

ASX RELEASE

7 October 2025

Gum Creek Gold Project

Impressive gold intercepts returned from water bore drilling and commencement of Al-powered mineral exploration collaboration

HIGHLIGHTS

Significant intercepts returned from 24 RC water bores drilled across 7 prospects within the Gum Creek Gold Project included:

Howards Prospect:

- **39m @ 4.58g/t Au from 133m** including **17m @ 9.86g/t Au from 148m**
- 72m @ 2.26g/t Au from 18m including 18m @ 5.09g/t Au from 27m
- 124m @ 1.27g/t Au from 7m including 16m @ 2.97g/t Au from 88m
- **38m @ 4.02g/t Au from 112m** including **21m @ 6.08g/t Au from 121m**
- 80m @ 1.08g/t Au from 18m including 10m @ 2.12g/t Au from 83m
- 23m @ 1.23g/t Au from 99m including 3m @ 3.31g/t Au from 112m

Swan-Swift-Shrike Prospects:

- 23m @ 1.60g/t Au from 97m to EOH including 3m @ 5.06g/t Au from 102m
- 15m @ 1.19g/t Au from 102m including 4m @ 3.32g/t Au from 102m
- 12m @ 1.28g/t Au from 57m

Wedge Prospect:

4m @ 3.83g/t Au from 151m

Kingfisher Prospect:

- 6m @ 1.37g/t Au from 21m including 2m @ 3.72g/t Au from 22m
- Artificial Intelligence ("AI") powered mineral exploration platform ("DORA") has been initiated across the Gum Creek Gold Project through a collaborative partnership with VRIFY. DORA delivers rapid, predictive prospectivity modelling, identifying high-value drilling targets with potentially enhanced accuracy and reduced human bias.
- Resource expansion RC drilling has been completed at Goldfinch, Robin, Thornbill West and Toucan all located within 3 kilometres of the old Gidgee Mill. All results are awaited.
- Diamond drilling to test previous high grade drill intercepts including 15m @ 28.5g/t Au from 346m and 10m @ 8.9g/t Au from 190m (Kingfisher), and 30m @ 21.1g/t Au from 57m and 13m @ 10.8g/t Au from 122m (Omega) is due to commence this week.

Horizon Gold Limited (ASX:HRN) ("Horizon" or "Company") is pleased to announce numerous, significant gold intercepts from reverse circulation (RC) water bore drilling at its 100% owned Gum Creek Gold Project ("Gum Creek" or the "Project") located in the Mid-West Region of Western Australia. The water bores were planned by a consultant hydrogeologist and drilled to help build a site-wide water balance model as part of the ongoing Gum Creek Feasibility Study. The holes were sampled and assayed for gold due to their proximity to known gold mineralisation and returned numerous significant intercepts.

The Company is also pleased to announce a strategic partnership with VRIFY Technology Inc. ("VRIFY"), a global leader in Al-assisted mineral exploration. Using VRIFY's proprietary Al-Assisted Mineral Discovery Platform, DORA, Horizon looks to combine VRIFY's largest proprietary mineral datasets with over 40 years of geological data from Gum Creek to help discover, prioritise and validate high-potential targets and accelerate growth of the existing 2.14 Moz gold resource. By maximising the use of all of Horizon Gold's available exploration data, DORA's machine-learning models will be able to enhance the extensive geoscientific and geospatial data in creating Al-generated prospectivity maps. The software aims to shorten target generation timelines and increase confidence in conceptual drill targeting.

Managing Director Leigh Ryan said:

"These results certainly support our reasons for sampling and assaying water bores, and although the exceptional intercepts from Howards are not considered true widths, the results from the Howards water bores and the other prospect water bores provide valuable insight into the continuity of mineralisation between existing angled drill holes that will ultimately be incorporated into the Company's mineral resource estimates."

"The Company is excited to see what VRIFY's AI-Assisted Mineral Discovery Platform can produce from our extensive exploration datasets, see what targets the final probabilistic 3D prospectivity map produces, and see what prospectivity score the software assigns to each target so we can remain focussed on drill testing our highest priority value adding targets."

"It's a very exciting time for Horizon and we look forward to commencing our deep diamond drilling program in the coming days and receiving gold results from the Goldfinch-Toucan RC drilling in the coming weeks."

Water Bore Drilling Program Results

The Company completed 24 vertical water bores (RC holes) for 2,700m at the Eagle, Hawk, Howards, Hyperno-Reliance, Kingfisher, Swan-Swift and Wedge prospects. All holes were geologically logged, sampled, and airlifted with water flows recorded wherever possible. Slotted 50mm casing was inserted into 10 of the most productive holes for water depth monitoring purposes and for sub-terranean fauna survey work. Two old production bores were refurbished (one at Swan and one at Kingfisher) and the most productive hole at Howards was converted into a dewatering bore for water pumping purposes. Pumping test work has now been completed at all Feasibility Study prospects.

Apart from providing water balance information essential for the Feasibility Study model, gold assays from the water bore drilling have confirmed historic drilling results, provided valuable continuity of mineralisation information within the tested prospects, and will increase the resource confidence levels within each of the resource models.

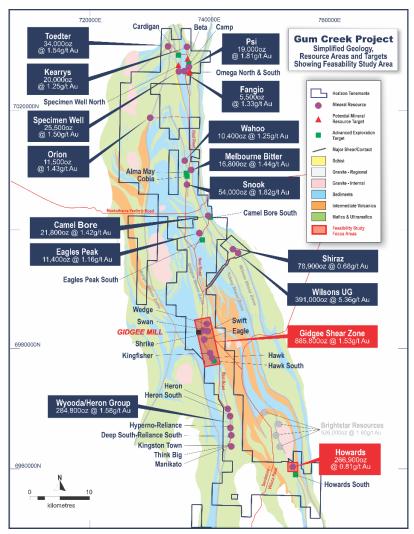


Figure 1: Gum Creek Gold Project existing Mineral Resources, Potential Mineral Resources and Exploration Targets over simplified geology¹.

