

Lv 11, London House 216 St. Georges Terrace, Perth WA, Australia 6000

12 October 2022

T. +61 (08) 9481 0389 E. locke@ktaresources.com

High Grade Rubidium over 70m thick Pegmatite at King Tamba, WA

- Consistently thick mineralised pegmatite zones over the known complex
- Significant intersections include:
 - 10m @ 0.26% RbO₂ and 0.07% Li₂O from 26m (DAL030)
 - o 70m @ 0.23% RbO₂ and 0.04% Li₂O, from 82m (DAL005)*
 - 37m @ 0.21% RbO₂ and 0.06% Li₂O from 62m (DAL012)
 - 41m @ 0.19% RbO₂ and 0.03% Li₂O from 114m (DAL007)
 - 26m @ 0.19% RbO₂ and 0.02% Li₂O from 33m (DAL033)
 - 36m @ 0.18% RbO₂ and 0.03% Li₂O from 39m (DAL018)*
 - 31m @ 0.17% RbO₂ and 0.02% Li₂O from 130m (DAL008)
 - 15m @ 0.17% RbO₂ and 0.02% Li₂O from 14m (DAL027)
 - 21m @ 0.17% RbO₂ and 0.03% Li₂O from 68m (DAL016)*
 - 6m @ 0.45%Li₂O and 0.04% Cs₂O from 62m (DAL002)
 - 3m @ 0.27%Li₂O and 0.10% Cs₂O from 66m (DAL029)
- New higher grade pegmatite body identified some 800m south of known pegmatite complex, including peak assays of 0.7% RbO₂, 0.47% Li₂O and 0.16% Cs₂O (DAL029)
- Maximum Results reported for induvial assays are 0.70% RbO₂, 0.42% Ta_2O_5 , 0.85% Li_2O , 0.16% Cs_2O and 0.08% Nb_2O_5
- Maiden JORC Mineral Resource Estimation work has commenced
- Characterisation of the mineralised rocks is underway using a combination of XRD and scanning electron microscopy
- Sighter metallurgical test work to commence soon

*note partially or previously reported in ASX announcement dated August 31, 2022

Capital Structure

344,709,917 Fully Paid Shares 21,200,000 Options @ 7.5c exp 29/11/23 5,000,000 Options @15c exp 29/11/23 15,000,000 Performance Rights at 20c, 30c and 40c. Directors Colin Locke

David Palumbo Timothy Hogan

Enquiries regarding this announcement can be directed to Colin Locke T. +61 457 289 582

Krakatoa Resources Limited (ASX: KTA) ("Krakatoa" or the "Company") is pleased to announce the results of the recent resource drilling assays at its 100% owned King Tamba critical metals project located approximately 70km from Mt Magnet, WA.

All outstanding assay results for the recent King Tamba Reverse Circulation (RC) drilling have now been received. Multiple broad zones of rubidium mineralisation have been identified across the project area, including an exceptional intersection from drillhole **DAL005** totalling 70m at **0.23% RbO**₂ from 82m downhole. This intersection was partially reported (as 34m @ 2183ppm Rb) in our previous announcement dated August 31 and has now been expanded with the receipt of further assays.

The Company drilled thirty-two RC drillholes for a total of 3045m during May and June 2022 (Figure 1). The program targeted a suite of mineralized pegmatites which are enriched in rubidium, tantalum, caesium, niobium and lithium and was designed to infill existing drilling to a nominal 40 x 40m spacing to allow calculation of a maiden mineral resource.

Figure 1: Location of Drill Holes over satellite image, showing cross section (Figure 2).

Figure 2: King Tamba downhole section (looking East) showing distribution of Rubidium within the modelled pegmatite wireframes.

The company submitted a total of 1416 samples for analysis in mid-June, with a first batch of 553 results reported to the market on August 31. The remaining 863 results are reported herein.

Rubidium was the primary target of the drilling with previous work having returned highly anomalous values over a large areal extent. The thickness of the intersections, combined with the continuity of mineralised units in our geological modelling is very promising (Figure 2).

Significant intersections are reported in Table 1, where samples with Rubidium grade in excess of 1,000ppm have been returned over intervals with geological continuity. All drill hole details are reported in Table 2 while all metre assays for major elements of interested are reported in Table 3.

Intersections of note include drillhole DAL029 which was the southernmost drillhole of this program, and indeed the most southerly hole drilled on the King Tamba project to date (Figure 1). DAL029 intersected seven mineralised pegmatite bodies with a cumulative 28m thickness over the 102m total length, including one which returned **3m at 0.45% RbO**₂ from 66m downhole. Importantly, this intersection returned the highest individual rubidium result of the program with 1m from 67-68m downhole assaying at **0.7% RbO**₂, **0.47% Li**₂**O, and 0.16% Cs**₂**O**. These results were obtained from a narrow pegmatite body 3m wide but with markedly different chemistry from those around it. It should be noted that DAL029 is essentially surrounded by blue-sky opportunity with no drilling to the east, west, or south, and the nearest hole to the north being 160m away. The company intends to follow up this intersection with further drilling.

Another intersection of note, drillhole DAL008 returned a single metre at **0.42% Ta₂O₅** and **0.08% Nb₂O₅** within the differentiated quartz-rich core of a wider pegmatite unit. The elevated tantalum levels are notable for being an order of magnitude higher than any other sample from this drilling program. Previous mining activities at King Tamba were focussed on tantalite from the quartz-core of differentiated pegmatites and the company is alert to the possibility of discovering further tantalite lodes whilst exploring the project. This gels well with the drillhole **DAL002**, that returned a maximum **0.85% Li₂O**, an average of **0.45% Li₂O** between 62-68m (6m) Interval.

Table 1: Summary table of significant Rubidium intersections

Hole	From	Width	Rb	Та	Li	Cs	Nb	Max RB	Lithology
ID	(mbgl)	(m)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
DAL005	69	1	1060	3	400	509	7	1060	Metasedimentary
	82	70	2084	30	191	58	46	4310	Mica-rich pegmatite
DAL006	118	14	1264	28	350	55	74	1770	Mica-rich pegmatite
	137	10	1265	70	284	86	63	137	Mica-rich pegmatite
DAL007	36	2	1878	46	960	173	43	2230	Narrow oxidised pegmatite
	65	1	2170	21	830	270	47	2170	Narrow pegmatite
	71	2	1435	28	420	102	55	1725	Quartz-rich pegmatite
	114	41	1726	30	301	60	49	3070	Pegmatite
DAL008	4	3	2042	34	693	244	50	2640	Interfingered Pegmatite & SST
	22	1	1345	37	150	186	34	1345	Feldspar rich pegmatite
	73	1	1140	12	400	52	39	1140	Metasedimentary
	78	4	842	934	293	42	176	1360	Quartz-rich pegmatite
	111	3	2603	51	557	922	23	3310	Mica-rich pegmatite
	130	31	1536	28	233	50	49	2910	Feldspar rich pegmatite
	166	7	847	35	180	32	66	1370	Feldspar rich pegmatite
DAL011	48	24	1256	22	319	55	106	1860	Mica-rich pegmatite
DAL012	62	37	1957	19	272	60	49	3900	Mica-rich pegmatite
	102	1	1165	19	380	419	25	1165	Metasedimentary
DAL022	11	15	1453	38	266	49	35	2780	Pegmatite
	29	1	2180	10	260	623	10	2180	Pegmatite
DAL023	11	2	1563	59	435	248	51	1745	Oxidised qtz dominant peg
	23	1	1085	102	490	181	45	1085	Quartz-rich pegmatite
DAL025	1	1	1265	52	490	73	64	1265	Quartz-rich pegmatite
	12	1	2080	54	790	260	61	2080	Mica-rich pegmatite
DAL027	14	15	1594	41	244	64	56	2840	Pegmatite
	34	1	1950	24	600	607	24	1950	Feldspar rich pegmatite
	38	1	1670	59	860	198	41	1670	Feldspar rich pegmatite
	59	2	1088	47	75	42	43	1160	Quartz-rich pegmatite
	76	2	1763	36	485	115	43	2280	Mica-rich pegmatite
	83	1	1660	5	590	487	5	1660	Pyroxenite
	93	1	1350	15	720	183	16	1350	Pegmatite
DAL028	38	3	2553	37	587	127	52	2930	Quartz-rich pegmatite
	66	1	2240	46	430	122	81	2240	Pegmatite
DAL024	2	9	1414	14	131	40	29	2220	Weathered pegmatite
DAL029	0	4	1788	15	248	694	18	3140	Mica-rich pegmatite
	16	1	2410	11	260	675	17	2410	Pegmatite
	25	1	1030	66	100	214	49	1030	Mica-rich pegmatite
	30	1	1775	53	200	633	26	1775	Metasedimentary (contact)
	50	1	1305	8	270	392	8	1305	Metasedimentary (contact)
	53	3	1525	12	297	291	22	2440	Pegmatite
	57	1	1210	4	100	476	3	1210	Metasedimentary (contact)
	66	3	4127	34	1253	909	81	6400	Interfingered Pegmatite & SST
	75	3	1530	27	247	399	33	2150	Pegmatite
	82	1	1140	6	150	228	26	1140	Pegmatite
DAL033	33	26	1779	13	241	63	44	3240	Pegmatite
	63	1	1510	28	370	93	52	1510	Pegmatite

Overall, a cohesive geological interpretation and model is forming at King Tamba with consistent wide zones of elevated rubidium observed in multiple stacked pegmatite lenses with a sub-horizontal attitude. Occasional vertical or steeply dipping pegmatites are also interpreted, however these are likely underrepresented by the drilling to date which has been composed predominantly of vertical holes. Within the pegmatites exist differentiated fractions which can have significantly higher metal concentrations. Although these form a small percentage of the overall volume, their high tenor makes understanding their distribution important. Work to confirm the rubidium deportment is ongoing, however initial indications from correlation of geological logging to geochemistry suggest elevated rubidium is contained mainly within mica in pegmatite.

