

19 February 2024

Drilling results point to major silver-indium discovery at Orient, QLD

Critical minerals and base metals explorer **Iltani Resources Limited** (ASX: ILT, "Iltani" or "the Company") is pleased to announce the results from its recently completed drilling at the Orient Project in North Queensland.

HIGHLIGHTS:

- All eight reverse circulation (RC) drill holes (ORR017 to ORR024) completed at the Orient Project in December 2023 intersected extensive silver-lead-zinc-indium vein mineralisation, highlighting Orient's potential to host a world-class silver-lead-zinc-indium resource.
- ORR021 intersected exceptionally high-grade silver-lead-zinc-indium mineralisation, with two
 intersections (117-118m and 187-188m) returning assays of +500 g/t In¹. Results included:
 - o 5m @ 43 g/t Ag, 0.7% Pb, 5.0% Zn & 149*g/t In (314 g/t Ag Eq.) from 117m inc.
 - Im @ 141 g/t Ag, 1.7% Pb, 18.8% Zn & 500*g/t In (1,102 g/t Ag Eq.) from 117m and
 - 4m @ 48 g/t Ag, 1.0% Pb, 4.8% Zn & 175* g/t In (335 g/t Ag Eq.) from 186m inc.
 - Im @ 83 g/t Ag, 1.1% Pb, 13.0% Zn & 500*g/t In (819 g/t Ag Eq.) from 187m.
- Other notable intercepts of silver-lead-zinc-indium mineralisation include:
 - ORR017: 22m @ 74 g/t Ag Eq. from 100m inc. 12m @ 108 g/t Ag Eq. from 102m.
 - ORR018: 8m @ 132 g/t Ag Eq. from 11m and 20m @ 75 g/t Ag Eq. from 140m inc. 7m
 @ 130 g/t Ag Eq. from 149m.
 - o ORR019: 5m @ 223 g/t Ag Eq. from 55m inc. 2m @ 409 g/t Ag Eq. from 55m.
 - o ORR020: 5m @ 116 g/t Ag Eq. from 25m.
 - ORR022: 14m @ 103 g/t Ag Eq. from 10m² inc. 6m @ 189 g/t Ag Eq. from 20m inc. 1m @ 785 g/t Ag Eq. from 24m.
 - o ORR024: 6m @ 127 g/t Ag Eq. from 25m and 6m @ 121 g/t Ag Eq. from 37m.
- Iltani expects to restart Orient Stage 2 drilling in March/April when the wet season abates.

¹ Sample numbers 122725 (ORR021 117m to 118m) and 122757 (ORR021 187m to 188m) returned an assay result of >500 ppm (parts per million equivalent to grams per tonne) indium, using ME-MS61 (48 element four acid ICP-MS) assay method at ALS Townsville (QLD) which has an upper assay limit of 500 ppm indium. These samples will undergo assay method In-ICP61 at ALS Vancouver (Canada) which has an upper limit of 10,000 ppm indium. Iltani has conservatively assumed that the indium assay result for samples 122725 and 122757 is 500 g/t indium and will update the market should the indium assay results be materially higher than this.

² Void interpreted to be historical workings intersected from 14m to 16m down hole.

^{*} Indium assay assumed to be 500 g/t In for purposes of the calculation.

Iltani Managing Director Donald Garner commented:

"Iltani's drilling at Orient continues to deliver outstanding intersections of silver-lead-zinc-indium mineralisation returning both high-grade intersections and broad intersections of medium-grade mineralisation from multiple vein systems.

We continue to build on results from the Stage 1 RC drilling program. Of note are the high-grade indium assays from the intersections in ORR021 – Iltani believes these are the **highest grade indium drill** *intersections publicly reported on the ASX* to date. Indium is classed as a strategic and critical mineral, based on its uses in multiple high-tech devices such as touchscreens, flat screen displays, solar panels and microchips plus its aerospace and defence applications.

We have engaged Mining One to build a model of the Orient System, bringing together the historical drilling, Iltani's drilling, reprocessed geophysical data plus Nick Tate's mapping. We will use this model to optimise the remaining drillholes planned in the Stage 2 drilling- program and to better inform us of the potential of Orient to host a **world-class silver-lead-zinc-indium resource**.

Results from our work to date gives the Iltani Board an increasing level of confidence in Orient's potential and we plan to restart our Stage 2 drilling program at Orient in March/April once the wet season abates."

1. Orient Project

Iltani is pleased to report assay results from Phase 1 of the Stage 2 reverse circulation (RC) drilling program at the Orient silver-lead-zinc-indium project in North Queensland. The Orient project is located on Iltani's wholly owned tenement EPM27223, approximately 20km west of the historic mining town of Herberton and 9km north of Irvinebank (Figure 1). Access is via the Herberton-Petford Road and then the Hales Siding Road.

Figure 1 Orient Location and Regional Geology

During December 2023, Iltani completed eight RC holes for a total of 1,276m drilled, with five RC drill holes (ORR017 to ORR021, for 988m drilled) completed at Orient West and three RC drill holes (ORR022 to ORR024, for 288m drilled) completed at Orient East.

Iltani has engaged Mining One to build a 3D model of Orient using all available data: Iltani's RC drilling (Stage 1 and Stage 2), Iltani's geophysical data reinterpretation (IP, magnetic and resistivity), Nick Tate's mapping and historical drill data) to allow Iltani to better understand Orient's potential to host a world class silver-lead-zinc-indium deposit.

Iltani will use this model to optimise the drill design of the remaining Stage 2 RC holes planned for March/April 2024 and, working with Mining One, lay the foundation for a future JORC Resource estimate.

2. Orient West Drilling Results

Iltani completed five RC drillholes at Orient West for 988m drilled (ORR017 to ORR021). ORR021 returned exceptionally high grade indium intersections, where indium mineralisation of **at least 500 g/t In** was intersected over 1m width in two separate vein systems (refer to Figure 3). These samples are undergoing further assaying at ALS Vancouver (Canada) to confirm the indium grade.

Drill holes ORR017 to ORR020 (refer to Figure 4) intersected wide intersections of silver-lead-zincindium mineralisation, potentially amenable to open pit mining.