Howards Prospect

The Company completed 3 RC holes for 483m including 2 monitoring bores and one dewatering bore at the Howards Prospect (Figure 1). The holes were drilled into areas of estimated high water flows. All 3 holes were used for sub-terranean fauna sampling. Drilling successfully intercepted water at approximately 10m and returned the following significant gold intercepts (Figures 2 & 3, Table B):

- **72m @ 2.26g/t Au from 18m** including **18m @ 5.09g/t Au from 27m** (HWWB001)
- 23m @ 1.23g/t Au from 99m including 3m @ 3.31g/t Au from 112m (HWWB001)
- 39m @ 4.58g/t Au from 133m including 17m @ 9.86g/t Au from 148m (HWWB001)
- 124m @ 1.27g/t Au from 7m including 16m @ 2.97g/t Au from 88m (HWWB002)
- 80m @ 1.08g/t Au from 18m including 10m @ 2.12g/t Au from 83m (HWWB003)
- 38m @ 4.02g/t Au from 112m including 21m @ 6.08g/t Au from 121m (HWWB003)

Refer to Horizon Gold Limited ASX announcement titled "Investor Presentation" dated 13 May 2025.

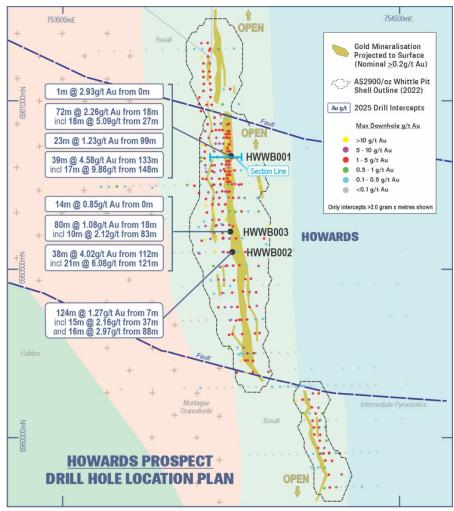


Figure 2: Howards Prospect drill hole location plan showing A\$2900/oz optimised pit shells outlined, recent drill hole traces (black) and recent gold intercepts (labelled) over interpreted geology.

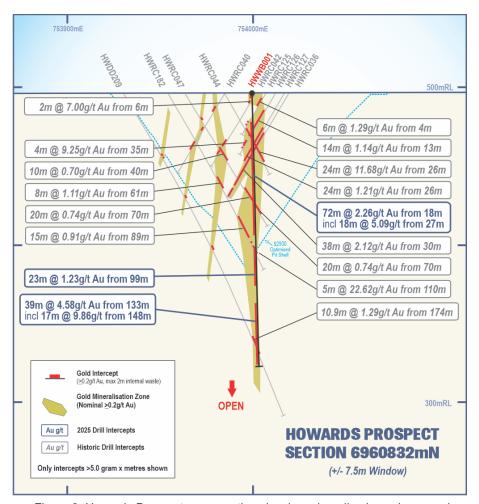


Figure 3: Howards Prospect cross section showing mineralised envelopes and significant historic and water bore intercepts (>5.0 GxM).

Swan, Swift, Shrike Prospects

Five RC water bores were drilled at the Swan, Swift and Shrike prospects for 470m (Figure 1). Two holes were converted into monitoring bores. Drilling successfully intercepted water at approximately 37m and returned the following significant gold intercepts (Figures 4 & 5, Table B):

- **23m @ 1.60g/t Au from 97m to EOH** including **3m @ 5.06g/t Au from 102m** (SSWB004)
- 15m @ 1.19g/t Au from 102m including 4m @ 3.32g/t Au from 102m (SSWB001)
- 12m @ 1.28g/t Au from 57m (SSWB002)
- 6m @ 1.42g/t Au from 77m (SSWB002)
- 2m @ 2.68g/t Au from 31m (SSWB003)

Figure 4: Swan-Swift Area drill hole location plan showing A\$2900/oz optimised pit shells outlined, water bore collars (blue) and water bore gold intercepts >3 GxM (labelled) over satellite image.

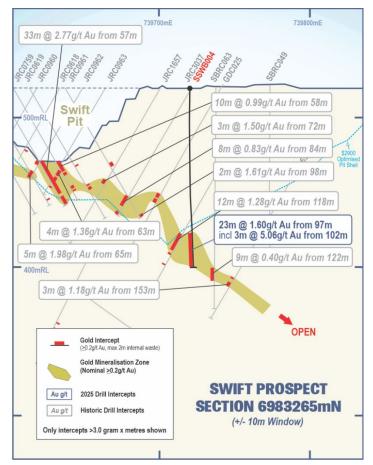


Figure 5: Swift Prospect cross section showing mineralised envelope and significant historic and water bore intercepts.

Wedge Prospect

The Company completed 2 RC holes for 282m at the Wedge Prospect (Figure 1). Drilling successfully intercepted water at a depth of 28m and returned the following significant gold intercepts (Figures 6 & 7, Table B):

- 4m @ 3.83g/t Au from 151m (WEWB002)
- **3m @ 2.19g/t Au from 145m** (WEWB002)
- 2m @ 2.00g/t Au from 113m (WEWB001)

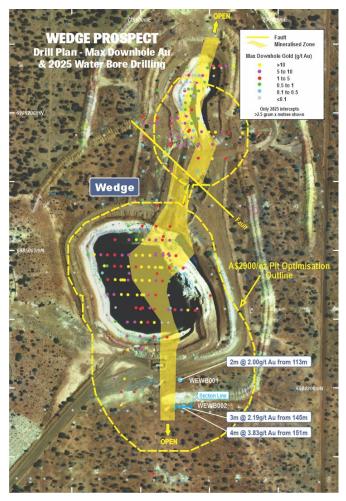


Figure 6: Wedge Prospect drill hole location plan showing A\$2900/oz optimised pit shell outlines, water bore collars (blue) and water bore gold intercepts >3 GxM (labelled) over satellite image.

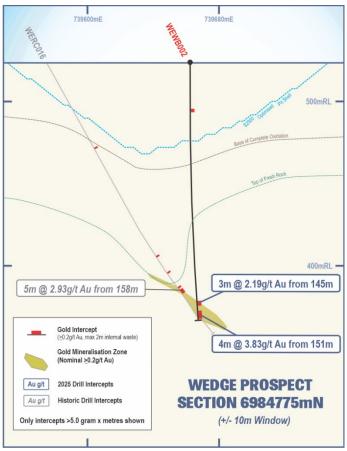


Figure 7: Wedge Prospect showing mineralised envelopes and significant historic and water bore intercepts (>5 GxM).

