

Building the pre-eminent vertically integrated Lithium business in Ontario, Canada

ROOT BAY SHAPING AS EXCEPTIONAL HIGH GRADE LITHIUM DEPOSIT

HIGHLIGHTS

- Assay results at Root Bay have been received and continue to demonstrate the consistency of high-grade mineralisation across the Root Bay deposit
- Significant high-grade results include:
 - o RB-23-1013: **17.1m @ 1.77% Li₂0** from **71.0m**
 - o RB-23-1014: **17.2m @ 1.74% Li₂0** from **57.2m**
 - o RB-23-1009: **19.6m @ 1.50% Li₂0** from **26.9m**
 - o RB-23-1038: **16.0m @ 1.78% Li₂0** from **167.1m**
 - o RB-23-1020: **16.8m @ 1.69% Li₂0** from **82.5m**
 - o RB-23-1032: **16.8m @ 1.61% Li₂0** from **139.6m**
 - o RB-23-1025: **16.3m @ 1.62% Li₂0** from **131.4m**
- Drill testing planned for the Eastern and Western strike, including the New spodumene discovery 1.4km along strike and west of the Root Bay Deposit, which has extended the mineralised trend to over 2.7km
- 45 holes for 7,668m have been completed from the planned 22,000m program with assays pending for 36 holes
- Drilling will continue over the next quarter to upgrade the tonnage and JORC confidence level of the maiden inferred mineral resource estimate of 8.1Mt @ 1.32% Li₂0

Green Technology Metals Limited (**ASX: GT1**)(**GT1 or the Company**), a Canadian-focused multi-asset lithium business, is pleased to announce lithium assay results returned from the Root Bay deposit at its 100% owned Root Project, located approximately 200km west of the flagship Seymour Project in Ontario, Canada.

"We maintain a strong focus on advancing exploration efforts at the Root Project, in addition to having multiple field teams engaged in prospecting activities, we currently have two drill rigs operating non-stop at Root Bay with the preliminary results continuing to instil confidence in our resource and validate the ongoing presence of consistent high-grade intercepts within the deposit."

- GT1 Chief Executive Officer, Luke Cox

ROOT LITHIUM PROJECT

The Root project comprises several pegmatite deposits with varying degrees of exploration development and hosts a maiden Inferred Mineral Resource estimate of 12.6Mt @ 1.21% Li₂01 from its advanced prospect areas McCombe and Root Bay.

An extensive three-phase field exploration program is underway across the Western Hub and a diamond drilling campaign is underway at the Root Lithium project to upgrade the confidence level in the current inferred maiden resource estimate of 12.6Mt @ 1.21% Li₂0 and identify new priority drill targets with a focus on the areas immediately 1.5km east and 1.4km west along the trend from the current drilling at Root Bay. The trend remains open and highly prospective and can be clearly traced over the entire length of GT1's tenement through the highly magnetic BIF unit that runs along the northern boundary of the Root Bay deposit.

Phase 1: Infill and east, west extensional drilling at Root Bay

Field exploration east and west of Root Bay, North Root tenement area and Allison Lake.

Phase 2: Regional field exploration expanded to Pennock and Trist

Phase 3: Exploration drilling from defined priority drill targets

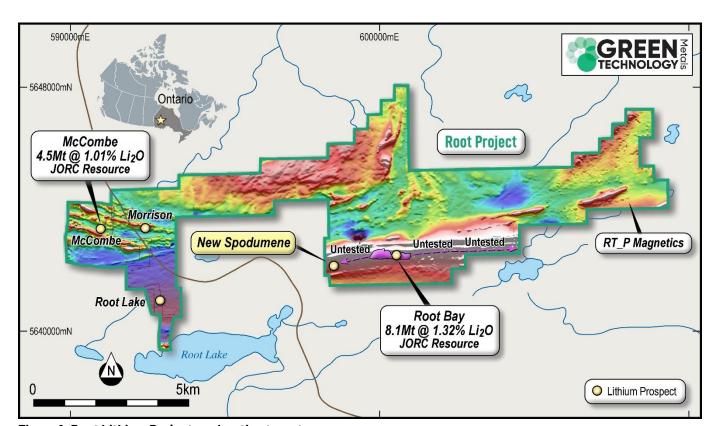


Figure 1: Root Lithium Project exploration target area

¹ For full details of the Root Bay Mineral Resource Estimate, see GT1 ASX release dated 19 April 2023 GT1 Mineral Resources increased to 14.4MT and Transformational 22.5MT Mineral Resource Base reached across Ontario Lithium Projects 7 June 2023

14 July 2023

RECENT DRILLING RESULTS

Initial assay results have been received for the first 9 holes for 1,183m as part of the initial 22,000m infill diamond drilling program designed to upgrade the Mineral Resource Estimate confidence from the inferred to indicated at Root Bay. To date 45 holes for 7,668 metres have been completed with assays from 36 holes pending.

Significant drill intercept received from the infill drilling program at Root Bay are included in the table below.

HOLE	EASTING	NORTHING	RL	DIP	AZI	DEPTH	FROM	то	INTERVAL (m)	Li₂0 %
RB-23-1013	599853	5642451	427	-60	272	102	71.0	88.2	17.1	1.77
RB-23-1014	599854	5642499	428	-61	272	93	57.2	74.4	17.2	1.74
RB-23-1009	599805	5642501	425	-60	270	54	26.9	46.6	19.6	1.50
RB-23-1038	600048	5642497	428	-60	270	201	167.1	183.1	16.0	1.78
RB-23-1020	599899	5642499	426	-61	272	111	82.5	99.3	16.8	1.69
RB-23-1032	600000	5642501	428	-60	270	171	139.6	156.4	16.8	1.61
RB-23-1025	599953	5642448	430	-60	272	162	131.4	147.7	16.3	1.62

Table 1: Significant diamond drilling assays from the infill diamond drill program at the Root Bay prospect

The preliminary results received confirm the central mineralisation tenor and continued high-grades of up to 1.78% through the ore body. Drilling to date supports the current geological interpretation with some movement north and south around the flanks of the pegmatites. Further, the easterly extension of pegmatite RB-13 has increased the Root Bay trend extent another 150m to the east. Deeper drilling around the western pegmatite RB006 will also test potential depth extents around this thick and high-grade pegmatite.

Figure 2: Drill Rigs at Root Bay Prospect area

Upcoming Drilling Campaign

Two diamond drill rigs will continue to 22,000 infill drilling campaign at Root Bay by the end of August 2023. Following the completion of this program, GT1 intends immediately to initiate extensional drilling along a highly prospective, untested 3-kilometer extension of the Root Bay deposit including the new discovery at Root Bay West. Additionally, an exploration drilling program is planned to target any priority areas identified through the ongoing field exploration program.

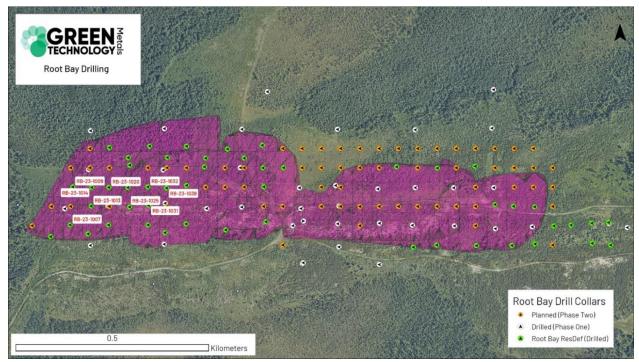


Figure 3: Root Bay Phase 1 and 2 diamond drill program

PROSPECTING AND NEW SPODUMENE DISCOVERY

Prospecting is continuing on areas immediate east and west of Root Bay where the thin layer of overburden allows pegmatites to be easily identified.2As announced on 26 June, the company has had immediate success with a new spodumene discovery 1.4km along strike and west of the Root Bay Deposit, extending the mineralised trend to over 2.7km. The mineralised outcrop matches the pegmatites defined at the Root Bay deposit and is likely part of a large stacked system of mineralised pegmatites. To date 29 samples have been collected with assays expected in the coming weeks.

Figure 4: New spodumene discovery, Root Bay, field exploration and samples bagged and tagged.

² For full details on the new discovery refer to ASX releases dated 26 June 2023 Drilling and Large-scale field exploration commenced and Drilling and Large-scale field exploration commenced - update, dated 4 July 2023

14 July 2023

Indigenous Partners Acknowledgement

We would like to say Gchi Miigwech to our Indigenous partners. GT1 appreciates the opportunity to work in the Traditional Territory and remains committed to the recognition and respect of those who have lived, travelled, and gathered on the lands since time immemorial. Green Technology Metals is committed to stewarding Indigenous heritage and remains committed to building, fostering, and encouraging a respectful relationship with Indigenous Peoples based upon principles of mutual trust, respect, reciprocity, and collaboration in the spirit of reconciliation.

This ASX release has been approved for release by the Board.

KEY CONTACTS

Media **Investors**

Jacinta Martino Luke Cox

Chief Executive Officer Investor Relations and Media

info@greentm.com.au ir@greentm.com.au +61 8 6557 6825 +61 430 147 046

Green Technology Metals (ASX:GT1)

GT1 is a North American-focussed lithium exploration and development business with a current global resource of 22.5Mt Li₂O at 1.14% Li₂O. The Company's main 100% owned Ontario Lithium Projects comprise high-grade, hard rock spodumene assets (Seymour, Root and Wisa) and lithium exploration claims (Allison and Solstice) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada.

All sites are proximate to excellent existing infrastructure (including clean hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality.

Seymour has an existing Mineral Resource estimate of 9.9 Mt @ 1.04% Li₂0 (comprised of 5.2 Mt at 1.29% Li₂0 Indicated and 4.7 Mt at 0.76% Li₂0 Inferred).1 and Root has an Inferred Mineral Resource Estimate of 12.6 Mt @ 1.21% Li₂0. Accelerated, targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

¹ For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, Interim Seymour Mineral Resource Doubles to 9.9Mt. For full details of the Root Maiden Mineral Resource estimate, see GT1 ASX release dated 19 April 2023, GT1 Mineral Resources Increased to 14.4MT and Transformational 22.5MT Mineral Resource Base reached across Ontario Lithium Projects 7 June 2023. The Company confirms that it is not aware of any new information or data that materially affects the information in that release and that the material assumptions and technical parameters underpinning this estimate continue to apply and have not materially changed.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

The information in this report that relates to Exploration Results pertaining to the Project is based on, and fairly represents, information and supporting documentation either compiled or reviewed by Mr Stephen John Winterbottom who is a member of Australian Institute of Geoscientists (Member 6112). Mr Winterbottom is the General Manager -Technical Services of Green Technology Metals. Mr Winterbottom has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person (CP) as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Winterbottom consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Mr Winterbottom holds securities in the Company.

