.6 155.9 2.7 Sediment 138 RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 RL-23-561 157.9 172.1 1.0 Sediment 719 RL-23-561 172.1 174.0 0.9 Pegmatite 576						
RL-23-561 1.5 65.7 2.8 Mafic 154 RL-23-561 65.7 69.5 0.7 Pegmatite 1,378 RL-23-561 69.5 114.6 2.7 Mafic 82 RL-23-561 114.6 155.9 2.7 Sediment 138 RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 RL-23-561 157.9 172.1 1.0 Sediment 719 RL-23-561 172.1 174.0 0.9 Pegmatite 576						-
RL-23-561 65.7 69.5 0.7 Pegmatite 1,378 RL-23-561 69.5 114.6 2.7 Mafic 82 RL-23-561 114.6 155.9 2.7 Sediment 138 RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 RL-23-561 157.9 172.1 1.0 Sediment 719 RL-23-561 172.1 174.0 0.9 Pegmatite 576						154
RL-23-561 69.5 114.6 2.7 Mafic 82 RL-23-561 114.6 155.9 2.7 Sediment 138 RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 RL-23-561 157.9 172.1 1.0 Sediment 719 RL-23-561 172.1 174.0 0.9 Pegmatite 576						
RL-23-561 114.6 155.9 2.7 Sediment 138 RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 RL-23-561 157.9 172.1 1.0 Sediment 719 RL-23-561 172.1 174.0 0.9 Pegmatite 576						
RL-23-561 155.9 157.9 0.9 Pegmatite 1,336 RL-23-561 157.9 172.1 1.0 Sediment 719 RL-23-561 172.1 174.0 0.9 Pegmatite 576						
RL-23-561 157.9 172.1 1.0 Sediment 719 RL-23-561 172.1 174.0 0.9 Pegmatite 576						
RL-23-561 172.1 174.0 0.9 Pegmatite 576						
NE-23-301 1/4.0 ZZ3.0 Z.8 IVIATIC 747	RL-23-561	174.0	225.0	2.8	Mafic	242

RL-23-560 : RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571	0.0 13.5 275.5 279.8 0.0 5.4 69.2 71.5	13.5 275.5 279.8 351.0 5.4	13.5 2.9 0.6	Overburden Mafic Pegmatite	Li2O ppm - 17
RL-23-560 RL-23-560 RL-23-560 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571	13.5 275.5 279.8 0.0 5.4 69.2 71.5	275.5 279.8 351.0	2.9 0.6	Mafic	
RL-23-560 : RL-23-560 : RL-22-571 :	275.5 279.8 0.0 5.4 69.2 71.5	279.8 351.0	0.6		
RL-23-560 : RL-22-571 : RL-22-571 : RL-22-571 : RL-22-571 : RL-22-571 : RL-22-571 : RL-22-571 : RL-22-571 : RL-22-571 :	279.8 0.0 5.4 69.2 71.5	351.0		Pegmatite	
RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571:	0.0 5.4 69.2 71.5				10,631
RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571	5.4 69.2 71.5	5.4	2.9	Mafic	41
RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571	69.2 71.5	CO 2	5.4	Overburden	120
RL-22-571 RL-22-571 RL-22-571 RL-22-571 RL-22-571 :	71.5	69.2	2.7	Sediment	136
RL-22-571 RL-22-571 RL-22-571 RL-22-571		71.5	0.8	Pegmatite	6,093
RL-22-571 :: RL-22-571 :: RL-22-571 ::		95.6	2.0	Sediment	286
RL-22-571 :	95.6	100.7	0.7 2.8	Felsic	246 17
RL-22-571	100.7 157.7	157.7		Sediment	75
		158.4	0.6	Pegmatite	
	158.4	198.5	2.6	Sediment	30
	198.5	207.0	2.8	felsic	-
	207.0	216.5	2.9	Sediment	-
	216.5	222.7	2.5	Felsic	-
	222.7	235.4	2.7	Sediment	-
+	235.4	273.0	2.9	Felsic	-