Hole	From (m)	To (m)	Intersect (m)	Ag g/t	Pb %	Zn %	In g/t	Ag Eq g/t		
ORR017	17.00	22.00	5.00	38.4	0.59%	0.22%	22.2	77.5		
ORR017	100.00	122.00	22.00	28.3	0.38%	0.63%	19.9	73.5		
inc.	102.00	114.00	12.00	42.4	0.52%	0.92%	31.3	108.3		
ORR018	11.00	19.00	8.00	66.7	1.55%	0.05%	18.6	132.2		
inc.	15.00	17.00	2.00	171.0	1.18%	0.04%	4.9	216.3		
ORR018	50.00	51.00	1.00	45.6	0.87%	1.51%	59.6	158.1		
ORR018	140.00	160.00	20.00	30.3	0.36%	0.60%	23.3	75.3		
inc.	149.00	156.00	7.00	48.7	0.49%	1.12%	50.9	129.7		
ORR019	55.00	60.00	5.00	78.1	1.50%	1.67%	68.4	222.8		
inc.	55.00	57.00	2.00	144.1	2.78%	3.02%	126.4	409.4		
ORR019	67.00	68.00	1.00	25.3	0.64%	0.85%	20.0	87.6		
ORR019	110.00	113.00	3.00	31.9	0.32%	1.25%	62.0	116.8		
ORR019	160.00	169.00	9.00	14.9	0.32%	0.49%	13.7	50.1		
ORR019	177.00	186.00	9.00	22.6	0.30%	0.39%	9.5	51.6		
inc.	184.00	186.00	2.00	56.7	0.59%	0.64%	8.8	104.6		
ORR020	25.00	30.00	5.00	36.3	0.86%	1.25%	9.9	115.7		
inc.	27.00	28.00	1.00	134.0	2.96%	3.96%	41.0	398.9		
ORR021	23.00	27.00	4.00	32.6	0.80%	3.62%	17.0	197.7		
inc.	24.00	27.00	3.00	40.3	0.97%	4.64%	22.5	250.1		
inc.	24.00	26.00	2.00	53.5	1.26%	6.40%	31.2	339.8		
ORR021	117.00	122.00	5.00	43.0	0.68%	4.97%	149.1*	313.7		
inc.	117.00	119.00	2.00	90.7	1.21%	11.31%	347.0*	697.9		
inc.	117.00	118.00	1.00	141.0	1.71%	18.75%	500.0*	1102.3		
ORR021	186.00	190.00	4.00	47.5	1.01%	4.78%	175.1*	335.1		
inc.	187.00	189.00	2.00	79.2	1.66%	8.46%	309.0*	583.5		
inc. 187.00 188.00 1.00 82.9 1.11% 13.00% 500.0* 818.8										
Intersectio *indium as	Intersection is downhole width only – true width is expected to be 90% to 95% of down hole width. *indium assay pending (assay currently conservatively assumed to be 500g/t ln)									

Table 1 O	Iriant Mact S	itago 2 PC	Drogram	Matorial	Intorconto
I ADIE I O	ment west 3	lage z nu	FIUgiaiii -	watenan	IIILEILEDIS
			- 0 -		

Figure 2 Orient West Drill Collar Location

Mineralisation intersected in the recent drilling is open along strike (to the NE and SW) and open down dip, highlighting Orient West's potential. The mapped vein systems extend at least 1,500m to the NE and 250m to the SW, representing a compelling drilling target.

ORR021 is the most westerly hole drilled to date by Iltani and is closest to the area of the most extensive old workings at Orient West. This hole, with its exceptionally high-grade mineralisation, has highlighted the underground potential at Orient West, again representing a compelling target, with the high-grade vein systems open to the SW and at depth.

Figure 4 Orient West Section B to B' (refer to section line on Figure 2)

3. Orient East Drilling Results

Iltani completed three RC drillholes at Orient East for 288m drilled (ORR022 to ORR024). Assay results have been received for all holes, with material assay results as per Table 2.

Hole	From (m)	To (m)	Intersect (m)	Ag g/t	Pb %	Zn %	In g/t	Ag Eq g/t
ORR022	10.00	26.00	14.00*	40.8	0.92%	0.83%	0.1	103.2
inc.	20.00	26.00	6.00	68.8	1.66%	1.71%	0.1	188.7
inc.	23.00	25.00	2.00	167.7	4.18%	3.84%	0.3	452.4
inc.	24.00	25.00	1.00	302.0	7.54%	6.07%	0.5	785.4
ORR023	37.00	44.00	7.00	22.5	0.44%	0.56%	0.1	58.1
ORR024	25.00	31.00	6.00	51.0	1.28%	0.81%	4.3	127.5
inc.	25.00	30.00	5.00	58.0	1.45%	0.86%	4.9	142.4
inc.	27.00	28.00	1.00	162.0	4.05%	0.87%	4.0	338.4
ORR024	37.00	43.00	6.00	41.5	0.78%	1.33%	9.6	121.0
inc.	37.00	40.00	3.00	69.4	1.20%	2.14%	18.5	196.7
inc.	38.00	39.00	1.00	132.0	2.53%	4.48%	42.7	400.9
*ORR022 in	tersected a vo	hid from 14	0 to 16 0m dow	nhole whit	h is intern	reted to he h	istorical wor	kings

Table 2 Orient East Stage 2 RC Program - Material Intercepts

*ORR022 intersected a void from 14.0 to 16.0m downhole which is interpreted to be historical workings Intersection is downhole width only – true width is expected to be 90% to 95% of down hole width.

Of note, drill holes ORR022 and ORR023 targeted Vein 3 and intersected extensive high-grade shallow mineralisation (Figure 5). These are excellent results from the first drill holes targeting Vein 3 (Nannum). The known strike extent of Vein 3 is approximately 1,500m in a NE/SW direction, with the system likely extending at least 1,000m to the south from ORR022 and ORR023.

Figure 5 Orient East Drill Collar Location

4. Orient System

Iltani's Orient drilling has been an outstanding success and has demonstrated the potential of the Orient System to host one of Australia's largest silver deposits combined with material exposure to critical raw materials (indium). Mineralisation intersected in Iltani's drilling is open at depth and along strike, combined with the target areas (Figures 6 & 7) from recent mapping which demonstrate the potential of the Orient System.

ASX RELEASE

www.iltaniresources.com.au

5. Next Steps

Iltani has engaged Mining One to build a comprehensive 3D model of the Orient System (Orient West, Orient East and Deadman Creek), comprising all available data. The model will enable Iltani to fine-tune the drill hole designs for the remaining Stage 2 RC holes to be drilled when the wet season abates (March/April 2024).

The Stage 2 holes will be used to better understand the size and grade of the overall Orient System. Multiple outstanding targets remain to be drilled including areas mapped by Nick Tate as stockwork mineralisation (Orient West, Orient East and Deadman Creek) plus multiple geophysical anomalies.

The work carried out to date has provided Iltani confidence that the Orient System has the potential required to host a world-class silver-lead-zinc-indium deposit, and that mineralisation intercepted to date would support both conceptual open pit and underground development.

Iltani looks forward to keeping our shareholders updated as we advance our exciting Orient discovery.

Authorisation

This announcement has been approved for issue by Donald Garner, Iltani Resources Managing Director.

Contact Details

For further information, please contact:

Donald Garner Managing Director Iltani Resources Limited +61 438 338 496 dgarner@iltaniresources.com.au Nathan Ryan Investor Relations NWR Communications +61 420 582 887 nathan.ryan@nwrcommunications.com.au

Competent Persons Statement

Exploration Results

The information in this report that relates to Exploration Results is based on information compiled by Mr Mike Barr who is a member of The Australasian Institute of Geologists (AIG), and is a consultant engaged by Iltani Resources Limited., and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (JORC Code).

Mr Barr consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

About Iltani

Iltani Resources (ASX: ILT) is an ASX listed company focused on exploration of base metals and critical raw materials required to create a low emission future. It has built a portfolio of advanced exploration projects in Queensland and Tasmania with multiple high quality, drill-ready targets. Iltani has completed drilling at the Orient Silver-Indium Project, part of its Herberton Project, in Northern Queensland. The drilling has returned outstanding intercepts of silver-lead-zinc-indium mineralisation, positioning Orient as Australia's most exciting silver-indium discovery.