Kingfisher Prospect

Five RC water bores were drilled at the Kingfisher Prospect for 608m including 2 monitoring bores and one troglofauna sampling bore (Figure 1). Drilling successfully intercepted water at approximately 38m and returned the following significant gold intercept (Figures 8 & 9, Table B). KFWB002 was the only water bore drilled in the vicinity of known gold mineralisation.

• 6m @ 1.37g/t Au from 21m including 2m @ 3.72g/t Au from 22m (KFWB002)

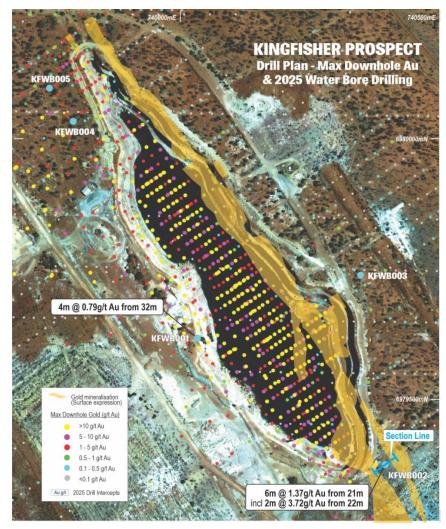


Figure 8: Kingfisher Prospect drill hole location plan showing water bore collars (blue) and water bore gold intercepts >3 GxM (labelled) over satellite image.

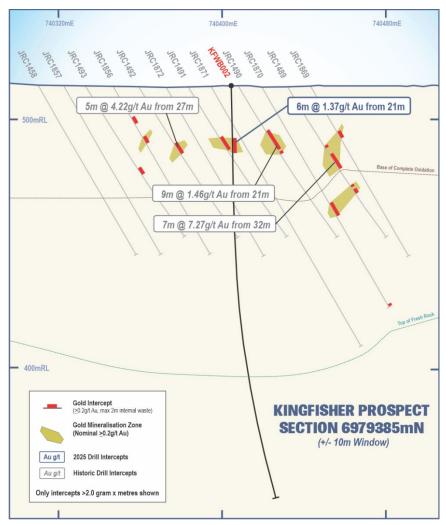


Figure 9: Kingfisher Prospect cross section showing mineralised envelopes and significant historic and water bore intercepts (>2 GxM).

Summary of Drilling Results from Eagle, Hyperno-Reliance and Hawk Prospects

The Company completed 2 RC holes for 299m at the Eagle Prospect (Figure 1). Drilling successfully intercepted water at a depth of 32m and returned best gold intercepts of 2m @ 1.04g/t Au from 25m (EAWB001) and 3m @ 1.43g/t Au from 114m (EAWB001) (Figure 4, Table B):

Four RC water bores were drilled at the Hyperno-Reliance Prospect for 222m (Figure 1). Three bores were cased as monitoring bores and all 3 used for sub-terranean fauna sampling purposes. Drilling successfully intercepted water at approximately 8m and returned a best gold intercept of 3m @ 1.03g/t Au from 26m (HYWB002) (Table B).

Three RC water bores were drilled at the Hawk Prospect for 336m (Figure 1). One bore was cased as a monitoring bore. Drilling successfully intercepted water at approximately 8m and returned a best gold intercept of 8m @ 0.74g/t Au from 72m (HKWB001) (Table B).

All gold mineralisation encountered in the water bore drilling program will be incorporated into the respective mineralisation wireframes and ultimately incorporated into an updated mineral resource estimate.

Feasibility Study Progress, Deep Diamond Drilling and Al Exploration

Work on the Gum Creek Feasibility Study remains on schedule for completion H1 CY 2026, with a draft processing report received, most environmental and Heritage surveys completed, and mine design and water balance modelling all advancing well.

Resource expansion RC drilling has been completed at Goldfinch, Robin, Thornbill West and Toucan all located within 3 kilometres of the old Gidgee Mill. All results are awaited.

Deep diamond drilling aimed at testing high priority targets down plunge of existing high-grade mineralisation at the Kingfisher and Omega prospects is due to commence this week. The drilling will test beneath impressive previous drill intercepts including **15m @ 28.5g/t Au** from 346m and **10m @ 8.9g/t** Au from 190m² (Kingfisher), and **30m @ 21.1g/t Au** from 57m and **13m @ 10.8g/t Au** from 122m³ (Omega).

VRIFY have commenced the exploration data integration process, compiling all relevant drilling, geochemical, geophysical, structural, and topographic data into VRIFY's DORA AI-platform for processing and augmentation. Completion of the initial AI prospectivity model over Gum Creek is expected Q4 2025, with an exploration target review and target field validation due Q1 2026 and continuous data addition and target refinement to continue throughout 2026.

About the Company

Horizon Gold Limited (ASX:HRN) is an exploration company focused on its 100% owned Gum Creek Project in Western Australia (Figure 10). The Gum Creek Gold Project represents an exciting gold exploration and potential development opportunity that currently contains a Mineral Resource Estimate of **44.45Mt @ 1.50g/t Au for 2.14 million ounces** of gold (Table A) including Indicated and Inferred resource classifications in accordance with the Australasian Code for Reporting of Identified Mineral Resources and Ore Reserves (JORC Code 2012 edition). The indicated portion of the MRE is 28.19Mt @ 1.48g/t Au for 1.35Moz, representing 63% of the total resource ounces.

² Refer to Horizon Gold Limited ASX announcements titled "Diamond drilling returns 15m @ 28.5g/t Au from Kingfisher" dated 12 December 2022 and titled "Outstanding gold intercepts returned from Gum Creek Diamond Drilling" dated 15 March 2022.