RL-23-559	0.0	6.0	6.0	Overburden	-
RL-23-559	6.0	37.1	2.9	Mafic	-
RL-23-559	37.1	44.2	2.5	Felsic	-
RL-23-559	44.2	64.5	2.8	Mafic	-
RL-23-559	64.5	72.0	2.7	Felsic	-
RL-23-559	72.0	120.0	3.0	Mafic	-
RL-23-567	0.0	8.2	8.2	Overburden	-
RL-23-567	8.2	10.6	0.9	Sediment	881
RL-23-567	10.6	13.5	0.8	Pegmatite	7,833
RL-23-567	13.5	129.0	2.8	Sediment	77
RL-23-568	0.0	5.4	5.4	Overburden	-
RL-23-568	5.4	30.0	2.9	Sediment	-
RL-23-568C	0.0	7.7	7.7	Overburden	-
RL-23-568C	7.7	50.2	2.7	Sediment	82
RL-23-568C	50.2	56.0	1.0	pegmatite	881
RL-23-568C	56.0	108.7	2.8	Sediment	33
RL-23-568C	108.7	120.8	2.7	felsic	-
RL-23-568C :	120.8	132.0	2.9	Sediment	-
RL-23-569	0.0	8.0	8.0	Overburden	-
RL-23-569	8.0	14.0	2.3	felsic	-
RL-23-569	14.0	33.0	2.4	Sediment	-
RL-23-569	33.0	36.8	1.0	Pegmatite	-
RL-23-569	36.8	68.3	2.1	sediment	-
RL-23-569	68.3	72.5	2.3	felsic	-
RL-23-569	72.5	94.3	2.8	Sediment	-
RL-23-569	94.3	107.5	2.7	felsic	-
RL-23-569	107.5	120.0	2.9	Sediment	-
RL-23-570	0.0	5.8	5.8	Overburden	-
RL-23-570	5.8	15.2	1.8	Sediment	237
RL-23-570	15.2	17.9	0.9	Pegmatite	18,177
RL-23-570	17.9	28.0	1.0	Sediment	930
RL-23-570	28.0	30.8	0.8	Pegmatite	300
RL-23-570	30.8	60.6	2.6	Sediment	108
RL-23-570	60.6	66.8	2.5	Mafic	-
RL-23-570	66.8	77.9	2.5	Sediment	7
RL-23-570	77.9	81.6	0.9	Felsic	27
RL-23-570	81.6	90.6	2.4	Sediment	5
RL-23-570	90.6	92.4	1.8	Felsic	-
RL-23-570	92.4	100.2	2.5	Sediment	7
	100.2	102.0	0.9	Felsic	27
	102.0	107.5	0.9	Sediment	75
	107.5	108.5	0.5	Felsic	32
	108.5	114.3	2.1	Sediment	7
	114.3	120.0	2.8	Felsic	-
RL-23-572	0.0	6.5	5.6	Overburden	_
RL-23-572	6.5	112.5	2.8	Felsic	1
	112.5	129.4	2.2	Pegmatite	175
	129.4	183.0	2.6	Felsic	858

HoleId	From	То	Interval	Lithology	Li2O ppm
RL-23-572	183.0	209.7	1.6	Sediment	256
RL-23-572	209.7	211.9	0.6	Pegmatite	90
RL-23-572	211.9	240.0	2.6	Sediment	34
RL-23-575	0.0	6.3	6.3	Overburden	-
RL-23-575	6.3	29.1	2.9	Sediment	-
RL-23-575	29.1	32.8	2.4	Felsic	-
RL-23-575	32.8	43.7	2.8	Sediment	-
RL-23-575	43.7	44.7	1.0	Felsic	-
RL-23-575	44.7	62.1	2.4	Sediment	164
RL-23-575	62.1	73.0	0.9	Pegmatite	4,739
RL-23-575	73.0	77.3	1.1	Sediment	316
RL-23-575	77.3	79.2	0.7	Pegmatite	182
RL-23-575	79.2	95.2	2.3	Sediment	60
RL-23-575	95.2	118.3	2.4	Felsic	52
RL-23-575	118.3	119.3	1.0	Pegmatite	157
RL-23-575	119.3	140.5	2.1	Felsic	85
RL-23-575	140.5	142.3	1.1	Sediment	-
RL-23-575	142.3	151.8	1.7	Felsic	64
RL-23-575	151.8	155.3	1.9	Mafic	-
RL-23-575	155.3	165.1	2.8	Felsic	-
RL-23-575	165.1	257.7	3.0	Mafic	-
RL-23-575	257.7	280.0	2.9	Felsic	-
RL-23-575	280.0	297.5	2.4	Mafic	7
RL-23-575	297.5	297.9	0.4	Pegmatite	28
RL-23-575	297.9	324.0	2.8	Mafic	1
RL-23-576	0.0	4.4	4.4	Overburden	-
RL-23-576	4.4	105.2	2.7	Felsic	55
RL-23-576	105.2	106.0	0.3 1.9	Pegmatite	271 325
RL-23-576	106.0	129.0		Felsic	
RL-23-576 RL-23-576	129.0 129.6	129.6 170.2	0.2 2.2	Pegmatite Felsic	213 147