14 July 2023

No new information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

The information in this report relating to the Mineral Resource estimate for the Seymour Project is extracted from the Company's ASX announcement dated 23 June 2022. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

The information in this report relating to the Mineral Resource estimate for the Root Project is extracted from the Company's ASX announcements dated 19 April 2023 and 7 June 2023. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GT1's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GTI's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GT1's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or quarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence

APPENDIX A: JORC CODE, 2012 EDITION - TABLE 1 REPORT

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 GT1 commenced a second phase of diamond drilling at Root Bay prospect on June 3, 2023. GT1 have drilled 81 holes to date for 17,047.2m with 45 holes and 7,668.5m drilled to July 11, 2023 of the Root Bay infill drill program (Phase 2). Diamond Drilling Diamond drilling was used to obtain nominally 1m downhole samples of core. N0 core samples were ½ cored using a diamond saw with ½ the core placed in numbered sample bags for assaying and the other half retained in sequence in the core tray. ½ core samples were approximately 3.0kg in weight with a minimum weight of 500grams. Core was cut down the apex of the core and the same downhole side of the core selected for assaying to reduce potential sampling bias. Channel Samples Preparation prior to obtaining the channel samples including grid and geo-references and marking of the pegmatite structures. Samples were cut across the pegmatite with a diamond saw perpendicular to strike. Average 1 metre samples are obtained, logged, removed and bagged and secured in accordance with 0A0C procedures. Sampling continued past the Spodumene -Pegmatite zone, even if it is truncated by Mafic Volcanic a later intrusion. Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups. One tag from a triple tag book was inserted in the sample bag. Grab Samples Preparation prior to obtaining the grab sample including logging location with D/GPS, geological setting and rock identification and mineralogy Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numb
Drilling techniques	Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	HQ drilling was undertaken through the thin overburden prior to NQ diamond drilling through the primary rock using a standard tube configuration.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias 	 No core was recovered through the overburden tri-coned section of the hole (top 5m of the hole) Core recovery through the primary rock and mineralised pegmatite zones and country rock was 98% or better. No correlation between grade and recovery was observed.

Criteria	JORC Code explanation	Commentary
	may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content, and any structures. Logging is qualitative in nature. Samples are representative of an interval or length. Sampling was taken for the entire cross strike length of the intersected pegmatite unit at nominal 1m intervals with breaks at geological contacts. Sampling extended into the country mafic rock.
Sub- sampling techniques and sample preparatio n	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Each ½ core sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh) (includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. The sample preparation process is considered representative of the whole core sample.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Sample were submitted to AGAT Laboratories in Thunder Bay. AGAT inserted internal standards, blanks and pulp duplicates within each sample batch as part of their own internal monitoring of quality control. GT1 inserted certified lithium standards and blanks into each batch submitted to AGAT to monitor precision and bias performance at a rate of 1:20. The major element oxides and trace elements including Rb, Cs, Nb, Ta and Be were analysed by FUS-ICP and FUS-MS (4Litho-Pegmatite Special) analytical codes which uses a lithium metaborate tetraborate fusion with analysis by ICP and ICPMS. QAQC results to date do not indicate any significant issues with the assays.

Criteria	JORC Code explanation	Commentary
		Oreas_752_Li
		TO 1 2 3 4 5 6 7 8 13 13 27 13 14 15 15 17 18 19 29 29 4000160000 4 factors
		Oreas_753_LI 1100 1100 1000 1000 1000 1000 1000 1
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Pegmatite intersections are verified by the logging geologists and further reviewed by the Exploration manager by comparing intercepts with core photographs and assay returns along with regular visits to the core storage facilities for further verification if required. The laboratory assay results have been sourced directly from the laboratory and the laboratory file directly imported directly into GTI's SQL database. All north seeking gyroscope surveys are uploaded directly from the survey tool output file and visually validated. Geological logs and supporting data are uploaded directly to the database using custom built importers to ensure no chance of typographical errors. No adjustment to laboratory assay data was made other than conversion of Li ppm to Li₂O using a factor of 2.153
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A GPS reading was taken for each sample location using UTM NAD83 Zone15 (for Root); waypoint averaging or dGPS was performed when possible. GT1 undertook a Lidar survey of the Root area in 2022 (+/- 0.15m) which underpins the local topographic surface. GT1 has used continuous measurement north seeking gyroscope tools with readings retained every 5m downhole.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	■ The drilling program currently in progress, seeks to infill the current Root Bay Mineral Resource estimate to approximately 50m x 50m drill spacing centres, sufficient to increase the confidence of the existing mineral resources for subsequent estimation update.

14 July 2023

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The current drilling program is drilled to achieve as close to a representative intersection of the pegmatites as possible which dip moderately to the south. Holes are mostly orientated approximately north and 60 degrees inclination with the exception of hole RB-23-001 which was drilled down the dip of the pegmatites to gauge down dip grade continuity. Grab and trench samples were taken where outcrop was available. All attempts were made to ensure trench samples represented traverses across strike of the pegmatite.
Sample security	The measures taken to ensure sample security.	All core and samples were supervised and secured in a locked vehicle, warehouse, or container until delivered to AGAT in Thunder Bay for cutting, preparation and analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	- NA

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Root Lithium Asset consists of 249 boundary Cell mining claims (Exploration Licences), 33 mining license of occupation claims (285 total claims) with a total claim area of 5,377 ha. Generally surface rights to the Root Property remain with the Crown, except for 9 Patent Claims (PAT-51965. PAT-51966. PAT-51967. PAT-51968. PAT-51970. PAT-51974. PAT-51975. PAT-51976 and PAT-51977). All Cell Claims are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Regional exploration for lithium deposits commenced in the 1950's. In 1955-1956 Capital Lithium Mines Ltd. geologically mapped and sampled dikes near the McCombe Deposit with the highest recorded channel sample of 1.52m at 3.06% Li₂0. 7 drill holes (1,042.26m total) within the McCombe Deposit and Root Lake Prospect yielding low lithium assays. According to Mulligan (1965), Capital Lithium Mines Ltd. reported to Mulligan that they drilled at least 55 holes totalling 10469.88m in 1956. They delineated 4 pegmatite zones and announced a non-compliant NI 41-101 reserve calculation of 2.297 million tons at 1.3% Li₂0. However, none of that information is available on the government database. In 1956, Consolidated Morrison Explorations Ltd drilled 16 holes (1890m total) at the Morrison prospect recording 3.96m at 2.63% Li₂0. In 1956, Three Brothers Mining Exploration southwest of the McCombe Deposit that did not intersect pegmatite In 1957, Geo-Technical Development Company Limited on behalf of Continental Mining Exploration conducted a magnetometer survey and an electromagnetic check survey on the eastern claims of the Root Lithium Project to locate pyrrhotite mineralization In 1977, Northwest Geophysics Limited on behalf of Noranda Exploration Company Ltd. conducted an electromagnetic and magnetometer survey for sulphide conductors on a small package of claims east of the Morrison Prospect. Noranda also conducted a mapping and sampling program over the same area, mapped a new pegmatite dike and sampled a graphitic schist assaying 0.03% Cu and 0.15% Zn. In 1998, Harold A. Watts prospected, trenched and sampled spodumene-bearing pegmatites with the Morrison Prospect assaying up to 5.91% Li₂0. In 2002 stripped and blasted 2 more spodumene-bearing pegmatites near the Morrison prospect. In 2005, Landore Resources Canada Inc. created a reconnaissance survey, mapping and sampling project mostly within the McCombe

Criteria	JORC Code explanation	Commentary
		 Li₂O with the McCombe Deposit. In 2008, Rockex Ltd. on behalf of Robert Allan Ross stripped and trenched 40 trenches for iron, gold and base metals associated with oxide iron formation. All Fe assays were above 25% (up to 47.5% Fe). 3 gold zones were discovered with assays up to 4.0g/t Au in Zone A (Root Bay Gold Prospect), 1.3%g/t Au over 0.5m in Trench 9, 0.19% Cu-Zn over 8m and up to 0.14% Li₂O in Zone B. Best assays of samples collected north-east area of Root Bay had up to 394ppm Zn, 389ppm Cu, 185ppm Ni, 102ppm Co and 57.0ppm Mo. In 2009, Golden Dory Resources along with Harold A. Watts conducted a due diligence sampling program to validate historic data from the Morrison Prospect. Highest grab sample was 5.10% Li₂O and a channel sample of 5m at 4.44% Li₂O. In 2011, Geo Data Solutions GDS Inc. on behalf of Rockex Ltd. flew a high-resolution helicopter borne aeromagnetic survey intersecting a small portion of the south-central claims owned by GM1. In 2012, Stares Contracting on behalf of Golden Dory Resources Corporation conducted a ground magnetic survey near the Morrison Prospect to look for magnetic contrasts between pegmatites and metasedimentary units. They also conducted a prospecting (lithium) and soil sampling (gold) program at the Rook Lake Prospect and east of the Morrison Prospect. Highest Li assays within GM1 claims was 0.0037% Li₂O and a gold soil assay of 52ppb Au. In 2016, the previous owner conducted a drilled 7 diamond drill holes (469m total) within the McCombe deposit. Highest assay was 1m at 3.8% Li₂O. A hole drilled down dip intersected 70m at 1.7% Li₂O. An outcrop sampling within the Morrison and Root Bay Prospects yielded 0.04% Li₂O. Channel sample within the Morrison Prospect had 5m at 2.09% Li₂O and within the Root Bay Prospect, 14m at 1.67% Li₂O. In 2021, KBM Resources Group on behalf of Kenorland Minerals North America Ltd. conducted an 800km² aerial LIDAR acquisition survey over their South Uchi Property which inter
Geology	Deposit type, geological setting and style of mineralisation.	Regional Geology: The Root Lithium Asset is located within the Uchi Domain, predominately metavolcanic units interwoven with granitoid batholiths and English River Terrane, a highly metamorphosed to migmatized, clastic and chemical metasedimentary rock with abundant granitoid batholiths. They are part of the Superior craton, interpreted to be the amalgamation of Archean aged microcontinents and accretionary events. The boundary between the Uchi Domain and the English River Terrane is defined by the Sydney Lake – Lake St. Joseph fault, an east west trending, steeply dipping brittle ductile shear zone over 450km along strike and 1 – 3m wide. Several S-Type, peraluminous granitic plutons host rare-element mineralization near the Uchi Domain and English River subprovince boundary. These pegmatites include the Root Lake Pegmatite Group, Jubilee Lake Pegmatite Group, Sandy Creek Pegmatite and East Pashkokogan Lake Lithium Pegmatite. Local Geology:
		The Root Lithium Asset contains most of the pegmatites within the Root Lake Pegmatite Group including the McCombe Pegmatite, Morrison Prospect, Root Lake Prospect and Root Bay Prospect. The McCombe Pegmatite and Morrison Prospect are hosted in predominately mafic metavolcanic rock of the Uchi Domain. The Root Lake and Root Bay Prospects are hosted in predominately metasedimentary rocks of the English River Terrane. On the eastern end of the Root Lithium Asset there is a gold showing (Root Bay Gold Prospect) hosted in or proximal to silicate, carbonate, sulphide, and oxide iron formations of the English River Terrane. Ore Geology:
		The Root Pegmatites are internally zoned. These zones are classified by the tourmaline discontinuous zone along the pegmatite contact, white feldsparrich wall zone, tourmaline-bearing, equigranular to porphyritic potassium

