

ASX ANNOUNCEMENT 11 April 2023

Comet Vale Project – Western Australia

Labyrinth lays foundation for growth with completion of Resource and exploration strategy

JORC 2012 Resource of 96,000oz highlights outstanding potential for further growth with mineralisation open in all directions and numerous under-explored gold trends

Key Points

- Combined open pit and underground Indicated and Inferred Mineral Resource of 619,000t
 4.8 g/t Au for 95,710oz
- Underground Resource of 56,233oz @ 7g/t (2.5g/t cut-off) shows high grade nature of the mineralisation
- Open pit Resource of 39,477oz @ 3.3g/t (0.5g/t cut-off) highlights the potential to establish significant high-grade, shallow inventory; This would open the door to near-term mining and cashflow options
- Notable high-grade Indicated Mineral Resource component of 42,000oz @ 10g/t Au (above 5g/t Au cut-off)
- Resource is open in all directions, demonstrating substantial growth potential through both the near-mine and regional drilling across other known gold trends
- Previous mining conducted at the property showed recoveries of 95% through conventional CIL processing at nearby toll treatment facilities¹
- Mineral Resource prepared by an independent Competent Person and classified and reported in accordance with the JORC Code (2012)
- Resource is based on an extensive drilling database and rigorous modelling by independent consultants Right Solutions Australia

Next Steps:

- Receipt of assays from recently completed RC drill program targeting near-surface resource growth
- Planning of deeper drilling targeting down dip high grade mineralisation identified during the Resource estimate
- Regional exploration drilling targeting additional known gold and copper/gold trends
- Regional exploration drilling for other known commodities present on the property including nickel laterite

¹ Refer ASX announcement 30 January 2020

Labyrinth Resources Limited (Labyrinth or the Company) (ASX: LRL) is pleased to announce the completion of the first stage of its growth strategy at the Comet Vale Gold Project in WA.

As part of this first stage, Labyrinth has completed an updated Indicated and Inferred Mineral Resource of 619,489t @ 4.81 g/t Au for 95,710oz and identified numerous opportunities to grow the inventory.

The Mineral Resource was prepared by a Competent Person and classified and reported in accordance with the JORC Code (2012).

The Comet Vale project is situated within the Ora Banda Domain within the Yilgarn Craton and has been mined periodically over many decades, most recently between 2018 and 2020.

The Company has undertaken a review and compilation of all available historic data to facilitate the production of a Mineral Resource reported in accordance with the JORC Code (2012).

The Indicated and Inferred Mineral Resource includes mineralisation within 10 lodes: 2 lodes (Domains 1-2) in the Sand Queen trend and 8 lodes (Domains 3-10) in the Princess Grace and Sand George trend (Table 9). Collectively these 10 domains make up the Sovereign Trend. In addition to the known mineralisation, there is also immense potential to grow the Mineral Resource given that the key lodes remain open along strike and at depth (Figures 12 and 13).

Labyrinth Chief Executive Matt Nixon said: "This is a robust Mineral Resource which lays the foundations for ongoing resource growth.

"We have defined a significant resource at consistent high grade across the historically mined areas for both open pit and underground scenarios to reinvigorate the Comet Vale Project at an exciting period for the gold market.

"The underground resource grade of 7g/t shows the high-grade nature and genuine potential of this deposit in a world class gold belt.

"Importantly, the estimate shows high grade mineralisation continues at depth and along strike. This provides immediate high priority drill targets to further grow the Resource.

"This Mineral Resource covers only the Sovereign Trend of lodes to a maximum depth of 400m below surface. With 7 other known mineralised gold trends as well as the potential for parallel systems to be discovered, there is significant growth potential across the Project.

"Following on from the success of this Mineral Resource, the Company looks forward to conducting drilling both for future resource growth as well as exploration to bring new discoveries into the pipeline".

Table 1: Comet Vale March 2023 Depleted Resource (Au>=0.5g/t OP and >=2.5g/t UG)

Comet Vale Depleted Resource, Au>=0.5g/t (OP) and Au>=2.5g/t (UG)						
Category	y Tonnage Au Grade (g/t) Au Ounce					
Indicated	310,868	5.61	56,027			
Inferred	308,620	4.00	39,683			
Total	619,489	4.81	95,710			

Note: Estimates are rounded to reflect the level of confidence in the Mineral Resource at present. All resource tonnages have been rounded to the first significant figure. Differences may occur in totals due to rounding.

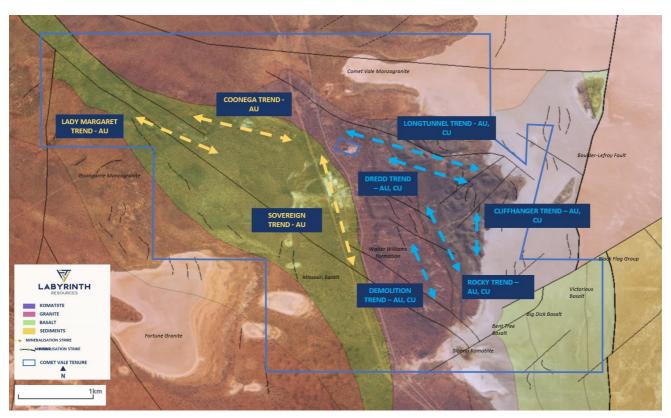


Figure 1 Comet Vale tenure highlighting known gold trends

Following the completion of the Mineral Resource Estimate, the global Indicated and Inferred Mineral Resource has been reported at two cut-off values to support both open pit and underground operations. A reporting cut-off value of 0.5g/t has been utilised for open pit (100m below surface) reporting while a reporting cut-off value of 2.5g/t has been utilised for underground. The combined reported Indicated and Inferred Mineral Resource is 619Kt at 4.81g/t for 96Koz of gold (Au) (Table 1).