RL-23-576	170.2	170.2	0.3	Pegmatite	12,498
RL-23-576	173.5	214.3	2.6	Felsic	12,498 54
RL-23-576	214.3	270.0	2.8	Sediment	
RL-23-044	0.0	0.6	0.6	Overburden	_
RL-23-044	0.6	18.9	2.5	Mafic	232
RL-23-044	18.9	22.5	0.8	Pegmatite	13,594
RL-23-044	22.5	189.2	2.9	Mafic	29
RL-23-044	189.2	198.7	2.8	sediment	-
RL-23-044	198.7	215.9	2.3	mafic	121
RL-23-044	215.9	223.0	0.9	Pegmatite	5,437
RL-23-044	223.0	381.0	2.9	Mafic	13
RL-23-403	0.0	3.0	3.0	Overburden	-
RL-23-403	3.0	13.6	2.8	Sediment	-
RL-23-403	13.6	30.8	2.7	Mafic	-
RL-23-403	30.8	120.0	2.9	Sediment	-
RL-23-566	0.0	3.0	3.0	Overburden	-
RL-23-566	3.0	21.5	2.8	Sediment	-
RL-23-566	21.5	210.0	2.8	Mafic	-
RL-23-574	0.0	0.6	0.6	Overburden	-
RL-23-574	0.6	198.0	2.8	Mafic	62
RL-23-562	0.0	3.0	3.0	Overburden	-
RL-23-562	3.0	251.0	2.8	Sediment	-
RL-23-563	0.0	3.0	3.0	Overburden	-
RL-23-563	3.0	31.8	3.1	Mafic	-
RL-23-563	31.8	145.5	2.8	Sediment	-
RL-23-563	145.5	198.0	2.7	Mafic	-
RL-23-573	0.0	3.5	2.6	Overburden	-
RL-23-573	3.5	51.2	2.8	Mafic	81
RL-23-573	51.2	52.8	0.8	Pegmatite	4,478
RL-23-573	52.8	142.7	2.8	Mafic	68
RL-23-573	142.7	143.8	0.6	Pegmatite	220
	. —		2.0	Mofic	202
RL-23-573	143.8	201.0	2.9	Mafic	202
RL-23-573 RL-23-442	143.8 0.0	201.0 6.0	6.0	Overburden	-

HoleId	From	То	Interval	Lithology	Li2O ppm
RL-23-442	81.7	83.7	1.1	Pegmatite	-
RL-23-442	83.7	94.5	1.1	Mafic	-
RL-23-442	94.5	95.0	0.5	Pegmatite	-
RL-23-442	95.0	98.2	1.1	Mafic	-
RL-23-442	98.2	98.9	0.8	Pegmatite	-
RL-23-442	98.9	100.5	1.4	Mafic	-
RL-23-442	100.5	102.0	0.8	Pegmatite	-
RL-23-442	102.0	128.3	2.5	Mafic	-
RL-23-442	128.3	129.7	0.7	Pegmatite	-
RL-23-442	129.7	168.0	2.7	Mafic	-
RL-23-564	0.0	4.5	4.5	Overburden	-
RL-23-564	4.5	204.0	3.0	Mafic	-
RL-23-565	0.0	3.6	3.6	Overburden	-
RL-23-565	3.6	26.0	2.8	Mafic	-
RL-23-565	26.0	93.1	2.9	Sediment	-
RL-23-565	93.1	98.1	2.4	Mafic	-
RL-23-565	98.1	201.0	3.0	Sediment	-

Root Bay Geology Summary

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-001	0.0	3.0	3.0	Overburden	-
RB-23-001	3.0	60.9	57.9	Mafic	-
RB-23-001	60.9	128.0	67.1	Pegmatite	11,280
RB-23-001	128.0	162.0	34.0	Mafic	-
RB-23-001	162.0	169.3	7.3	Pegmatite	14,350
RB-23-001	169.3	174.3	5.0	Mafic	-
RB-23-001	174.3	179.6	5.3	Pegmatite	13,420
RB-23-001	179.6	204.0	24.4	Mafic	-
RB-23-003	0.0	2.9	2.9	Overburden	-
RB-23-003	2.9	67.4	2.8	Mafic	19
RB-23-003	67.4	79.5	0.4	Pegmatite	12,667
RB-23-003	79.5	83.5	0.8	Mafic	535
RB-23-003	83.5	85.0	0.3	Pegmatite	3,813
RB-23-003	85.0	139.2	2.5	Mafic	79
RB-23-003	139.2	140.0	0.2	Pegmatite	125
RB-23-003	140.0	201.0	2.7	Mafic	23
RB-23-005	0.0	3.0	3.0	Overburden	-
RB-23-005	3.0	15.0	1.9	Mafic	107
RB-23-005	15.0	15.5	0.4	Pegmatite	385
RB-23-005	15.5	45.4	2.1	Mafic	220
RB-23-005	45.4	49.0	0.2	Pegmatite	646
RB-23-005	49.0	108.6	2.5	Mafic	101