³ Refer to Horizon Gold Limited ASX announcement titled "Gum Creek Geological Review" dated 15 February 2021

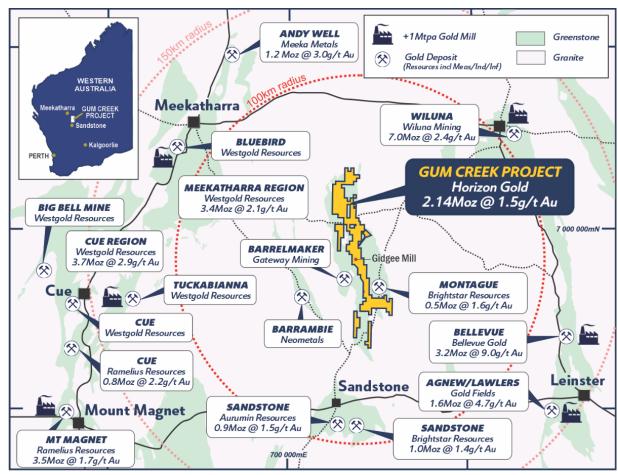


Figure 10: Gum Creek Gold Project and surrounding gold resources and operating gold processing facilities.

Horizon Gold Limited Mineral Resources

Table A: Gum Creek Gold Resources as at 15 May 2023⁴

		Cut-off	In	dicated			nferred			Total		
Resource	Date	grade (g/t Au)	Tonnes	Au (g/t)	Gold (oz)	Tonnes	Au (g/t)	Gold (oz)	Tonnes	Au (g/t)	Gold (oz)	
Swan/Swift OC	Jul-22	0.4	9,980,000	1.09	349,500	2,735,000	0.96	84,600	12,715,000	1.06	434,100	
Swan UG	Jul-22	2.5 / 3.0*	301,000	6.91	66,900	226,000	7.10	51,600	527,000	6.99	118,500	
Swift UG	Jul-22	3.0	-	1	-	138,000	5.72	25,400	138,000	5.72	25,400	
Wilsons UG	Jul-13	1.0	2,131,000	5.33	365,000	136,000	5.95	26,000	2,267,000	5.36	391,000	
Howards	May-23	0.4	8,064,000	0.82	213,100	2,136,000	0.78	53,800	10,200,000	0.81	266,900	
Kingfisher OC	May-23	0.6	621,000	1.77	35,400	269,000	1.12	9,700	890,000	1.58	45,100	
Kingfisher UG	May-23	1.5	359,000	3.48	40,200	917,000	3.24	95,500	1,276,000	3.31	135,700	
Heron	May-23	0.6	330,000	2.11	22,400	1,822,000	1.51	88,200	2,152,000	1.60	110,600	
Heron South	May-23	0.8	720,000	1.79	41,400	761,000	1.53	37,500	1,481,000	1.66	78,900	
Shiraz	May-23	0.4	2,539,000	0.70	57,300	1,064,000	0.63	21,600	3,603,000	0.68	78,900	
Eagle	May-23	0.8	395,000	1.94	24,700	764,000	1.80	44,100	1,159,000	1.85	68,800	
Wyooda	Jul-22	0.8	430,000	1.56	21,600	862,000	1.56	43,200	1,292,000	1.56	64,800	
Snook	Jul-22	0.8	75,000	2.57	6,200	846,000	1.76	47,800	921,000	1.82	54,000	
Hawk	May-23	0.6	378,000	1.28	15,500	471,000	1.25	18,900	849,000	1.26	34,400	
Toedter	Aug-16	0.5	-	-	-	689,000	1.54	34,000	689,000	1.54	34,000	
Specimen Well	May-23	0.8	-	-	-	529,000	1.50	25,500	529,000	1.50	25,500	
Wedge	May-23	0.6	-	-	-	487,000	1.52	23,800	487,000	1.52	23,800	
Camel Bore	Jul-22	0.8	379,000	1.47	17,900	100,000	1.21	3,900	479,000	1.42	21,800	
Kearrys	May-23	0.6	450,000	1.24	18,000	46,000	1.35	2,000	496,000	1.25	20,000	
Psi	Jul-22	0.8	100,000	2.08	6,700	226,000	1.69	12,300	326,000	1.81	19,000	
Hyperno- Reliance	May-23	0.6	119,000	1.73	6,600	326,000	1.16	12,200	445,000	1.31	18,800	
Melbourne Bitter	May-23	0.6	214,000	1.56	10,700	148,000	1.28	6,100	362,000	1.44	16,800	
Deep South Reliance	May-23	0.6	176,000	1.64	9,300	48,000	1.56	2,400	224,000	1.62	11,700	
Eagles Peak	May-23	0.6	264,000	1.19	10,100	41,000	0.99	1,300	305,000	1.16	11,400	
Orion	Jul-22	0.8	69,000	1.49	3,300	182,000	1.40	8,200	251,000	1.43	11,500	
Wahoo	Jul-22	0.8	-	-	-	258,000	1.25	10,400	258,000	1.25	10,400	
Fangio	May-23	0.6	99,000	1.32	4,200	30,000	1.35	1,300	129,000	1.33	5,500	
Total			28,193,000	1.48	1,346,000	16,257,000	1.51	791,300	44,450,000	1.50	2,137,300	

^{*} Cut-off grades are 2.5g/t Au for Swan Underground (UG) Indicated, and 3.0g/t Au for Swan UG Inferred.

^{**} Wyooda includes the Kingston Town, Think Big and Manikato resources which are within 600m and 200m of each other respectively. Notes: Figures have been rounded.

⁴ Refer to Horizon Gold Limited ASX Announcement dated 15 May 2023 titled "19% Increase in Gold Resources at Gum Creek Project" to which the Company confirms there has been no changes.