Criteria	JORC Code explanation	Commentary
		feldspar sodic apalite zone, tourmaline-being, porphyritic potassium feldspar spodumene pegmatite zone and lepidolite-rich pods and seams (Breaks et al., 2003). Both the McCombe and Morrison have been classified as complex-type, spodumene-subtype (Černý 1991a classification) based on the abundance of spodumene, highly evolved potassium feldspar chemistry and presence of petalite, mircolite, lepidolite and lithium-calcium liddicoatite (Breaks et al., 2003), Root Bay pegmatite appear to exhibit similar characteristics.
		The Root Bay pegmatites are hosted in foliated, locally pillowed mafic metavolcanic rock that contain metasomatic holmquistite near the contact of the pegmatite (Magyarosi, 2016).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 No historic drilling has been undertaken at Root Bay. To date the 13 stacked spodumene bearing pegmatites, have been intersected and interpreted. The pegmatites strike north-south and dip moderately to the east and vary in thickness from 2-16m thickness. Collar locations are noted in Appendix B and all coordinates are in North American Datum 1983 (NAD83) Zone 15: GT1 Root Bay downhole pegmatite assayed intercepts are summarised below. The downhole intervals of the pegmatites are approximate to true-widths, except where explicitly stated otherwise. Remaining holes are still being processed.

PROSPECT	HOLE_ID	Easting	Northing	RL	Dip	Azimuth	Depth	From	То	Interval	Lithology	Pegmatite Li20%
Root Bay	RB-23-001*	600,403	5,642,412	434	- 45	90	204	60.9	128.0	67.1	Pegmatite	1.14
Root Bay	RB-23-001*	600,403	5,642,412	434	- 45	90	204	60.9	128.0	67.1	Pegmatite	1.14
Root Bay	RB-23-001*	600,403	5,642,412	434	- 45	90	204	162.0	169.3	7.3	Pegmatite	1.5
Root Bay	RB-23-001*	600,403	5,642,412	434	- 45	90	204	174.3	179.6	5.3	Pegmatite	1.43
Root Bay	RB-23-003	600,493	5,642,405	439	- 60	270	201	67.4	79.5	12.1	Pegmatite	1.30
Root Bay	RB-23-005	600,601	5,642,406	438	- 60	265	210	45.4	49.0	3.6	Pegmatite	0.06
Root Bay	RB-23-005	600,601	5,642,406	438	- 60	265	210	129.2	135.8	6.6	Pegmatite	1.47
Root Bay	RB-23-005	600,601	5,642,406	438	- 60	265	210	140.5	145.0	4.5	Pegmatite	1.34
Root Bay	RB-23-005	600,601	5,642,406	438	- 60	265	210	149.0	151.1	2.1	Pegmatite	1.09
Root Bay	RB-23-007	600,686	5,642,401	435	- 60	271	231	147.3	156.6	9.3	Pegmatite	0.72
Root Bay	RB-23-007	600,686	5,642,401	435	- 60	271	231	170.9	177.4	6.6	Pegmatite	1.57
Root Bay	RB-23-007	600,686	5,642,401	435	- 60	271	231	187.4	190.4	3.0	Pegmatite	1.5
Root Bay	RB-23-007	600,686	5,642,401	435	- 60	271	231	199.5	202.1	2.5	Pegmatite	1.18
Root Bay	RB-23-009	600,795	5,642,399	430	- 60	272	288	124.6	127.2	2.6	Pegmatite	1.01
Root Bay	RB-23-009	600,795	5,642,399	430	- 60	272	288	195.5	198.9	3.4	Pegmatite	1.61
Root Bay	RB-23-009	600,795	5,642,399	430	- 60	272	288	222.9	228.1	5.2	Pegmatite	1.44
Root Bay	RB-23-009	600,795	5,642,399	430	- 60	272	288	250.6	258.5	7.9	Pegmatite	1.01
Root Bay	RB-23-011	600,901	5,642,392	432	- 60	282	353	12.8	17.0	4.2	Pegmatite	0.81
Root Bay	RB-23-011	600,901	5,642,392	432	- 60	282	353	176.7	179.3	2.6	Pegmatite	0.64
Root Bay	RB-23-011	600,901	5,642,392	432	- 60	282	353	274.1	278.1	4.1	Pegmatite	1.64
Root Bay	RB-23-011	600,901	5,642,392	432	- 60	282	353	310.0	314.1	4.1	Pegmatite	1.26
Root Bay	RB-23-013	600,997	5,642,397	443	- 60	271	402	50.1	56.2	6.1	Pegmatite	1.37
Root Bay	RB-23-013	600,997	5,642,397	443	- 60	271	402	324.5	329.7	5.1	Pegmatite	0.47
Root Bay	RB-23-013	600,997	5,642,397	443	- 60	271	402	374.9	377.1	2.2	Pegmatite	1.49
Root Bay	RB-23-014	600,397	5,642,444	434	- 60	271	321	8.5	21.8	13.3	Pegmatite	1.40
Root Bay	RB-23-014	600,397	5,642,444	434	- 60	271	321	227.8	236.1	8.3	Pegmatite	1.4
Root Bay	RB-23-016	600,496	5,642,451	437	- 61	273	162	57.8	69.0	11.3	Pegmatite	1.52
Root Bay	RB-23-016	600,496	5,642,451	437	- 61	273	162	75.6	78.8	3.2	Pegmatite	0.98
Root Bay	RB-23-016	600,496	5,642,451	437	- 61	273	162	131.4	138.3	6.8	Pegmatite	0.21
Root Bay	RB-23-040	600,393	5,642,498	432	- 60	272	324	216.9	224.7	7.8	Pegmatite	1.61
Root Bay	RB-23-042	600,487	5,642,504	431	- 60	270	168	5.6	11.5	5.9	Pegmatite	1.59
Root Bay	RB-23-044	600,597	5,642,495	435	- 60	271	189	18.4	23.5	5.1	Pegmatite	0.22
Root Bay	RB-23-044	600,597	5,642,495	435	- 60	271	189	73.4	81.2	7.8	Pegmatite	0.07
Root Bay	RB-23-046	600,693	5,642,499	438	- 61	272	252	9.1	11.3	2.2	Pegmatite	1.30
Root Bay	RB-23-046	600,693	5,642,499	438	- 61	272	252	128.0	132.6	4.7	Pegmatite	0.64
Root Bay	RB-23-048	600,793	5,642,498	435	- 60	271	291	165.4	170.9	5.5	Pegmatite	0.37
Root Bay	RB-23-048	600,793	5,642,498	435	- 60	271	291	197.9	204.9	7.1	Pegmatite	1.05
Root Bay	RB-23-050	600,897	5,642,499	434	- 60	270	354	168.3	170.5	2.2	Pegmatite	0.03
Root Bay	RB-23-050	600,897	5,642,499	434	- 60	270	354	213.4	218.5	5.1	Pegmatite	0.03
Root Bay	RB-23-050	600,897	5,642,499	434	- 60	270	354	222.1	224.2	2.1	Pegmatite	0.21
Root Bay	RB-23-050	600,897	5,642,499	434	- 60	270	354	255.4	261.7	6.2	Pegmatite	1.09
Root Bay	RB-23-050	600,897	5,642,499	434	- 60	270	354	288.6	294.2	5.6	Pegmatite	0.60
Root Bay	RB-23-081	600,243	5,642,448	435	- 60	268	351	112.8	117.3	4.6	Pegmatite	0.81
Root Bay	RB-23-081	600,243	5,642,448	435	- 60	268	351	119.7	123.8	4.1	Pegmatite	1.38
Root Bay	RB-23-081	600,243	5,642,448	435	- 60	268	351	176.8	181.7	4.9	Pegmatite	0.55
Root Bay	RB-23-081	600,243	5,642,448	435	- 60	268	351	298.5	315.0	16.5	Pegmatite	1.52
Root Bay	RB-23-083	600,153	5,642,444	433	- 60	267	324	54.8	61.4	6.5	Pegmatite	1.55
Root Bay	RB-23-083	600,153	5,642,444	433	- 60	267	324	179.0	181.4	2.4	Pegmatite	0.24
Root Bay	RB-23-083	600,153	5,642,444	433	- 60	267	324	254.6	271.2	16.5	Pegmatite	1.55
Root Bay	RB-23-085	600,045	5,642,458	428	- 45	270	228	181.4	197.4	16.0	Pegmatite	1.58
Root Bay	RB-23-088	599,897	5,642,452	429	- 45	270	201	99.4	117.2	17.8	Pegmatite	1.73
Root Bay	RB-23-091	599,785	5,642,444	425	- 45	270	207	33.1	47.4	14.3	Pegmatite	1.52
Root Bay	RB-23-1007	599,798	5,642,402	422	- 61	271	103	73.7	76.0		Pegmatite	1.12
Root Bay	RB-23-1007	599,798	5,642,402	422	- 61	271	103	81.9	93.5		Pegmatite	1.40
Root Bay	RB-23-1009	599,805	5,642,501	425	- 60	270	54	26.9	46.6		Pegmatite	1.50
Root Bay	RB-23-1013	599,853	5,642,451	427	- 60	272	102	71.0	88.2		Pegmatite	1.77
Root Bay	RB-23-1014	599,854	5,642,499	428	- 61	272	93	57.2	74.4		Pegmatite	1.74
Root Bay	RB-23-1020	599,899	5,642,499	426	- 61	272	111	82.5	99.3		Pegmatite	1.69
Root Bay	RB-23-1025	599,953	5,642,448	430	- 60	272	162	131.4	147.7	16.3	-	1.62
Root Bay	RB-23-1031	600,002	5,642,453	429	- 60	270	186	158.0	172.7	14.7		0.84
Root Bay	RB-23-1032	600,000	5,642,501	428	- 60	270	171	139.6	156.4		Pegmatite	1.61
Root Bay	RB-23-1038	600,048	5,642,497	428	- 60	270	201	167.1	183.1		Pegmatite	1.78
Root Bay	RB-23-148	600,240	5,642,550	431	- 60	270	369	62.8	69.7	6.9	Pegmatite	1 .18
Root Bay	RB-23-148	600,240	5,642,550	431	- 60	270	369	221.7	227.2	5.5	Pegmatite	0.43
Root Bay	RB-23-148	600,240	5,642,550	431	- 60	270	369	238.4	242.8	4.4	Pegmatite	0.32
Root Bay	RB-23-148	600,240	5,642,550	431	- 60	270	369	251.3	253.5	2.2	Pegmatite	1.09
Root Bay	RB-23-148	600,240	5,642,550	431	- 60	270	369	257.7	263.7	5.9	Pegmatite	1.46
Root Bay	RB-23-148	600,240	5,642,550	431	- 60	270	369	354.4	356.5	2.2	Pegmatite	1.42
	RB-23-152	600,040	5,642,544	435	- 60	270	300	152.4	169.2	16.8	Pegmatite	1.57
Root Bay			i		١	270	120	37.1	52.5	15.4	Pegmatite	1.65
Root Bay Root Bay	RB-23-156	599,846	5,642,545	422	- 60	270	120				reginative	1.03
	RB-23-156 RB-23-169	599,846 600,892	5,642,545 5,642,653	422	- 61	272	411	322.5	326.4		Pegmatite	0.02