RB-23-005	108.6	109.9	0.2	Pegmatite	12,585
RB-23-005	109.9	129.2	0.3	Mafic	602
RB-23-005	129.2	135.8	0.3	Pegmatite	14,678
RB-23-005	135.8	140.5	0.3	Mafic	907
RB-23-005	140.5	145.0	0.2	Pegmatite	13,394
RB-23-005	145.0	149.0	0.2	Mafic	893

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-005	149.0	151.1	0.3	Pegmatite	10,936
RB-23-005	151.1	210.0	2.8	Mafic	39
RB-23-007	0.0	0.5	0.5	Overburden	-
RB-23-007	0.5	32.9	2.6	Mafic	94
RB-23-007	32.9	34.8	0.2	Pegmatite	6,520
RB-23-007	34.8	50.6	0.3	Mafic	510
RB-23-007	50.6	51.8	0.2	Felsic	255
RB-23-007	51.8	141.6	2.8	Mafic	31
RB-23-007	141.6	142.1	0.2	Felsic	73
RB-23-007	142.1	147.3	0.3	Mafic	454
RB-23-007	147.3	150.3	0.3	Pegmatite	16,109
RB-23-007	150.3	153.2	0.2	Mafic	595
RB-23-007	153.2	156.7	0.2	Pegmatite	4,884
RB-23-007	156.7	170.9	0.3	Mafic	745
RB-23-007	170.9	177.4	0.2	Pegmatite	15,722
RB-23-007	177.4	187.4	0.3	Mafic	760
RB-23-007	187.4	190.4	0.2	Pegmatite	15,227
RB-23-007	190.4	199.5	0.2	Mafic	680
RB-23-007	199.5	202.1	0.2	Pegmatite	11,771
RB-23-007	202.1	231.0	2.6	Mafic	77
	0.0			Overburden	77
RB-23-009		6.0	6.0		10
RB-23-009	6.0	124.6	2.8	Mafic	10.053
RB-23-009	124.6	127.2	0.2	Pegmatite	10,052
RB-23-009	127.2	195.5	2.2	Mafic Pegmatite	111
RB-23-009 RB-23-009	195.5 198.9	198.9	0.3	Mafic	16,140
RB-23-009		222.9	0.3		475
RB-23-009	222.9	228.1	0.3	Pegmatite Mafic	14,363
RB-23-009	239.5	240.7		Pegmatite	11,786
		250.6	0.2	Mafic	
RB-23-009 RB-23-009	240.7	253.4	0.2	Pegmatite	777
RB-23-009	250.6		0.2	_	13,215
RB-23-009	253.4 256.0	256.0 258.5	0.2	Mafic	959 15,754
RB-23-009		288.0		Pegmatite Mafic	
RB-23-009	0.0		1.9	Mafic Overburden	253
		6.8	6.8		
RB-23-011	6.8	12.8	1.0	Mafic	272
RB-23-011	12.8	17.0	0.3	Pegmatite	8,133
RB-23-011	17.0	21.9	0.4	Mafic	932
RB-23-011	21.9	23.1	0.1	Pegmatite	193
RB-23-011	23.1	176.7	2.7	Mafic	22
RB-23-011	176.7	179.3	0.2	Pegmatite	6,396
RB-23-011	179.3	249.1	2.3	Mafic	2 282
RB-23-011	249.1	250.7	0.2	Pegmatite	2,282

HeleID	F			L'abeles.	1:20
HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-011	250.7	274.1	0.4	Mafic	485
RB-23-011	274.1	278.1	0.3	Pegmatite	16,412
RB-23-011	278.1	296.2	0.5	Mafic	598
RB-23-011	296.2	297.2	0.2	Pegmatite	5,683
RB-23-011	297.2	310.0	0.5	Mafic	603
RB-23-011	310.0	314.1	0.3	Pegmatite	12,335
RB-23-011	314.1	320.9	0.4	Mafic	980
RB-23-011	320.9	322.6	0.3	Pegmatite	11,120
RB-23-011	322.6	353.0	2.6	Mafic	118
RB-23-013	0.0	3.2	2.8	Overburden	-
RB-23-013	3.2	50.1	2.7	Mafic	130
RB-23-013	50.1	56.2	0.3	Pegmatite	13,706
RB-23-013	56.2	196.8	2.8	Mafic	56
RB-23-013	196.8	198.1	0.3	Pegmatite	635
RB-23-013	198.1	245.0	2.3	Mafic	515
RB-23-013	245.0	297.0	2.9	Sediment	16
RB-23-013	297.0	324.6	2.7	Mafic	71
RB-23-013	324.6	329.7	0.4	Pegmatite	4,657
RB-23-013	329.7	374.9	1.9	Mafic	337
RB-23-013	374.9	377.1	0.4	Pegmatite	14,864
RB-23-013	377.1	402.0	1.5	Mafic	1,876