- The global Inferred Mineral Resource estimate for open pit, at a reporting cut-off value of 0.5g/t:
 - o 369 Kt at 3.33 g/t for 39 Koz of Au (Table 2).
- The global Indicated and Inferred Mineral Resource Estimate for underground, at a reporting at a cut-off value of 2.5g/t:
 - o 250 Kt at 6.98 g/t for 56 Koz of Au (
 - o Table 3).

Table 2: Comet Vale March 2023 Depleted Open Pit Resource (Au>=0.5g/t OP)

Comet Vale Depleted Resource, Au>=0.5g/t (OP)					
Category	Tonnage	Au Grade (g/t)	Au Ounces		
Indicated	182,478	4.34	25,455		
Inferred	186,482	2.34	14,022		
Total	368,960	3.33	39,477		

Table 3: Comet Vale March 2023 Depleted Underground Resource (Au>=2.5g/t UG)

Comet Vale Depleted Resource, Au>=2.5g/t (UG)						
Category	Tonnage Au Grade (g/t) Au Ounces					
Indicated	128,390	7.41	30,572			
Inferred	122,138	6.53	25,661			
Total	250,528	6.98	56,233			

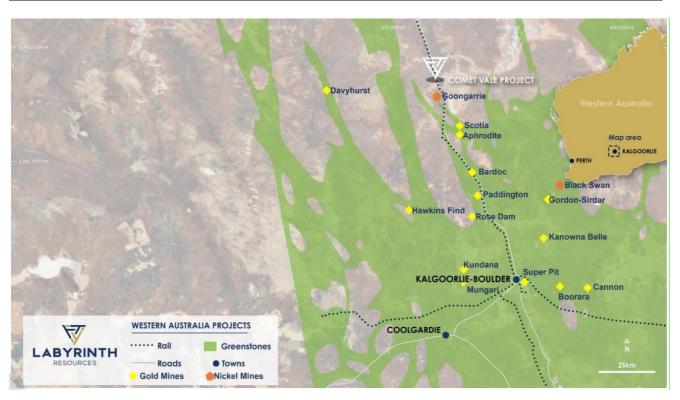


Figure 2: Comet Vale Project Location Map

This announcement has been authorised and approved for release by the Board.

Investor Enquiries Matt Nixon Chief Executive Officer admin@labyrinthresources.com

Media Enquiries
Paul Armstrong
Read Corporate
info@readcorporate.com.au

In compliance with the ASX Listing Rules 5.8.1 for the public reporting of a Mineral Resource, the Company provides the following information.

GEOLOGY AND GEOLOGICAL INTERPRETATION

Right Solutions Australia (**RSA**) have been engaged by Labyrinth Resources Limited (**LRL or the Company**) to complete a mineral resource estimate (**MRE**) for the Comet Vale Project in the Eastern Goldfields, Western Australia.

Comet Vale is situated 100km north-northwest of Kalgoorlie, Western Australia visible from the Goldfields Highway.

The focus of the MRE is on the Sovereign Trend within the Comet Vale Project (**CVP**). The CVP is currently on care and maintenance with previous underground mining ceasing in September 2020.

HISTORY

Gold was first discovered at the CVP in 1887, while the Sand Queen and Gladsome mines were not discovered until 1904. Mining occurred on these deposits intermittently for over 100 years with tenement ownership changing frequently with historic production is recorded as 245,000t for 185,000oz (ASX release Reed Resources Corporate Presentation dated 20 March 2003).

Labyrinth Resources acquired the Comet Vale Gold project in May 2018 as a joint venture with Sand Queen Gold Mines Pty Ltd.

GEOLOGY

The following regional and local Geology information has been taken from Cube Consulting Independent Technical Report (NI 43-101) for Reed Resources Limited.

REGIONAL GEOLOGY

The Comet Vale project is underlain by mafic-ultramafic volcanic rocks of the Ora Banda Domain and granitic rocks of the Goongarrie Monzogranite to the west and the Comet Vale Monzogranite to the north. The Ora Banda Domain is one of six tectono-stratigraphic domains that make up the Kalgoorlie Terrane and is host to several large gold deposits, including the Ora Banda and Mt Pleasant gold camps.

The mafic-ultramafic volcanic and meta-sedimentary rocks, and mafic igneous sills, within the Ora Banda Domain are referred to as the Ora Banda Sequence. Comet Vale is on the eastern side of the Ora Banda Domain, along a 1 - 5 km wide arm that extends for about 30 km north of Menzies. This arm of the Ora Banda Sequence, known as the Menzies Greenstone Belt, is bound to the west by the Goongarrie Monzogranite and to the east by the regional scale Bardoc-Menzies Tectonic Zone.

LOCAL GEOLOGY

Mafic-ultramafic volcanic rocks in the Comet Vale area are a continuation of the lower part of the Ora Banda Sequence, though generally with a reduced thickness (Swager, 1994). The mafic-ultramafic volcanic sequence at Comet Vale is divided into three formations that are correlated with the Missouri Basalt, Walter Williams Formation and Siberia Komatiite. Only the Missouri Basalt and Walter Williams Formation crop out in the vicinity of and along strike from the Sand Queen-Gladsome mine.