Other projects include the Northern Base Metal, Southern Gold and Rookwood Projects in Queensland plus the Mt Read Project, a highly strategic 99km² licence in Tasmania's Mt Read Volcanics (MRV) Belt, located between the world-class Rosebery and Hellyer-Que River polymetallic (CuPbZn) precious metal rich volcanic hosted massive sulphide deposits.

Figure 8 Location of Iltani Resources' projects in Queensland and Tasmania

Metallurgical Equivalent Calculation

The equivalent silver formula is Ag Eq. = $Ag + (Pb \times 35.5) + (Zn \times 50.2) + (In \times 0.47)$

Table 3 Metal Equivalent Calculation - Recoveries and Commodity Prices

Metal	Price/Unit	Recovery
Silver	US\$20/oz	87%
Lead	US\$1.00/lb	90%
Zinc	US\$1.50/lb	85%
Indium	US\$350/kg	85%

It is Iltani's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Table 4 Orient Stage 2 Phase 1 RC Drill Program Drillhole Data

DH ID	Easting	Northing	Elevation (m)	Dip	Azi (Mag)	Azi (Grid)	Depth (m)	Stage	Prospect
ORR017	307143	8080942	840	-60	315.5	322	162	2	Orient West
ORR018	307178	8080890	835	-60	315.5	322	210	2	Orient West
ORR019	307225	8080858	825	-60	303.5	310	238	2	Orient West
ORR020	307290	8080782	812	-60	303.5	310	156	2	Orient West
ORR021	307030	8080632	787	-60	315.5	322	222	2	Orient West
ORR022	308838	8080602	778	-60	113.5	120	54	2	Orient East
ORR023	308801	8080621	782	-60	113.5	120	126	2	Orient East
ORR024	308819	8080850	797	-60	83.5	90	108	2	Orient East

Hole ID	From	То	Intersect	Sample ID	Ag	Pb	Zn	Pb	Zn	In
	(m)	(m)	(m)	-	ppm	ppm	ppm	%	%	ppm
ORR017	16.0	17.0	1.0	121946	4.97	1145	145	0.11%	0.01%	4.95
ORR017	17.0	18.0	1.0	121947	66.50	5380	126	0.54%	0.01%	11.05
ORR017	18.0	19.0	1.0	121948	37.60	5400	134	0.54%	0.01%	12.15
ORR017	19.0	20.0	1.0	121949	25.90	4460	2460	0.45%	0.25%	39.90
ORR017	20.0	21.0	1.0	121950	28.00	7290	3940	0.73%	0.39%	28.70
ORR017	21.0	22.0	1.0	121951	33.80	6820	4440	0.68%	0.44%	19.20
ORR017	22.0	23.0	1.0	121952	16.70	2710	983	0.27%	0.10%	6.59
ORR017	99.0	100.0	1.0	122031	9.04	2110	2340	0.21%	0.23%	4.71
ORR017	100.0	101.0	1.0	122032	35.30	4710	8560	0.47%	0.86%	28.60
ORR017	101.0	102.0	1.0	122033	6.29	1740	1855	0.17%	0.19%	3.42
ORR017	102.0	103.0	1.0	122034	37.70	6740	5990	0.67%	0.60%	20.70
ORR017	103.0	104.0	1.0	122035	11.85	2150	2010	0.22%	0.20%	3.82
ORR017	104.0	105.0	1.0	122036	38.50	4800	8250	0.48%	0.83%	36.50
ORR017	105.0	106.0	1.0	122037	35.50	4780	6500	0.48%	0.65%	24.10
ORR017	106.0	107.0	1.0	122038	20.30	2510	6810	0.25%	0.68%	18.35
ORR017	107.0	108.0	1.0	122039	28.80	2150	2110	0.22%	0.21%	5.90
ORR017	108.0	109.0	1.0	122040	112.00	12750	28400	1.28%	2.84%	114.50
ORR017	109.0	110.0	1.0	122041	24.60	3110	6950	0.31%	0.70%	22.60
ORR017	110.0	111.0	1.0	122042	29.90	3430	7990	0.34%	0.80%	26.70
ORR017	111.0	112.0	1.0	122043	73.50	7920	15250	0.79%	1.53%	42.40
ORR017	112.0	113.0	1.0	122044	27.00	2590	4220	0.26%	0.42%	13.30
ORR017	113.0	114.0	1.0	122045	27.50	2940	5660	0.29%	0.57%	14.90
ORR017	114.0	115.0	1.0	122046	19.50	2520	5300	0.25%	0.53%	16.95
ORR017	115.0	116.0	1.0	122047	7.65	1710	3250	0.17%	0.33%	10.30
ORR017	116.0	117.0	1.0	122048	10.35	2410	2540	0.24%	0.25%	4.83
ORR017	117.0	118.0	1.0	122049	16.35	3310	4010	0.33%	0.40%	8.25
ORR017	118.0	119.0	1.0	122050	17.75	3050	3370	0.31%	0.34%	7.42
ORR017	119.0	120.0	1.0	122051	13.80	1990	2640	0.20%	0.26%	6.03
ORR017	120.0	121.0	1.0	122052	17.25	3820	3400	0.38%	0.34%	5.14
ORR017	121.0	122.0	1.0	122053	10.70	3410	2820	0.34%	0.28%	2.78
ORR017	122.0	123.0	1.0	122054	5.66	2150	1780	0.22%	0.18%	1.56

Table 6 Orient Stage 2 RC Drill Assay Data (ORR018)