RB-23-014	0.0	3.5	3.5	Overburden	-
RB-23-014	3.5	8.5	0.9	Mafic	439
RB-23-014	8.5	21.8	0.4	Pegmatite	13,523
RB-23-014	21.8	227.8	2.9	Mafic	18
RB-23-014	227.8	236.1	0.4	Pegmatite	14,302
RB-23-014	236.1	247.6	0.7	Mafic	769
RB-23-014	247.6	249.4	0.3	Pegmatite	13,339
RB-23-014	249.4	320.7	2.1	Mafic	223
RB-23-016	0.0	3.2	3.2	Overburden	-
RB-23-016	3.2	42.4	2.7	Mafic	90
RB-23-016	42.4	44.3	0.4	Pegmatite	12,399
RB-23-016	44.3	57.8	0.6	Mafic	1,099
RB-23-016	57.8	69.0	0.4	Pegmatite	15,169
RB-23-016	69.0	75.6	0.8	Mafic	519
RB-23-016	75.6	78.8	0.9	Pegmatite	9,457
RB-23-016	78.8	131.5	2.7	Mafic	39
RB-23-016	131.5	138.3	1.5	Pegmatite	1,101
RB-23-016	138.3	162.0	3.0	Mafic	-
RB-23-029	0.0	7.7	5.6	Overburden	-
RB-23-029	7.7	73.7	2.1	Sediment	85
RB-23-029	73.7	74.5	0.2	Pegmatite	1,421
RB-23-029	74.5	171.0	2.9	Sediment	32

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-040	0.0	3.0	3.0	Overburden	-
RB-23-040	3.0	216.9	2.9	Mafic	7
RB-23-040	216.9	218.8	0.4	Pegmatite	13,822
RB-23-040	218.8	219.7	0.5	Mafic	6,716
RB-23-040	219.7	224.7	0.4	Pegmatite	18,622
RB-23-040	224.7	256.2	2.3	Mafic	218
RB-23-040	256.2	257.4	0.6	Pegmatite	856
RB-23-040	257.4	324.0	2.4	Mafic	251
RB-23-042	0.0	5.6	5.6	Overburden	
RB-23-042	5.6	11.5	0.4	Pegmatite	15,396
RB-23-042	11.5	168.0	2.9	Mafic	31
RB-23-044	0.0	3.0	3.0	Overburden	
RB-23-044	3.0	18.4	2.2	Mafic	97
RB-23-044	18.4	23.5	0.2	Pegmatite	2,193
RB-23-044	23.5	36.4	0.5	Mafic	369
RB-23-044	36.4	36.8	0.2	Pegmatite	45
RB-23-044	36.8	73.4	2.4	Mafic	88
RB-23-044	73.4	77.3	0.2	Pegmatite	292
RB-23-044	77.3	78.6	0.2	Mafic	762
RB-23-044	78.6	81.2	0.3	Pegmatite	1,381
RB-23-044	81.2	189.0	2.7	Mafic	94
RB-23-046	0.0	1.8	1.8	Overburden	-
RB-23-046	1.8	9.1	0.7	Mafic	214
RB-23-046	9.1	11.3	0.4	Pegmatite	12,974
RB-23-046	11.3	128.0	2.8	Mafic	42
RB-23-046	128.0	132.6	1.0	Pegmatite	6,374
RB-23-046	132.6	252.0	2.7	Mafic	52
RB-23-048	0.0	3.8	3.8	Overburden	-
RB-23-048	3.8	90.5	2.7	Mafic	26
RB-23-048	90.5	91.5	0.3	Pegmatite	58
RB-23-048	91.5	99.4	0.9	Mafic	597
RB-23-048	99.4	100.1	0.2	Pegmatite	2,992
RB-23-048	100.1	118.7	2.2	Mafic	93
RB-23-048	118.7	119.4	0.1	Pegmatite	200
RB-23-048	119.4	165.4	2.6	Mafic	73
RB-23-048	165.4	170.9	0.3	Pegmatite	3,733
RB-23-048	170.9	176.8	0.5	Mafic	395
RB-23-048	176.8	178.4	0.3	Pegmatite	318
RB-23-048	178.4	187.1	0.5	Mafic	456
RB-23-048	187.1	188.3	0.2	Pegmatite	8,157
RB-23-048	188.3	197.9	0.7	Mafic	696
RB-23-048	197.9	204.9	0.3	Pegmatite	10,463
RB-23-048	204.9	278.0	2.8	Mafic	39

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-048	278.0	278.7	0.2	Pegmatite	1,137
RB-23-048	278.7	291.0	1.7	Mafic	299
RB-23-050	0.0	12.0	12.0	Overburden	-
RB-23-050	12.0	46.3	2.7	Mafic	18
RB-23-050	46.3	46.7	0.4	Pegmatite	125
RB-23-050	46.7	157.6	2.8	Mafic	35
RB-23-050	157.6	159.5	0.3	Pegmatite	208