The Wongi Basalt at the base of the Ora Banda Sequence apparently does not crop out in the project area (Swager, 1994). Younger formations such as the Big Dick Basalt and Bent Tree Basalt may underlie the eastern part of the project area.

The Comet Vale deposit is hosted in the Ora Banda Sequence of mafic-ultramafic volcanic and metasedimentary rocks. Economic gold mineralisation is predominantly within quartz boudins from 0.1 to 4.5m in width with free gold spatially associated with pyrite/marcasite, pyrrhotite and elevated base metal values (sphalerite, galena, chalcopyrite).

- Missouri Basalt hangingwall
- Ultramafic footwall
- Dolerite present inbetween Basalt and Ultramafics
- Porphyrys from ultramafic and upwards through basalt hangingwall

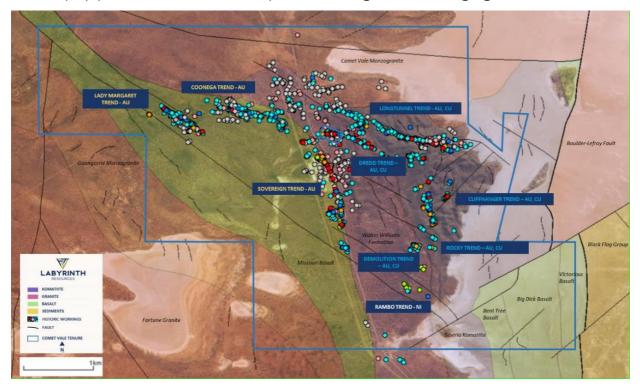


Figure 3: Geological map showing mineralised trends and tenure boundaries across Comet Vale with historical workings coloured by observed excavation depth.

MINERALISATION

Mineralisation within the Project is associated with quartz veining with free gold spatially associated with pyrite/marcasite, pyrrhotite and elevated base metal values (sphalerite, galena, chalcopyrite). Economic gold mineralisation is predominantly within veins ranging in thicknesses of between 0.1 to 2.5 m. At Comet Vale, quartz veining displays varying textures throughout the project area with higher grade gold values associated with zones of lamination. Additional observations have noted an increased in mineralisation at the intersection between quartz veining and porphyry units. Ten mineralised domains have been modelled throughout the Sovereign Trend within the Project area. Two continuous veins identified in the project area are referred to as Domains 1 and 2 and are located at a lithological boundary between the Missouri Basalt and ultramafic footwall.

The Sovereign Trend is comprised of multiple quartz veins across 1.3km of strike hosted within the Missouri Basalt. Gold mineralisation is hosted within quartz veins containing visible gold, pyrite, sphalerite and galena. Porphyry intrusions are present in between the Basalt and Ultramafic when in contact with the quartz veining, high gold grades are present.

Quartz veining varies in thickness and vein style with strongly laminated veins visible underground. Laminations within the quartz veining switched from hanging-wall to foot-wall alternating where the high grade lies within the quartz structure.

DRILLING AND SAMPLING

Since the acquisition of Comet Vale project, no drilling or sampling has been undertaken by LRL. The purpose of the MRE is to identify target areas for the planned surface drilling exploration program scheduled for Q2 2023. All drilling utilised in the MRE is considered historical. LRL have provided RSA with a data export for the CVP which has been used in all subsequent activities relating to the generation of the 2023 MRE. These activities included but not limited to:

- Regolith boundaries
- Geological interpretation
- Mineralisation interpretation

RSA is aware LRL are relying on the quality of work completed by previous owners of CVP. RSA is of the view that there is currently no evidence to contradict the assumptions made by LRL but recommends validation checks be made during future exploration activities.

DRILLING PROTOCOLS AND PRACTICE

Given the data for the CVP is historic in nature, assumptions on the drilling and sampling practices have been made. It is assumed historical drilling and sampling has been completed inline with industry standards.

TRANSFORMATION

All collar and down hole surveys were provided by LRL in MGA94_51. No mine grid transformations were made.

SAMPLING PREPARATION AND ANALYSIS

No data has been provided to RSA relating to the sampling methodology, quality assurance and quality control checks and the protocols for drilling and face data collection.

QAQC

It is assumed historical data collection has been completed in line with industry standards and QAQC was completed at the time.

No QAQC Report has been provided by LRL for the 2023 MRE.

RSA recommends the drilling of twinned holes alongside historical drilling providing an opportunity for LRL to complete validate on the neighbouring historic CVP drilling database while providing documented QAQC.

ESTIMATION METHODOLOGY

Gold grade has been estimated using ordinary kriging and inversed distance to the power of 2 on 5mE x 5mN x 5mRL blocks. The Mineral Resource model is classified as a combination of Indicated and Inferred. The classification of the Mineral Resource was determined based on geological confidence and continuity, drill density/spacing, search volume and the average sample distance. The resource classification has been further refined for Domains 1 and 2 based on the spatial position of these veins. Where Domains 4 to 10 fall within the open pit boundary the resource classification has been downgrade to Inferred only based on reduced geological confidence.

