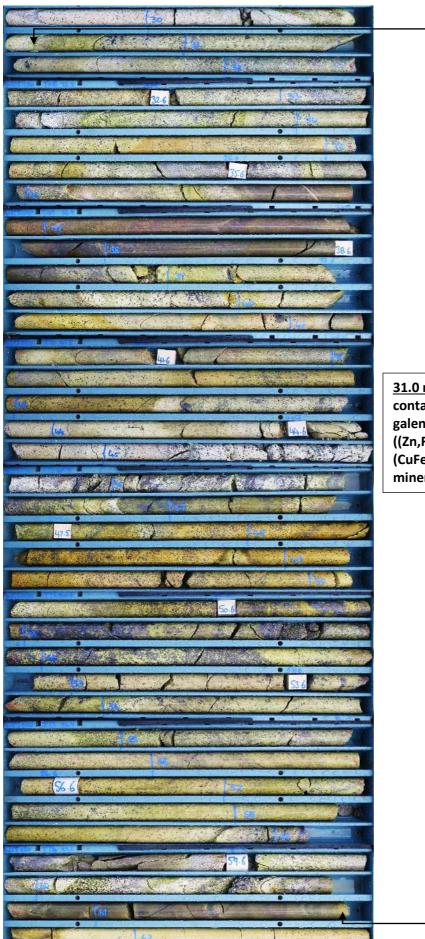


23 June 2022

Another Thick (31.0m) Intercept of Sulphide Mineralisation at Tangoa West

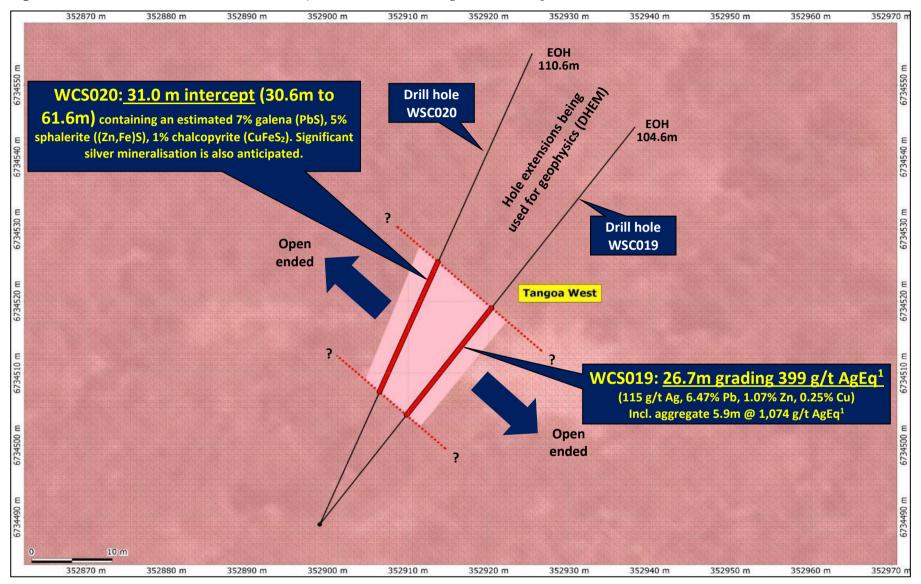
Highlights

- A second consecutive drill hole, to test lateral extent, has intersected significant, shallow sulphide mineralisation at the Tangoa West prospect, at the Webbs Consol Silver-Base Metals Project with assays likely in July
- Hole WCSo2o has intersected 31.om of sulphide mineralisation containing an estimated 7% galena (PbS), 5% sphalerite ((Zn,Fe)S), 1% chalcopyrite (CuFeS2) and, as recently demonstrated by hole WCSo19, significant silver mineralisation is also anticipated in assays as silver is known to be strongly associated with both sphalerite and galena at the Webbs Consol
- This hole follows recently reported WCS019 which returned an aggregate 5.9m @ 1,074 g/t AgEq¹ within the broader intercept of 26.7m @ 399 g/t AgEq¹ and together both holes demonstrate strike continuity and direction
- This is the widest intercept to date and mineralisation is open at depth and in both the Northwest and Southeast directions
- Drilling is ongoing testing other newly recognised near surface targets at Webbs Consol with 10-15 holes remaining whilst FLEM and DHEM program currently underway prior to deeper Phase II drilling


31.om Lead-Zinc-Silver Intercept at Tangoa West

Lode Resources Ltd (ASX:LDR or 'Lode' or 'the Company') is pleased to announce that Phase I drilling at the 100% owned Webbs Consol Silver-Base Metal Project (EL 8933) continues to produce significant results. Webbs Consol mineral system now extends over a 3km north-south strike.