RB-23-050	159.5	168.3	0.6	Mafic	321
RB-23-050	168.3	170.5	0.2	Pegmatite	273
RB-23-050	170.5	213.4	2.6	Mafic	57
RB-23-050	213.4	218.5	0.3	Pegmatite	327
RB-23-050	218.5	222.1	0.6	Mafic	772
RB-23-050	222.1	224.2	0.4	Pegmatite	2,051
RB-23-050	224.2	244.4	2.3	Mafic	130
RB-23-050	244.4	245.6	0.4	Pegmatite	5,391
RB-23-050	245.6	255.5	0.7	Mafic	606
RB-23-050	255.5	261.7	0.3	Pegmatite	10,917
RB-23-050	261.7	288.6	2.3	Mafic	165
RB-23-050	288.6	294.2	0.4	Pegmatite	5,966
RB-23-050	294.2	354.0	2.6	Mafic	62
RB-23-053	0.0	5.0	5.0	Overburden	-
RB-23-053	5.0	219.0	2.9	Sediment	-
RB-23-057	0.0	7.2	7.2	Overburden	1
RB-23-057	7.2	192.0	3.0	Sediment	
RB-23-081	0.0	1.9	1.9	Overburden	1
RB-23-081	1.9	65.7	2.6	Mafic	33
RB-23-081	65.7	67.3	0.2	Pegmatite	5,978
RB-23-081	67.3	112.8	2.3	Mafic	118
RB-23-081	112.8	113.4	0.2	Pegmatite	1,447
RB-23-081	113.4	115.1	0.2	Mafic	3,003
RB-23-081	115.1	117.3	0.2	Pegmatite	13,932
RB-23-081	117.3	119.7	0.2	Mafic	921
RB-23-081	119.7	123.8	0.2	Pegmatite	13,827
RB-23-081	123.8	176.8	2.5	Mafic	167
RB-23-081	176.8	181.7	0.3	Pegmatite	5,480
RB-23-081	181.7	208.5	2.3	Mafic	548
RB-23-081	208.5	208.9	0.2	Pegmatite	19,073
RB-23-081	208.9	222.8	0.5	Mafic	690
RB-23-081	222.8	223.2	0.1	Pegmatite	4,176
RB-23-081	223.2	234.8	0.6	Mafic	543
RB-23-081	234.8	235.5	0.1	Pegmatite	8,675
RB-23-081	235.5	298.5	2.6	Mafic	153
RB-23-081	298.5	315.0	0.3	Pegmatite	15,236

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-081	315.0	320.3	0.4	Sediment	2,182
RB-23-081	320.3	321.6	0.2	Pegmatite	7,642
RB-23-081	321.6	351.0	2.5	Mafic	138
RB-23-083	0.0	1.7	1.7	Overburden	-
RB-23-083	1.7	54.8	2.7	Mafic	33
RB-23-083	54.8	61.4	0.2	Pegmatite	15,397
RB-23-083	61.4	179.0	2.8	Mafic	59
RB-23-083	179.0	181.4	0.2	Pegmatite	2,390
RB-23-083	181.4	191.9	0.6	Mafic	623
RB-23-083	191.9	192.5	0.1	Pegmatite	161
RB-23-083	192.5	254.6	2.5	Mafic	101
RB-23-083	254.6	271.2	0.3	Pegmatite	15,491
RB-23-083	271.2	324.0	2.7	Mafic	48
RB-23-085	0.0	3.7	3.7	Overburden	
RB-23-085	3.7	87.4	2.9	Mafic	5
RB-23-085	87.4	88.0	0.2	Pegmatite	215
RB-23-085	88.0	108.9	2.4	Mafic	77
RB-23-085	108.9	109.6	0.2	Pegmatite	5,662
RB-23-085	109.6	181.4	2.7	Mafic	124
RB-23-085	181.4	197.4	0.3	Pegmatite	15,783
RB-23-085	197.4	223.5	2.0	Mafic	274
RB-23-085	223.5	224.6	0.2	Pegmatite	6,569
RB-23-085	224.6	228.0	0.9	Mafic	470
RB-23-088	0.0	3.8	3.8	Overburden	-
RB-23-088	3.8	23.8	2.6	Mafic	27
RB-23-088	23.8	24.3	0.1	Pegmatite	198
RB-23-088	24.3	99.4	2.6	Mafic	82
RB-23-088	99.4	117.2	0.3	Pegmatite	17,321
RB-23-088	117.2	148.7	2.4	Mafic	148
RB-23-088	148.7	149.8	0.2	Pegmatite	211
RB-23-088	149.8	201.0	2.8	Mafic	20
RB-23-091	0.0	3.0	3.0	Overburden	
RB-23-091	3.0	33.1	2.5	Mafic	95
RB-23-091	33.1	47.4	0.3	Pegmatite	15,149
RB-23-091	47.4	128.7	2.8	Mafic	207
RB-23-091	128.7	129.1	0.1	Pegmatite	153
RB-23-091	129.1	135.9	0.5	Mafic	346