VALIDATION

Model validations have been completed including a model comparison with the MRE compiled in March 2010 by Cube Consulting for Reed Resources. The reported tonnes, in the March 2010 MRE, using a cut-off values of 5.0 g/t was 534 Kt at 10.8 g/t Au for 186 Koz of Au (refer to Cube Consulting's Technical Report (NI 43-101). This comparisons indicates, the Cube model reports significantly higher tonnes and grade then the updated MRE using a 5 g/t cut-off value. Without the original wireframes and MRE from March 2010 it is difficult to determine where the difference between both models is seen. Following the completion of the March 2010 MRE, underground mining at Comet Vale had been completed by numerous companies. The inclusion of face data is now available for utilisation in updating the interpretation and estimation. The updated interpretations supporting the geological models are predominantly based upon geological mapping and sampling from the development drives and airleg stoping. A minimum mining width of 0.3 meters has been applied.

DATABASE

DATABASE VALIDATION

The database was supplied by LRL. An extract from the maxgeo database resulting in six text files (collar, survey, lithology, assay, events and veins) were exported. Validation of the database has included:

- Visual checking of drillhole traces,
- Visual checking of geological and assay data, and
- Checking standard coding of geological data is consistent

The drillhole validations completed by RSA identified errors in the data set. These errors involved duplicate samples along duplicate holes following the identical collar and drill trace locations. Drill holes containing errors were removed from the dataset and were not included in the resource estimate. Holes excluded from the database are listed in Appendix 1.1.

No QAQC data is stored in the database therefore assumptions have been made that drillhole data stored in the database has been validated previously and required no additional work.

RSA recommend LRL follow up on the database export for estimation following RSA's validation checks with consideration to assigning priorities reflecting the data application within the CVP database.

DATA SUMMARY

DRILLHOLE DATA

A de-surveyed drillhole file was created in Datamine (cv_dh_230223.dm) using the following database extracts:

- Comet Vale collar
- Comet Vale survey
- Comet Vale tblDHLithology
- Comet Vale tbIVWDHAssays
- tbIDH_Events
- tbIDH Veins

A summary of the holes removed from the database prior to estimation are as follows:

- Twelve sludge holes were removed from the dataset. Sludge holes are considered by the Competent Person to be of insufficient quality for use in mineral resource estimate without visual checks on drilling and sampling protocols.
- Eight holes were removed from the dataset. These holes demonstrated duplicate collar and drill trace information.

With the removal of the sludge and duplicate holes, a new drillhole file (cv_dh_230223_b.dm) was used for the estimation.

The total number of holes intersecting the mineralised domains in the 2023 MRE was 7,665 holes for 6,553m. The total drillholes in the estimate including the waste domain was 46,627 amounting to 74,606.73m in Table 4. The complete list of drillholes included in the resource is presented in Appendix 1.2.

Table 4: Drilling	details,	usina	combined	drill file	(DH DOM)
1900 1. 01111119	a c i ano,	001119	COLLIGITION	arm mo	(011_00111	/

Data Type	No. of Holes	Drilled Metres
Drilling	3,793	3,285
Face Sampling	3,872	3,269
TOTAL	7,665	6,553

INPUT DATA

DATA SETS

Varying data types are present in the CVP database, including:

- Diamond drilling (DDH),
- Reverse circulation with diamond tails (RC_DDT),
- Reverse circulation (RC),
- Air core (AC) and
- Underground face samples (Back, FS, PROBE, Rise, SH, Spot, Stope and Wall).

For the purpose of reporting, RSA combined the face sample types into one hole type. No AC samples were used in the estimation in the mineralised domains. Spatially, RC drilling is mainly concentrated in the upper parts of the deposit while diamond drilling tends to be deeper below development (Figure 4). As presented in Table 5.

the most common type of drilling data intersecting the resource is reverse circulation drilling an overall sample population of 60.69%. A statistical summary of the global dataset was completed prior to compositing, providing a high level review of the input data.

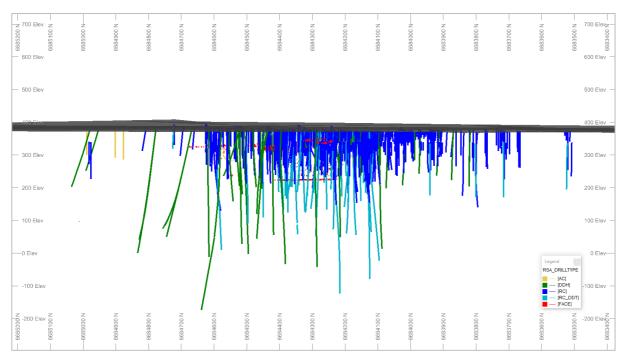


Figure 4: Spatial distribution of drilling types at Comet Vale

Table 5: Drillhole Types at Comet Vale using dh_dom.dm file

Comet Vale Drilling Types					
Туре	Meters	Percentage			
AC	241	0.32%			
DDH	11,249	15.08%			
RC	45,277	60.69%			
RC_DDT	13,830	18.54%			
FACE	4,009	5.37%			
TOTAL	74,606	100.00%			

Table 6: Univariate Summary Statistics Au (g/t) for all drill types and as a global dataset prior to compositing.