Next Steps

Moving forward, the company intends to complete structural geology modelling and mineral deportment work at King Tamba before finalising a maiden mineral resource estimate (MRE) later this quarter. The potential to discover further mineralised pegmatites here is clear, potentially including zones which are enriched in tantalum, lithium, and caesium. An aggressive program of geochemical sampling and drilling is now being prepared for 2023, following the release of the MRE.

Exploration Target

In late 2021 the company defined an Exploration Target, based on historical drill holes of between **1,470,000 to 3,185,000 tonnes** with estimated grades of Rubidium (500-2000ppm), Lithium and Niobium, Tantalum, Tin and Tungsten as reported in ASX Announcement 8 November 2021. The potential quantity and grade of the Exploration Target is conceptual in nature and is therefore an approximation. There is insufficient exploration to estimate a Mineral Resource and it is uncertain if the results of the current drilling will result in the estimation of a Mineral Resource, although this is the objective of this drilling program.

The modelled pegmatite which constituted to the Exploration target has 156 historical holes (5,071m) and 11 holes (1,066m) drilling by Krakatoa in 2017. Only four elements were assayed within the historical holes. The company expanded the analysis with a focus on the rubidium, lithium, niobium, tantalum, tin and tungsten across the modelled target area.

Rubidium Highlights & Price

Rubidium (as Rubidium carbonate) has many industrial uses, typically for enhancing stability and durability as well as reducing conductance. Rubidium is crucial to the transition toward electrification and decarbonisation world. It is one of the highest value critical metals with the current Rubidium Carbonate ($Rb_2CO_3 \ge 99\%$), being USD\$1,092/kg or ~USD\$1.1M per tonne.

Rubidium is used to make photocells (solar energy). A photocell is a device for converting light energy into electrical energy¹. Rubidium is also used in EV batteries and more recently, in sodium-ion battery electrolytes, all of which are a growing market. Other industrial and technical applications of Rubidium are associated around speciality glasses such as fibre optic cables, telecommunications systems including a critical role in GPS and laser systems, including night vision devices. There are also uses in medical equipment and atomic clocks and quantum computing.

¹ 10 Uses of Rubidium in Everyday Life - AZ Chemistry

Rubidium Market, Volume Share (%), by Application Sector, Global, 2021

Source: Mordor Intelligence

Rubidium Market - Growth Rate by Region, 2022-2027

Major advancements in solar panels

Heat stability is an issue, and can significantly limit the solar cell's long-term efficiency, as the cell's structure can degenerate over time. Scientists from one of the Swiss Federal Institutes of Technology (École polytechnique fédérale de Lausanne (EPFL))² have stabilized perovskite solar cells by integrating rubidium into them. The innovation pushes power-conversion efficiency to 21.6%, ushering a new generation of perovskite solar cells. Perovskite solar cells have great potential for providing better cost-effective solar energy and opportunities to reduce the area of solar size.

New world batteries

It has also recently been shown and reported that Rubidium carbonate salts are now commonly used in EV lithium-ion batteries and more recently in Sodium-ion electrolytes (a major part of the Sodium-ion battery).

² <u>Rubidium pushes perovskite solar cells to 21.6 percent efficiency (techxplore.com)</u>

³ <u>Re-20x Process Extracts 99 Percent of Rubidium from Granada Gold Mine's Battery Metals Zone (investingnews.com)</u>

Demand Outlook

This continued and advancement of technologies towards a more renewable and electrical efficient future has opened up the future markets for both Rubidium and Caesium. The global rubidium market is projected to grow with a CAGR of 4.01% during the forecast period (2022-2027).⁴

Current commodity prices⁵

Lithium Carbonate (99.5% Battery Grade) = US\$72.26 kg Cesium Carbonate (99% grade) = US\$126.76 kg Rubidium Carbonate (99% grade) = US\$1,091.58 kg Tantalum Pentoxide (99.95% grade) = US\$309.87 kg Niobium (99.9% grade) = US\$84.51 kg

History

The Dalgaranga pegmatite complex was discovered around 1961 and subsequently underwent small scale mining, including alluvial mining, over many years, producing tantalum, beryl, tin and tungsten. Lithium and Niobium were not considered as metals of importance until the 2000's, when mechanised mining was undertaken.

In 1999 Australasian Gold Mines (renamed Tantalum Australia Pty Ltd in 2002) carried out close-spaced shallow resource drilling, determining that the tantalum bearing pegmatites are stacked vertically to a depth of at least 100m. Mining of the Dalgaranga open pit for Ta occurred from 2001 to 2002, processing via a pilot plant finished in 2003. The mine was placed on care and maintenance in 2005 and infrastructure has been partially removed. The Dalgaranga open pit is approximately 200m long, 40m wide and up to 15m deep.

The presence of critical metal minerals such as tapiolite, tantalite, columbite, zinnwaldite and lepidolite (lithium-bearing micas) were recognised during field mapping and confirmed anomalous critical metals during the rock chip sampling programmes completed by Krakatoa in late 2016 to mid-2017. Rock sampling over this period (previously reported in ASX announcements on 16 June 2017 and 17 August 2017) revealed the presence of anomalous rubidium (peak values of >5,000ppm Rb (sample AD004) and 3463.9ppm Rb (sample 17D022)), Tantalum (1,854ppm Ta₂O₅ (sample 16D016), and Niobium (725ppm NbO in sample 16D005) within the mine and southern pegmatite area. Locally at the historical mine area, mapped pegmatites occur over an area spanning at least 2 x 0.4 kilometres (Figure 1). To the southeast, an outcropping pegmatite swarm continues south of P59/2082 onto P59/2142 and E59/2503. They crop out over a NE-SW strike length of roughly 500 metres by up to 250 metres wide and consist of numerous thick bodies up to 50 metres wide, increasing the prospectivity of finding additional mineralised pegmatite bodies.

The extension of the southern pegmatite swarm and mapping of the systems to the south is ongoing part of the exploration program for the Company. Other areas of interest identified using geophysical and Aster imagery have identified priority target areas (Figure 3).

⁴ <u>Rubidium Market Size, Share, Growth, Trends | 2022-27 | Report Analysis (mordorintelligence.com)</u>

⁵ Shangahai Metal Markets (SMM) as reported on 3 October 2022.

Figure 3. Location of southern pegmatite swarm and unmapped regional targets for follow-up work

Authorised for release by the Board.

FOR FURTHER INFORMATION:

Colin Locke Executive Chairman +61 457 289 582 locke@ktaresources.com

Competent Person's Statement

The information in this announcement is based on, and fairly represents information compiled by Mark Major, Krakatoa Resources CEO, who is a Member of the Australasian Institute of Mining and Metallurgy and a full-time employee of Krakatoa Resources. Mr Major has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he has undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Major consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

Disclaimer

Forward-looking statements are statements that are not historical facts. Words such as "expect(s)", "feel(s)", "believe(s)", "will", "may", "anticipate(s)" and similar expressions are intended to identify forward-looking statements. These statements include, but are not limited to statements regarding future production, resources or reserves and exploration results. All of such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Our audience is cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

TABLE 2 – Summary details of drillholes (Coordinates are in GDA94 MGA Zone 50, with elevations in AHD. Drillhole locations were determined to three decimal places by a registered surveyor using an RTK DGPS).

Hole ID	Northing	Easting	Elevation (masl)	Dip / Azi (deg)	EOH Depth (m)	Comment
DAL001	6934761	521578	466	-90	54	Complete
DAL002	6934791	521539	465	-90	102	Complete
DAL003	6934791	521582	465	-90	90	Complete
DAL004	6934803	521700	462	-90	66	Complete
DAL005	6934809	521501	464	-90	157	Complete
DAL006	6934831	521461	464	-90	156	Complete
DAL007	6934833	521543	463	-90	162	Complete
DAL008	6934832	521581	463	-90	180	Complete
DAL009	6934832	521640	462	-90	96	Complete
DAL010	6934895	521468	462	-80 /220	140	Abandoned - ground conditions
DAL011	6934873	521522	462	-90	138	Complete
DAL012	6934913	521499	462	-90	120	Complete
DAL013	6934914	521561	461	-90	102	Complete
DAL014	6934917	521604	461	-90	90	Complete
DAL015	6934951	521479	461	-90	96	Complete
DAL016	6934953	521540	461	-90	102	Complete
DAL017	6934994	521479	460	-90	84	Complete
DAL018	6934992	521529	460	-90	85	Complete
DAL020	6934852	521494	463	-90	70	Abandoned - ground conditions
DAL021	6934913	521439	462	-90	82	Abandoned - hole issues
DAL021A	6934915	521437	462	-90	76	Abandoned - ground conditions
DAL022	6934743	521495	467	-90	54	Complete
DAL023	6934635	521388	470	-90	30	Complete
DAL024	6934962	521689	460	-90	30	Complete
DAL025	6934663	521458	472	-90	24	Complete
DAL026	6935016	522027	457	-90	30	Complete
DAL027	6934363	521509	479	-90	114	Complete
DAL028	6934205	521342	469	-90	77	Abandoned - ground conditions
DAL029	6933966	521280	461	-90	102	Complete
DAL030	6935029	521533	460	-90	84	Complete
DAL031	6935036	521479	460	-90	92	Complete
DAL032	6934988	521440	460	-90	88	Abandoned - ground conditions
DAL033	6935056	521573	459	-90	72	Complete