RB-23-091	135.9	136.1	0.2	Pegmatite	207
RB-23-091	136.1	191.7	2.6	Mafic	46
RB-23-091	191.7	192.8	0.2	Pegmatite	7,814
RB-23-091	192.8	207.0	2.6	Mafic	86
RB-23-098	0.0	8.2	8.2	Overburden	-
RB-23-098	8.2	273.0	2.6	Sediment	20

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-102	0.0	9.3	9.3	Overburden	-
RB-23-102	9.3	162.0	2.9	Sediment	-
RB-23-132	0.0	3.0	3.0	Overburden	-
RB-23-132	3.0	120.0	2.8	Sediment	1
RB-23-148	0.0	1.5	1.5	Overburden	-
RB-23-148	1.5	62.9	2.7	Pyroxenite	26
RB-23-148	62.9	68.8	0.2	Pegmatite	13,247
RB-23-148	68.8	69.4	0.2	Mafic	3,100
RB-23-148	69.4	69.7	0.2	Pegmatite	372
RB-23-148	69.7	166.3	2.6	Mafic	209
RB-23-148	166.3	167.1	0.3	Pegmatite	359
RB-23-148	167.1	182.3	0.3	Mafic	619
RB-23-148	182.3	183.3	0.2	Pegmatite	7,341
RB-23-148	183.3	189.5	0.2	Mafic	525
RB-23-148	189.5	189.8	0.2	Pegmatite	319
RB-23-148	189.8	221.7	2.2	Mafic	146
RB-23-148	221.7	222.7	0.3	Pegmatite	364
RB-23-148	222.7	225.3	0.2	Mafic	1,673
RB-23-148	225.3	227.2	0.2	Pegmatite	10,014
RB-23-148	227.2	238.4	0.3	Mafic	5,762
RB-23-148	238.4	238.9	0.2	Pegmatite	196
RB-23-148	238.9	239.3	0.2	Mafic	11,194
RB-23-148	239.3	240.4	0.2	Pegmatite	614
RB-23-148	240.4	242.0	0.2	Mafic	5,070
RB-23-148	242.0	242.8	0.3	Pegmatite	764
RB-23-148	242.8	250.9	0.2	Mafic	2,526
RB-23-148	250.9	251.0	0.1	Pegmatite	1,199
RB-23-148	251.0	251.3	0.2	Mafic	2,260
RB-23-148	251.3	253.5	0.2	Pegmatite	10,878
RB-23-148	253.5	257.7	0.2	Mafic	5,136
RB-23-148	257.7	263.7	0.2	Pegmatite	14,566
RB-23-148	263.7	268.2	0.2	Mafic	2,442
RB-23-148	268.2	270.1	0.2	Pegmatite	9,145
RB-23-148	270.1	275.2	0.2	Mafic	3,661
RB-23-148	275.2	275.4	0.2	Pegmatite	2,519
RB-23-148	275.4	276.8	0.2	Mafic	13,674
RB-23-148	276.8	278.6	0.2	Pegmatite	6,713
RB-23-148	278.6	281.8	0.2	Mafic	4,455
RB-23-148	281.8	282.0	0.2	Pegmatite	1,150
RB-23-148	282.0	284.8	0.2	Mafic	6,405
RB-23-148	284.8	285.1	0.2	Pegmatite	2,519
RB-23-148	285.1	291.8	0.3	Mafic	2,099
RB-23-148	291.8	292.4	0.2	Pegmatite	3,057

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-148	292.4	310.7	0.3	Mafic	1,068
RB-23-148	310.7	310.9	0.1	Pegmatite	506
RB-23-148	310.9	313.8	0.2	Mafic	588
RB-23-148	313.8	314.0	0.1	Pegmatite	366
RB-23-148	314.0	342.0	2.4	Mafic	69
RB-23-148	342.0	342.8	0.2	Felsic	1,348
RB-23-148	342.8	354.4	0.3	Mafic	928
RB-23-148	354.4	356.6	0.2	Pegmatite	14,278
RB-23-148	356.6	358.4	0.2	Mafic	10,126
RB-23-148	358.4	359.2	0.2	Sediment	1,010
RB-23-148	359.2	360.3	0.2	Mafic	676
RB-23-148	360.3	360.7	0.2	Pegmatite	153
RB-23-148	360.7	369.0	0.3	Mafic	984
RB-23-152	0.0	4.4	4.4	Overburden	-
RB-23-152	4.4	29.2	2.5	Mafic	140
RB-23-152	29.2	30.8	0.2	Pegmatite	879
RB-23-152	30.8	48.6	2.4	Mafic	80
RB-23-152	48.6	76.6	2.1	Pyroxenite	213
RB-23-152	76.6	77.1	0.1	Pegmatite	6,996
RB-23-152	77.1	96.9	2.1	Pyroxenite	282