	AC	DDH	RC	RC_DDT	FACE	TOTAL
Samples	239	4,748	27,893	8,275	5,472	46,627
Mean	0.01	0.17	0.38	0.37	6.88	1.11
Variance	0.00	2.96	20.51	13.47	1,855.60	237.15
Std Dev	0.00	1.72	4.52	3.67	43.07	15.39
CV	2.32	10.26	12.01	9.95	6.26	13.80

DOMAINING

A total of ten mineralised domains were modelled for the 2023 MRE. Three domains, Domains 1, 2 and 3, represent the domains previously mined during underground operations and are located at the lithological contact between the Missouri Basalt and Ultramafic footwall contact. Domain 1 has a strike length of 1.3km and is open at depth. Seven domains, Domains 4 through to 10, have been intersected within the Missouri Basalt to the west of the historical underground development and have historically been mined through open pit operations.

INTERPRETATION

LRL provided RSA with three mineralised domain interpretations previously generated for the project. These interpretations referred to as Domains 1, 2 and 3 were generated during mining operations and were reviewed and updated by RSA. High-grade assay results in both drilling and face data, using a domaining cut-off value of 0.5g/t, were captured within the interpretation boundaries. A minimum domain width of 0.3m was utilised, an extension to the interpretation in the down-dip and along strike directions was included allowing for potential future exploration targets.

The interpretation for Domains 4, 5, 6, 7, 8, 9 and 10 commenced with the review of high grade areas when viewing in Datamine Studio RM, 3D modelling software. Drillhole and face data; lithology and analytical data, were used to determine geological continuity along strike and down dip.

A unique identifier was assigned to all domains referred to as a domain code. In the MRE file the field name is referred to DOM_CODE. The unique identifier is a numeric field and follows the numbering of the domain names.

A waste domain was generated surrounding the mineralised domains allowing for a background grade model to be estimated. The waste domain was assigned a domain code of 100.

ESTIMATION TECHNIQUE AND SEARCH PARAMETERS

All mineralised interpretations were prepared in MGA94_51. Mineralised interpretations are based upon underground mapping, geological logs (all sample data), and gold analytical data, were constrained by a minimum width of 0.3m and were generated using Datamine Studio RM. Individual mineralised interpretations were assigned a domain code as a unique identifier.

Sample data was composited to 1m intervals within the ore domains, top cuts were then applied to high gold values considered as outliers. Top-cut values were determined using statistical methods; quantiles, log histograms and log probability plots for Domains 1, 2 and 3 individually, with Domains 4 to 10 analysed as a domain group.

Kriging Neighbourhood Analysis (**KNA**) was completed on Domains 1 and 2. An inital estimate was generated using the KNA parameters, upon visual review, the block size and number of samples were adjusted across multiple estimations to determine the optimal parameters for the Comet Vale Project.

Ordinary Kriging (**OK**) was the primary estimation method for Domains 1 and 2. Domains 3 through to 10, were estimated with Inverse Distance Squared (**ID2**) due to an insufficient data population in each domain for conclusive variography (Appendix 1.8). The waste domain was estimated using ID2 methods. Additional estimation techniques were run in parallel to the primary estimation selected for each domain. For Domains 1 and 2, ID2, Inverse distance cubed (ID3) and nearest neighbour (NN) were completed providing additional validation checks of the final OK model. For Domains 3 through to 10, including the waste domain, ID3 and NN were completed providing additional validation checks of the final ID2 model.

Three search passes were estimated across all domains. A fourth search pass for Domains 1 and 2 was utilised to provide an estimation reflecting a potential exploration target for drill planning. The fourth search pass remains unclassified and was estimated using ID2 with a minimum of 1 sample and a maximum of 6 samples.

A maximum of 2 samples per hole has been flagged in the estimation process ensuring more than one hole was utilised to inform a block in the estimation of search pass one, two and three.

An average density was assigned to each domain based on historical density measurement data. Validation of the global model was completed via visual and analytical methods ensuring blocks were correctly coded for mineralised domains, with estimated grade values reflecting local input assay data.

BULK DENSITY

A single bulk density has been assigned in the MRE was based on a historical value of 2.7t/m³. This value has been historically used across all blocks in previous estimations on the Comet Vale Project. LRL supplied 60 bulk density measurements with an average of 2.71t/m³ supporting the historical value therefore a bulk density of 2.7t/m³ was applied to all rock types.

Approximate oxidation boundaries were generated for the CVP MRE based on logging codes. Limited intercepts for oxidation boundaries were stored in the CV database therefore boundary locations are an approximation only. A surface was generated by RSA representing the top of fresh (**TOF**) boundary based on the data supplied. The TOF surface was used to code regolith into the MRE with oxide (**OX**) and fresh (**FR**) being the only two codes assigned.

RSA recommends density measurements and the determination of regolith boundaries be a focus during data collection in future exploration drill programs completed by LRL. RSA identifies a potential risk to the project due to assign a single density value of 2.7t/m³ across both fresh and oxide regolith boundaries. This risk relates to the over reporting of tonnes in oxide material.

MODEL VALIDATION

WIREFRAME VOLUME

Wireframe volumes and blocks estimated were validated to ensure there was minimal loss in volume due to sub-celling block dimensions (Table). The percentage difference for domains 3 to 10 are considered to be within an acceptable range (\sim 5%). The percentage difference for domains 1 and 2 reflects a volume loss of \sim 8%. If further sub-celling occurs, reducing the sub-cell dimensions from 0.325m to 0.1625m, to improve the volume loss identified, the resulting model file size will be significantly large and not practical for use. Therefore, the volume loss of \sim 8% is considered reasonable for this type of mineralisation style.