TABLE 3 – RC Drilling significant results

Hole ID	From	То	Width	Rh [nnm]	Ta (nnm)	Li [nnm]	Cs [nnm]	Nh (nnm)
DAL007	142	143	1	1255	31	220	39	71
DAL007	1/3	144	1	1/75	25.1	270	60.1	70
DAL007	143	144	1	1570	23.1	270	CA.C	
DAL007	144	145	1	15/0	23	220	64.6	4/
DAL007	145	146	1	1215	16.8	230	44.4	49
DAL007	146	147	1	975	23.1	380	49	59
DAL007	147	148	1	1025	43.1	52 <mark>0</mark>	54.7	<u>12</u> 4
DAL007	148	149	1	2200	21.4	710	93.1	73
DAL007	149	150	1	1360	18.3	730	72	60
DAL007	150	151	1	624	24.1	350	42.1	64
DAL007	151	152	1	2030	10.8	470	01	16
DAL007	151	152	1	2030	19.0	410	22.4	#0 b7
DAL007	152	153	1	504	18.5	210	23.4	27
DAL007	153	154	1	2200	15.6	220	99.9	27
DAL007	154	155	1	1220	24.4	230	58.3	37
DAL007	155	156	1	942	23.2	410	96.1	38
DAL007	156	157	1	185.5	1.1	660	42.2	7
DAI 007	157	158	1	106 5	11	600	22.3	6
DAL007	150	150	1	74	1.1	500	12.0	c
DALOU7	150	159	1	74	1.1	560	12.0	0
DAL007	159	160	1	68.6	1.8	550	9.8	ь
DAL007	160	161	1	77	1.3	500	9	7
DAL007	161	162	1	73.2	1	420	7	5
DAL008	0	1	1	37.7	2.4	80	13.6	9
DAL008	1	2	1	41	0.7	80	11.8	10
DAI 000	2	3	1	101 5	23	90	45.2	9
DALOOS	2	3	1	101.3	2.3 C 0	140	-+J.2 	10
DALUUS	5	4	1	025	0.8	14U	2 03	10
DAL008	4	5	1	1980	41.6	640	112.5	4/
DAL008	5	6	1	2640	31	1140	475	B8
DAL008	6	7	1	1505	28.4	300	144.5	65
DAL008	7	8	1	731	22.4	140	52.9	32
DAL008	8	9	1	817	1.6	90	105	8
DAI 000	9	10	-	90.3	1	90	26.3	8
DALOOS	15	10	1	50.5	-	100	20.3	7
DAL008	15	16	1	68.4	0.9	100	22.2	/
DAL008	16	17	1	59.7	0.6	90	27	7
DAL008	17	18	1	35.2	0.9	90	21	8
DAL008	18	19	1	122.5	66.2	140	143	16
DAI 008	19	20	1	150 5	41	130	95.4	9
DAL008	20	21	1	5/3	2.6	100	2/18	0
DALOOS	20	21	1	040	2.0	150	240	5
DAL008	21	22	1	822	27.9	110	105	24
DAL008	22	23	1	1345	37	150	185.5	B4
DAL008	23	24	1	504	3.6	200	321	7
DAL008	24	25	1	107.5	3	110	65.8	5
DAL008	29	30	1	38.1	0.7	110	13.9	7
DAL008	30	31	1	88.8	1 2	120	51.2	2 Q
DALOOD	21	22	1	52.0	0.7	120	10.4	7
DALUU8	31	32	1	53.0	0.7	120	18.4	/
DAL008	32	33	1	21.3	0.8	100	6	9
DAL008	33	34	1	25.1	1.8	100	5.2	13
DAL008	34	35	1	32	1.1	120	9.4	12
DAL008	35	36	1	25.7	0.6	110	7.2	11
	36	37	1	22.8	0.7	80	7.8	12
DALOOO	27	20	-	22.0	0.7	100	14.2	10
DALUUS	57	20	1	55.Z	0.0	100	14.2	10
DAL008	38	39	1	28.4	1	AN	9.7	10
DAL008	39	40	1	32.8	1	80	11.8	18
DAL008	40	41	1	172	2.4	100	82.4	21
DAL008	41	42	1	822	71.4	100	32.2	55
DAL008	42	43	1	415	78.1	120	21.7	90
DALOOR	43	44	1	607	58.4	230	30.3	109
	70	71	1	74 2	0.8	70	31	6
DA1000	70	, <u>1</u> 72	-	160 5	1.0	110	40	6
DALUUÖ	/1	72	1	100.5	1.2	ш10 Пара	42 4 0 4 -	0
DAL008	/2	/3	1	630	3.8	420	101.5	18
DAL008	73	74	1	1140	11.8	400	51.7	39
DAL008	74	75	1	948	12.9	300	45.3	33
DAL008	75	76	1	433	6.3	160	52.8	11
DALOOR	76	77	1	80.5	3.8	40	40.5	2.5
DA1000	77	78	1	21	11.6	30	20.1	5
DALOUS	77	70	1	31	11.0	30	20.1	5
DAL008	/8	/9	1	/5.3	3470	40	4.2	542
DAL008	79	80	1	738	147	210	37.5	42
DAL008	80	81	1	1360	57.7	470	65.7	34
DAL008	81	82	1	1195	62.9	450	61.7	84
DAL008	82	83	1	624	28.4	230	45.7	49
DA1000	83	84	1	580	30.4	200	30.0	47
DALOOS	0.0	04	1	100	10.4	400	33.3 07 7	2
DAL008	84	85	1	100	19.4	<u>по</u>	×/./	/
DAL008	85	86	1	77.1	0.25	100	54.8	5
DAL008	86	87	1	73.7	2	90	46.9	6
DAL008	87	88	1	63.1	1.5	80	27	5
DALOOR	88	89	1	59.5	0.9	70	25.3	2.5
DAL000	00	00	-	150	5.5 E /	100	110 5	0
DALOOS	100	100	1	1.35	3.4	100	4 10.J	7
DAL008	108	103	1	48.4	2.5	ho Ho	ŏ./	/
DAL008	109	110	1	341	1.8	250	205	10
DAL008	110	111	1	\$78	3.4	290	231	8
DAL008	111	112	1	2840	63.9	550	846	89

Hole ID	From	То	Width	Rb [ppm]	Ta [ppm]	Li (ppm)	Cs [ppm]	Nb (ppm)
DAL008	112	113	1	3310	2.8	690	1310	8
DAL008	113	114	1	1660	86.2	430	609	21
DAL008	114	115	1	972	49.3	370	707	22
DAL008	115	116	1	158	6.3	210	138.5	6
DAL008	116	117	1	144.5	3.6	210	152.5	8
DAL008	126	127	1	64.5	1.5	120	43.4	8
DAL008	127	128	1	44.1	0.8	90	21.3	8
DAL008	128	129	1	111.5	3.5	90	32.7	8
DAL008	129	130	1	830	29.5	220	159.5	48
DAL008	130	131	1	1140	22.5	340	41.2	64
DAL008	131	132	1	1670	66.5	510	72.8	81
DAL008	132	133	1	924	23.4	290	31.4	67
DAL008	133	134	1	1375	22.3	470	46.1	78
DAL008	134	135	1	2260	9.2	340	54.4	89
DAL008	135	136	1	2700	10.9	210	61.3	25
DAL008	136	137	1	2160	15.6	160	47.4	83
DAL008	137	138	1	2270	6.5	130	43.5	17
DAL008	138	139	1	1780	11.5	420	48	61
DAL008	139	140	1	1205	30.4	220	32	65
DAL008	140	141	1	275	17.8	100	72.1	28
DAL008	141	142	1	500	32.2	120	49.8	51
DAL008	142	143	1	2640	19.2	130	68.3	83
DAL008	143	144	1	1325	19.2	160	38.1	40
DAL008	144	145	1	505	27.9	120	24.2	5 9
DAL008	145	146	1	1185	23.8	230	36.1	70
DAL008	146	147	1	1045	12.4	110	24.4	32
DAL008	147	148	1	691	18.2	140	23.7	5 6
DAL008	148	149	1	1565	15.1	640	55.2	70
DAL008	149	150	1	708	20.4	260	30.8	34
DAL008	150	151	1	1185	23.3	140	87.4	21
DAL008	151	152	1	1750	45.5	110	49.7	88
DAL008	152	153	1	1675	58.9	120	55.9	48
DAL008	153	154	1	1830	53	50	40.8	26
DAL008	154	155	1	967	90.1	130	37.2	81
DAL008	155	156	1	1480	25.8	160	39.1	32
DAL008	156	157	1	2010	15.2	350	63.4	45
DAL008	157	158	1	2910	14.2	250	79.9	29
DAL008	158	159	1	2750	29.8	190	90.6	51
DAL008	159	160	1	2060	60.8	310	62.5	83
DAL008	160	161	1	1090	40.5	310	51.4	63
DAL008	161	162	1	581	25.7	150	28.5	43
DAL008	162	163	1	569	21.8	150	23.8	49
DAL008	163	164	1	720	15.1	170	31.9	41
DAL008	164	165	1	629	15.4	150	26.3	44
DAL008	165	166	1	912	24.2	160	30.5	60
DAL008	166	167	1	1005	27	240	39.8	5 5
DAL008	167	168	1	621	28.6	170	25.8	52
DAL008	168	169	1	1370	63.5	190	36.3	82
DAL008	169	170	1	1055	28.1	220	39.8	60
DAL008	170	171	1	423	28.5	110	20.8	61
DAL008	171	172	1	352	29.3	80	17.4	5 9
DAL008	172	173	1	1105	39.1	250	45.7	<mark>9</mark> 3
DAL008	173	174	1	673	57.6	160	27.8	171
DAL008	174	175	1	459	22	130	23.2	67
DAL008	175	176	1	105	24.5	60	10.2	79
DAL008	176	177	1	419	22	210	61.8	40
DAL008	177	178	1	91.7	3.2	90	13	10
DAL008	178	179	1	228	4.5	120	39.2	16
DAL008	179	180	1	264	1	160	83.2	28
DAL011	45	46	1	236	0.7	270	38.9	6
DAL011	46	47	1	473	9.6	320	48	24
DAL011	47	48	1	654	14.2	250	70.2	27
DAL011	48	49	1	228	1	440	55.7	7
DAL011	49	50	1	170.5	0.9	470	37.4	6
DAL011	100	101	1	55.1	0.5	70	9.8	2.5
DAL011	101	102	1	114.5	2.1	100	13.4	6
DAL011	102	103	1	323	7.6	120	20.3	11
DAL011	103	104	1	279	6.1	110	17.6	11
DAL011	104	105	1	280	6.5	130	18.6	16
DAL011	105	106	1	999	22.2	230	37.4	43
DAL011	106	107	1	1860	20.9	200	51.5	89
DAL011	107	108	1	1805	11.2	140	41.2	47
DAL011	108	109	1	1430	12.3	390	43.9	47
DAL011	109	110	1	1300	13.4	400	46.6	89
DAL011	110	111	1	289	5.4	120	20.9	12
DAL011	111	112	1	1780	28.4	140	48.7	32
DAL011	112	113	1	1570	16.9	420	54.1	59
DAL011	113	114	1	1475	26.1	410	53.7	68
DAL011	114	115	1	1360	18.7	220	43.7	40