WCSo2o has intersected 31.1m of sulphide mineralisation containing an estimated 7% galena (PbS), 5% sphalerite ((Zn,Fe)S), 1% chalcopyrite (CuFeS2) from 31.0m. Significant silver mineralisation is also anticipated in assays as silver is known to be strongly associated with both sphalerite and galena at the Webbs Consol Silver-Base Metals Project.


Photo 1: NQ core showing 31.0m mineralised intercept from drill hole WCS020 at Tangoa West prospect

31.0 m intercept (30.6m to 61.6m) containing an estimated 7% galena (PbS), 5% sphalerite ((Zn,Fe)S), 1% chalcopyrite (CuFeS2). Significant silver mineralisation is also anticipated.

ALODE RESOURCES LID

Figure 1: Webbs Consol Silver-Base Metals Project -Plan View of Tangoa West Prospect Phase I Drill Results

This is the second drill hole to intersect significant, shallow sulphide mineralisation at the Tangoa West prospect, one of a number of drill targets currently being drill tested at the Webbs Consol Silver-Base Metals Project. Recently reported drill hole WCS019 returned an aggregate 5.9m @ 1,074 g/t AgEq within the broader intercept of 26.7m @ 399 g/t AgEq¹. Together both holes demonstrate strike continuity and direction. True width of the Tangoa lode can now be estimated at 18.5m width and mineralisation is open in both the Northwest and Southeast directions.

Both drill holes at Tangoa demonstrates how under-explored the Webbs Consol project is and the potential for further discoveries through the drilling of mapped surface targets as well as extension and/or blind targets generated through geophysics. The Webbs Consol mineral system now extends over a 3km north-south strike.

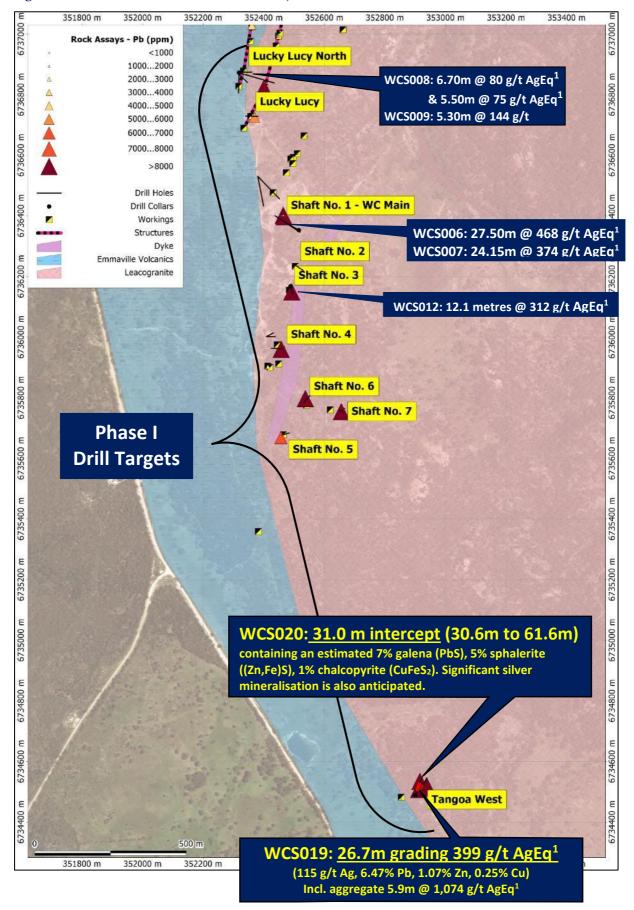
The previously undrilled and unmined Tangoa West prospect provides Lode with a diagnostic type example of the geomorphological and geochemical surface expression of Webbs Consol lode style mineralisation prior to disturbance from mining and remediation activities. This should aid in the exploration for other such occurrences. It is worth noting that the Tangoa West has never been mined or drilled despite being exposed at surface.

Down Hole Electromagnetic (DHEM) and Fixed Loop Electromagnetic (FLEM) geophysical surveys are currently underway targeting the most prospective mineralisation encountered in drilling to date including Shaft 1, Lucky Lucy North and, now, Tangoa West ahead of deeper Phase II drilling, likely to commence upon the completion of Phase I which has 10-15 drill holes remaining.