Criteria	JORC Code explanation	Commentary
		* In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available. The reported intersections are down hole measurements and are not necessarily true width. Descriptions of the mineral amounts seen and logged in the core are qualitative, visual estimates only (they are listed in order of abundance of estimated combined percentages). * In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available. The reported intersections are down hole measurements and are not necessarily true width. Descriptions of the mineral amounts seen and logged in the core are qualitative, visual estimates only (they are listed in order of abundance of estimated combined percentages). Hole RB-23-001 was not drilled tangential to strike and the intervals quoted are not representative of, or similar to, the pegmatite true widths intercepts.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Length weighted Li₂O averages are used across the downhole length of intersected pegmatites Grade cut-offs have not been incorporated. No metal equivalent values are quoted.
Relationshi p between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg'down hole length, true width not known'). 	 Holes drilled by GT1 attempt to pierce the mineralised pegmatite approximately perpendicular to strike, and therefore, the downhole intercepts reported are approximately equivalent to the true width of the mineralisation except for RB-23-001 which was drilled downdip of the pegmatites to better gauge grade continuity. Trenches are representative widths of the exposed pegmatite outcrop. Some exposure may not be a complete representation of the total pegmatite width due to recent glacial deposit cover limiting the available material to be sampled.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	The appropriate maps are included in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Root Bay drill data is detailed in Appendix B and C of this announcement.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and 	 GT1 completed a high resolution Heliborne Magnetic geophysical survey over the property in July 2022. The survey was undertaken by Propsectair using their Robinson R-44 and EC120B helicopters. Survey details, 1,201 line-km, 50m line spacing, direction 179 degrees to crosscut pegmatite strike, 50m altitude. Control lines were flown

Criteria	JORC Code explanation	Commentary
	method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	perpendicular to these lines at 500m spacing. Images have been received Total Magnetics. Interpretation was completed by Southern Geoscience Several pegmatite targets were identified based on structural interpretation of the magnetic response of basement formations. Lithium vector analysis from existing drill data and surface samples was undertaken by Dr Nigel Brand, a geochemist from Portable Spectral Services in Perth Western Australia. Dr Brand formulated an index for identifying potential LCT hosted pegmatites both in greenstone and pegmatite host rocks. Further regional country rock sampling programs will be conducted to assay for elements of interest to generate the vectoring index to allow further LCT pegmatite targets at Root.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further geological field mapping of anomalies and associated pegmatites at Root and regional claims Sampling country rock to assist in LCT pegmatite vector analysis and target generation. Continue infill drilling and extension of the Root Bay pegmatites discovered to date followed by commencement of detailed mining studies.

14 July 2023

APPENDIX B - DRILL HOLE COLLARS

HoleID	Easting	Northing	RL	Dip	Azi	Depth
RB-23-001	600,403	5,642,412	434	- 45	91	204
RB-23-003	600,493	5,642,405	439	- 60	271	201
RB-23-005	600,601	5,642,407	438	- 60	266	210
RB-23-007	600,686	5,642,401	435	- 60	272	231
RB-23-009	600,795	5,642,399	430	- 60	273	288
RB-23-011	600,901	5,642,392	432	- 60	283	353
RB-23-013	600,997	5,642,397	443	- 60	272	402
RB-23-014	600,397	5,642,445	434	- 60	272	321
RB-23-016	600,496	5,642,451	437	- 61	274	162
RB-23-029	600,496	5,642,345	428	- 60	274	171
RB-23-040	600,393	5,642,498	432	- 60	273	324
RB-23-042	600,487	5,642,504	431	- 60	272	168
RB-23-044	600,597	5,642,495	435	- 60	272	189
RB-23-046	600,693	5,642,499	438	- 61	273	252
RB-23-048	600,793	5,642,498	435	- 60	272	291
RB-23-050	600,897	5,642,499	434	- 60	272	354
RB-23-053	600,401	5,642,302	394	- 46	71	219
RB-23-057	600,600	5,642,300	418	- 61	272	192
RB-23-081	600,243	5,642,448	435	- 60	269	351
RB-23-083	600,153	5,642,444	433	- 60	268	324
RB-23-085	600,045	5,642,458	428	- 45	271	228
RB-23-088	599,897	5,642,452	429	- 45	271	201
RB-23-091	599,785	5,642,444	425	- 45	271	207
RB-23-098	600,042	5,642,352	422	- 60	271	273
RB-23-1004	599,748	5,642,372	421	- 61	274	81
RB-23-1007	599,798	5,642,402	422	- 61	272	103
RB-23-1009	599,805	5,642,501	425	- 60	271	54
RB-23-1012	599,845	5,642,379	419	- 61	272	132
RB-23-1013	599,853	5,642,451	427	- 60	273	102
RB-23-1014	599,854	5,642,499	428	- 61	273	93
RB-23-1018	599,898	5,642,402	424	- 61	274	162
RB-23-102	599,851	5,642,349	420	- 59	272	162
RB-23-1020	599,899	5,642,499	426	- 61	273	111
RB-23-1022	599,900	5,642,602	427	- 62	272	75
RB-23-1024	59,951	5,642,378	418	- 61	272	201
RB-23-1025	599,953	5,642,448	430	- 60	273	162
RB-23-1026	599,948	5,642,499	429	- 61	271	141
RB-23-1027	599,953	5,642,557	422	- 61	273	126
RB-23-1028	599,950	5,642,575	425	- 61	272	95
RB-23-1030	600,001	5,642,402	422	- 61	272	204
RB-23-1031	600,002	5,642,453	429	- 60	272	186

HoleID	Easting	Northing	RL	Dip	Azi	Depth
RB-23-1032	600,000	5,642,501	428	- 60	271	171
RB-23-1034	600,005	5,642,606	426	- 60	271	126
RB-23-1036	600,050	5,642,375	425	- 60	273	243
RB-23-1038	600,048	5,642,497	428	- 60	271	201
RB-23-1040	600,050	5,642,575	428	- 62	273	153
RB-23-1043	600,099	5,642,405	424	- 61	273	261
RB-23-1045	600,100	5,642,505	429	- 60	271	234
RB-23-1047	600,100	5,642,606	429	- 60	274	195
RB-23-1053	600,147	5,642,552	430	- 60	271	231
RB-23-1054	600,150	5,642,575	430	- 60	271	205
RB-23-1057	600,202	5,642,389	425	- 61	273	321
RB-23-1061	600,207	5,642,599	430	- 60	271	234
RB-23-1071	600,306	5,642,410	432	- 60	271	375
RB-23-1073	600,301	5,642,501	433	- 61	275	342
RB-23-1074	600,299	5,642,550	412	- 60	271	315
RB-23-1075	600,297	5,642,609	431	- 60	274	288
RB-23-1080	600,352	5,642,550	431	- 61	273	339
RB-23-1118	600,645	5,642,553	432	- 61	272	90
RB-23-1121	600,689	5,642,344	426	- 61	274	108
RB-23-1128	600,749	5,642,350	423	- 61	271	102
RB-23-1132	600,751	5,642,549	433	- 61	269	171
RB-23-1142	600,852	5,642,348	425	- 61	272	228
RB-23-1146	600,849	5,642,554	433	- 61	271	213
RB-23-1151	600,900	5,642,455	433	- 60	271	162
RB-23-1156	600,944	5,642,349	433	- 61	275	51
RB-23-1158	600,948	5,642,450	437	- 60	271	51
RB-23-1163	601,004	5,642,353	435	- 61	275	69
RB-23-1165	601,003	5,642,449	401	- 61	273	66
RB-23-1171	601,053	5,642,400	447	- 61	274	96
RB-23-132	600,403	5,642,304	391	- 60	271	120
RB-23-148	600,240	5,642,550	431	- 60	271	369
RB-23-152	600,040	5,642,544	435	- 60	271	300
RB-23-156	599,846	5,642,545	422	- 60	271	120
RB-23-161	600,492	5,642,650	432	- 60	272	201
RB-23-165	600,693	5,642,648	434	- 60	272	231
RB-23-169	600,892	5,642,653	432	- 61	273	411
RB-23-174	600,244	5,642,650	433	- 60	271	347
RB-23-178	600,043	5,642,652	432	- 60	273	222
RB-23-182	599,851	5,642,646	427	- 60	271	126
RB-23-195	600,896	5,642,753	431	- 60	278	312
RB-23-200	600,310	5,642,747	434	- 60	272	342