Hole ID	From	Το	Width	Rh [nnm]	Ta (nnm)	Li [nnm]	Cs [nnm]	Nh (nnm)	Hole ID	From	То	Width	Rh [nnm]	Ta (nnm)	Li [nnm]	Cs [nnm]	Nh (nnm)
DAL011	115	116	1	1360	19	300	49.9	46	DAL022	16	17	1	906	109.5	3 30	45.2	53
DAL011	116	117	1	837	26.8	240	36.3	70	DAL022	17	18	1	1115	131	350	58.9	71
DAL011	117	118	1	1280	45.4	350	48.1	81	DAL022	18	19	1	880	33	170	38.2	42
DAL011	118	119	1	1165	28	340	43	91	DAL022	19	20	1	966	6.5	50	23.7	6
DAL011	119	120	1	1160	30.7	320	43.5	94	DAL022	20	21	1	1155	6.6	60	26.9	11
DAL011	120	121	1	1025	22.6	430	46	82	DAL022	21	22	1	17 05	10.1	120	37.8	25
DAL011	121	122	1	1065	20.2	460	47.2	<mark>7</mark> 6	DAL022	22	23	1	16 <mark>35</mark>	15.2	240	42	16
DAL011	122	123	1	1415	14.5	580	60.7	65	DAL022	23	24	1	1330	23.7	57 0	72.9	B 0
DAL011	123	124	1	752	11.2	210	40.1	29	DAL022	24	25	1	837	33.8	320	38.9	52
DAL011	124	125	1	708	13.2	180	41.7	27	DAL022	25	26	1	1690	34.7	610	71.4	61
DAL011	125	126	1	1325	20.1	410	81.5	53	DAL022	26	27	1	745	35.6	160	35.8	6/
DAL011	126	127	1	1250	32.3	320	87.8	61	DAL022	27	28	1	1/3	/2.2	420	2.0	05
DAL011	127	128	1	1080	44.8	260	53.0	08	DAL022	20	29	1	2120	10.4	260	622	10
DAL011	120	129	1	1670	10 /	200	169 5	01 b1	DAL022	30	31	1	277	38.4	90	22.7	55
DAL011	129	130	1	685	4 7	670	121	24	DAL022	31	32	1	534	41.5	210	40.5	47
DAI 011	131	132	1	285	3.1	950	64.9	12	DAL022	32	33	1	189.5	8.2	110	38.5	18
DAL012	60	61	1	313	0.8	350	82.7	7	DAL022	33	34	1	74.1	2.9	120	24.9	5
DAL012	61	62	1	577	1	350	100	8	DAL022	34	35	1	51.6	3	110	19.2	5
DAL012	62	63	1	1045	34.2	360	97.4	43	DAL022	35	36	1	47.8	3	130	18.2	2.5
DAL012	63	64	1	<mark>9</mark> 69	41	340	73	62	DAL022	36	37	1	47	1	140	18.4	2.5
DAL012	64	65	1	1260	30.5	350	55.3	63	DAL022	37	38	1	34.9	1	150	15	2.5
DAL012	65	66	1	1280	36.7	360	50.4	78	DAL023	5	6	1	101	0.8	130	84.7	7
DAL012	66	67	1	891	35.8	230	37.2	<mark>7</mark> 3	DAL023	6	7	1	81.9	0.25	110	65.3	2.5
DAL012	67	68	1	862	38.8	250	37	80	DAL023	7	8	1	197.5	0.25	120	115.5	5
DAL012	68	69	1	1040	22.3	260	41.2	62	DAL023	8	9	1	438	3	220	265	8
DAL012	69	70	1	963	24.8	230	38.9	60	DAL023	9	10	1	638	25	240	333	48
DAL012	70	71	1	1155	15.9	260	38.8	52	DAL023	10	11	1	1220	2.5	4200	370	10
DAL012	71	72	1	2380	17.2	670	90.1	71	DAL023	11	12	1	1745	82	440	85.7	62
DAL012	72	73	1	3530	4.4	1/0	/1.5	7	DAL023	13	14	1	302	100	120	118	51
DAL012	75	74	1	2970	2.0	110	01.9	0	DAL023	14	15	1	183	4.1	150	244	8
DAL012	74	75	1	3380	5.6	260	83.5	22	DAL023	15	16	1	354	3.5	210	545	6
DAL012	76	77	1	2530	6.8	380	79	32	DAL023	16	17	1	135.5	1	190	230	6
DAL012	77	78	1	2240	11.8	540	67.6	66	DAL023	17	18	1	88.8	0.7	200	130.5	5
DAL012	78	79	1	2070	11.4	360	56.4	51	DAL023	18	19	1	189.5	1	250	148.5	5
DAL012	79	80	1	1965	11.5	300	54.2	48	DAL023	19	20	1	23.5	0.25	160	23.5	5
DAL012	80	81	1	2800	4.7	100	59	15	DAL023	20	21	1	51.4	0.7	210	54	8
DAL012	81	82	1	3300	2	40	65.1	6	DAL023	21	22	1	116.5	0.25	200	97.2	5
DAL012	82	83	1	3610	2.7	30	70.2	6	DAL023	22	23	1	121.5	0.25	140	59.8	2.5
DAL012	83	84	1	3390	10.7	90	66.6	17	DAL023	23	24	1	1085	101.5	490	180.5	4 5
DAL012	84	85	1	17 <mark>15</mark>	11.6	380	51.7	58	DAL023	24	25	1	111.5	1	120	33.8	5
DAL012	85	86	1	1915	24.5	440	59.4	72	DAL025	0	1	1	931	30.3	260	137 5	2.J
DAL012	86	87	1	2320	16.6	250	64.7	43	DAL025	1	2	1	281	24	130	134	26
DAL012	87	88	1	2450	12.6	120	59.5	β4 4 -	DAL025	2	3	1	1265	51.5	490	73	64
DAL012	88	89	1	1945	15.5	230	53.8	4/	DAL025	3	4	1	892	64.6	320	45.9	84
DAL012	89 90	90	1	1185	12.4 8 1	200	00.0	40 86	DAL025	4	5	1	238	60.8	90	23.4	64
DAL012	91	92	1	1960	14.5	280	80	80	DAL025	5	6	1	1835	6.5	480	544	14
DAL012	92	93	1	637	36.3	130	27.2	68	DAL025	6	7	1	305	0.9	120	109.5	8
DAL012	93	94	1	1580	31.7	410	69.4	142	DAL025	7	8	1	209	0.7	150	105.5	7
DAL012	94	95	1	1375	20.7	350	55.5	54	DAL025	8	9	1	309	1.5	210	170	8
DAL012	95	96	1	1240	15.2	310	48.3	44	DAL025	9	10	1	127	1.8	130	78.8	10
DAL012	96	97	1	1685	17.7	430	64.5	63	DAL025	10	11	1	226	1	180	125	6
DAL012	97	98	1	803	37.2	200	38	69	DAL025	11	12	1	4/5	0.25	200	133	0
DAL012	98	99	1	1090	45	260	53.5	86	DAL025	12	15	1	2000	94.1 89.6	130	36	88
DAL012	99	100	1	494	58.2	130	28.9	90	DAI 025	14	15	1	474	1.9	320	163	7
DAL012	100	101	1	522 bc:	38.9	120	26.2	76	DAL025	15	16	1	146	1	250	122	7
DAL012	101	102	1	264	33.2	280	13.8	90 90	DAL025	16	17	1	120.5	1.9	240	112.5	8
DALU12	102	103	1	1105	19.1	120	419	40	DAL025	17	18	1	153.5	1.7	240	126	7
DAL012	105	104	1	40.7	5.4 2.7	50	87	7	DAL025	18	19	1	91.1	0.6	200	95.6	6
DAL012	105	105	1	71 /	1.0	90	30	5	DAL025	19	20	1	87.2	0.5	160	57.1	6
DAI 022	0	1	1	93.2	13	40	21.8	14	DAL025	20	21	1	40.2	0.25	110	13.6	7
DAL022	1	2	1	144	1.6	60	38.2	87	DAL025	21	22	1	36	0.5	160	32.5	6
DAL022	2	3	1	153.5	3.3	50	34.8	23	DAL025	22	23	1	58.7	0.6	220	41.8	7
DAL022	3	4	1	159	1.7	30	24.3	20	DAL025	23	24	1	93.9	1.2	290	76.7	9
DAL022	4	5	1	158	2.1	30	23.9	20	DAL027	10	11	1	15/	2	140	/5.1	5
DAL022	5	6	1	151.5	1.6	30	17.8	18	DAL027	11	12	1	37.9	2.4	140 110	16.4	25
DAL022	6	7	1	145.5	1.6	30	22.3	18	DAL027	12	15	1	40.8 52	1.2	80	11.8	2.5
DAL022	7	8	1	91.7	0.7	50	23.1	2.5	DAL027	14	15	1	264h	5.5	110	69.4	14
DAL022	8	9	1	35	0.9	30	4.5	6	DAL027	15	16	1	2840	6.7	90	53.9	9
DAL022	9	10	1	54.7	0.5	40	13	2.5	DAL027	16	17	1	1250	20.5	300	41.8	21
DAL022	10	11	1	991	6.1	130	214	13	DAL027	17	18	1	975	105	80	26.1	145
DAL022	11	12	1	2780	32	130 220	67.1	29	DAL027	18	19	1	1245	34.5	190	55.4	\$6
DALU22	12	13	1	1990	28.4	320	55.9	4ð	DAL027	19	20	1	1400	46.4	210	65	64
DAL022	13	14	1	1405	20	220	41	26	DAL027	20	21	1	1370	20.4	190	56.3	33
DAI 022	15	16	1	1085	82.6	360	60.4	45	DAL027	21	22	1	1570	28.4	290	70.7	41
			-		L		u	u									