Table B: Significant Drill Hole Intercepts (>2 GxM) - Water Bore Drilling

Prospect	Hole ID	East	North	RL	Dip	Azi	Depth	From	То	Width	Au g/t
Eagle	EAWB001	738849	6981727	520	-89	54	150	25	39	14	0.41
							incl	25	27	2	1.04
								114	117	3	1.43
	EAWB002	738804	6982056	516	-89	188	149				NSR
Hawk	HKWB001	740759	6978413	512	-89	210	84	72	80	8	0.74
	HKWB002	740524	6978749	512	-89	169	126				NSR
	HKWB003	740512	6978686	512	-89	146	126				NSR
Howards	HWWB001	754000	6960838	496	-89	15	173	0	1	1	2.93
								18	90	72	2.26
							incl	27	45	18	5.09
								99	122	23	1.23
							incl	112	115	3	3.31
								133	172	39	4.58
							incl	148	165	17	9.86
	HWWB002	754004	6960551	496	-89	15	149	7	131	124	1.27
							incl	37	52	15	2.16
							and	88	104	16	2.97
	HWWB003	753999	6960612	496	-89	312	161	0	14	14	0.85
								18	98	80	1.08
							incl	83	93	10	2.12
								112	150	38	4.02
							incl	121	142	21	6.08
Hyperno	HYWB001	743599	6966171	504	-89	231	54	31	37	6	0.56
	HYWB002	743671	6966368	503	-89	224	60	26	29	3	1.03
	HYWB003	743901	6966543	503	-89	311	54				NSR
	HYWB004	743966	6966697	503	-89	15	54				NSR
Kingfisher	KFWB001	740037	6979611	515	-89	99	120	32	36	4	0.79
	KFWB002	740402	6979364	513	-89	13	168	21	27	6	1.37
							incl	22	24	2	3.72
	KFWB003	740354	6979734	514	-89	299	120				NSR
	KFWB004	739792	6980033	515	-89	35	100				NSR
	KFWB005	739745	6980098	515	-88	228	100				NSR
Swan-Swift	SSWB001	739723	6983337	521	-89	260	126	102	117	15	1.19
							incl	102	106	4	3.32
								122	126	4	0.82
	SSWB002	739267	6982581	519	-89	145	100	57	69	12	1.28
								77	83	6	1.42
	SSWB003	739229	6982646	519	-89	306	100	31	33	2	2.68
							incl	31	32	1	5.14
								59	63	4	0.88
								73	74	1	1.14
								87	88	1	1.05
	SSWB004	739720	6983260	520	-89	233	120	97	120	23	1.60
							incl	102	105	3	5.06
	SSWB005	739124	6983290	485	-90	360	24				NSR
Wedge	WEWB001	739656	6984813	523	-89	355	126	113	115	2	2.00
	WEWB002	739663	6984774	523	-89	344	156	145	148	3	2.19
			EO all intar			<u> </u>		151	155	4	3.83

Notes: All coordinates are GDA94 zone 50, all intercepts use a 0.2 g/t Au lower cut, no upper cut, 2m maximum internal dilution and all intercepts >2.0 GxM are reported. NSR = no intercept >2.0 GxM

This ASX announcement was authorised for release by the Horizon Board.

For further information contact:

Leigh Ryan Managing Director +61 8 9336 3388

Competent Persons Statement:

The information in this announcement that relates to exploration activities, exploration results and Mineral Resources is based on information compiled by Mr Leigh Ryan, who is a member of The Australasian Institute of Geoscientists. Mr Ryan is the Managing Director of Horizon Gold Limited and holds shares and options in the Company, Mr Ryan has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Ryan consents to the inclusion in the announcement of the matters based on information provided in the form and context in which it appears.

No New Information or Data:

This announcement contains references to Mineral Resource estimates, all of which have been cross referenced to previous market announcements. The Company confirms that it is not aware of any additional information or data that materially affects the information included in the relevant market announcements and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

Forward Looking Statements:

This ASX announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis. However, forward looking statements are subject to risks, uncertainties, assumptions and other factors, which could cause actual results to differ materially from future results expressed, projected or implied by such forward-looking statements. Such risks include, but are not limited to metals price volatility, currency fluctuations, as well as political and operational risks and governmental regulation and judicial outcomes.

APPENDIX 2: JORC TABLE 1 (SECTIONS 1 AND 2)

Section 1 - Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where "industry standard" work has been done this would be relatively simple (eg "reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay"). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation (RC) drill holes were routinely sampled at 1m intervals down the hole. The upper sections of some holes were sampled at 2m intervals. Samples were collected at the drill rig using an industry standard rigmounted cone splitter to collect a nominal 2 - 3 kg sub sample in a numbered calico sample bag, with the remaining sample retained at the drill site for future resampling and/or metallurgical sampling if required. Routine standard reference material, sample blanks, and sample duplicates were inserted/collected at every 25th sample in the sample sequence. All RC samples were submitted to Australian Laboratory Services (ALS) in Perth for preparation (including pulverising) to produce a 50g sub-sample for analysis for gold by 50g Fire Assay. Pre-2014 Drillholes All RC samples were collected at 1m intervals through the drill rig cyclone and then split via riffle and cone splitters. RC samples were typically dry. Composite samples were collected by tube sampling the bulk RC sample bags. Initially assaying utilised the aqua regia process but most assays used in this report have been by fire assay with an AAS finish using the site laboratory or off-site laboratories. A 50g charge was generally used. After the year 2000, samples (mainly grade control) were assayed at the accredited on-site laboratory at Gidgee using the Leachwell method. Leachwell cyanide (bottle-roll) assays are apparently more predictive of expected recoveries from Carbon-in-Pulp gold recovery plants, so provide a more realistic grade estimate.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 All RC holes were completed by reverse circulation (RC) drilling techniques using a DR05 SREPS SR650 drill rig and auxiliary compressor. Drill rod diameter was 4.5" (114mm) and drill bit diameter was nominally 143mm to 146mm. A face sampling down hole hammer (5' type 760 SREPS) was used at all times. All RC drill holes were surveyed for down hole deviation using an Axis Champ Navigator north seeking downhole gyro with downhole readings collected every 5m. Pre-2014 Drillholes RC drilling was completed with industry standard RC drill rigs using a 4.5" to 5.5" drill bit with either a cross-over sub or a face sampling