14 July 2023

APPENDIX C - GEOLOGY LOG ROOT BAY PROSPECT

HoleID	From	То	Interval	Lithology	Li2O p	pm
RB-23-003	0.0	2.9	2.9	Overburden		-
RB-23-003	2.9	67.4	64.6	Mafic		19
RB-23-003	67.4	79.5	12.1	Pegmatite	12,667	
RB-23-003	79.5	83.5	4.0	Mafic	535	
RB-23-003	83.5	85.0	1.5	Pegmatite	3,813	
RB-23-003	85.0	139.2	54.2	Mafic		79
RB-23-003	139.2	140.0	0.8	Pegmatite	125	
RB-23-003	140.0	201.0	61.0	Mafic		23
RB-23-005	0.0	3.0	3.0	Overburden		-
RB-23-005	3.0	15.0	12.0	Mafic	107	
RB-23-005	15.0	15.5	0.4	Pegmatite	385	
RB-23-005	15.5	45.4	30.0	Mafic	220	
RB-23-005	45.4	49.0	3.6	Pegmatite	646	
RB-23-005	49.0	108.6	59.6	Mafic	101	
RB-23-005	108.6	109.9	1.3	Pegmatite	12,585	
RB-23-005	109.9	129.2	19.3	Mafic	602	
RB-23-005	129.2	135.8	6.6	Pegmatite	14,678	
RB-23-005	135.8	140.5	4.7	Mafic	907	
RB-23-005	140.5	145.0	4.5	Pegmatite	13,394	
RB-23-005	145.0	149.0	4.0	Mafic	893	
RB-23-005	149.0	151.1	2.1	Pegmatite	10,936	
RB-23-005	151.1	210.0	59.0	Mafic		39
RB-23-007	0.0	0.5	0.5	Overburden		-
RB-23-007	0.5	32.9	32.5	Mafic		94
RB-23-007	32.9	34.8	1.9	Pegmatite	6,520	
RB-23-007	34.8	50.6	15.8	Mafic	510	
RB-23-007	50.6	51.8	1.2	Felsic	255	
RB-23-007	51.8	141.6	89.8	Mafic		31
RB-23-007	141.6	142.1	0.5	Felsic		73
RB-23-007	142.1	147.3	5.2	Mafic	454	

1		İ				
RB-23-007	147.3	150.3	3.0	Pegmatite	16,109	
RB-23-007	150.3	153.2	2.8	Mafic	595	
RB-23-007	153.2	156.7	3.5	Pegmatite	4,884	
RB-23-007	156.7	170.9	14.2	Mafic	745	
RB-23-007	170.9	177.4	6.6	Pegmatite	15,722	
RB-23-007	177.4	187.4	10.0	Mafic	760	
RB-23-007	187.4	190.4	3.0	Pegmatite	15,227	
RB-23-007	190.4	199.5	9.1	Mafic	680	
RB-23-007	199.5	202.1	2.6	Pegmatite	11,771	
RB-23-007	202.1	231.0	28.9	Mafic		77
RB-23-009	0.0	6.0	6.0	Overburden	<u> </u>	
RB-23-009	6.0	124.6	118.6	Mafic		18
RB-23-009	124.6	127.2	2.6	Pegmatite	10,052	
RB-23-009	127.2	195.5	68.3	Mafic	111	
RB-23-009	195.5	198.9	3.4	Pegmatite	16,140	
RB-23-009	198.9	222.9	24.0	Mafic	475	
RB-23-009	222.9	228.1	5.2	Pegmatite	3,373	
RB-23-009	228.1	239.5	11.4	Mafic		-
RB-23-009	239.5	240.7	1.2	Pegmatite		-
RB-23-009	240.7	250.6	9.9	Mafic		-
RB-23-009	250.6	253.4	2.8	Pegmatite		-
RB-23-009	253.4	256.0	2.5	Mafic		-
RB-23-009	256.0	258.5	2.5	Pegmatite		-
RB-23-009	258.5	288.0	29.5	Mafic		-
RB-23-011	0.0	6.8	6.8	Overburden		-
RB-23-011	6.8	12.8	6.0	Mafic	272	
RB-23-011	12.8	17.0	4.2	Pegmatite	8,133	
RB-23-011	17.0	21.9	4.9	Mafic	932	
RB-23-011	21.9	23.1	1.3	Pegmatite	193	
RB-23-011	23.1	176.7	153.6	Mafic		22
RB-23-011	176.7	179.3	2.6	Pegmatite	6,396	
RB-23-011	179.3	249.1	69.8	Mafic		60
RB-23-011	249.1	250.7	1.6	Pegmatite	2,282	
RB-23-011	250.7	274.1	23.4	Mafic	485	

RB-23-011	274.1	278.1	4.1	Pegmatite	16,412	
RB-23-011	278.1	296.2	18.1	Mafic		-
RB-23-011	296.2	297.2	0.9	Pegmatite		-
RB-23-011	297.2	310.0	12.9	Mafic		-
RB-23-011	310.0	314.1	4.1	Pegmatite		-
RB-23-011	314.1	320.9	6.8	Mafic		-
RB-23-011	320.9	322.6	1.7	Pegmatite		-
RB-23-011	322.6	353.0	30.4	Mafic		-
RB-23-014	0.0	3.5	3.5	Overburden		-
RB-23-014	3.5	8.5	5.0	Mafic	482	
RB-23-014	8.5	21.8	13.3	Pegmatite	13,742	
RB-23-014	21.8	227.8	206.0	Mafic		18
RB-23-014	227.8	236.1	8.3	Pegmatite	13,995	
RB-23-014	236.1	247.6	11.6	Mafic	666	
RB-23-014	247.6	249.4	1.8	Pegmatite	13,918	
RB-23-014	249.4	320.7	71.3	Mafic	195	
RB-23-016	0.0	3.2	3.2	Overburden		-
RB-23-016	3.2	42.4	39.2	Mafic		90
DD 22 016	42.4	44.3	1.0	Dogmatita	12 200	
RB-23-016	42.4	44.5	1.9	Pegmatite	12,399	
RB-23-016	44.3	57.8	13.5	Mafic	1,099	
RB-23-016	57.8	69.0	11.3	Pegmatite	15,169	
RB-23-016	69.0	75.6	6.6	Mafic	519	
RB-23-016	75.6	78.8	3.2	Pegmatite	9,457	
RB-23-016	78.8	131.5	52.7	Mafic		39
RB-23-016	131.5	138.3	6.8	Pegmatite	1,101	
RB-23-016	138.3	162.0	23.7	Mafic		-
RB-23-029	0.0	7.7	7.7	Overburden		-
RB-23-029	7.7	73.7	66.0	Sediment		85
RB-23-029	73.7	74.5	0.8	Pegmatite	1,421	
RB-23-029	74.5	171.0	96.5	Sediment		32
RB-23-044	0.0	3.0	3.0	Overburden		-
RB-23-044	3.0	18.4	15.4	Mafic		89
RB-23-044	18.4	23.5	5.1	Pegmatite	1,999	
RB-23-044	23.5	36.4	12.9	Mafic	351	
RB-23-044	36.4	36.8	0.4	Pegmatite		50
RB-23-044	36.8	73.4	36.6	Mafic		85

1	1			1	1	
RB-23-044	73.4	77.3	3.9	Pegmatite	281	
RB-23-044	77.3	78.6	1.3	Mafic	726	
RB-23-044	78.6	81.2	2.6	Pegmatite	1,229	
RB-23-044	81.2	189.0	107.8	Mafic	,	82
RB-23-050	0.0	12.0	12.0	Overburden		-
RB-23-050	12.0	46.3	34.3	Mafic		18
RB-23-050	46.3	46.7	0.4	Pegmatite	127	
RB-23-050	46.7	157.6	110.9	Mafic	12,	34
11.0 25 050	40.7	137.0	110.5	Iviane		<u> </u>
RB-23-050	157.6	159.5	1.9	Pegmatite	197	
RB-23-050	159.5	168.3	8.8	Mafic	331	
RB-23-050	168.3	170.5	2.2	Pegmatite	274	
RB-23-050	170.5	213.4	42.9	Mafic		59
RB-23-050	213.4	218.5	5.1	Dogmatita	350	
NB-23-030	215.4	210.5	5.1	Pegmatite	330	
RB-23-050	218.5	222.1	3.6	Mafic	789	
RB-23-050	222.1	224.2	2.1	Pegmatite	1,935	
RB-23-050	224.2	244.4	20.2	Mafic	130	
RB-23-050	244.4	245.6	1.2	Pegmatite	5,391	
RB-23-050	245.6	255.5	9.8	Mafic	606	
RB-23-050	255.5	261.7	6.2	Pegmatite	10,917	
RB-23-050	261.7	288.6	26.9	Mafic	165	
RB-23-050	288.6	294.2	5.6	Pegmatite	5,966	
RB-23-050	294.2	354.0	59.8	Mafic		62
RB-23-053	0.0	5.0	5.0	Overburden		-
RB-23-053	5.0	219.0	214.0	Sediment		-
RB-23-057	0.0	7.2	7.2	Overburden		-
RB-23-057	7.2	192.0	184.8	Sediment		-
RB-23-081	0.0	1.9	1.9	Overburden		-
RB-23-081	1.9	65.7	63.8	Mafic		33
RB-23-081	65.7	67.3	1.6	Pegmatite	5,978	
RB-23-081	67.3	112.8	45.5	Mafic	118	
RB-23-081	112.8	113.4	0.6	Pegmatite	1,447	
RB-23-081	113.4	115.1	1.7	Mafic	3,003	
RB-23-081	115.1	117.3	2.2	Pegmatite	13,932	