Photo 2: Coarse blebs of galena (PbS) in Tangoa West NQ size drill core

Table 1: Geological log for drill hole WCS020

Hole ID	Easting	Northing	Dip	Azimuth	From	То	Observations
	GDA94 Z56		Grid	(m)	(m)		
WCS020	352899	6734489	-50	21	0.00	1.00	Core Loss
					1.00	12.00	Coarse grained granite with weak pervasive silica/sericite alteration
					12.00	30.60	Coarse grained granite with moderate pervasive silica/sericite alteration
					30.60	36.70	Coarse grained granite with intense silica/sericite alteration containing 6% blebby sphalerite, 3% blebby galena, 2% blebby arsenopyrite and 1% blebby chalcopyrite
					36.70	38.70	Coarse grained granite with intense chlorite and moderate silica/sericite alteration containing 2% blebby sphalerite and 1% blebby galena
					38.70	60.90	Coarse grained granite with intense silica/sericite alteration containing 10% blebby arsenopyrite, 9% blebby galena, 5% blebby arsenopyrite and 1% blebby chalcopyrite
					60.90	61.60	Coarse grained granite with intense chlorite and moderate silica/sericite alteration containing 1% blebby galena and 1% blebby sphalerite
					61.60	75.30	Coarse grained granite with moderate pervasive silica/sericite alteration and 1% quartz veining
					75.30	110.60	Coarse grained granite with weak pervasive silica/sericite alteration

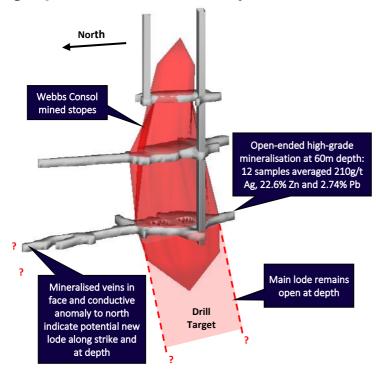

Table 2: Webbs Consol Silver-Base Metals Project - Phase I Drill Results To Date

Hole	From	From To		Silver Eq ¹	Silver	Zinc	Lead	Copper	Gold
поте	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)	(g/t)
WCS006	104.6	132.1	27.5	468	118	6.52	0.77	0.07	0.00
incl.	105.6	129.4	23.8	526	135	7.32	0.82	0.08	0.00
WCS007	122.9	147.1	24.2	374	63	5.96	0.49	0.04	0.00
incl.	126.0	145.0	19.0	462	78	7.43	0.49	0.05	0.00
WCS008	25.5	45.2	16.3	49	19	0.10	0.03	0.01	0.30
incl.	35.3	42.0	6.7	80	31	0.01	0.04	0.00	0.62
WCS008	58.2	77.0	18.8	37	10	0.37	0.14	0.02	0.02
incl.	71.5	77.0	5.5	75	21	0.72	0.26	0.05	0.06
WCS009	70.0	80.0	10.0	84	45	0.17	0.09	0.23	0.05
incl.	70.0	75.3	5.3	144	82	0.16	0.07	0.43	0.09
WCS012	48.0	60.1	12.1	312	108	0.36	5.49	0.10	0.04
Incl.	49.6	59.0	9.4	394	137	0.39	7.01	0.12	0.05
Incl.	56.6	57.6	1.0	821	305	0.65	13.92	0.64	0.02
WCS019	30.1	56.8	26.7	399	115	1.07	6.43	0.25	0.03
Incl.	31.6	41.0	9.4	633	197	1.50	10.14	0.39	0.04
Incl.	37.0	40.0	3.0	1,023	376	0.28	17.68	0.64	0.09
Incl.	50.0	56.2	6.2	587	171	1.09	10.04	0.42	0.04
Incl.	53.3	56.2	2.9	1,126	344	1.54	19.62	0.82	0.03

¹Silver is deemed to be the appropriate metal for equivalent calculations as silver is the most common metal to all mineralisation zones. Webbs Consol silver equivalent grades are based on assumptions: AgEq(g/t)=Ag(g/t)+49*Zn(%)+32*Pb(%)+106*Cu(%)+76*Au(g/t) calculated from 10 December 2021 spot prices of US\$22/oz silver, US\$3400/t zinc, US\$2290/t lead, US\$9550/t copper, US\$1800/oz gold and metallurgical recoveries of 97.3% silver, 98.7%, zinc, 94.7% lead, 96.3% copper and 90.8% gold which is the 4th stage rougher cumulative recoveries in test work commissioned by Lode and reported in LDR announcement 14 December 2021 titled "High Metal Recoveries in Preliminary Flotation Test work on Webbs Consol Mineralisation". It is Lode's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Figure 2: Webbs Consol Silver-Base Metals Project - Phase I Drill Results To Date

Webbs Consol Project Overview


Located 16km west-south-west of Emmaville, Webbs Consol was discovered in 1890 with intermittent mining up to the mid-1950s. The Webbs Consol Project (EL8933) contains several small, but high grade, silver-lead-zinc-gold deposits hosted by the Webbs Consol Leucogranite which has intruded the Late Permian Emmaville Volcanics and undifferentiated Early Permian sediments.