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 A qualitative estimate of sample recovery was done for each RC sample metre collected from the drill rig. A qualitative estimate of RC sample weight was completed to ensure consistency of sample size and to monitor sample recoveries. Most RC material was dry when sampled, with damp and wet samples noted in sample sheets and referred to when assays were received. RC sample recovery and quality is considered to be adequate for the drilling technique employed. Pre-2014 Drillholes Where documented, RC drilling returned good recoveries, however drill recoveries for some historical holes are not known. All RC samples were split and mixed in the riffle splitting process. There is no evidence of there being sample bias due to non-representative or preferential sampling. No apparent relationships were noted in relation to sample recovery and grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 All RC drill holes were geologically logged by a qualified Geologist. Qualitative and quantitative geological logging recorded colour, grain size, weathering, oxidation, lithology, alteration, veining and mineralisation including the abundance of specific minerals, veining, and alteration using an industry standard logging and geological coding system. A small sample of all RC drill material was retained in chip trays for future reference and validation of geological logging. Pre-2014 Drillholes All historical drill holes have been logged using the various company logging codes. The type of drill log varies with time depending on drill technique, year and company. Logging included codes and descriptions of weathering, oxidation, lithology, alteration and veining. Geological logging is qualitative and based on visual field estimates. Not all RC logs have been converted to a digital format.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All RC samples were cone split at the drill rig with sample size and wet/dry notes made on RC sample sheets. RC duplicate samples were taken every 25 samples to evaluate whether samples were representative and as a check on laboratory methods. Sample preparation was undertaken by ALS Perth. At the laboratory, samples were weighed, dried and crushed to 6mm. The crushed sample was subsequently bulk-pulverised in an LM5 ring mill to achieve a nominal particle size of 85% passing <75um. Sample sizes and laboratory preparation techniques are considered to be appropriate for the commodity being targeted. Pre-2014 Drillholes RC sampling involved 1m RC cuttings, split using riffle splitter in dry materials and a wedge splitter or rotary splitter in wet materials. Usually a 2 - 3kg sample was retained. Where it has been suspected that drillholes were drilled down dip, scissor holes have been drilled. Most drilling showed good sample recovery with the exception of some holes drilled in 1989. All RC samples were thoroughly mixed in the riffle splitting process. There is no stated evidence of there being sample bias due to preferential sampling. There is no relationship between sample recovery and grade. Sample sizes and laboratory preparation techniques are considered to be appropriate for the commodity being targeted.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established 	 Analysis for gold only was undertaken at ALS Perth using 50g Fire Assay with AAS finish to a lower detection limit of 0.01ppm. Fire assay is considered a "total" assay technique. No geophysical tools or other non-assay instrument types were used in the analyses reported. Review of routine standard reference material and sample blanks suggest there are no significant analytical bias or preparation errors in the reported analyses. Results of analyses from field sample duplicates are consistent with the style of mineralisation being evaluated and considered to be representative of the geological zones which were sampled. Internal laboratory QAQC checks are reported by the laboratory. Review of the internal laboratory QAQC suggests the laboratory is performing within acceptable limits. Pre-2014 Drillholes Initially, assaying utilised the aqua regia process but most assays referred to in this report have been by fire assay with an AAS finish using the site laboratory or off-site laboratories. A 50g charge was used. After 2000, samples were assayed at the Gidgee accredited mine-site laboratory using the Leachwell method with approximately 30g of sample pulverised to 85% passing -200 mesh. The analytic techniques are considered appropriate. Where coarse gold occurred, offsite screen fire assaying was carried out using a 105 micron sieve. Samples were submitted to off-site laboratories with check assays carried out in 1988. Further check assays were carried out in other years however this data has not been analysed. Some CRMs and blank samples were used prior to 2002 however there is insufficient information to complete an accurate analysis. There are records of laboratory standards and blanks having been submitted post 2002 and an analysis of these shows good correlation between results. No evidence has been found in the mining process that there were issues with assaying. An analysis of duplicates show
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 All RC sampling data was recorded in the field in hard copy form, and subsequently data entered into Excel spreadsheets. Assay results are merged with sampling data using established database protocols run in house by HRN. Digital data (Excel spreadsheets) were uploaded into a relational database and validated by experienced database personnel and geological staff. Plans, cross sections and long sections were generated, and visual validation was completed in 3D (Micromine) as further quality control. Twin holes were not utilized to verify results; however, some infill verification holes were completed to test the strike continuity of mineralisation. Virtually all drilling confirmed expected geological and mineralogical interpretations. The deposits are reasonably continuous in terms of mineralisation and grade. The continuity and consistency of the grade intercepts down dip and along strike give reasonable confidence in the verification of the grade and style of deposit. All historic reported data has been reported in technical reports submitted by previous tenement holders to the Western Australian Government which are now available as open file. No adjustments were made to assay data except for replacing less than detection limit values with negative detection limit numerical values. All significant intersections reported have been compiled and reviewed by senior geological personnel from the Company.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings	 Drill hole collar locations were determined using GDA94 Zone 50 coordinates and datum. Drill hole collars were positioned and picked up on hole completion using a Carlson BRx7 DGPS (GDA94 Zone 50). DGPS eastings,

Criteria	JORC Code explanation	Commentary
	 and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	northings and RL's have been used for all RC and diamond hole collars. The topography at all prospects drilled is flat, however 3D topographic surfaces or Digital Terrain Models (DTMs) were built using a combination of mine surveyor pickups, drill hole DGPS RL pickups and RL's from specifically selected DGPS points. Locational accuracy at the collar and down the drill hole is considered appropriate for this stage of exploration and for resource estimation work.
		Pre-2014 Drillholes
		 Planned drill hole locations were positioned by either hand-held global positioning satellite (GPS) in AMG84 or GDA94 zone 50 datums or pegged on local grids by a mine surveyor and transformed to GDA94 coordinates. The majority of holes have subsequently been picked up by DGPS and were generally found to be within 1m horizontal and 1m vertical accuracy. Historic drilling coordinates include both local, AMG84 and GDA94 coordinates. The Company database contains all sets of coordinates, but for the purpose of this report all grid coordinates are GDA94 – Zone 50 grid datum. The topography at all prospects drilled is flat. All drill collars were displayed in Micromine and visually checked against the DTMs. The DTMs were created using a combination of surveyed pit and waste dump pickups, DGPS pickups of historical and more recent drill hole collars, and specifically selected DGPS pickup points. RL data bias or error is considered low given the flat topography at all prospects reported. Down-hole surveys were routinely performed every 5m to 30m using a range of single shot, electronic multi-shot and north seeking gyro tools. A visual check of the traces in Micromine was also completed, with no anomalous surveys being identified. All down survey data is recorded in the Company's drill hole database. Survey details for some historical holes are not known. Location data is considered to be of sufficient accuracy for reporting of mineral resources.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Water bore holes reported were drilled at variable spacings on previously drilled sections generally 20m apart. All holes were drilled vertically (-90°), to accommodate water bore pumping and water monitoring activities. The reported drilling has not yet been used to estimate any mineral resources or reserves, however the infill nature of the drill hole distribution is sufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource estimation procedures and classifications. Sample compositing was not applied to the reported intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drilling has targeted water bearing structures within known mineralised zones that have been previously drilled in some detail. Holes have therefore not intersected mineralisation at an optimal orientation (perpendicular) and significant sampling bias is expected.
Sample security	The measures taken to ensure sample security.	Samples are stored on site in a locked compound before being delivered by company personnel to the Toll/Global Express depot in Meekatharra, prior to road transport to the laboratory in Perth via a large reputable trucking company (normally Toll or Global Express).