Wireframe Volume vs Sub-Celled Block Volume					
Domain	Wireframe Volumes	Sub-celled Block Volumes	Percentage Difference		
1	618,670	570,955	-7.7%		
2	378,800	349,881	-7.6%		
3	876	874	-0.2%		
4	11,360	10,887	-4.2%		
5	12,099	11,539	-4.6%		
6	4,274	4,047	-5.3%		
7	2,102	1,990	-5.3%		

Table 7: Wireframe volume vs sub-celled block volume

8	775	729	-5.9%
9	5,954	5,703	-4.2%
10	1,263	1,190	-5.8%
Total	1,036,173	957,795	-7.6%

MODEL VARIATIONS

Multiple model variations were completed to test the sensitivity of the search ranges, minimum and maximum samples and maximum samples per drillhole required to inform a block. Each model was reviewed visually in 3D with comparisons against drillhole composites and reviewed statistical in Snowden Supervisor software prior to selecting the optimal search parameters for each domain used in the 2023 MRE.

GRADE TREND PROFILES (SWATH PLOTS)

Sectional and elevation validation profiles were generated for each domain. The profiles compare the average of the estimated block grade to the average of the input composite grade for northing, easting, and elevation slices through the model. Figure 5 through to Figure 10 show grade trend profiles for domains 1 and 2 illustrating no concerns with the estimation parameters, with the estimation of grade reflecting the grade profile of the input data. Grade trend profiles for all domains are presented in Appendix 1.8. Cross sections every 100m and plan sections every 50m through the orebody were produced for visual validation of the block model grade with drill hole grade (Appendix 1.11), these sections and plans highlight no concerns with the estimation parameters.