Hole ID	From	То	Intersect	Sample ID	Ag	Pb	Zn	Pb	Zn	In
	(m)	(m)	(m)		ppm	ppm	ppm	%	%	ppm
ORR018	8.0	9.0	1.0	122280	9.99	2670	1170	0.27%	0.12%	1.1
ORR018	9.0	10.0	1.0	122281	8.89	1435	633	0.14%	0.06%	0.3
ORR018	10.0	11.0	1.0	122282	5.20	1595	387	0.16%	0.04%	2.0
ORR018	11.0	12.0	1.0	122283	28.00	9600	226	0.96%	0.02%	16.3
ORR018	12.0	13.0	1.0	122284	61.40	59300	523	5.93%	0.05%	105.0
ORR018	13.0	14.0	1.0	122285	8.41	6140	324	0.61%	0.03%	7.5
ORR018	14.0	15.0	1.0	122286	45.70	13350	154	1.34%	0.02%	6.4
ORR018	15.0	16.0	1.0	122287	148.00	11900	506	1.19%	0.05%	4.6
ORR018	16.0	17.0	1.0	122288	194.00	11600	224	1.16%	0.02%	5.3
ORR018	17.0	18.0	1.0	122289	35.00	8930	574	0.89%	0.06%	2.8
ORR018	18.0	19.0	1.0	122290	13.05	3140	1545	0.31%	0.15%	0.7
ORR018	49.0	50.0	1.0	122322	3.39	996	944	0.10%	0.09%	0.9
ORR018	50.0	51.0	1.0	122323	45.60	8740	15050	0.87%	1.51%	59.6
ORR018	51.0	52.0	1.0	122324	3.29	1135	1455	0.11%	0.15%	1.8
ORR018	138.0	139.0	1.0	122413	9.65	4010	3600	0.40%	0.36%	8.7
ORR018	139.0	140.0	1.0	122414	6.33	2020	1910	0.20%	0.19%	3.8
ORR018	140.0	141.0	1.0	122415	20.60	3610	9230	0.36%	0.92%	36.4
ORR018	141.0	142.0	1.0	122416	10.50	1775	2260	0.18%	0.23%	5.6
ORR018	142.0	143.0	1.0	122417	15.10	2470	3270	0.25%	0.33%	6.8
ORR018	143.0	144.0	1.0	122418	18.15	2950	3200	0.30%	0.32%	6.5
ORR018	144.0	145.0	1.0	122419	60.20	9500	2110	0.95%	0.21%	4.2
ORR018	145.0	146.0	1.0	122421	14.95	2870	2400	0.29%	0.24%	3.0
ORR018	146.0	147.0	1.0	122422	18.95	2570	3570	0.26%	0.36%	8.3
ORR018	147.0	148.0	1.0	122423	11.95	1745	2570	0.17%	0.26%	7.1
ORR018	148.0	149.0	1.0	122424	11.90	723	1280	0.07%	0.13%	6.2
ORR018	149.0	150.0	1.0	122425	166.00	13550	42000	1.36%	4.20%	222.0
ORR018	150.0	151.0	1.0	122426	5.08	529	3120	0.05%	0.31%	11.7
ORR018	151.0	152.0	1.0	122427	6.02	436	1655	0.04%	0.17%	7.0
ORR018	152.0	153.0	1.0	122428	20.10	2280	6710	0.23%	0.67%	34.5
ORR018	153.0	154.0	1.0	122429	19.20	2910	3850	0.29%	0.39%	8.5
ORR018	154.0	155.0	1.0	122430	6.41	793	3110	0.08%	0.31%	9.9
ORR018	155.0	156.0	1.0	122431	118.00	13850	17750	1.39%	1.78%	62.7
ORR018	156.0	157.0	1.0	122432	11.75	1510	3220	0.15%	0.32%	7.9
ORR018	157.0	158.0	1.0	122433	26.60	2400	2820	0.24%	0.28%	4.7
ORR018	158.0	159.0	1.0	122434	24.20	2780	2710	0.28%	0.27%	5.3
ORR018	159.0	160.0	1.0	122435	21.00	2920	2960	0.29%	0.30%	7.3
ORR018	160.0	161.0	1.0	122436	3.76	920	1015	0.09%	0.10%	1.4

Table 7 Orient Stage 2 RC Drill Assay Data (ORR019)

	Erom	То	Intersect	Sample ID	Δα	Dh	Zn	Dh	Zn	In
	(m)	(m)	(m)	Sample ID	nnm	nnm	20	Р Б %	%	nnm
OBB019	54.0	55.0	1.0	122114	5 56	1155	3270	0.12%	0.33%	3.0
ORR019	55.0	56.0	1.0	122114	193.00	36500	36800	3 65%	3.68%	161 5
ORR019	56.0	57.0	1.0	122115	95 10	19150	23600	1 92%	2 36%	91.2
ORR019	57.0	58.0	1.0	122110	25.80	4870	5530	0.49%	0.55%	19.3
ORR019	58.0	59.0	1.0	122117	55.40	10700	13350	1.07%	1 3/1%	52.2
ORR019	59.0	60.0	1.0	122110	21.00	3920	4120	0.39%	0.41%	16.7
ORR019	60.0	61.0	1.0	122115	1 71	320	4120	0.03%	0.41%	1 7
0111015	00.0	01.0	1.0	122120	1.71	520	431	0.0370	0.0470	1.7
OBB019	104.0	105.0	10	122151	9 37	3560	3990	0.36%	0.40%	55
ORR019	105.0	106.0	1.0	122151	15.00	4410	5730	0.30%	0.40%	11.9
ORR019	106.0	107.0	1.0	122152	18.95	4100	8700	0.41%	0.87%	27.4
ORR019	107.0	108.0	1.0	122155	6.05	1850	1995	0.19%	0.20%	27.4
ORR019	108.0	109.0	1.0	122155	3 58	1455	1525	0.15%	0.15%	1.6
ORR019	109.0	110.0	1.0	122155	2 29	957	935	0.10%	0.19%	0.9
ORR019	110.0	111.0	1.0	122157	9.73	1565	10700	0.16%	1 07%	42.7
ORR019	111.0	112.0	1.0	122158	35.00	3400	14400	0.10%	1 44%	77.8
ORR019	112.0	113.0	1.0	122159	51 10	4600	12400	0.46%	1 24%	65.5
ORR019	113.0	114.0	1.0	122160	2.89	413	837	0.04%	0.08%	3.8
0111015	110.0	11.110	1.0	122100	2.05	110	007	0.0170	0.0070	5.6
ORR019	160.0	161.0	10	122192	18 70	4220	5500	0.42%	0 55%	14.8
ORR019	161.0	162.0	1.0	122192	15.80	3320	6130	0.33%	0.55%	21.0
ORR019	162.0	163.0	1.0	122193	17.00	3530	5510	0.35%	0.55%	11 3
ORR019	163.0	164.0	1.0	122194	23.60	4090	6310	0.33%	0.53%	23.0
ORR019	164.0	165.0	1.0	122196	12 15	2180	4590	0.22%	0.46%	15.4
ORR019	165.0	166.0	1.0	122190	4 48	1340	1735	0.22%	0.40%	3.9
ORR019	166.0	167.0	1.0	122198	14.15	3990	5090	0.40%	0.51%	10.5
ORR019	167.0	168.0	1.0	122199	9.87	2090	3930	0.21%	0.39%	11.9
ORR019	168.0	169.0	1.0	122200	18.60	3890	5410	0.39%	0.54%	11.7
ORR019	169.0	170.0	1.0	122201	6.42	1795	2870	0.18%	0.29%	6.2
ORR019	170.0	171.0	1.0	122202	3.44	1150	1590	0.12%	0.16%	3.0
ORR019	171.0	172.0	1.0	122203	2.13	808	826	0.08%	0.08%	1.2
ORR019	172.0	173.0	1.0	122204	2.11	814	755	0.08%	0.08%	1.0
ORR019	173.0	174.0	1.0	122205	2.03	822	819	0.08%	0.08%	1.0
ORR019	174.0	175.0	1.0	122206	2.54	1085	1020	0.11%	0.10%	1.3
ORR019	175.0	176.0	1.0	122207	5.00	1765	1700	0.18%	0.17%	2.9
ORR019	176.0	177.0	1.0	122208	10.10	2870	4130	0.29%	0.41%	9.2
ORR019	177.0	178.0	1.0	122209	23.80	3000	7320	0.30%	0.73%	30.9
ORR019	178.0	179.0	1.0	122210	17.80	2700	4110	0.27%	0.41%	14.5
ORR019	179.0	180.0	1.0	122211	11.20	2430	3100	0.24%	0.31%	5.7
ORR019	180.0	181.0	1.0	122212	12.75	1955	3220	0.20%	0.32%	8.1
ORR019	181.0	182.0	1.0	122213	11.40	2120	2160	0.21%	0.22%	4.2
ORR019	182.0	183.0	1.0	122214	5.42	1295	1245	0.13%	0.12%	2.2
ORR019	183.0	184.0	1.0	122215	7.94	1460	1355	0.15%	0.14%	2.3
ORR019	184.0	185.0	1.0	122216	90.20	8780	9050	0.88%	0.91%	11.4
ORR019	185.0	186.0	1.0	122217	23.20	2980	3830	0.30%	0.38%	6.3