Hole ID	From	То	Width	Rb [ppm]	Ta [ppm]	Li [ppm]	Cs [ppm]	Nb [ppm]	Hole ID	From	То	Width	Rb [ppm]	Ta [ppm]	Li [ppm]	Cs [ppm]	Nb [ppm]
DAL027	22	23	1	1400	40.8	260	67.9	43	DAL027	110	111	1	56.5	0.6	170	41	2.5
DAL027	 73	24	1	1270	40.1	260	62.1	58	DAL027	111	112	1	17.8	0.25	150	20 5	2.5
DAL027	2.5	24	1	000	40.5	200	47.0		DAL027	442	112	1	47.0 Foc	20.4	100	23.5	2.5
DALUZ7	24	25	1	903	48.5	180	47.8	/4	DAL027	112	113	1	990	20.1	130	50.1	5 /
DAL027	25	26	1	1120	42.2	230	58	46	DAL027	113	114	1	38.2	0.7	100	13.7	2.5
DAL027	26	27	1	2410	53.3	<mark>50</mark> 0	117.5	90	DAL028	1	2	1	78.8	1.9	50	30.8	5
DAL027	27	28	1	1720	65.3	370	86.3	<mark>8</mark> 3	DAL028	2	3	1	581	0.25	340	184	2.5
DAL027	28	29	1	1735	59.4	400	79.9	70	DAL028	3	4	1	879	5.5	420	170	17
DAI 027	29	30	1	842	77 5	80	19	71	DAI 028	4	5	1	599	54.4	270	60.4	57
DAL027	20	21	1	776	110	200	10.0	75	DAL020	5	6	1	196 5	2	210	50.4 50.1	16
DALOZZ	30	31	1	720	110	200	40.0	/p	DALUZO	5	0	1	100.5	3	200	50.1	10
DAL027	31	32	1	/82	69.3	280	154.5	46	DAL028	35	36	1	489	0.8	280	112.5	14
DAL027	32	33	1	700	22.3	280	<mark>2</mark> 02	16	DAL028	36	37	1	356	2.6	230	62	9
DAL027	33	34	1	428	16.4	230	<mark>2</mark> 08	8	DAL028	37	38	1	374	2.6	230	62	9
DAL027	34	35	1	1950	24.4	600	607	24	DAL028	38	39	1	2930	44	520	157.5	63
DAI 027	35	36	1	475	67	250	177	8	DAI 028	29	40	1	1900	28.7	400	104 5	28
DAL027	26	27	1	112 5	0.6	160	42.2	5 7 F	DAL028	40	41	1	2020	26.0	940	110 E	rc
DALUZ7	50	57	1	115.5	0.0	100	42.5	2.5	DALUZO	40	41	1	2050	50.9	040	110.5	00
DAL027	37	38	1	284	2.9	210	100	8	DAL028	59	60	1	441	1.8	310	132.5	11
DAL027	38	39	1	<u>16</u> 70	58.6	860	197.5	41	DAL028	60	61	1	190	0.5	190	49.4	9
DAL027	39	40	1	254	3.5	240	89.9	2.5	DAL028	61	62	1	522	4.9	290	117	16
DAL027	49	50	1	54.6	1.8	220	28.7	2.5	DAL028	62	63	1	628	2.5	330	219	11
DAI 027	50	51	1	47 1	13	190	18.4	2.5	DAI 028	63	64	1	222	1	210	53.6	9
DAL027	50	51	1	142 5	2.5	140	22.5	7	DALO20	C.4	CF	-	245	- 0.25	100	24.5	0
DALUZ7	51	52	1	145.5	2.5	140	55.5	/	DALUZO	04	05	1	215	0.25	190	54.5	0
DAL027	52	53	1	330	23.2	110	51.5	66	DAL028	65	66	1	239	1.2	220	36.3	13
DAL027	53	54	1	225	23.2	110	32.7	38	DAL028	66	67	1	2240	45.7	430	122	81
DAL027	54	55	1	114	13.5	90	36.2	25	DAL028	67	68	1	851	6.7	380	90.5	18
DAL027	55	56	1	402	8.3	190	142.5	14	DAL028	68	69	1	252	0.9	230	53.6	12
DAI 027	56	57	1	72 4	21	160	48 5	5	DAI 028	69	70	1	75	1	170	21.2	12
DAL027	57	58	-	34 5	11	210	16.2	25	DA1020	70	71	- 1	 80 2	- 2	240	35.0	12
DALUZ/	57	J0	1	34.3	1.1	410	10.0	2.3	DALUZO	70	/1	1	0J.L	3	440	33.9	13
DAL027	58	59	1	/1.5	1.8	90	41.3	2.5	DAL028	/1	/2	1	/2.4	1.3	220	43.6	13
DAL027	59	60	1	1015	40.6	70	45.5	29	DAL029	0	1	1	1480	0.8	140	1350	2.5
DAL027	60	61	1	1160	52.4	80	38.9	56	DAL029	1	2	1	3140	18.2	550	1185	10
DAL027	61	62	1	693	40.5	70	25.9	44	DAL029	2	3	1	1300	19.6	150	168	33
DA1027	62	63	1	01 3	5.8	an	27.8	7	DA1029	3	1	1	1230	22.1	150	73 5	28
DAL027	62	64	1	205	7.6	140	05.2	7	DAL020	1		1	1250	70.0	£0	70.2	20
DALUZ7	03	64	1	305	7.0	140	95.2	/	DAL029	4	5	1	400	/8.9	50	/9.3	20
DAL027	64	65	1	104	5.1	110	29.8	6	DAL029	5	6	1	446	471	50	51.4	45
DAL027	65	66	1	140.5	16.6	130	24.1	29	DAL029	6	7	1	773	66.9	80	66.5	69
DAL027	66	67	1	828	16.9	60	14.8	24	DAL029	7	8	1	214	43.3	30	17.8	83
DAL027	67	68	1	911	95.2	170	42	101	DAL029	8	9	1	191.5	15	80	72.1	21
DAI 027	68	69	1	115 5	43	40	4.8	44	DAI 029	9	10	1	17.6	05	50	9.2	25
DALO27	c0	70	1	124	1.0	100	4.0	2.5	DALO20	10	11	1	22.4	0.5	20	12.2	2.5
DALUZZ	69	70	1	124	1.0	100	44	2.5	DAL029	10	11	1	23.1	0.25	20	12.3	2.5
DAL027	70	71	1	108.5	1.6	120	23.1	2.5	DAL029	11	12	1	19.4	0.25	10	8.7	2.5
DAL027	71	72	1	128	1.4	130	66.2	2.5	DAL029	12	13	1	13.5	0.25	10	5.6	2.5
DAL027	72	73	1	214	0.25	160	128.5	2.5	DAL029	13	14	1	132.5	0.6	30	41.4	2.5
DAL027	73	74	1	140	0.25	170	81.7	2.5	DAL029	14	15	1	879	15.3	160	164	40
DAL027	74	75	1	R1	0.25	200	53 5	25	DA1029	15	16	1	500	50.3	90 90	36.6	72
DAL027	74	75	1	42.4	0.25	400	22.0	2.5	DALO2D	15	10	1	2440	44.2		50.0 C75	47
DAL027	/5	/b	1	42.1	0.6	150	22.9	2.5	DAL029	16	1/	1	2410	11.2	260	6/5	1/
DAL027	76	77	1	1245	22.4	340	122.5	29	DAL029	17	18	1	297	1.6	60	74.7	2.5
DAL027	77	78	1	2280	48.7	630	107.5	56	DAL029	18	19	1	29.1	1.2	10	6.8	5
DAL027	78	79	1	80.9	0.25	90	16.4	2.5	DAL029	19	20	1	18	0.25	10	6	2.5
DAL027	79	80	1	73.2	0.25	120	34.5	2.5	DAL029	20	21	1	20	1.2	10	7.6	2.5
	0 0	01	1	154	0.5	100	01.2	25	DAL020	21	22	1	21.0	1.4	10	70	25
DAL027	01	01	1	0.0 1	0.5	150	22.0	2.5	DAL029	21	22	1	12	1.4	10	7.5 F 4	2.5
DALUZ/	01	02	1	30.1	0.25	100	52.ð	2.5	DAL029	22	23	1	12	0.9	10	5.4	2.J
DAL027	82	83	1	/9.6	U.5	140	41.9	2.5	DAL029	23	24	1	9.3	0.25	10	4.8	2.5
DAL027	83	84	1	1660	4.9	590	487	5	DAL029	24	25	1	276	0.6	30	132	2.5
DAL027	84	85	1	134	0.25	170	65.3	2.5	DAL029	25	26	1	1030	66.2	100	214	49
DAL027	85	86	1	72.2	0.9	140	46.3	2.5	DAL029	26	27	1	792	70.3	80	46.5	89
DAI 027	86	87	1	77 7	0.25	200	53.2	25	DAI 029	27	28	1	616	50 5	70	33.1	63
DAL027	87	88	-	53 /	0.25	180	22.2	2.5	DAL020	28	20	- 1	110	165	50	228	02
DALO27	00	00	4	53.4	0.20	170	JZ.0	2.5	DALOSS	20	27	4	T+7	100	00	32.0 30.0	54
DALUZ/	00 00	69 09	1	5U	4	1/0	27	5	DALU29	29	30	1	442	00.0	pU	29.0	54
DAL027	89	90	1	214	0.25	180	66	2.5	DAL029	30	31	1	1775	53.2	200	633	26
DAL027	90	91	1	302	43	60	25	45	DAL029	31	32	1	106	8.2	20	30.9	8
DAL027	91	92	1	592	57	140	81	40	DAL029	32	33	1	91.5	9.3	20	20.2	8
DAL027	92	93	1	943	58.4	240	173	25	DAL029	33	34	1	915	5.1	70	435	7
DAL027	03	94	-	1350	15.2	720	183	16	DAL020	50	51	- 1	1305	83	270	307	Q
DAL027	04	05	1	140	1.J.2	160	205		DALOZO	50	51	- 1	1903	0.J	10	11 C	۲ ۲
DAL027	94	95	1	248	1.5	100	37.4	2.5	DAL029	51	52	1	29.5	1.0	10	11.0	2.5
DAL027	95	96	1	80	1.1	80	12.5	2.5	DAL029	52	53	1	11	0.7	10	7.1	2.5
DAL027	96	97	1	100	0.7	100	20.7	2.5	DAL029	53	54	1	2440	13.7	490	427	36
DAL027	97	98	1	179	3.1	110	38.7	5	DAL029	54	55	1	990	14.9	250	47.1	22
DAL027	98	99	1	629	30.3	290	110.5	71	DAL029	55	56	1	1145	6.5	150	400	7
DAL027	90	100	-	729	17.8	280	47.6	ba	DAL020	56	57	- 1	42.5	0.0	10	13.2	2.5
DALO27	100	101	1	200	12.2	400	ч/.U	10	DALOZO	50	57	4	42.J	0.5 D.C	100	13.2	2.5
DAL027	100	101	1	299	12.2	190	85.2	10	DAL029	5/	58	1	1210	3.b	100	4/6	2.5
DAL027	101	102	1	125	1.9	140	68.1	2.5	DAL029	62	63	1	734	2.4	100	239	2.5
DAL027	102	103	1	74.9	0.25	160	73	2.5	DAL029	63	64	1	78.1	2.4	20	31.1	5
DAL027	103	104	1	53.4	0.25	200	66.5	2.5	DAL029	64	65	1	38.4	2.4	10	17.8	2.5
DAI 027	104	105	1	49.6	0.25	250	61 5	2.5	DAI 029	65	66	1	81 5	0.25	10	38 5	25
DAL027	105	106	-	16.7	0.25	250	22.9	2.5	DA1020	66	67	1	3100	72 5	<u></u> 810	573	192
DALO27	100	107	1	10.7	0.25	430	40.4	2.5	DALOZO	67	01 C0	4	5100	12.3	2170	1525	102
DAL027	TOP	107	1	34.4	U.25	410	40.1	2.5	DAL029	6/	80	1	04UU	µ1.1	21/0	1535	τs
DAL027	107	108	1	698	51.8	220	125.5	В1	DAL029	68	69	1	2880	18.1	780	620	42
DAL027	108	109	1	206	9	250	88.8	20	DAL029	69	70	1	\$67	7.4	100	125	21
DAL027	109	110	1	31.1	0.25	150	21.2	2.5	DAL029	70	71	1	180	1.6	30	48.6	2.5