1 1						
RB-23-081	117.3	119.7	2.3	Mafic	921	
RB-23-081	119.7	123.8	4.1	Pegmatite	13,827	
RB-23-081	123.8	176.8	53.0	Mafic	167	
RB-23-081	176.8	181.7	4.9	Pegmatite	5,480	
RB-23-081	181.7	208.5	26.8	Mafic	548	
RB-23-081	208.5	208.9	0.4	Pegmatite	19,073	
RB-23-081	208.9	222.8	13.9	Mafic	690	
RB-23-081	222.8	223.2	0.4	Pegmatite	4,176	
RB-23-081	223.2	234.8	11.6	Mafic	543	
RB-23-081	234.8	235.5	0.7	Pegmatite	8,675	
RB-23-081	235.5	298.5	63.0	Mafic		61
RB-23-081	298.5	315.0	16.5	Pegmatite		_
RB-23-081	315.0	320.3	5.3	Sediment		_
RB-23-081	320.3	321.6	1.3	Pegmatite		_
RB-23-081	321.6	351.0	29.4	Mafic		_
RB-23-083	0.0	1.7	1.7	Overburden		_
RB-23-083	1.7	54.8	53.2	Mafic		33
11.0 23 003	1.,	34.0	33.2	Widne		33
RB-23-083	54.8	61.4	6.5	Pegmatite	15,397	
RB-23-083	61.4	179.0	117.6	Mafic		59
RB-23-083	179.0	181.4	2.4	Pegmatite	2,390	
RB-23-083	181.4	191.9	10.6	Mafic	623	
RB-23-083	191.9	192.5	0.6	Pegmatite	161	
RB-23-083	192.5	254.6	62.1	Mafic		42
RB-23-083	254.6	271.2	16.6	Pegmatite		-
RB-23-083	271.2	324.0	52.8	Mafic		-
RB-23-085	0.0	3.7	3.7	Overburden		-
RB-23-085	3.7	87.4	83.7	Mafic		5
RB-23-085	87.4	88.0	0.6	Pegmatite	215	
RB-23-085	88.0	108.9	20.9	Mafic		77
RB-23-085	108.9	109.6	0.7	Pegmatite	5,662	
RB-23-085	109.6	181.4	71.9	Mafic	124	
RB-23-085	181.4	197.4	16.0	Pegmatite	15,783	
RB-23-085	197.4	223.5	26.1	Mafic	274	
RB-23-085	223.5	224.6	1.1	Pegmatite	6,569	

RB-23-085	224.6	228.0	3.4	Mafic	470
RB-23-102	0.0	9.3	9.3	Overburden	-
RB-23-102	9.3	162.0	152.7	Sediment	-
RB-23-132	0.0	3.0	3.0	Overburden	-
RB-23-132	3.0	120.0	117.0	Sediment	-
RB-23-165	0.0	12.0	12.0	Overburden	-
RB-23-165	12.0	134.4	122.4	Sediment	-
RB-23-165	134.4	134.4	0.1	Pegmatite	-
RB-23-165	134.4	231.0	96.6	Sediment	-
RB-23-182	0.0	10.5	10.5	Overburden	-
RB-23-182	10.5	126.0	115.5	Sediment	-

HoleID	From	То	Interval	Lithology	Li20 ppm
RB-23-003	0.0	2.9	2.9	overburden	
RB-23-003	2.9	67.4	64.6	mafic	366
RB-23-003	67.4	79.5	12.1	pegmatite	12,671
RB-23-003	79.5	83.5	4.0	mafic	501
RB-23-003	83.5	85.0	1.5	pegmatite	3,871
RB-23-003	85.0	139.2	54.2	mafic	510
RB-23-003	139.2	140.0	0.8	pegmatite	95
RB-23-003	140.0	201.0	61.0	mafic	341
RB-23-005	0.0	3.0	3.0	overburden	
RB-23-005	3.0	15.0	12.0	mafic	301
RB-23-005	15.0	15.5	0.4	pegmatite	372
RB-23-005	15.5	45.4	30.0	mafic	823
RB-23-005	45.4	49.0	3.6	pegmatite	637
RB-23-005	49.0	108.6	59.6	mafic	843
RB-23-005	108.6	109.9	1.3	pegmatite	12,903
RB-23-005	109.9	129.2	19.3	mafic	616
RB-23-005	129.2	135.8	6.6	pegmatite	14,678
RB-23-005	135.8	140.5	4.7	mafic	907
RB-23-005	140.5	145.0	4.5	pegmatite	13,394
RB-23-005	145.0	149.0	4.0	mafic	893
RB-23-005	149.0	151.1	2.1	pegmatite	10,936
RB-23-005	151.1	210.0	58.9	mafic	576
RB-23-007	0.0	0.5	0.5	overburden	
RB-23-007	0.5	32.9	32.4	mafic	779
RB-23-007	32.9	34.8	1.9	pegmatite	6,520
RB-23-007	34.8	50.6	15.8	mafic	510
RB-23-007	50.6	51.8	1.2	felsic	255
RB-23-007	51.8	141.6	89.8	mafic	410
RB-23-007	141.6	142.1	0.5	felsic	73
RB-23-007	142.1	147.3	5.2	mafic	454

HoleID	From	То	Interval	Lithology	Li20 ppm
RB-23-007	147.3	150.3	3.0	pegmatite	16,109
RB-23-007	150.3	153.2	2.8	mafic	595
RB-23-007	153.2	156.7	3.5	pegmatite	4,884
RB-23-007	156.7	170.9	14.2	mafic	745
RB-23-007	170.9	177.4	6.6	pegmatite	15,722
RB-23-007	177.4	187.4	10.0	mafic	760
RB-23-007	187.4	190.4	3.0	pegmatite	15,227
RB-23-007	190.4	199.5	9.1	mafic	680
RB-23-007	199.5	202.1	2.6	pegmatite	11,771
RB-23-007	202.1	231.0	28.9	mafic	563
RB-23-009	0.0	6.0	6.0	overburden	
RB-23-009	6.0	124.6	118.6	mafic	593
RB-23-009	124.6	127.2	2.6	pegmatite	10,052
RB-23-009	127.2	195.5	68.3	mafic	415
RB-23-009	195.5	198.9	3.4	pegmatite	16,140
RB-23-009	198.9	222.9	24.0	mafic	475
RB-23-009	222.9	228.1	5.2	pegmatite	14,363
RB-23-009	228.1	239.5	11.3	mafic	685
RB-23-009	239.5	240.7	1.2	pegmatite	11,786
RB-23-009	240.7	250.6	9.9	mafic	777
RB-23-009	250.6	253.4	2.8	pegmatite	13,215
RB-23-009	253.4	256.0	2.5	mafic	959
RB-23-009	256.0	258.5	2.5	pegmatite	15,754
RB-23-009	258.5	288.0	29.5	mafic	648
RB-23-011	0.0	6.8	6.8	overburden	
RB-23-011	6.8	12.8	6.0	mafic	429
RB-23-011	12.8	17.0	4.2	pegmatite	8,133
RB-23-011	17.0	21.9	4.9	mafic	932
RB-23-011	21.9	23.1	1.3	pegmatite	193
RB-23-011	23.1	176.7	153.6	mafic	313
RB-23-011	176.7	179.3	2.6	pegmatite	6,396
RB-23-011	179.3	249.1	69.8	mafic	344
RB-23-011	249.1	250.7	1.6	pegmatite	2,282
RB-23-011	250.7	274.1	23.4	mafic	486
RB-23-011	274.1	278.1	4.1	pegmatite	16,412
RB-23-011	278.1	296.2	18.1	mafic	819
RB-23-011	296.2	297.2	0.9	pegmatite	6,587
RB-23-011	297.2	310.0	12.9	mafic	716
RB-23-011	310.0	314.1	4.1	pegmatite	12,591
RB-23-011	314.1	320.9	6.8	mafic	1,077
RB-23-011	320.9	322.6	1.7	pegmatite	11,570
RB-23-011	322.6	353.0	30.4	mafic	887

HoleID	From	То	Interval	Lithology	Li20 ppm
RB-23-013	0.0	3.2	3.2	overburden	
RB-23-013	3.2	50.1	46.9	mafic	1,490
RB-23-013	50.1	56.2	6.1	pegmatite	13,706
RB-23-013	56.2	196.8	140.6	mafic	1,186
RB-23-013	196.8	198.1	1.3	pegmatite	635
RB-23-013	198.1	245.0	46.9	mafic	2,447
RB-23-013	245.0	297.0	52.0	sediment	803
RB-23-013	297.0	324.6	27.6	mafic	551
RB-23-013	324.6	329.7	5.1	pegmatite	4,657
RB-23-013	329.7	374.9	45.2	mafic	885
RB-23-013	374.9	377.1	2.2	pegmatite	14,864
RB-23-013	377.1	402.0	24.9	mafic	2,609
RB-23-014	0.0	3.5	3.5	overburden	
RB-23-014	3.5	8.5	5.0	mafic	625
RB-23-014	8.5	21.8	13.3	pegmatite	13,523
RB-23-014	21.8	227.8	206.0	mafic	373
RB-23-014	227.8	236.1	8.3	pegmatite	14,302
RB-23-014	236.1	247.6	11.5	mafic	769
RB-23-014	247.6	249.4	1.8	pegmatite	13,339
RB-23-014	249.4	320.7	71.3	mafic	621
RB-23-016	0.0	3.2	3.2	overburden	
RB-23-016	3.2	42.4	39.2	mafic	801
RB-23-016	42.4	44.3	1.9	pegmatite	12,399
RB-23-016	44.3	57.8	13.5	mafic	1,099
RB-23-016	57.8	69.0	11.3	pegmatite	15,169
RB-23-016	69.0	75.6	6.6	mafic	519
RB-23-016	75.6	78.8	3.2	pegmatite	9,457
RB-23-016	78.8	131.5	52.6	mafic	367
RB-23-016	131.5	138.3	6.8	pegmatite	2,118
RB-23-016	138.3	162.0	23.7	mafic	
RB-23-029	0.0	7.7	7.7	overburden	
RB-23-029	7.7	73.7	66.0	sediment	257
RB-23-029	73.7	74.5	0.8	pegmatite	1,421
RB-23-029	74.5	171.0	96.5	sediment	1,221
RB-23-040	0.0	3.0	3.0	overburden	
RB-23-040	3.0	216.9	213.9	mafic	402
RB-23-040	216.9	218.8	2.0	pegmatite	13,822
RB-23-040	218.8	219.7	0.8	mafic	6,716
RB-23-040	219.7	224.7	5.0	pegmatite	18,622
RB-23-040	224.7	256.2	31.5	mafic	807
RB-23-040	256.2	257.4	1.2	pegmatite	856
RB-23-040	257.4	324.0	66.6	mafic	1,146