Table 8 Orient Stage 2 RC Drill Assay Data (ORR020)

Hole ID	From	То	Intersect	Sample ID	Ag	Pb	Zn	Pb	Zn	In
	(m)	(m)	(m)		ppm	ppm	ppm	%	%	ppm
ORR020	24.0	25.0	1.0	122496	0.77	253	5700	0.03%	0.57%	0.06
ORR020	25.0	26.0	1.0	122497	11.95	3460	6040	0.35%	0.60%	2.13
ORR020	26.0	27.0	1.0	122498	14.30	4030	6310	0.40%	0.63%	2.13
ORR020	27.0	28.0	1.0	122499	134.00	29600	39600	2.96%	3.96%	41.00
ORR020	28.0	29.0	1.0	122501	12.90	3580	5300	0.36%	0.53%	3.24
ORR020	29.0	30.0	1.0	122502	8.16	2250	5120	0.23%	0.51%	1.13
ORR020	30.0	31.0	1.0	122503	4.19	1380	3760	0.14%	0.38%	0.26

Hole ID	From	То	Intersect	Sample ID	Ag	Pb	Zn	Pb	Zn	In
	(m)	(m)	(m)		ppm	ppm	ppm	%	%	ppm
ORR021	22.0	23.0	1.0	122687	1.24	546	5840	0.05%	0.58%	0.1
ORR021	23.0	24.0	1.0	122688	9.55	3000	5690	0.30%	0.57%	0.5
ORR021	24.0	25.0	1.0	122689	40.60	9200	38100	0.92%	3.81%	11.4
ORR021	25.0	26.0	1.0	122690	66.30	15950	89800	1.60%	8.98%	51.0
ORR021	26.0	27.0	1.0	122691	14.05	3960	11300	0.40%	1.13%	5.2
ORR021	116.0	117.0	1.0	122724	10.2	2310	2720	0.23%	0.27%	2.3
ORR021	117.0	118.0	1.0	122725	141.0	17100	187500	1.71%	18.75%	>500.0
ORR021	118.0	119.0	1.0	122726	40.4	7020	38600	0.70%	3.86%	194.0
ORR021	119.0	120.0	1.0	122727	16.4	4340	13550	0.43%	1.36%	38.6
ORR021	120.0	121.0	1.0	122728	0.5	98.7	492	0.01%	0.05%	2.0
ORR021	121.0	122.0	1.0	122729	16.9	5500	8380	0.55%	0.84%	11.0
ORR021	171.0	172.0	1.0	122741	10.5	2770	4540	0.28%	0.45%	0.8
ORR021	172.0	173.0	1.0	122742	2.8	741	870	0.07%	0.09%	0.1
ORR021	173.0	174.0	1.0	122743	2.5	713	664	0.07%	0.07%	0.2
ORR021	174.0	175.0	1.0	122744	37.4	8850	6570	0.89%	0.66%	3.0
ORR021	175.0	176.0	1.0	122745	3.5	1075	926	0.11%	0.09%	0.4
ORR021	176.0	177.0	1.0	122746	1.2	302	279	0.03%	0.03%	0.1
ORR021	177.0	178.0	1.0	122747	6.3	1885	1775	0.19%	0.18%	2.4
ORR021	178.0	179.0	1.0	122748	12.6	3470	2910	0.35%	0.29%	5.7
ORR021	179.0	180.0	1.0	122749	2.0	549	488	0.05%	0.05%	0.7
ORR021	180.0	181.0	1.0	122750	0.4	130	131	0.01%	0.01%	0.1
ORR021	181.0	182.0	1.0	122751	0.3	92.6	84	0.01%	0.01%	0.1
ORR021	182.0	183.0	1.0	122752	0.6	220	209	0.02%	0.02%	0.1
ORR021	183.0	184.0	1.0	122753	1.1	488	541	0.05%	0.05%	0.3
ORR021	184.0	185.0	1.0	122754	3.7	1190	1695	0.12%	0.17%	1.2
ORR021	185.0	186.0	1.0	122755	9.7	3250	4500	0.33%	0.45%	5.7
ORR021	186.0	187.0	1.0	122756	18.7	5250	5250	0.53%	0.53%	6.5
ORR021	187.0	188.0	1.0	122757	82.9	11100	130000	1.11%	13.00%	>500.0
ORR021	188.0	189.0	1.0	122758	75.4	22000	39200	2.20%	3.92%	118.0
ORR021	189.0	190.0	1.0	122759	13.1	1960	16600	0.20%	1.66%	75.8
Sample 1227	725 and 1	22757 ass	say results a	re pending (>	50 <mark>0 g/t</mark> In)				

Table 9 Orient Stage 2 RC Drill Assay Data (ORR021)

Hole ID	From	То	Intersect	Sample ID	Ag	Pb	Zn	Pb	Zn	In
	(m)	(m)	(m)		ppm	ppm	ppm	%	%	ppm
ORR022	10.0	11.0	1.0	122552	32.00	4740	2150	0.47%	0.22%	0.12
ORR022	11.0	12.0	1.0	122553	21.50	5960	2120	0.60%	0.21%	0.27
ORR022	12.0	13.0	1.0	122554	19.60	6220	1210	0.62%	0.12%	0.16
ORR022	13.0	14.0	1.0	122555	37.90	4290	1730	0.43%	0.17%	0.15
ORR022	14.0	15.0	Void	122556	-	-	-	-	-	-
ORR022	15.0	16.0	Void	122557	-	-	-	-	-	-
ORR022	16.0	17.0	1.0	122558	16.40	2870	1695	0.29%	0.17%	0.11
ORR022	17.0	18.0	1.0	122559	14.10	2380	1195	0.24%	0.12%	0.16
ORR022	18.0	19.0	1.0	122560	11.30	2070	1820	0.21%	0.18%	0.08
ORR022	19.0	20.0	1.0	122561	5.41	848	2190	0.08%	0.22%	0.05
ORR022	20.0	21.0	1.0	122562	25.60	4840	4560	0.48%	0.46%	0.12
ORR022	21.0	22.0	1.0	122563	18.90	3410	6840	0.34%	0.68%	0.03
ORR022	22.0	23.0	1.0	122564	14.85	2900	7330	0.29%	0.73%	0.08
ORR022	23.0	24.0	1.0	122565	33.30	8220	16050	0.82%	1.61%	0.04
ORR022	24.0	25.0	1.0	122566	302.00	75400	60700	7.54%	6.07%	0.54
ORR022	25.0	26.0	1.0	122567	18.40	5060	7160	0.51%	0.72%	0.07
Void was dril	led from	14 -16m	downhole,	interpreted t	o be a hist	orical worl	king			

Table 11 Orient Stage 2 RC Drill Assay Data (ORR023)