Hole ID	From	То	Width	Rb [ppm]	Ta [ppm]	Li (ppm)	Cs [ppm]	Nb [ppm]
DAL029	71	72	1	383	2.3	60	115	5
DAL029	72	73	1	26.6	0.25	10	13.9	2.5
DA1029	73	7/	1	11	0.25	5	9.5	2.5
DAL020	73	74	1	11	0.25	5	0.0	2.5
DALO29	74	75	1	11	0.25	5	9.9	2.5
DAL029	75	/b	1	2150	16.1	360	515	24
DAL029	76	77	1	499	29.6	70	33	37
DAL029	77	78	1	1940	34.9	310	648	39
DAL029	78	79	1	15.2	0.25	10	10.6	2.5
DAL029	79	80	1	11	2	10	8.6	2.5
DAL029	80	81	1	8.6	0.25	5	7.6	2.5
DAL029	81	82	1	5.5	0.25	5	6.3	2.5
DAL029	82	83	1	1140	5.7	150	228	26
DAI 029	83	84	1	552	41	80	46.3	17
DAI 029	84	85	1	731	23.1	90	39.8	47
DAL020	0	96	1	022	20.1	200	170 5	66
DAL029	00	07	1	717	20.1	420	10.5	
DAL029	07	8/	1	20	3.4	430	103	
DALUZ9	8/	88	1	28	2	10	9.2	2.5
DAL029	88	89	1	12.8	3.5	10	/.8	2.5
DAL033	28	29	1	42.6	0.6	120	5.2	9
DAL033	29	30	1	81.7	0.6	170	14.3	9
DAL033	30	31	1	65.1	0.9	130	21.4	12
DAL033	31	32	1	90.4	4.3	140	64.9	10
DAL033	32	33	1	404	0.9	150	153.5	13
DAL033	33	34	1	2350	15.4	550	469	32
DAL033	34	35	1	2110	13	290	59.5	29
DAL033	35	36	1	3240	2.7	40	71.5	5
DAL033	36	37	1	1985	23	160	48.6	92
DAL033	37	38	1	2840	61	120	57.6	24
DAI 033	38	39	1	2420	5.5	90	41	16
DAL033	20	10	1	196F	10	420	67.5	F10
DAL033	39	40	1	1205	11 0	420	07.5 E1	40
DAL033	40	41	1	1305	11.8	340	51	44
DAL033	41	42	1	1555	4.9	90	29	14
DAL033	42	43	1	2020	9	80	35	23
DAL033	43	44	1	895	10.2	200	35.1	27
DAL033	44	45	1	1250	12.4	350	38.5	38
DAL033	45	46	1	2330	3.8	50	35.3	7
DAL033	46	47	1	2140	5.3	50	36.5	9
DAL033	47	48	1	1925	2.5	50	31.1	5
DAL033	48	49	1	1495	4.9	190	27.5	13
DAL033	49	50	1	975	7.6	170	27.9	32
DAL033	50	51	1	1710	22.4	420	51.4	97
DAL033	51	52	1	1450	33.4	350	56.7	89
DAL033	52	52	1	2670	20.1	560	81 7	113
DALO33	54	55	1	1255	75	100	202.7	26
DAL033	54	33	1	1433	11.0	190	20.5	50
DAL033	55	50	1	12/5	11.8	2/0	49.6	53
DAL033	56	57	1	729	6.6	230	25.4	31
DAL033	57	58	1	1255	19.6	330	47.7	67
DAL033	58	59	1	2200	31.6	420	91.3	95
DAL033	59	60	1	1020	28.9	250	38.3	90
DAL033	60	61	1	484	22.2	130	22.9	63
DAL033	61	62	1	597	36.6	200	30.3	104
DAL033	62	63	1	416	17.2	120	24.9	54
DAL033	63	64	1	1510	27.7	370	93.2	52
DALO33	64	65	1	822	91	310	70.6	18
DAL033	65	66	1	405	2.7	250	60.6	11
DAL033	66	67	1	172 F	J./	50	57.2	7
DAL033	00	07	1	112	1.0	340	p7.5	1 /
DAL033	6/	68	1	112	1.3	480	40.5	Ľ
DAL033	68	69	1	156	1	710	52.4	7
DAL033	69	70	1	150.5	1.4	660	47.3	8
DAL033	70	71	1	144.5	1.4	600	38.6	8
DAL033	71	72	1	138	1.7	570	35.5	11

Krakatoa is an emerging as a diversified high value critical metal and technology element company catering to the exponential demand spawned by electrification and decarbonisation. It is an ASX listed public Company with assets associated with copper-gold exploration in the world class Lachlan Fold Belt, NSW and multielement metals including the increasingly valued rare earths, nickel and heavy mineral sands in the highly prospective Narryer Terrane, Yilgarn Craton, WA and critical metals at Dalgaranga, WA

Mt Clere REEs, HMS & Ni-Cu-Co, PGEs Project (100%); Gascoyne WA

The Mt Clere REE Project located at the north western margins of the Yilgarn Graton. The Company holds 2,310km² of highly prospective exploration licenses prospective for rare earth elements, heavy mineral sands hosted zirconilmenite-rutile-leucoxene; and gold and intrusion hosted Ni-Cu-Co-PGEs. The Company has recently discovered the presence of Ion adsorption clays enriched in REE within extensive laterite areas; and is also investigating the monazite sands in vast alluvial terraces; and possibility of carbonatite dyke swarms. The company has identified multiply and discrete late time EM conductors via VTEM and ground MLEM surveys. These conductors are thought to be basement rocks enriched with massive sulphide mineralisation and will be drill tested in 2022.

King Tamba Critical Metals Project, Li, Rb, Ta, Cs, Nb, Sn, (100%); Mt Magnet WA.

The King Tamba project has an extensive rubidium exploration target defined next to the old Dalgaranga tantalum mine, with extensive pegmatite swarms with little exploration completed throughout the area. The project is clearly under-explored, the historical drilling was very shallow as it mainly focused on defining shallow open pitable resources in the mine area. Resource development drilling is currently being undertaken.