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Pre-2014 Drillholes There is no evidence to suggest inadequate drill sample security prior to 2014. There have been no external audits or reviews of the Company's sampling techniques or data. Pre-2014 Drillholes An Audit was carried out in 2003 by Resource Evaluations Pty Ltd. The only issue raised was that a Kempe diamond rig was used for underground drilling and the resulting BQ core samples may have been too small. Underground drilling assays have not been reported here.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are located in the Murchison region of Western Australia, and extend from ~60km to ~130km north of Sandstone. The southern half of the Gum Creek Gold Project lies dominantly within the Gidgee Pastoral Lease, which is owned by Gum Creek Gold Mines Pty Ltd (a wholly owned subsidiary of Horizon Gold Limited). The northern half of the Project mainly lies within the Youno Downs Pastoral Lease. Environmental liabilities at Gum Creek pertain to historical mining activities mainly within M57/634. The Howards mining lease (M57/635) is located within the Lake Mason Conservation Area. Drilling occurred on Mining Leases M57/634 (Eagle, Hawk, Hyperno-Reliance, Kingfisher, Swan-Swift, Wedge) and M57/634 (Howards) all of which are held 100% by Gum Creek Gold Mines Pty Ltd. All mining leases under Native Title applications or Native Title determined areas were granted before 1994 except for M53/716 (granted 1998). P53/1702 and several EL's are located within the recent Central Desert Native Title (Wiluna #5) that covers the northern part of the Gum Creek Project. Various royalties exist over specific parts of certain mining leases as noted in Section
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	8 of the Horizon Gold Ltd prospectus ASX announcement dated 19 December 2016. Significant historical exploration work has been completed via "industry standard" procedures by other Companies including geochemical surface sampling, mapping, airborne and surface geophysical surveys, and substantial RAB, RC and DD drilling. The project boasts a long list of reputable previous owners and operators including: Pancontinental Mining Ltd, Dalrymple Resources, Metana Resources, Noranda Pty Ltd, Legend Mining Ltd, Kundana Gold Pty Ltd, Goldfields Kalgoorlie Ltd, Australian Resources Ltd, Arimco Mining Pty Ltd, Apex Gold Pty Ltd, Abelle Ltd and Panoramic Resources Ltd. The Gum Creek Gold Project has previously been mined for gold by open pit and underground techniques. Exploration and mining completed by previous owners since discovery has led to good understanding of geology, rock mechanics and mineralisation especially within the areas mined.
Geology	Deposit type, geological setting and style of mineralisation.	The project is located in the Gum Creek Greenstone Belt, within the Southern Cross Province of the Youanmi Terrane, a part of the Archaean Yilgarn craton in Western Australia. The Gum Creek Greenstone belt forms a lensoid, broadly sinusoidal structure approximately 110 km long and 24 km wide. It is dominated by mafic volcanic and sedimentary sequences.

Criteria	JORC Code explanation	Commentary
		Swan-Swift Gold mineralisation at Swan and Swift occurs as complex conjugate quartz-carbonate vein arrays associated with brittle dilational openings developed along major shears within mafic host rocks. Carbonate-sulphide wall rock alteration is common about mineralised zones and extensive supergene enrichment often overlays primary mineralisation zones.
		The Swan deposit is interpreted as moderate NE dipping and shallow SE dipping conjugate vein sets emanating from the broader north-south striking steeply dipping Butcherbird Shear. Shallow drilling to date at Shrike (located at the southern end of the Butcherbird Shear), has intercepted flat lying supergene mineralisation only. The Swift deposit has been interpreted moderate east-dipping structure similar in geology and tenor to the Swan conjugate vein sets, emanating from a north-south striking shear zone.
		Wedge High grade gold mineralisation is located within shoots that plunge at ~30 degrees to the south, sub-parallel to fold axes observed in the southern open pit, and is associated with quartz-pyrite veined, strongly sheared, strongly altered basalt. Gold shoots also appear to plunge to the north at the northern end of the deposit, where folded sediments and felsic intrusives host lower grade mineralisation. Mineralisation is continuous over a 450-metre strike and is currently defined to a maximum vertical depth of 110 metres, with the base of complete oxidation at ~60m metres below surface.
		Eagle Gold mineralisation at Eagle occurs as steeply dipping quartz-carbonate shear veins and flat lying quartz-carbonate tension vein arrays developed in altered basalt within the NNW oriented steeply west dipping Kingfisher shear zone. Carbonate-sericite-sulphide wall rock alteration is common proximal to mineralised zones and extensive supergene gold enrichment often overlays primary mineralisation.
		Howards Gold mineralisation at Howards is hosted within a broad, north-south trending, vertical to steep west-dipping shear zone, approximately 150m from, and sub-parallel to the eastern contact of the Montague granodiorite. Mineralisation is sinistrally offset by 30m and 150m at the northern and southern ends of the main mineralised zone respectively, with shearing and gold mineralisation dipping steeply to the east at the southern offset end of the deposit. Mineralisation at Howards is continuous over 1.4km and remains open to the north, south and at depth. Mineralisation is associated with strong quartz veining and intense silica-albite-biotite alteration within variably sheared basalt above a footwall dolerite unit.
		Kingfisher Gold mineralisation at Kingfisher is located within two moderate southwest-dipping, planar gold lodes within a 60m wide, 1.2km long shear zone that remains open to the north, south and at depth. Both lodes are interpreted to contain moderate to shallow south plunging high grade gold shoots forming part of an overlapping en-echelon vein array stepping down to the north. Gold mineralisation is associated with quartz-sulphide veining within sheared, strongly sericite - carbonate - fuchsite - sulphide altered amygdaloidal basalt units (hanging wall) and fine-grained sediments (footwall). Weathering extends to ~60 to 100m below and extensive supergene enrichment often overlays primary mineralisation.
		Hawk Gold mineralisation at Hawk is associated with quartz veined limonitic saprolite and pyritic sericite-silica altered basalt within two sub-parallel, steeply south-west dipping shear zones containing abundant flat-lying quartz tension veins. Mineralisation is continuous over a 450 metre strike, is currently defined to a maximum vertical depth of approximately 130 metres and high grade gold mineralisation appears to plunge to the north. The base of complete oxidation extends to over 120 metres below surface and high-grade supergene enrichment overlays primary gold mineralisation.