RB-23-152	96.9	97.3	0.2	pegmatite	329
RB-23-152	97.3	101.0	0.4	Pyroxenite	389
RB-23-152	101.0	101.3	0.1	Pegmatite	265
RB-23-152	101.3	102.2	0.2	Pyroxenite	389
RB-23-152	102.2	152.4	3.0	Mafic	102
RB-23-152	152.4	169.2	0.3	Pegmatite	15,656
RB-23-152	169.2	210.7	2.2	Mafic	800
RB-23-152	210.7	212.1	0.3	Pegmatite	1,982
RB-23-152	212.1	261.0	2.1	Mafic	242
RB-23-156	0.0	7.0	3.8	Overburden	-
RB-23-156	7.0	29.5	2.6	Mafic	81
RB-23-156	29.5	31.0	0.3	Pegmatite	14,989
RB-23-156	31.0	37.1	0.6	Mafic	1,846
RB-23-156	37.1	52.5	0.3	Pegmatite	16,506
RB-23-156	52.5	82.9	1.5	Mafic	407
RB-23-156	82.9	83.8	0.2	Pegmatite	159
RB-23-156	83.8	120.0	2.8	Mafic	37
RB-23-161	0.0	14.5	14.5	Overburden	=
RB-23-161	14.5	150.5	2.8	Sediment	32
RB-23-161	150.5	152.2	0.2	Pegmatite	4,332
RB-23-161	152.2	201.0	2.8	BIF	25
RB-23-165	0.0	12.2	11.8	Overburden	
RB-23-165	12.2	134.4	2.8	Sediment	14
VD 52-103	14.4	154.4	2.0	Jeannette	14

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-165	134.4	134.4	0.1	Pegmatite	428
RB-23-165	134.4	231.0	2.8	Sediment	13
RB-23-169	0.0	15.0	15.0	Overburden	-
RB-23-169	15.0	95.0	2.7	BIF	5
RB-23-169	95.0	95.9	0.2	Pegmatite	30
RB-23-169	95.9	146.0	2.4	BIF	18
RB-23-169	146.0	317.8	2.6	Sediment	36
RB-23-169	317.8	319.5	0.2	Pegmatite	187
RB-23-169	319.5	322.5	0.3	BIF	2,219
RB-23-169	322.5	326.4	0.3	Pegmatite	227
RB-23-169	326.4	379.7	1.8	Sediment	305
RB-23-169	379.7	380.7	0.2	Pegmatite	97
RB-23-169	380.7	411.0	2.6	Sediment	125
RB-23-174	0.0	16.2	16.2	Overburden	-
RB-23-174	16.2	89.1	2.7	Sediment	20
RB-23-174	89.1	89.9	0.2	Pegmatite	73
RB-23-174	89.9	198.2	2.6	Sediment	40
RB-23-174	198.2	199.1	0.3	Pegmatite	144
RB-23-174	199.1	200.9	0.2	Sediment	470
RB-23-174	200.9	201.0	0.1	Pegmatite	407
RB-23-174	201.0	203.8	0.2	Sediment	496
RB-23-174	203.8	204.0	0.2	Pegmatite	278
RB-23-174	204.0	218.3	0.3	Sediment	588
RB-23-174	218.3	218.6	0.2	Pegmatite	155
RB-23-174	218.6	347.0	2.8	Sediment	16
RB-23-174	0.0	18.0	18.0	Overburden	- 10
RB-23-178	18.0	103.5	2.7	Sediment	18
RB-23-178	103.5	103.9	0.3	Pegmatite	77
RB-23-178	103.9	222.0	2.7	Sediment	12
RB-23-178	0.0	10.5	10.5	Overburden	- 12
RB-23-182	10.5	126.0	2.9	Sediment	_
RB-23-195	0.0	12.3	12.3	Overburden	_
RB-23-195	12.3	106.0	2.7	Sediment	11
RB-23-195	106.0	106.3	0.1	Pegmatite	131
RB-23-195	106.3	127.0	1.9	Sediment	128
RB-23-195	127.0	128.2	0.2	Pegmatite	43
RB-23-195	128.2	145.3	0.2	Sediment	275
RB-23-195	145.3	145.8	0.3	Pegmatite	45
RB-23-195	145.8	145.9	0.2	Sediment	185
RB-23-195	145.8	146.5	0.1	Pegmatite	38
RB-23-195	145.9	266.6	2.4	Sediment	56
			0.2		41
RB-23-195	266.6	267.5		Pegmatite	
RB-23-195	267.5	312.0	2.0	Sediment	77

HoleID	From	to	Interval	Lithology	Li2O ppm
RB-23-200	0.0	18.9	18.9	Overburden	-
RB-23-200	18.9	68.7	2.7	Sediment	19
RB-23-200	68.7	69.2	0.2	Pegmatite	60
RB-23-200	69.2	342.0	2.5	Sediment	24