Rand Gold, REEs Project (100%); Lachlan Fold NSW

The Rand Project covers an area of 2241km², centred approximately 60km NNW of Albury in southern NSW. The Project has a SW-trending shear zone that transects the entire tenement package forming a distinct structural corridor some 40 km in length. The historical Bulgandry Goldfield, which is captured by the Project, demonstrates the project area is prospective for shear-hosted and intrusion-related gold. REE's have recently been identified over several intrusive basement areas which lead to extensive exploration application (2,008km²). Now granted a reconnaissance air-core drilling campaign will be completed to help identify other prospective areas for clay hosted REE.

Belgravia Cu-Au Porphyry Project (100%); Lachlan Fold NSW

The Belgravia Project covers an area of 80km² and is in the central part of the Molong Volcanic Belt (MVB), between Newcrest Mining's Cadia Operations and Alkane Resources Boda Discovery. The Project target areas are considered highly prospective for porphyry Cu-Au and associated skarn Cu-Au, with Bell Valley and Sugarloaf the most advanced target areas. Bell Valley contains a considerable portion of the Copper Hill Intrusive Complex, the porphyry complex which hosts the Copper Hill deposit (890koz Au & 310kt Cu) and Sugarloaf is co-incident with anomalous rock chips including 5.19g/t Au and 1.73% Cu.

Turon Gold Project (100%); Lachlan fold NSW

The Turon Project covers 120km² and is located within the Lachlan Fold Belt's Hill End Trough, a north-trending elongated pull-apart basin containing sedimentary and volcanic rocks of Silurian and Devonian age. The Project contains two separate north-trending reef systems, the Quartz Ridge and Box Ridge, comprising shafts, adits and drifts that strike over 1.6km and 2.4km respectively. Both reef systems have demonstrated high grade gold anomalism (up to 1,535g/t Au in rock chips) and shallow gold targets (10m @ 1.64g/t Au from surface to EOH).

The information in this section that relates to exploration results was first released by the Company on 19 June 2019 until the 25 July 2022. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcement

APPENDIX A: JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g., cut	The samples discussed in the report were
	channels, random chips, or specific	obtained by Reverse Circulation (RC) drilling. A
	specialised industry standard measurement	series of 140mm diameter holes were drilled and
	tools appropriate to the minerals under	sampled, with samples collected at 1m intervals
	investigation, such as down hole gamma	using a cyclone-mounted cone splitter which
	sondes, or handheld XRF instruments, etc).	produces a ~35kg bulk sample and two ~3kg sub-
	These examples should not be taken as	samples for assaying. Selection for assaying was
	limiting the broad meaning of sampling.	conditional based on geological criteria: the
		presence of pegmatite rocks plus a minimum
		buffer of 3m into surrounding country rock. The
		site geologist reviewed representative sub-
		samples of each metre by washing, sieving out -
		2mm material, and geologically logging the rock
		chips to determine selection for assay.
	Include reference to measures taken to	Company sampling protocols include the use of
	ensure sample representivity and the	regular field duplicate sampling and selective
	appropriate calibration of any measurement	umpire assaying. Sampling errors are mitigated by
	tools or systems used.	checking sample bag number sequences at the
		end of every drill rod (6m) and immediately
		rectifying errors. Twinned drill-holes have not
		been used to assess sampling representivity at the
		project but are likely to be used in future.
	Aspects of the determination of	Reverse circulation drilling was used to obtain 1m
	mineralisation that are Material to the Public	samples from which a 3 kg subsample was
	Report. In cases where 'industry standard'	delivered to the ALS Laboratory in Perth for
	work has been done this would be relatively	preparation and assaying. Samples were crushed
	simple. (e.g. 'reverse circulation drilling was	and pulverised to produce a 250g pulp before
	used to obtain 1 m samples from which 3 kg	digestion of a 50g charge by sodium peroxide
	was pulverised to produce a 30 g charge for	fusion and assaying for an extended pegmatite
	fire assay'). In other cases, more explanation	exploration suite by a combination of MS and ICP-
	may be required, such as where there is	MS. Over-limit XRF methods are employed by the
	coarse gold that has inherent sampling	laboratory when upper detection limits of the
	problems. Unusual commodities or	stated method are exceeded.
	mineralisation types (e.g. submarine	
	nodules) may warrant disclosure of detailed	
	information.	
Drilling techniques	Drill type (e.g., core, reverse circulation,	Drilling was completed using a Schramm T450W
	open-hole hammer, rotary air blast, auger,	Reverse Circulation drill rig fitted with a 140mm
	Bangka, sonic, etc) and details	diameter face sampling bit. Downhole surveys
		were taken every 30m using a gyroscopic survey
		tool operated by the drilling crew.
Urill sample recovery	Method of recording and assessing core and	Sample recovery was estimated visually and by
	chip sample recoveries and results assessed.	using a spring scale to check sample weights were
	chip sample recoveries and results assessed.	using a spring scale to check sample weights were sufficient. Data was recorded in the geological
	chip sample recoveries and results assessed.	using a spring scale to check sample weights were sufficient. Data was recorded in the geological logs and later uploaded to the Company's secure
	chip sample recoveries and results assessed.	using a spring scale to check sample weights were sufficient. Data was recorded in the geological logs and later uploaded to the Company's secure database. Greater than 95% of samples were
	chip sample recoveries and results assessed.	using a spring scale to check sample weights were sufficient. Data was recorded in the geological logs and later uploaded to the Company's secure database. Greater than 95% of samples were considered to have excellent recovery and over

Criteria	JORC Code explanation	Commentary
		some minor wet samples were noted where there
		was high water groundwater influx.
	Measures taken to maximise sample	The sample cyclone and splitter were cleaned
	recovery and ensure representative nature of	throughout each drill hole, between samples and
	the samples.	after drilling each rod. Thorough cleaning after
		intervals of significant water was also done. RC
		sample recovery was visually assessed with
		recovery, moisture and contamination recorded.
	Whether a relationship exists between	The company is not aware of any relationship
	sample recovery and grade and whether	between sample recovery and grade. No
	sample bias may have occurred due to	preferential loss or gain has been recorded in
	preferential loss/gain of fine/coarse material.	mineralised zones.
Logging	Whether core and chip samples have been	All drill chips were geologically logged on site on a
	geologically and geotechnically logged to a	metre-by-metre basis by qualified geologists
	level of detail to support appropriate Mineral	following the KTA logging scheme. All recorded
	Resource estimation, mining studies and	information was loaded to a digital database and
	metallurgical studies.	validated.
	Whether logging is qualitative or quantitative	Geological logging is qualitative in nature and
	in nature. Core (or costean, channel, etc)	records interpreted lithology, alteration,
	photography.	mineralisation, and veining. Mineralisation
		logging includes visual estimation of the
		percentage content of economic minerals within
		the rock mass, which can be considered
		quantitative.
	The total length and percentage of the	All drill holes are logged in full, from collar to end-
	relevant intersections logged.	of hole.
Sub-sampling	If core, whether cut or sawn and whether	Samples were collected at 1m intervals using a
techniques and	quarter, half or all core taken. If non-core,	cyclone-mounted cone splitter which produces a
sample preparation	whether riffled, tube sampled, rotary split,	~35kg bulk sample and two ~3kg sub-samples for
	etc and whether sampled wet or dry.	assaying. Samples were collected dry where
		possible, with less than 1% of samples being wet
		due to groundwater.
	For all sample types, the nature, quality and	The samples were sent to an accredited
	appropriateness of the sample preparation	laboratory for sample preparation and analysis.
	technique.	All samples were sorted, dried, pulverised to -
		75μm to produce a nomogenous representative
		250g pulp for analysis. A grind quality target of
	Quality control are codured adapted for all	85% passing - 15µm has been established.
	Quality control procedures adopted for all	Performed Materials (CPM) along with sample
	roprosontivity of samples	duplicatos. Soloctod samplo pulos aro also ro
	representivity of samples.	analysed to confirm anomalous results
		Laboratory QAOC includes insertion of certified
		standards blanks check replicates and finaness
		checks to ensure grind size of 85% passing -75µm
	Measures taken to ensure that the sampling	Field dunlicates are taken at least three times in
	is representative of the in-situ material	every 100 samples. All samples submitted were
	collected including for instance results for	selected to weigh less than 5kg to ensure total
	field duplicate/second-half sampling	preparation at the pulverisation stage Dunlicate
		sample results are reviewed regularly for both
		internal and external reporting purposes
	Whether sample sizes are appropriate to the	Sample sizes are considered appropriate for the
	grain size of the material being sampled.	grain size of the material being sampled.