HoleID	From	То	Interval	Lithology	Li20 ppm
RB-23-042	0.0	5.6	5.6	overburden	
RB-23-042	5.6	11.5	5.9	pegmatite	15,798
RB-23-042	11.5	168.0	156.5	mafic	644
RB-23-044	0.0	3.0	3.0	overburden	
RB-23-044	3.0	18.4	15.4	mafic	385
RB-23-044	18.4	23.5	5.1	pegmatite	2,193
RB-23-044	23.5	36.4	12.9	mafic	369
RB-23-044	36.4	36.8	0.4	pegmatite	45
RB-23-044	36.8	73.4	36.6	mafic	452
RB-23-044	73.4	77.3	3.9	pegmatite	292
RB-23-044	77.3	78.6	1.3	mafic	762
RB-23-044	78.6	81.2	2.6	pegmatite	1,381
RB-23-044	81.2	189.0	107.8	mafic	1,028
RB-23-046	0.0	1.8	1.8	overburden	
RB-23-046	1.8	9.1	7.4	mafic	383
RB-23-046	9.1	11.3	2.2	pegmatite	12,974
RB-23-046	11.3	128.0	116.7	mafic	631
RB-23-046	128.0	132.6	4.7	pegmatite	6,374
RB-23-046	132.6	252.0	119.4	mafic	463
RB-23-048	0.0	3.8	3.8	overburden	
RB-23-048	3.8	90.5	86.8	mafic	500
RB-23-048	90.5	91.5	1.0	pegmatite	58
RB-23-048	91.5	99.4	7.9	mafic	597
RB-23-048	99.4	100.1	0.7	pegmatite	2,992
RB-23-048	100.1	118.7	18.6	mafic	376
RB-23-048	118.7	119.4	0.7	pegmatite	200
RB-23-048	119.4	165.4	46.0	mafic	518
RB-23-048	165.4	170.9	5.5	pegmatite	3,733
RB-23-048	170.9	176.8	5.9	mafic	395
RB-23-048	176.8	178.4	1.6	pegmatite	318
RB-23-048	178.4	187.1	8.7	mafic	456
RB-23-048	187.1	188.3	1.1	pegmatite	8,157
RB-23-048	188.3	197.9	9.6	mafic	696
RB-23-048	197.9	204.9	7.1	pegmatite	10,463
RB-23-048	204.9	278.0	73.1	mafic	549
RB-23-048	278.0	278.7	0.6	pegmatite	1,137
RB-23-048	278.7	291.0	12.3	mafic	632
RB-23-050	0.0	12.0	12.0	overburden	
RB-23-050	12.0	46.3	34.3	mafic	279
RB-23-050	46.3	46.7	0.4	pegmatite	125
RB-23-050	46.7	157.6	110.9	mafic	650
RB-23-050	157.6	159.5	1.9	pegmatite	239

HoleID	From	То	Interval	Lithology	Li20 ppm
RB-23-050	159.5	168.3	8.8	mafic	321
RB-23-050	168.3	170.5	2.2	pegmatite	273
RB-23-050	170.5	213.4	42.9	mafic	354
RB-23-050	213.4	218.5	5.1	pegmatite	327
RB-23-050	218.5	222.1	3.6	mafic	772
RB-23-050	222.1	224.2	2.1	pegmatite	2,051
RB-23-050	224.2	244.4	20.2	mafic	559
RB-23-050	244.4	245.6	1.2	pegmatite	5,391
RB-23-050	245.6	255.5	9.8	mafic	606
RB-23-050	255.5	261.7	6.2	pegmatite	10,917
RB-23-050	261.7	288.6	26.9	mafic	597
RB-23-050	288.6	294.2	5.6	pegmatite	5,966
RB-23-050	294.2	354.0	59.8	mafic	539
RB-23-053	0.0	5.0	5.0	overburden	
RB-23-053	5.0	219.0	214.0	sediment	
RB-23-057	0.0	7.2	7.2	overburden	
RB-23-057	7.2	192.0	184.8	sediment	
RB-23-081	0.0	1.9	1.9	overburden	
RB-23-081	1.9	65.7	63.8	mafic	509
RB-23-081	65.7	67.3	1.6	pegmatite	5,978
RB-23-081	67.3	112.8	45.5	mafic	722
RB-23-081	112.8	113.4	0.6	pegmatite	1,447
RB-23-081	113.4	115.1	1.7	mafic	3,003
RB-23-081	115.1	117.3	2.2	pegmatite	13,932
RB-23-081	117.3	119.7	2.3	mafic	921
RB-23-081	119.7	123.8	4.1	pegmatite	13,827
RB-23-081	123.8	176.8	53.0	mafic	1,042
RB-23-081	176.8	181.7	4.9	pegmatite	5,480
RB-23-081	181.7	208.5	26.8	mafic	2,163
RB-23-081	208.5	208.9	0.4	pegmatite	19,073
RB-23-081	208.9	222.8	13.9	mafic	690
RB-23-081	222.8	223.2	0.4	pegmatite	4,176
RB-23-081	223.2	234.8	11.6	mafic	543
RB-23-081	234.8	235.5	0.7	pegmatite	8,675
RB-23-081	235.5	298.5	63.0	mafic	1,204
RB-23-081	298.5	315.0	16.5	pegmatite	15,236
RB-23-081	315.0	320.3	5.3	sediment	2,182
RB-23-081	320.3	321.6	1.3	pegmatite	7,642
RB-23-081	321.6	351.0	29.4	mafic	917
RB-23-083	0.0	1.7	1.7	overburden	
RB-23-083	1.7	54.8	53.2	mafic	365
RB-23-083	54.8	61.4	6.5	pegmatite	15,397

HoleID	From	То	Interval	Lithology	Li20 ppm
RB-23-083	61.4	179.0	117.6	mafic	719
RB-23-083	179.0	181.4	2.4	pegmatite	2,390
RB-23-083	181.4	191.9	10.6	mafic	623
RB-23-083	191.9	192.5	0.6	pegmatite	161
RB-23-083	192.5	254.6	62.1	mafic	777
RB-23-083	254.6	271.2	16.6	pegmatite	15,491
RB-23-083	271.2	324.0	52.8	mafic	665
RB-23-085	0.0	3.7	3.7	overburden	
RB-23-085	3.7	87.4	83.6	mafic	319
RB-23-085	87.4	88.0	0.6	pegmatite	215
RB-23-085	88.0	108.9	20.9	mafic	414
RB-23-085	108.9	109.6	0.7	pegmatite	5,662
RB-23-085	109.6	181.4	71.9	mafic	1,138
RB-23-085	181.4	197.4	16.0	pegmatite	15,783
RB-23-085	197.4	223.5	26.1	mafic	785
RB-23-085	223.5	224.6	1.1	pegmatite	6,569
RB-23-085	224.6	228.0	3.4	mafic	841
RB-23-088	0.0	3.8	3.8	overburden	
RB-23-088	3.8	23.8	20.0	mafic	300
RB-23-088	23.8	24.3	0.5	pegmatite	198
RB-23-088	24.3	99.4	75.1	mafic	550
RB-23-088	99.4	117.2	17.8	pegmatite	17,321
RB-23-088	117.2	148.7	31.5	mafic	721
RB-23-088	148.7	149.8	1.1	pegmatite	211
RB-23-088	149.8	201.0	51.2	mafic	462
RB-23-091	0.0	3.0	3.0	overburden	
RB-23-091	3.0	33.1	30.1	mafic	563
RB-23-091	33.1	47.4	14.3	pegmatite	15,149
RB-23-091	47.4	128.7	81.3	mafic	2,666
RB-23-091	128.7	129.1	0.4	pegmatite	153
RB-23-091	129.1	135.9	6.8	mafic	346
RB-23-091	135.9	136.1	0.2	pegmatite	207
RB-23-091	136.1	191.7	55.6	mafic	420
RB-23-091	191.7	192.8	1.1	pegmatite	7,814
RB-23-091	192.8	207.0	14.2	mafic	553
RB-23-098	0.0	8.2	8.2	overburden	
RB-23-098	8.2	273.0	264.8	sediment	160
RB-23-148	0.0	1.5	1.5	overburden	
RB-23-148	1.5	62.9	61.4	Pyroxenite	420
RB-23-148	62.9	68.8	6.0	pegmatite	13,247
RB-23-148	68.8	69.4	0.6	mafic	3,100
RB-23-148	69.4	69.7	0.3	pegmatite	372

HoleID	From	То	Interval	Lithology	Li20 ppm
RB-23-148	69.7	166.3	96.6	mafic	2,108
RB-23-148	166.3	167.1	0.8	pegmatite	359
RB-23-148	167.1	182.3	15.2	mafic	619
RB-23-148	182.3	183.3	1.0	pegmatite	7,341
RB-23-148	183.3	189.5	6.2	mafic	525
RB-23-148	189.5	189.8	0.3	pegmatite	319
RB-23-148	189.8	221.7	31.9	mafic	589
RB-23-148	221.7	222.7	1.0	pegmatite	364
RB-23-148	222.7	225.3	2.7	mafic	1,673
RB-23-148	225.3	227.2	1.9	pegmatite	10,014
RB-23-148	227.2	238.4	11.2	mafic	5,762
RB-23-148	238.4	238.9	0.5	pegmatite	196
RB-23-148	238.9	239.3	0.4	mafic	11,194
RB-23-148	239.3	240.4	1.1	pegmatite	614
RB-23-148	240.4	242.0	1.6	mafic	5,070
RB-23-148	242.0	242.8	0.8	pegmatite	764
RB-23-148	242.8	250.9	8.0	mafic	2,526
RB-23-148	250.9	251.0	0.2	pegmatite	1,199
RB-23-148	251.0	251.3	0.3	mafic	2,260
RB-23-148	251.3	253.5	2.2	pegmatite	10,878
RB-23-148	253.5	257.7	4.2	mafic	5,136
RB-23-148	257.7	263.7	5.9	pegmatite	14,566
RB-23-148	263.7	268.2	4.5	mafic	2,442
RB-23-148	268.2	270.1	1.9	pegmatite	9,145
RB-23-148	270.1	275.2	5.1	mafic	3,661
RB-23-148	275.2	275.4	0.2	pegmatite	2,519
RB-23-148	275.4	276.8	1.4	mafic	13,674
RB-23-148	276.8	278.6	1.8	pegmatite	6,713
RB-23-148	278.6	281.8	3.3	mafic	4,455
RB-23-148	281.8	282.0	0.2	pegmatite	1,150
RB-23-148	282.0	284.8	2.8	mafic	6,405
RB-23-148	284.8	285.1	0.3	pegmatite	2,519
RB-23-148	285.1	291.8	6.7	mafic	2,099
RB-23-148	291.8	292.4	0.6	pegmatite	3,057
RB-23-148	292.4	310.7	18.3	mafic	1,068
RB-23-148	310.7	310.9	0.2	pegmatite	506
RB-23-148	310.9	313.8	2.9	mafic	588
RB-23-148	313.8	314.0	0.2	pegmatite	366
RB-23-148	314.0	342.0	28.0	mafic	384
RB-23-148	342.0	342.8	0.8	felsic	1,348
RB-23-148	342.8	354.4	11.6	mafic	928
RB-23-148	354.4	356.6	2.2	pegmatite	14,278