Hole ID	From	То	Intersect	Sample ID	Ag	Pb	Zn	Pb	Zn	In
	(m)	(m)	(m)		ppm	ppm	ppm	%	%	ppm
ORR023	28.0	29.0	1.0	122590	13.05	2950	3140	0.30%	0.31%	0.0
ORR023	29.0	30.0	1.0	122591	24.60	5470	6880	0.55%	0.69%	0.0
ORR023	30.0	31.0	1.0	122592	1.80	361	482	0.04%	0.05%	0.0
ORR023	31.0	32.0	1.0	122593	5.57	1055	1120	0.11%	0.11%	0.0
ORR023	32.0	33.0	1.0	122594	7.55	1475	1895	0.15%	0.19%	0.0
ORR023	33.0	34.0	1.0	122595	12.65	2730	3430	0.27%	0.34%	<0.005
ORR023	34.0	35.0	1.0	122596	7.91	1825	2470	0.18%	0.25%	0.1
ORR023	35.0	36.0	1.0	122597	13.10	3010	3610	0.30%	0.36%	0.0
ORR023	36.0	37.0	1.0	122598	13.00	3240	4290	0.32%	0.43%	0.0
ORR023	37.0	38.0	1.0	122599	16.95	3730	4680	0.37%	0.47%	0.0
ORR023	38.0	39.0	1.0	122600	22.60	4740	5060	0.47%	0.51%	0.0
ORR023	39.0	40.0	1.0	122601	18.85	3880	4940	0.39%	0.49%	0.0
ORR023	40.0	41.0	1.0	122602	35.60	6660	7840	0.67%	0.78%	0.2
ORR023	41.0	42.0	1.0	122603	26.10	4690	5390	0.47%	0.54%	0.2
ORR023	42.0	43.0	1.0	122604	22.80	4290	6330	0.43%	0.63%	0.1
ORR023	43.0	44.0	1.0	122605	14.85	2460	5280	0.25%	0.53%	0.1

Hole ID	From	То	Intersect	Sample ID	Ag	Pb	Zn	Pb	Zn	In
	(m)	(m)	(m)	-	ppm	ppm	ppm	%	%	ppm
ORR024	7.0	8.0	1.0	122622	86.60	5010	140	0.50%	0.01%	4.88
ORR024	8.0	9.0	1.0	122623	98.30	6110	185	0.61%	0.02%	5.06
ORR024	9.0	10.0	1.0	122624	19.75	1550	140	0.16%	0.01%	0.68
ORR024	10.0	11.0	1.0	122625	12.00	1370	153	0.14%	0.02%	0.19
ORR024	11.0	12.0	1.0	122626	10.05	1270	266	0.13%	0.03%	0.12
ORR024	12.0	13.0	1.0	122627	10.75	990	405	0.10%	0.04%	0.09
ORR024	13.0	14.0	1.0	122628	16.40	1935	217	0.19%	0.02%	0.08
ORR024	14.0	15.0	1.0	122629	7.75	1780	193	0.18%	0.02%	0.06
ORR024	15.0	16.0	1.0	122630	10.45	4110	2340	0.41%	0.23%	0.01
ORR024	16.0	17.0	1.0	122631	15.45	8200	6950	0.82%	0.70%	1.20
ORR024	17.0	18.0	1.0	122632	5.16	4530	2640	0.45%	0.26%	0.15
ORR024	18.0	19.0	1.0	122633	2.02	395	6710	0.04%	0.67%	0.07
ORR024	19.0	20.0	1.0	122634	1.01	157	6460	0.02%	0.65%	0.05
ORR024	20.0	21.0	1.0	122635	0.65	161	22800	0.02%	2.28%	0.05
ORR024	21.0	22.0	1.0	122636	7.51	2230	10400	0.22%	1.04%	0.10
ORR024	22.0	23.0	1.0	122637	0.63	147	4040	0.01%	0.40%	0.04
ORR024	23.0	24.0	1.0	122638	17.95	5090	7060	0.51%	0.71%	0.64
ORR024	24.0	25.0	1.0	122639	8.35	2440	3340	0.24%	0.33%	0.58
ORR024	25.0	26.0	1.0	122641	46.70	11400	12650	1.14%	1.27%	9.96
ORR024	26.0	27.0	1.0	122642	13.80	3840	5500	0.38%	0.55%	1.07
ORR024	27.0	28.0	1.0	122643	162.00	40500	8660	4.05%	0.87%	3.99
ORR024	28.0	29.0	1.0	122644	22.30	5130	4850	0.51%	0.49%	2.07
ORR024	29.0	30.0	1.0	122645	45.30	11550	11500	1.16%	1.15%	7.51
ORR024	30.0	31.0	1.0	122646	16.05	4530	5690	0.45%	0.57%	1.48
ORR024	31.0	32.0	1.0	122647	11.00	3430	4260	0.34%	0.43%	0.74
ORR024	32.0	33.0	1.0	122648	2.58	745	892	0.07%	0.09%	0.10
ORR024	33.0	34.0	1.0	122649	1.50	363	429	0.04%	0.04%	0.10
ORR024	34.0	35.0	1.0	122650	0.48	113	137	0.01%	0.01%	0.06
ORR024	35.0	36.0	1.0	122651	1.17	109.5	131	0.01%	0.01%	0.06
ORR024	36.0	37.0	1.0	122652	1.87	99.6	156	0.01%	0.02%	0.06
ORR024	37.0	38.0	1.0	122653	42.40	5210	5760	0.52%	0.58%	3.52
ORR024	38.0	39.0	1.0	122654	132.00	25300	44800	2.53%	4.48%	42.70
ORR024	39.0	40.0	1.0	122655	33.90	5460	13650	0.55%	1.37%	9.20
ORR024	40.0	41.0	1.0	122656	15.10	3810	5970	0.38%	0.60%	1.06
ORR024	41.0	42.0	1.0	122657	13.35	3760	5210	0.38%	0.52%	0.50
ORR024	42.0	43.0	1.0	122658	12.05	3330	4520	0.33%	0.45%	0.52

Table 12 Orient Stage 2 RC Drill Assay Data (ORR024)

Table 13 Historical Drillhole Data (Orient West)

DH ID	Easting	Northing	Elevation (m)	Dip	Azi (Mag)	Azi (Grid)	Depth (m)	Prospect
WO1	306814	8080516	779	-68		349	120.00	Orient West
WO2	306945	8080603	784	-53		311	97.54	Orient West
WO3	307139	8080757	803	-46		324	228.60	Orient West
WO4	307018	8080814	806	-51		315	121.90	Orient West
W05	307018	8080814	806	-70		315	124.36	Orient West
WO6	307018	8080814	806	-81		315	127.41	Orient West
W07	307018	8080814	806	-30		360	97.54	Orient West
WO8	307018	8080814	806	-60		360	87.17	Orient West
W09	307009	8080872	815	-83		278	88.39	Orient West
WO10	307014	8080731	796	-50		324	179.83	Orient West
W011	307166	8080843	824	-50		324	182.88	Orient West
W012	307278	8080847	811	-50		330	207.26	Orient West
W013	306949	8080659	784	-50		308.5	203.00	Orient West
WO14	306960	8080798	800	-50		331	93.00	Orient West
W015	307093	8080672	791	-50		331	129.75	Orient West
WO16	307073	8080770	801	-50		332	62.80	Orient West

Table 14 Historical Assay Data (WO10)