Criteria	JORC Code explanation	Commentary
Quality of assay data	The nature, quality and appropriateness of	The analytical scheme used is ALS MS91-PKG
and laboratory tests	the assaying and laboratory procedures used	which is designed as a pegmatite exploration
	and whether the technique is considered	suite. It employs digestion of a 50g charge by
	partial or total.	sodium peroxide fusion then assaying by a
		combination of MS and ICP-MS. Over-limit XRF
		methods are employed by the laboratory when
		upper detection limits of the stated method are
		exceeded. The digest is considered near total for
		the minerals of interest.
	For geophysical tools, spectrometers,	No geophysical tools were used to determine any
	handheld XRF instruments, etc, the	reported element concentrations.
	parameters used in determining the analysis	
	including instrument make and model,	
	reading times, calibrations factors applied	
	and their derivation, etc.	
	Nature of quality control procedures	Laboratory QAQC involves the use of internal lab
	adopted (e.g., standards, blanks, duplicates,	standards using certified reference material and
	external laboratory checks) and whether	blanks as part of inhouse procedures. The
	acceptable levels of accuracy (i.e., lack of	company also submitted an independent suite of
	bias) and precision have been established.	CRMs and blanks. A formal review of this data is
		completed on a periodic basis. No significant
		issues have been encountered and the data shows
		acceptable levels of accuracy and precision.
Verification of	The verification of significant intersections	Intersections included in this report were
sampling and	by either independent or alternative	identified by a contract geologist and have been
assaying	company personnel.	verified by the Competent Person.
	The use of twinned holes.	No twinned holes have been drilled.
	Documentation of primary data, data entry	Data is collected in the field using MS Excel
	(nbysical and electronic) protocols	The data is uploaded to an MS Access database
		and stored offsite
	Discuss any adjustment to assay data	No adjustments have been made to assay data
Location of data	Accuracy and quality of surveys used to	Drill hole collars are initially located by handheld
points	locate drill holes (collar and down-hole	GPS and then picked up by an accredited
Pointo	surveys), trenches, mine workings and other	surveyor if expected to be used in resource
	locations used in Mineral Resource	modelling. Expected accuracy is $+/-3m$ for
	estimation.	Handheld GPS and +/- 0.1m or less for surveyor
		data.
	Specification of the grid system used.	The grid system is GDA94, MGA Zone 50.
	Quality and adequacy of topographic	The topographic control is taken from a 5m digital
	control.	elevation model and is considered to be
		adequate.
Data spacing and	Data spacing for reporting of Exploration	Drillhole spacing is a nominal 40x40m spacing in
distribution	Results.	the recent drilling area.
	Whether the data spacing and distribution is	No MRE has been completed or classification
	sufficient to establish the degree of	applied at this stage.
	geological and grade continuity appropriate	
	for the Mineral Resource and Ore Reserve	
	estimation procedure(s) and classifications	
	applied.	
	Whether sample compositing has been	No sample compositing has been applied.
	applied.	

Criteria	JORC Code explanation	Commentary
Orientation of data in	Whether the orientation of sampling	No orientation-based sampling bias is known at
relation to geological	achieves unbiased sampling of possible	this time. The mineralised pegmatites are
structure	structures and the extent to which this is	believed to be sub-horizontal in nature, thus the
	known, considering the deposit type.	vertical drillholes reported here should return an
	If the relationship between the drilling	approximately true-width intersection through
	orientation and the orientation of key	mineralised zones.
	mineralised structures is considered to have	
	introduced a sampling bias, this should be	
	assessed and reported if material.	
Sample security	The measures taken to ensure sample	Samples are securely sealed and stored onsite,
	security.	until delivery to Perth laboratories via contract
		freight Transport. Chain of custody consignment
		notes and sample submission forms are sent with
		the samples.
		The laboratory confirms receipt of all samples on
		the submission form on arrival. All assay pulps are
		retained and stored in a Company facility for
		future reference.
Audits or reviews	The results of any audits or reviews of	No Audits or reviews of sampling techniques and
	sampling techniques and data.	data have been undertaken.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement	Type, reference name/number, location and	The King Tamba Project is located 75km
and land tenure	ownership including agreements or material	northwest of Mt Magnet in Western Australia. It
status	issues with third parties such as joint	comprises four granted Prospecting Licences, one
	ventures, partnerships, overriding royalties,	granted Exploration Licence, and one Exploration
	native title interests, historical sites,	Licence Application, all held by Krakatoa
	wilderness or national park and	Resources Ltd. Three of the Prospecting Licences
	environmental settings.	in the group have recently reached the end of
	_	their initial four year terms, however extension of
		term applications have been lodged for all and
		these are expected to be granted shortly.
		• P59/2082
		 P59/2140 (Extension of Term Pending)
		 P59/2141 (Extension of Term Pending)
		 P59/2142 (Extension of Term Pending)
		• E59/2389
		• E59/2503 (Application Pending)
	The security of the tenure held at the time of	The tenure is held in good standing and the
	reporting along with any known	company is in compliance with all relevant
	impediments to obtaining a licence to	conditions and legislation.
	operate in the area.	
Exploration done by	Acknowledgment and appraisal of	The Dalgaranga greenstone belt is known to
other parties	exploration by other parties.	contain small shallow tantalum and beryl
		workings. Small tonnages were mined in the
		1960s from pegmatites and their associated
		eluvial and alluvial material. The mineralisation
		occurs within narrow, discontinuous pegmatites
		hosted by mafic and ultramafic schists.
		Acmex Holdings completed 359m of shallow
		percussion drilling targeting the western
		pegmatite: the deepest hole was 22m. Varying

Criteria	JORC Code explanation	Commentary
		amounts of heavy minerals exist in the pegmatite with a maximum result of 0.245%Ta2O5 over 2.4m. The drilling was not taken deep enough with most holes ending in mineralisation.
		Placer Prospecting completed 11 percussion holes in 1969 with nine holes intersecting sub-economic mineralisation. Placer estimated 75000t@0.086% tantalum pentoxide and 0.038%columbium pentoxide with 3800 cubic yards of tailings averaging 0.116% tantalum- pentoxide and 0.03% columbium-pentoxide.
		Goldrim Mining held the project through the early to mid-1990s and anticipated commencing mining, but tantalum prices didn't recover and the plan was subsequently abandoned.
		CRA Exploration and several other majors held the ground surrounding the project throughout the 1980s and 1990s seeking Golden Grove VMS analogues, and successfully locating several sub- economic base metal occurrences, including the Lasoda deposit, which lies along strike.
		Tantalum Australia Pty Ltd subsequently developed open pit mining operations during the early 2000's, eventually ceasing operations in 2002. Tantalum Australia completed the most systematic exploration across the lease area, including rock geochemistry and RC drilling.
Geology	Deposit type, geological setting and style of mineralisation.	The project lies in the Dalgaranga Greenstone Belt in the Murchison Province of Western Australia. The NE trending belt consists of basalts and sediments, mainly black shales. Felsic volcanic rocks outcrop on the western side of the belt. The sequence is intruded by large gabbro complexes in the north (Mt Farmer, Mt Charles) and to the west (Dalgaranga Hill). The Dalgaranga Greenstone Belt is intruded by several post tectonic granites separated by zones of amphibolite and mafic schists intruded by pegmatites. East-west trending Proterozoic dykes of dolerite and gabbro intrude the Greenstone sequences. The geology of the Dalgaranga Project consists of a suite of fine-grained, variably deformed clastic sediments (that grade from relatively massive siltstone and arkose to knotted schists closer to the hinge) with tuffaceous units occurring on the eastern margin. Metadolerite crops out extensively south of the main open pit. Pegmatite has preferentially intruded the metadolerite unit. Its distribution parallels the NF-

Criteria	JORC Code explanation	Commentary
		trending fold axis of the antiform and a series of
		substantial NE to NNE-trending faults, suggesting
		they are all related.
		The main tantalum minerals at Dalgaranga Mine
		were tapiolite and tantalite, with lesser microlite.
		lantalite ranged from very fine-grained to very
		coarse, up to several centimetres. Occurrences of
		Zinnwaldite (litnium mineral, KFezzal(Al2Si
		2010)(OH)2 to KLI2AI(SI4010)(F, OH)2) and
		reporting period confirming the potential for
		lithium mineralisation within the Project.
Drill hole Information	A summary of all information material to the	Refer to Table 2 within the body of the report for
	understanding of the exploration results	all relevant drillhole information.
	including a tabulation of the following	
	information for all Material drill holes:	
	• easting and northing of the drill hole	
	collar	
	elevation or RL (Reduced Level –	
	elevation above sea level in metres)	
	dip and azimuth of the hole	
	 dip and azimuti of the note down hole length and interception 	
	denth	
	hole length	
	If the exclusion of this information is justified	
	on the basis that the information is not	
	Material and this exclusion does not detract	
	from the understanding of the report, the	
	Competent Person should clearly explain	
	why this is the case.	
Data aggregation	In reporting Exploration Results, weighting	Significant intersections of Rb, Ta, Li, Cs,& Nb
methods	averaging techniques, maximum and/or	have been calculated with no edge dilution and a
	minimum grade truncations (e.g., cutting of	minimum of 1m downhole length.
	high grades) and cut-off grades are usually	No top cuts have been applied.
	Material and should be stated.	No metal equivalent values are reported.
	where aggregate intercepts incorporate	conversion of elemental analysis (ppm) to
	longer longths of low grade results the	stolenionetric oxide (%) was undertaken by KTA
	procedure used for such aggregation should	conversion factors related to each element.
	be stated and some typical examples of such	https://www.jcu.edu.au/advanced-analytical-
	aggregations should be shown in detail.	centre/resources/element-to-stoichiometric-
	The assumptions used for any reporting of	oxide-conversion-factors
	metal equivalent values should be clearly	
	stated.	
Polationship hatusar	Those relationships are particularly	Only downhold longths are reported. Civer the
mineralisation	important in the reporting of Evploration	relationship between drilling angle and pegmatite
widths and intercent	Results	geometry true width is estimated to be no less
lengths	If the geometry of the mineralisation with	than 90% of the downhole widths reported herein
	respect to the drill hole angle is known. its	
	nature should be reported.	
	If it is not known and only the down hole	
	lengths are reported, there should be a clear	

Criteria	JORC Code explanation	Commentary
	statement to this effect (e.g., 'down hole	
	length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views	Appropriate plans and sections are included in this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All drillhole information including collar location is included. Representative reporting of all results has been practiced throughout.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	To date, only exploration drilling has been undertaken on the project. No other modifying factors have been investigated at this stage, however the Company does intend to do so in the near future.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work in the short-term will include receipt and interpretation of outstanding assay results, followed by updating of the deposit geological model. Following this work, the company intends to complete calculation of an initial mineral resource estimate for the project. The company also intends to complete a Lidar survey for improved topographic control, structural mapping of the historic tantalum mine pit, mineral deportment studies, and preliminary metallurgical testwork. It is expected that further drilling, both RC and diamond, will be required define the full extent of the mineralisation. Appropriate plans are included in the announcement.