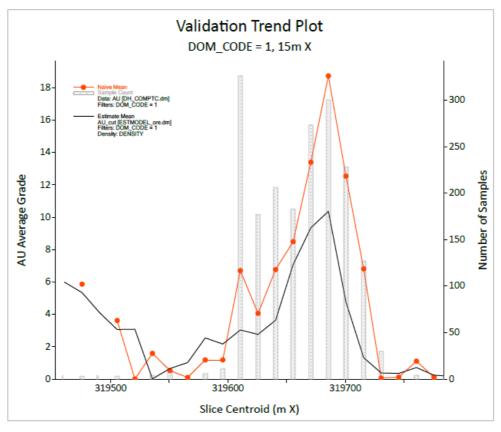


Figure 5: Grade trend profile plots by Easting for Domain 1

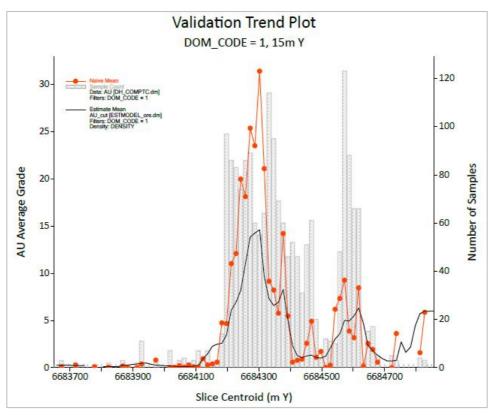


Figure 6:Grade trend profile plots by Northing for Domain 1

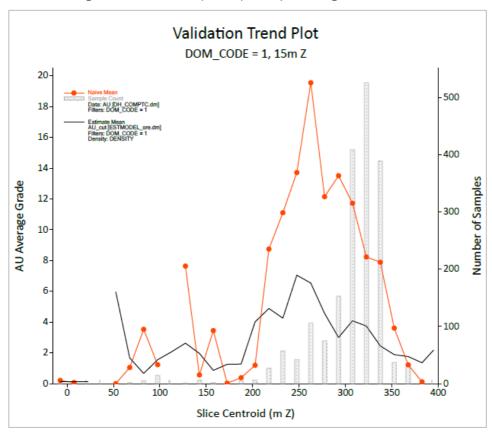


Figure 7: Grade trend profile plots by RL for Domain 1

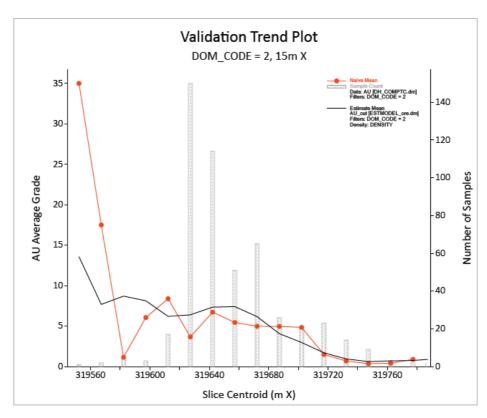


Figure 8:Grade trend profile plots by Easting for Domain 2

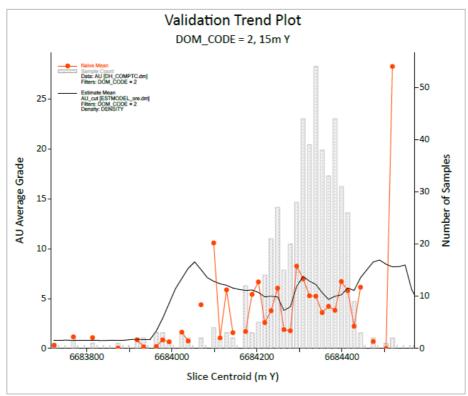


Figure 9:Grade trend profile plots by Northing for Domain 2

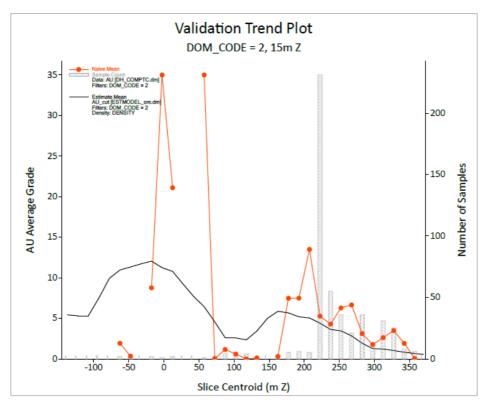


Figure 10:Grade trend profile plots by RL for Domain 2

RESOURCE CLASSIFICATION

The MRE has been classified as a combination of Indicated, Inferred and Unclassified. The classification of the MRE was determined based on geological confidence and continuity, drill density/spacing, search volume and the average sample distance informing a block. Perimeter strings outlining the Indicated and Inferred boundary extents were generated and used to code the MRE removing the patchwork nature of assigning resource categories based on block model statistics alone. To guide in the generation of the resource classification perimeter string, the criteria was as follows:

For domains 1 and 2:

- Indicated Resources; is defined by search pass 1 and 2, an average sample distance within 35m was required, and visual continuity of the input data and grade estimation.
- Inferred Resources; is defined by search pass 2 and 3, an average sampling distance within 70m was required and visual continuity of the input data and grade estimation.
- Unclassified Resources: is defined by search pass 4 due to the large search range and reduced search parameters required to inform a block.

For domain 3:

• Unclassified Resources; is defined by search pass 1, 2 and 3. Domain 3 was given a resource category as unclassified due to the assumptions on input data providing reasonable doubt to the quality of the estimation.

For domains 4 to 10:

• Inferred Resources; is defined by search pass 1, 2 and 3. These domains were generated based on RSA's interpretation of the input data, LRL did not supply supporting geological maps or documents to assist in the generation of the interpretation.

For the waste domain:

• Unclassified Resources: is defined by search pass 1, 2 and 3 due to the large search range and reduced search parameters required to inform a block.

Resource classification codes included in the MRE are listed in Table 8 and the spatial distribution of the resource classification is displayed in long section in Figure 111 and Figure 12.

 Classification
 Code

 Measured
 1

 Indicated
 2

 Inferred
 3

 Unclassified
 >=4

Table 8: Resource Classification Codes

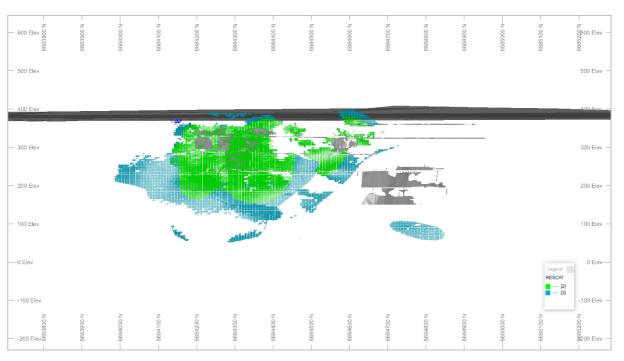


Figure 11: Long section showing underground working and topography (grey) with domains 1, 2 and 3 indicated and inferred resource with Au>2.5g/t. Model displayed where Indicated = 2 and Inferred = 3

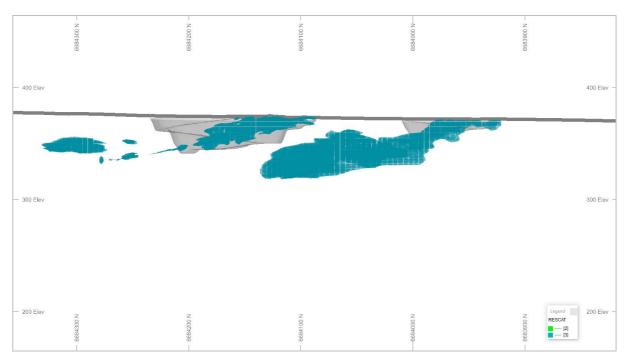


Figure 12: Long section showing underground working and topo (grey) with domains 4 to 10 inferred resource with Au>0.5g/t. Model displayed where Indicated = 2 and Inferred = 3

RESOURCE ESTIMATE

The Comet Vale 2023 MRE has produced an Indicated and Inferred Global Resource of 620Kt at 4.81g/t for 96Koz, at a reporting cut-off of 0.5g/t (OP) and 2.5g/t (UG) Au. A tonnes and grade summary at both the open pit reporting cut-off grade (0.5g/t) and the underground reporting cut-off grade (2.5g/t) has been included in Table to Table respectively.