Hole ID	From	То	Intersect	Sample ID	Ag	Pb	Zn	Pb	Zn	In
	(m)	(m)	(m)		ppm	ppm	ppm	%	%	ppm
WO10	14.00	16.15	2.15	na	7	2410	6220	0.24%	0.62%	na
WO10	16.15	16.45	0.30	na	120	40500	221000	4.05%	22.10%	na
WO10	16.45	18.00	1.55	na	7	7700	1150	0.77%	0.12%	na
WO10	18.00	20.00	2.00	na	100	30200	8650	3.02%	0.87%	na
WO10	20.00	22.00	2.00	na	3	1620	2610	0.16%	0.26%	na
WO10	22.00	24.00	2.00	na	8	4000	3390	0.40%	0.34%	na
WO10	24.00	26.00	2.00	na	3	990	4790	0.10%	0.48%	na
WO10	26.00	28.00	2.00	na	5	1920	5100	0.19%	0.51%	na
WO10	28.00	30.00	2.00	na	3	1230	7170	0.12%	0.72%	na
WO10	30.00	32.00	2.00	na	3	1420	9820	0.14%	0.98%	na
WO10	32.00	34.00	2.00	na	4	1660	11500	0.17%	1.15%	na
WO10	34.00	36.00	2.00	na	11	3200	8440	0.32%	0.84%	na
WO10	36.00	37.50	1.50	na	13	3670	7320	0.37%	0.73%	na
WO10	37.50	38.55	1.05	na	70	34400	50400	3.44%	5.04%	na
WO10	38.55	38.80	0.25	na	17	4390	5240	0.44%	0.52%	na
WO10	38.80	39.80	1.00	na	1	530	425	0.05%	0.04%	na
WO10	39.80	42.00	2.20	na		24	33	0.00%	0.00%	na
WO10	42.00	44.00	2.00	na		17	39	0.00%	0.00%	na
WO10	44.00	46.00	2.00	na	1	259	250	0.03%	0.03%	na
WO10	46.00	48.00	2.00	na	2	600	970	0.06%	0.10%	na
WO10	48.00	50.00	2.00	na	7	1530	1980	0.15%	0.20%	na
WO10	50.00	51.40	1.40	na	18	5630	13300	0.56%	1.33%	na
WO10	51.40	52.25	0.85	na	178	106000	149000	10.60%	14.90%	na
WO10	52.25	54.00	1.75	na	2	373	760	0.04%	0.08%	na
WO10	54.00	56.00	2.00	na	6	1450	5950	0.15%	0.60%	na
WO10	56.00	58.00	2.00	na	8	2500	2420	0.25%	0.24%	na
WO10	58.00	60.00	2.00	na	0	22	112	0.00%	0.01%	na
WO10	122.90	123.30	0.40	na	30	600	18000	0.06%	1.80%	na
W010	123.30	123.40	0.10	na	720	200000	110000	20.00%	11.00%	na
W010	123.40	125.50	2.10	na	15	300	6000	0.03%	0.60%	na
WO10	125.50	125.90	0.40	na	240	68000	36000	6.80%	3.60%	na
W010	125.90	126.40	0.50	na	12	200	4000	0.02%	0.40%	na

Table 15 Historical Assay Data (WO14)

Hole ID	From	То	Intersect	Sample ID	Ag	Pb	Zn	Pb	Zn	In
	(m)	(m)	(m)		ppm	ppm	ppm	%	%	ppm
WO14	69.00	69.20	0.20	na	87	81200	77900	8.12%	7.79%	23
WO14	69.20	70.25	1.05	na	9	4600	4400	0.46%	0.44%	4
WO14	70.25	71.25	1.00	na	14	5100	7900	0.51%	0.79%	12
WO14	71.25	71.90	0.65	na	274	52700	27900	5.27%	2.79%	283
WO14	71.90	72.90	1.00	na	11	5100	9000	0.51%	0.90%	23
WO14	72.90	73.90	1.00	na	7	4100	4800	0.41%	0.48%	3
W014	73.90	75.40	1.50	na	13	5800	8800	0.58%	0.88%	6

JORC Code, 2012 Edition – Table 1 (Iltani Drilling) Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Drilling reported is reverse circulation (RC) drilling. Iltani Resources completed 8 RC holes for 1,276m drilled. The drilling was completed by Dubbo, NSW based drilling contractors Durock Drilling Pty Ltd. RC drilling returned samples through a fully enclosed cyclone system, then via a remote controlled gate into a cone splitter. 1m RC samples were homogenised and collected by a static cone splitter to produce a representative 3-5kg sub sample. Select 1m increment RC sub-samples were bagged and sent to Australian Laboratory Services Pty Ltd (ALS) in Townsville for preparation and analysis. Preparation consisted of drying of the sample and the entire sample being crushed to 70% passing 6mm and pulverised to 85% passing 75 microns in a ring and puck pulveriser. Analysis consisted of four acid digest with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (ME-MS61) analysis for the following elements: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y Zn, Zr. Ore grade sample analysis consisted of four acid digest with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other 	 & In. The drilling was completed using a truck mounted RC rig utilising 6m rods with reverse circulation capability. Drilling diameter was 6.5 inch RC hammer using a face sampling bit.
	type, whether core is oriented and if so, by what method, etc).	 RC hole length ranged from 54m to 238m with average hole length of 160m. Downhole surveys were undertaken at nominal 30m intervals during drilling utilising a digitally controlled IMDEX Gyro instrument
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample 	 All samples were weighted and weights recorder in the logging sheet. Samples with no recovery or very low recoveries were

ASX RELEASE

Criteria	IORC Code explanation	Commentary
	 For code explanation recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 recorded also in the logging sheet. A few samples were collected wet due to rig unable to keep the hole dry. Wet samples were noted in the logging sheet. Iltani personnel and Durock Drilling crew monitor sample recovery, size and moisture, making appropriate adjustments as required to maintain quality. A cone splitter is mounted beneath the cyclone to ensure representative samples are collected. The cyclone and cone splitter were cleaned with compressed air necessary to minimise contamination. No significant contamination or bias has been noted in the current drilling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging was carried out on RC chips by suitably qualified geologists. Lithology, veining, alteration, mineralisation and weathering are recorded in the geology table of the drill hole database. Final and detailed geological logs were forwarded from the field following sampling. Geological logging of the RC samples is qualitative and descriptive in nature. Observations were recorded appropriate to the sample type based on visual field estimates of sulphide content and sulphide mineral species. During the logging process Iltani retained representative samples (stored in chip trays) for future reference. All RC chip trays are photographed and the images electronically stored. All drill holes are logged to the end of hole (EoH).
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 1m increment samples were collected off the drill rig via cyclone - cone splitter into calico bags with a respective weight between 3-5kg. The onsite geologist selects the mineralised interval from logging of washed RC chips, based on identification of either rock alteration and/or visual sulphides. A portable pXRF analyser was used to confirm the mineralised intervals, and any sample > 1000ppm Pb, Zn or Pb & Zn was selected for assay. Industry standard sample preparation is conducted under controlled conditions within the laboratory and is considered appropriate for the sample types. QAQC samples (standards, blanks and field duplicates) were submitted at a frequency.