Several mine shafts were worked for the high-grade galena and silver content only with high-grade zinc mineralisation discarded. Mineral concentration was via basic Chilean milling techniques and sluicing. Some subsequent rough flotation of galena was carried out with no attempt to recover sphalerite.

Ore mineralogy includes galena, sphalerite, marmatite, arsenopyrite, pyrite, chalcopyrite, minor bismuth, and gold. Chief minerals are generally disseminated but also high grade "bungs" where emplacement is a combination of fracture infilling and country rock replacement. Gangue mineralogy includes quartz, chlorite and sericite with quartz occurring as veins and granular relicts.

Historical sampling shows potential for high grade silver and zinc mineralisation at Webbs Consol. It was reported that 12 samples taken from the lowest level of the main Webbs Consol shaft ("205' Level" or 6om depth) averaged 210g/t silver, 22.6% zinc and 2.74% lead. Epithermal style mineralisation occurs in 'en échelon' vertical pipe like bodies at the intersection of main north-south shear and secondary northeast-southwest fractures. No leaching or secondary enrichment has been identified.

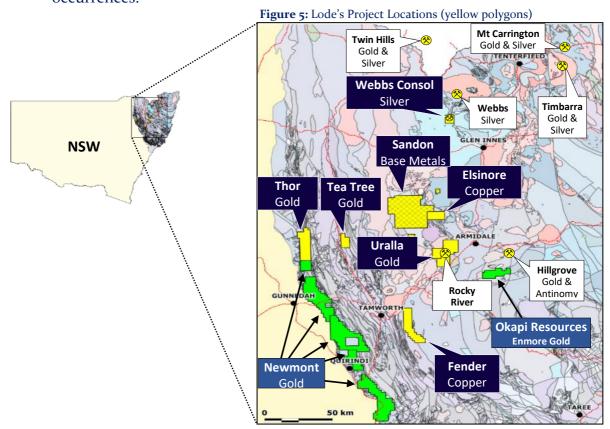
Figure 3: Webbs Consol Main Shaft oblique view

Photo 3: Webbs Consol Main Shaft specimen showing coarse galena mineralisation

This announcement has been approved and authorised by Lode Resource Ltd's Managing Director, Ted Leschke.

Competent Person's Statement

The information in this Report that relates to Exploration Results is based on information compiled by Mr Mitchell Tarrant, who is a Member of the Australian Institute of Geoscientists. Mr Tarrant, who is the Project Manager for Lode Resources, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Tarrant has a beneficial interest as option holder of Lode Resources Ltd and consents to the inclusion in this Report of the matters based on the information in the form and context in which it appears.


For further information, please contact: Investor Enquiries

Ted Leschke Managing Director <u>Ted@loderesources.com</u>

About Lode Resources

Lode Resources is an ASX-listed explorer focused on the highly prospective but underexplored New England Fold Belt in north eastern NSW. The Company has assembled a portfolio of brownfield precious and base metal assets characterised by:

- 100% ownership;
- Significant historical geochemistry and/or geophysics;
- Under drilled and/or open-ended mineralisation; and
- Demonstrated high grade mineralisation and/or potential for large mineral occurrences.

For more information on Lode Resources and to subscribe for our regular updates, please visit our website at www.loderesources.com

JORC Code, 2012 Edition - Table 1.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broadmeaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 No new drilling assays have been reported. Diamond drilling techniques were used to obtain samples. NQ2 core was logged and sample intervals assigned based on the geology. The core to be sampled was sawn in half and bagged according to sample intervals. Intervals range from 0.3m to 1.1m Blanks and standards were inserted at >5% where appropriate. Samples were sampled by a qualified geologist. No assays have been received at time of report for WCS020.
Drilling techniques	Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (egcore diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 All drilling is Diamond drilling (core), NQ2 in size. Core was collected using a standard tube. Core is orientated every run (3m) using the truecoreMT UPIX system.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whethersample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recoveries are measured using standard industry best practice. Core loss is recorded in the logging. Core recovery in the surface lithologies is poor. Core recovery in fresh rock is excellent with 100% recovered from 1m downhole depth. No assays have been received at time of report for WCS020.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Holes are logged to a level of detail that would support mineral resource estimation. Qualitative logging includes lithology, alteration, texture, colour and structures. Quantitative logging includes sulphide and gangue mineral percentages. All drill holes are logged in full. All drill core was photographed wet and dry.