Criteria	JORC Code explanation	Commentary
		Reliance Gold mineralisation identified to date at Reliance is mainly flat lying supergene with narrow quartz veined limonitic saprolite with narrow steeply east dipping primary mineralisation extending at depth into altered quartz veined mafic volcanics within at least two sub-parallel mineralised shear zones. Mineralisation has a continuous 380 metre strike length. The area is deeply weathered, with the base of complete oxidation between 60 and 80 metres below surface.
		Hyperno Gold mineralisation at Hyperno is associated with quartz veined limonitic saprolite within two sub-parallel mineralised zones. Mineralisation is both flat lying (supergene) and dips moderately to the east, is defined to a maximum vertical depth of approximately 100 metres, and has a continuous 600 metre strike length. The area is deeply weathered, with the base of complete oxidation between 60m and 100 metres below surface.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is	Relevant drill hole information and reported results are tabulated within the body of this announcement. The drill holes reported have the following parameters applied; Grid co-ordinates are GDA94 zone 50 Collar elevation is defined as height above sea level in metres (RL) Dip is the inclination of the hole from the horizontal. Azimuth is reported in GDA94 zone 50 degrees as the direction toward which the hole is drilled. Depth of the hole is the distance from the surface to the end of the hole, as measured along the drill trace. Intercept Width is the down hole distance of an intercept as measured along the drill trace.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 All drill hole intersections are reported from 1 metre down hole samples (but may include 2m composite samples where noted). Intersection gold grade is calculated as length weighted average of sample grades. A minimum cut-off grade of 0.2g/t Au is applied to the reported intervals. Maximum internal dilution is 2m within a reported interval. No top cut-off grade has been applied. No metal equivalent reporting is used or applied. All intercepts greater than 2 GxM are reported in Table B.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg down hole length, true width not known').	Commentary Swan, Swift and Shrike The orientation of oxide/supergene mineralisation at Swan, Swift and Shrike is generally flat lying, so true widths of drill intercepts at depths <50m in vertical water bores will be approximately true width. Primary gold mineralisation at Swan dips at various orientations including steep to the east, ~40° to the SSE, ~40° to the NE ~40° to the SE. In vertical water bores the drilling is oriented at an angle of ~50° to dip implying true width of mineralisation to be ~77% of intercept width (this assumes a ~90° drill hole dip at reported intercept depths). Primary gold mineralisation at Swan dips at ~40° to the East. In vertical water bores the drilling is oriented at an angle of ~50° to dip implying true width of mineralisation to be ~77% of intercept width (this assumes a ~90° drill hole dip at reported intercept depths). Primary gold mineralisation at Swift dips at ~30° to the West. In vertical water bores the drilling is oriented at an angle of ~60° to dip implying true width of mineralisation to be ~87% of intercept width (this assumes a ~90° drill hole dip at reported intercept depths). Wedge Primary gold mineralisation at Wedge strikes north-northeast, dips at between 10° and ~30° to the west or east and plunges shallowly to the south, with drilling oriented at right angles to strike and at an average of ~70° to the dip of mineralisation, implying true width of mineralisation to be ~94% of intercept width (this assumes a ~90° drill hole dip at reported intercept depths). Eagle The orientation of oxide/supergene mineralisation at Eagle is generally flat lying, so true widths of drill intercepts at depths <50m in vertical water bores will be approximately true width. Primary gold mineralisation at Eagle dips ~45° to the east with drilling oriented at right angles to strike and at ~45° to dip implying true width of mineralisation to be ~170% of intercept width (this assumes a ~90° drill hole dip at reported intercept depths). Kingfisher The orientation of oxide/s
		approximately true width. Primary gold mineralisation at Kingfisher dips ~40° to the southwest with drilling oriented at right angles to strike and at ~50° to dip implying true width of mineralisation to be ~77% of intercept width (this assumes a -90° drill hole dip at reported intercept depths). Hawk The orientation of oxide/supergene mineralisation at Hawk is generally flat lying, so true widths of drill intercepts at depths <50m in vertical water bores will be approximately true width. Primary gold mineralisation at Hawk dips moderately (~50°) to the southwest with
		Hyperno-Reliance The majority of gold mineralisation at Hyperno-Reliance is oxide/supergene mineralisation that is generally flat lying, so true widths of drill intercepts at depths <50m in vertical water bores will be approximately true width. Primary gold mineralisation at Hyperno-Reliance dips ~70° to the east with drilling oriented at right angles to strike and at ~20° to dip implying true width of mineralisation to be ~34% of intercept width (this assumes a -90° drill hole dip at reported intercept depths).

Criteria	JORC Code explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate drill hole plans, sections and tables of significant intercepts are included in this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Drilling results have been comprehensively reported in this announcement. All information considered material to the reader's understanding of the Exploration Results and data has been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other exploration data which is considered material to the results reported in this announcement.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Diagrams highlighting possible extensions to mineralisation are included in the body of the announcement and further drilling where appropriate will be undertaken to follow up the results reported. Sufficient metallurgical test work (cyanide / leach) has been completed for the prospects referred to in this announcement. A mineral resource estimate update is planned for 2025.