Criteria	JORC Code explanation	Commentary
		of at least 1 in 20. Regular reviews of the sampling were carried out by Iltani Geologist to ensure all procedures and best industry practice were followed.
		 Sample sizes and preparation techniques are considered appropriate for the nature of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Industry standard assay techniques were used to assay for silver and base metal mineralisation (ICP for multi-elements with a four-acid digest) No geophysical tools, spectrometers or handheld XRF instruments have been used to determine assay results for any elements. Monitoring of results of blanks, duplicates and standards (inserted at a minimum rate of 1:20) is conducted regularly. QAQC data is reviewed for bias prior to uploading results in the database.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No drill holes were twinned. Primary data is collected in the field via laptops in a self-validating data entry form; data verification and storage are accomplished by Iltani contractor and staff personnel. All drillhole data was compiled in Excel worksheets and imported into Micromine in order to query 3d data and generate drill plans and cross sections.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar locations are initially set out using a hand held GPS. Downhole surveys completed at nominal 30m intervals by driller using a digitally controlled IMDEX Gyro instrument. All exploration works are conducted in the GDA94 zone 55 grid. Topographic control is based on airborne geophysical survey and it is considered adequate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling was targeted on selected veins and areas of potential stockwork mineralisation. Drill hole spacing is not adequate to report geological or grade continuity. No sample compositing has been applied.
of data in	Whether the orientation of sampling	• The drill holes were orientated in order to

Criteria	JORC Code explanation	Commentary
relation to geological structure	achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	intersect the interpreted mineralisation zones as perpendicular as possible based on information to date.
	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have 	 Due to locally varying intersection angles between drillholes and lithological units all results will be defined as downhole widths.
	introduced a sampling bias, this should be assessed and reported if material.	 No drilling orientation and sampling bias has been recognised at this time and it is not considered to have introduced a sampling bias.
Sample security	 The measures taken to ensure sample security. 	 Samples were stored in sealed polyweave bags at the drill rig then put on a pallet and transported to ALS Townsville by using a freight carrying company.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits or reviews have been carried out at this point

JORC Code, 2012 Edition – Table 1 (Historical Drilling) Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary			
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 The drilling at Orient West is reported to have been undertaken using surface diamond and percussion drilling methods. Due to the variable nature of sample lengths it appears that sampling to geological boundaries was undertaken at all projects. For Orient West holes WO10 to WO12 it is reported that diamond core was split and crushed for analysis by A.A.S. in the local laboratory of General Superintendence Co. and by North Queensland Analytical Services of Mareeba (N.Q.A). Upon checking drill core and assays from N.Q.A., lower than realistic assays were noted and check assays were completed where possible. No information is available for drill holes WO10 to WO14. 			
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Holes WO1 – WO12 were completed in the period 1970 to 1972. Drill rig type and core diameter is unknown. It is unknown if the core was orientated Holes W013 to W016 were completed with a GEMCO H22 Dual Purpose rig by Wallis Drilling in 1988 Open hole percussion (4 ½" diameter) followed by NQ diamond coring. It is unknown if the core was orientated 			
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 There are no records of core recoveries. Although diamond drilling is the most appropriate method for sample collection to limit sample bias no further information is available to quantify the quality of sampling for the Orient West deposit. 			
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 Detailed geological logs are available for WO13 to WO16 (lithology, veining, alteration, mineralisation and weathering are recorded in the logs) Handwritten summary logs are available for WO1 			

ASX RELEASE

Criteria	JORC Code explanation	Commentary			
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the 	 to WO12 All drill holes are logged to the end of hole (EoH). 			
Sub- sampling techniques and sample preparation	 relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the 	 For WO10 to WO12 the diamond core was split. No information is available for holes WO13 to WO16 			
Quality of assay data and laboratory tests	 The nature, quality and appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established 	 Holes WO10 to WO12 the diamond core was split and crushed for analysis by A.A.S. in the local laboratory of General Superintendence Co. and by North Queensland Analytical Services of Mareeba (N.Q.A). Upon checking drill core and assays from N.Q.A., lower than realistic assays were noted and check assays completed were completed where possible. There are no records of assay and laboratory procedures for holes WO13 to WO16. 			
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 There are no records of the raw data for any projects. Available assay results are in the form of significant intercept tables within or attached to reports and drill hole logs 			
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control 	 All work was completed in local grids. The location of drill holes at all projects are displayed on maps in local grids. No reports yet obtained contain the conversion to standard grids. Where possible, the location of historical drillholes has been verified by hand held GPS. 			

ASX RELEASE

Criteria	JORC Code explanation	Commentary		
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 At West Orient, underground wall and roof sampling and drill sample intersections achieved a spacings of approximately 50-100 m in the areas where historic resources were reported. The drilling covers an approximate strike length of 600m. 		
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 At Orient West, the drilling is appropriately inclined (50°) to the north east intersecting the south west inclined mineralisation veins. No drilling orientation and sampling bias has been recognised at this time and it is not considered to have introduced a sampling bias. 		
Sample security	 The measures taken to ensure sample security. 	No information is available.		
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits or reviews have been carried out at this point 		

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The drill program was conducted on EPM27223. EPM27223 is wholly owned by Iltani Resources Limited All leases/tenements are in good standing
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Exploration activities have been carried out (underground mapping, diamond drilling, surface geochemical surveys and surface mapping, pre-feasibility study) by Great Northern Mining Corporation and Mareeba Mining and Exploration over the West and East Orient areas from 1978 to 1989. Exploration activities have been carried out (soils and rock chip sampling) around Orient West and East by Monto Minerals Limited from 2014 to 2017 Red River Resources carried out mapping, sampling and geophysical exploration (drone mag survey and IP survey) in 2020 and 2021.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Mineralisation occurs in vein systems up to 2m wide (controlled by fractures/shears) containing argentiferous galena, cerussite, anglesite, sphalerite, pyrite, marmatite, cassiterite (minor), and stannite (minor). The lead-zinc-silver-indium mineralisation at Orient is believed to represent part of an epithermal precious metals system. The Orient vein and stockwork mineralisation are associated with a strongly faulted and deeply fractured zone near the margin of a major caldera subsidence structure
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including, easting and northing, elevation or RL, dip and azimuth, down hole length, interception depth and hole length. 	 Iltani Resources completed 8 RC (Reverse Circulation) drill holes for 1,276m drilled. Refer to Tables 1 & 2 (Material Drill Intercepts) and Table 4 (Orient Stage 2 RC Drill Program Drillhole Data) in attached ASX release which provide the required data.

Criteria	JORC Code explanation	Commentary
	 If the exclusion of this information is justified the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such 	 No data aggregation methods have been used. Metal equivalents are used (silver equivalent) The equivalent silver formula is Ag Eq. = Ag + (Pb x 35.5) + (Zn x 50.2) + (In x 0.47) Metal Equivalent Calculation - Recoveries and Commodity Prices Metal Price/Unit Recovery Silver US\$20/oz 87% Lead US\$1.00/lb 90% Zinc US\$1.50/lb 85%
	 aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Indium US\$350/kg 85% It is Iltani's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drilling is generally perpendicular to the structure by angled RC at 50° to 65° into structures dipping between 30° and 60°.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plans and sections. 	 Refer to plans and sections within report
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The accompanying document is considered to represent a balanced report
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported. 	 All meaningful and material data is reported

Criteria	JORC Code explanation	Commentary
Further work	• The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	• Exploration of the target area is ongoing. Iltani plans to follow up on the positive drilling results with the remainder of the planned Stage 2 drill program. Further field work including mapping and rock chip/soil sampling and drilling is planned