HoleID	From	То	Interval	Lithology	Li20 ppm
RB-23-148	356.6	358.4	1.8	mafic	10,126
RB-23-148	358.4	359.2	0.8	sediment	1,010
RB-23-148	359.2	360.3	1.1	mafic	676
RB-23-148	360.3	360.7	0.4	pegmatite	153
RB-23-148	360.7	369.0	8.3	mafic	984
RB-23-152	0.0	4.4	4.4	overburden	
RB-23-152	4.4	29.2	24.8	mafic	1,086
RB-23-152	29.2	30.8	1.6	pegmatite	879
RB-23-152	30.8	48.6	17.8	mafic	443
RB-23-152	48.6	76.6	28.0	Pyroxenite	696
RB-23-152	76.6	77.1	0.5	pegmatite	6,996
RB-23-152	77.1	96.9	19.8	Pyroxenite	1,110
RB-23-152	96.9	97.3	0.4	pegmatite	329
RB-23-152	97.3	101.0	3.6	Pyroxenite	389
RB-23-152	101.0	101.3	0.4	pegmatite	265
RB-23-152	101.3	102.2	0.9	Pyroxenite	389
RB-23-152	102.2	152.4	50.3	mafic	891
RB-23-152	152.4	169.2	16.8	pegmatite	15,656
RB-23-152	169.2	210.7	41.5	mafic	3,023
RB-23-152	210.7	212.1	1.4	pegmatite	1,982
RB-23-152	212.1	261.0	48.9	mafic	662
RB-23-156	0.0	7.0	7.0	overburden	
RB-23-156	7.0	29.5	22.5	mafic	725
RB-23-156	29.5	31.0	1.5	pegmatite	14,989
RB-23-156	31.0	37.1	6.1	mafic	1,846
RB-23-156	37.1	52.5	15.4	pegmatite	16,506
RB-23-156	52.5	82.9	30.4	mafic	691
RB-23-156	82.9	83.8	0.9	pegmatite	159
RB-23-156	83.8	120.0	36.2	mafic	597
RB-23-169	0.0	15.0	15.0	overburden	
RB-23-169	15.0	95.0	80.0	BIF	109
RB-23-169	95.0	95.9	1.0	pegmatite	30
RB-23-169	95.9	146.0	50.1	BIF	139
RB-23-169	146.0	317.8	171.8	sediment	422
RB-23-169	317.8	319.5	1.7	pegmatite	187
RB-23-169	319.5	322.5	3.1	BIF	2,219
RB-23-169	322.5	326.4	3.9	pegmatite	227
RB-23-169	326.4	379.7	53.3	sediment	813
RB-23-169	379.7	380.7	1.0	pegmatite	97
RB-23-169	380.7	411.0	30.3	sediment	990
RB-23-174	0.0	16.2	16.2	overburden	
RB-23-174	16.2	89.1	72.9	sediment	360

HoleID	From	То	Interval	Lithology	Li20 ppm
RB-23-174	89.1	89.9	0.8	pegmatite	73
RB-23-174	89.9	198.2	108.3	sediment	371
RB-23-174	198.2	199.1	0.8	pegmatite	144
RB-23-174	199.1	200.9	1.9	sediment	470
RB-23-174	200.9	201.0	0.1	pegmatite	407
RB-23-174	201.0	203.8	2.8	sediment	496
RB-23-174	203.8	204.0	0.2	pegmatite	278
RB-23-174	204.0	218.3	14.3	sediment	588
RB-23-174	218.3	218.6	0.3	pegmatite	155
RB-23-174	218.6	347.0	128.5	sediment	505
RB-23-1007	0.0	2.3	2.3	overburden	
RB-23-1007	2.3	33.4	31.2	mafic	99
RB-23-1007	33.4	35.2	1.8	Amphibolite	
RB-23-1007	35.2	36.8	1.6	mafic	
RB-23-1007	36.8	45.1	8.4	Amphibolite	
RB-23-1007	45.1	73.7	28.6	mafic	656
RB-23-1007	73.7	76.0	2.3	pegmatite	11,220
RB-23-1007	76.0	81.9	5.9	mafic	1,890
RB-23-1007	81.9	93.5	11.6	pegmatite	13,987
RB-23-1007	93.5	102.5	9.0	mafic	826
RB-23-1009	0.0	3.0	3.0	overburden	
RB-23-1009	3.0	18.0	15.0	mafic	
RB-23-1009	18.0	20.6	2.6	Amphibolite	
RB-23-1009	20.6	26.9	6.3	mafic	1,746
RB-23-1009	26.9	46.6	19.6	pegmatite	14,997
RB-23-1009	46.6	54.0	7.4	mafic	793
RB-23-1013	0.0	1.6	1.6	overburden	
RB-23-1013	1.6	71.0	69.4	mafic	813
RB-23-1013	71.0	88.2	17.2	pegmatite	17,654
RB-23-1013	88.2	102.0	13.8	mafic	481
RB-23-1014	0.0	1.8	1.8	overburden	
RB-23-1014	1.8	15.4	13.6	mafic	
RB-23-1014	15.4	27.1	11.7	Pyroxenite	
RB-23-1014	27.1	34.1	7.1	mafic	
RB-23-1014	34.1	57.2	23.1	Pyroxenite	1,500
RB-23-1014	57.2	74.5	17.2	pegmatite	17,416
RB-23-1014	74.5	81.7	7.2	mafic	1,371
RB-23-1014	81.7	82.5	0.8	pegmatite	14,208
RB-23-1014	82.5	93.0	10.5	mafic	1,392
RB-23-1020	0.0	11.7	11.7	Diabase	
RB-23-1020	11.7	22.7	11.0	mafic	
RB-23-1020	22.7	24.5	1.8	Quartz	

HoleID	From	То	Interval	Lithology	Li20 ppm
RB-23-1020	24.5	51.0	26.4	mafic	300
RB-23-1020	51.0	51.4	0.5	pegmatite	321
RB-23-1020	51.4	66.4	14.9	mafic	358
RB-23-1020	66.4	82.5	16.1	Pyroxenite	1,895
RB-23-1020	82.5	99.3	16.8	pegmatite	16,863
RB-23-1020	99.3	111.0	11.7	mafic	1,324
RB-23-1025	0.0	1.0	1.0	overburden	
RB-23-1025	1.0	59.3	58.3	mafic	435
RB-23-1025	59.3	59.6	0.3	pegmatite	461
RB-23-1025	59.6	60.7	1.1	mafic	641
RB-23-1025	60.7	61.0	0.3	pegmatite	230
RB-23-1025	61.0	131.4	70.4	mafic	800
RB-23-1025	131.4	147.7	16.3	pegmatite	16,183
RB-23-1025	147.7	162.0	14.3	mafic	891
RB-23-1031	0.0	1.2	1.2	overburden	
RB-23-1031	1.2	26.3	25.1	mafic	252
RB-23-1031	26.3	26.6	0.3	pegmatite	73
RB-23-1031	26.6	56.7	30.1	mafic	294
RB-23-1031	56.7	57.2	0.6	pegmatite	210
RB-23-1031	57.2	82.4	25.1	mafic	400
RB-23-1031	82.4	83.1	0.8	pegmatite	9,149
RB-23-1031	83.1	120.9	37.8	mafic	453
RB-23-1031	120.9	121.6	0.7	pegmatite	1,701
RB-23-1031	121.6	158.0	36.4	mafic	690
RB-23-1031	158.0	172.7	14.7	pegmatite	8,360
RB-23-1031	172.7	186.0	13.3	mafic	504
RB-23-1032	0.0	2.9	2.9	overburden	
RB-23-1032	2.9	27.6	24.7	mafic	
RB-23-1032	27.6	30.4	2.8	Amphibolite	
RB-23-1032	30.4	56.6	26.2	mafic	1,017
RB-23-1032	56.6	57.9	1.3	Amphibolite	1,993
RB-23-1032	57.9	58.9	1.0	pegmatite	248
RB-23-1032	58.9	87.1	28.2	Amphibolite	375
RB-23-1032	87.1	93.4	6.3	mafic	339
RB-23-1032	93.4	94.1	0.7	pegmatite	123
RB-23-1032	94.1	139.6	45.5	mafic	580
RB-23-1032	139.6	156.4	16.8	pegmatite	16,054
RB-23-1032	156.4	171.0	14.6	mafic	1,182
RB-23-1038	0.0	4.5	4.5	overburden	
RB-23-1038	4.5	13.2	8.7	Amphibolite	
RB-23-1038	13.2	38.5	25.3	mafic	
RB-23-1038	38.5	53.0	14.5	Amphibolite	279

HoleID	From	То	Interval	Lithology	Li20 ppm
RB-23-1038	53.0	54.4	1.4	pegmatite	2,358
RB-23-1038	54.4	76.3	22.0	Amphibolite	286
RB-23-1038	76.3	83.5	7.2	mafic	327
RB-23-1038	83.5	84.4	0.9	pegmatite	8,159
RB-23-1038	84.4	106.9	22.5	mafic	427
RB-23-1038	106.9	107.3	0.4	pegmatite	2,389
RB-23-1038	107.3	113.6	6.3	mafic	651
RB-23-1038	113.6	113.8	0.2	pegmatite	383
RB-23-1038	113.8	127.8	14.0	mafic	301
RB-23-1038	127.8	144.1	16.3	Amphibolite	
RB-23-1038	144.1	167.1	23.1	mafic	1,014
RB-23-1038	167.1	183.1	16.0	pegmatite	17,827
RB-23-1038	183.1	201.0	17.9	mafic	1,111