Sub- sampling techniques and sample preparation Quality of	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and 	 Core was prepared using standard industry best practice. The core was sawn in half using a diamond core saw and half core was sent to ALS Brisbane for assay. No assays have been received at time of report. No duplicate sampling has been conducted. Samples intervals ranged from 0.3m to 1.1m. The average sample size was 1m in length. The sample size is considered appropriate for the material being sampled. No assays have been received at time of report for WCS020.
assay data and laboratory tests	 assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 for WCS020. Samples were stored in a secure location and transported to the ALS laboratory in Brisbane QLD via a certified courier. Sample preparation comprised drying (DRY-21), weighed, crushing (CRU-31) and pulverised (PUL-32). The assay methods used will be ME-ICP61 and Au-AA25 (refer to ALS assay codes). ME-ICP61 (25g) is a four-acid digestion with ICP-AES finish. Au-AA25 (30g) is a fire assay method. Certified standards and blanks were inserted at a rate of >5% at the appropriate locations. These are checked when assay results are received to make sure they fall within the accepted limits. The assay methods employed are considered appropriate for near total digestion.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	No assays have been received at time of report.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar locations were recorded using a handheld GPS (+- 5m). Grid system used is GDA94 UTM zone 56 RTK GPS will be used in coming weeks to pick up collar locations to accuracy of +- 25mm.

Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The holes drilled were for exploration purposes and were not drilled on a grid pattern. Drill hole spacing is considered appropriate for exploration purposes. The data spacing, distribution and geological understanding is not currently sufficient for the estimation of mineral resource estimation. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are orientated perpendicular to the perceived strike where possible. The orientation of drilling relative to key mineralised structures is not considered likely to introduce sampling bias. The orientation of sampling is considered appropriate for the current geological interpretation of the mineral style. The exact orientation of the mineralisation intersected in holes is not known at this time.
Sample security	The measures taken to ensure sample security.	 Samples have been overseen by the Project Manager during transport from site to the assay laboratories.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been carried out at this point.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Criteria JORC Code explanation				Con	nmentary			
 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the 			ding drial ties res, ding dritle tes, dark antal urre of any to	•	EL8933 is 10 Native title	g was conducte 00% held by Lod does not exist o enements are in	e Resources Ltd. ver EL8933		
 Exploration done by other parties Acknowledgment and appraisal of exploration by other parties. 		by	•	Limited hist	oric rock and so	il sampling.			
Geology	•	 Deposit type, geological setting andstyle of mineralisation. 			•	Orogen (NE The Webbs hosted with	O). EL8933 host Consol minerali	thern portion of the New England s numerous base metal occurrences. sation is likely intrusion related and onsol Leucogranite and, to a lesser anics.	
Drill hole Information		informat understa explorati including the follo for all M including northing, dip and hole lendepth and If the einformat Compete clearly ethe case.	nding on a tab wing in laterial s, eas elevate azimu gth, in d hole lexclusion is juent Per	of resolutation of citing action or other ceptal ength. In officiation striffed son showing and the citing actions of the citing actions of the citing actions and citing actions and citing actions actions and citing actions action	the ults of tion les, and RL, own tion this the ould	•		_	eralisation intersected in hole WCS020
	Easting	Northing	RL	Dip		nuth	EOH Depth	Drilling Method	
	352899	+ + +				rid 21	m 110.6	Diamond	

Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values are clearly stated in the body of this report. The metal equivalent formula is show below.
	+ Pb (%) x Price 1 Pb (%) x Pb Recovery (%) Price 1 Ag (g/t) x Ag Recovery (%) + Cu (%) x Price 1 Cu (%) x Cu Recovery (%) Price 1 Ag (g/t) x Ag Recovery (%)
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). No assays have been received at time of report for WCS020. The strike orientation of the mineralisation intersected in both hole WCS019 and WCS020 is in the Northwest and Southeast director with an estimated true width of 18.5m.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plans and sections. Refer to plans and sections within report

Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	balanced report.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported. 	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). 	