Table 9: Comet Vale March 2023 Depleted Resource per domain (Au>=0.5g/t OP and >=2.5g/t UG)

Domain	Category	Tonnes	Grade	Ounces
1	In dianto d	175,543	6.28	35,426
2	Indicated -	135,326	4.74	20,601
1		121,897	2.96	11,612
2		119,728	5.40	20,778
3		-	-	-
4		25,211	3.85	3,124
5	Inferred	30,675	3.09	3,046
6		10,668	3.22	1,103
7		89	0.99	3
8		-	-	-
9		274	1.33	12
10		78	1.96	5
Sub Total (Ind.)		310,868	5.61	56,027
Sub Total (Inf.)		308,620	4.00	39,683
Grand Total		619,489	4.81	95,710

Table 10: Comet Vale March 2023 Depleted Resource (Au>=0.5g/t OP and >=2.5g/t UG)

Comet Vale Depleted Resource as of 03/09/2020, Au>=0.5g/t (OP) and Au>=2.5g/t (UG)						
Category	Tonnage Au Grade (g/t) Au Ounces					
Indicated	310,868	5.61	56,027			
Inferred	308,620	4.00	39,683			
Total	619,489	4.81	95,710			

Table 11: Comet Vale March 2023 Depleted Resource (Au>=0.5g/t OP)

Comet Vale Depleted Resource as of 03/09/2020, Au>=0.5g/t (OP)					
Category	Tonnage	Au Grade (g/t)	Au Ounces		
Indicated	182,478	4.34	25,455		
Inferred	186,482	2.34	14,022		
Total	368,960	3.33	39,477		

Table 12: Comet Vale March 2023 Depleted Resource (Au>=2.5g/t UG)

Comet Vale Depleted Resource as of 03/09/2020, Au>=2.5g/t (UG)			
Category	Tonnage	Au Grade (g/t)	Au Ounces
Indicated	128,390	7.41	30,572
Inferred	122,138	6.53	25,661
Total	250,528	6.98	56,233

The Indicated and Inferred 2023 MRE is displayed in long section, Figure 13 and Figure 14, to illustrate the visual distribution of the grade estimation. The MRE has reported by amalgamating each domain to account for the inclusion of internal dilution. The MRE was depleted for mining as of 3 September 2020.

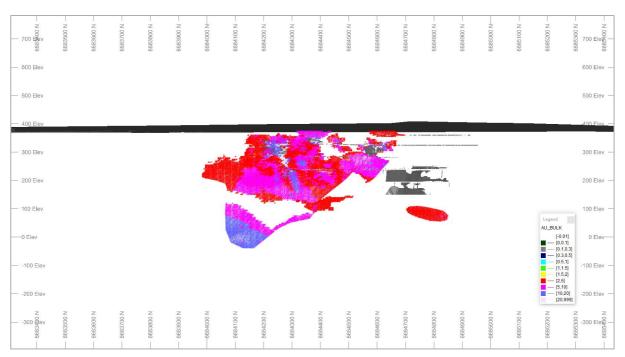


Figure 13: Long section showing underground working and topography (grey) with domains 1, 2 and 3 indicated and inferred resource with Au>2.5g/t. Model displayed with AU_cut.

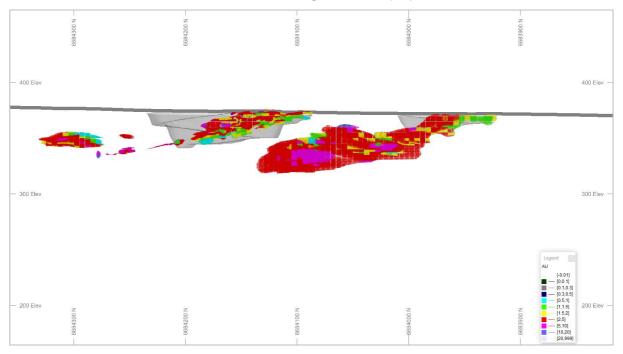


Figure 14: Long section showing underground working and topography (grey) with domains 4 to 10 inferred resource with Au>0.5g/t. Model displayed with AU_cut.

MINERAL INVENTORY

The global MRE for Comet Vale, as mineral inventory of indicated and inferred is 1.08Mt @ 2.99g/t Au for 104kOz, Table . The MRE is reported by amalgamating each domain at a cut-off of 0.0g/t Au. The model was depleted for mining on the 3rd of September 2020. Refer to Table for a breakdown of tonnes and grade for each domain.

Table 13: Comet Vale March 2023 Depleted Resource (Au>=0.0g/t)

Co	Comet Vale Depleted Resource as of 03/09/2020, Au>=0.0g/t		
Category	Tonnage	Au Grade (g/t)	Au Ounces
Indicated	385,813	4.69	58,208
Inferred	699,464	2.04	45,958
Total	1,085,277	2.99	104,166

COMPARISON WITH PREVIOUS RESOURCE ESTIMATES

The previously reported Indicated and Inferred MRE was compiled by Cube Consulting for Reed Resources in March 2010. The MRE was reported as Sand George Gold Mineral Resource with a reporting cut-off of 5.0g/t Au totalling 534,000t at 10.8g/t Au containing 186,000 ounces. There is a noticeable difference in tonnes and ounces between the 2010 MRE and the 2023 MRE, however the grade is comparable. The interpretation and block model used for the 2010 MRE were not provided to RSA therefore additional validation checks between models other than a comparison between reported resource was difficult. Since the completion of the 2010 MRE, underground mining has occurred therefore tonnage differences between the two models may be attributed to depletions. Comparisons were attempted using images and tables within Cube Consulting's technical report (NI 43-101).

Table 14: Comet Vale March 2023 Depleted Resource (Au>=5.0g/t)

Comet Vale Depleted Resource as of 03/09/2020, Au>=5.0g/t			
Category	Tonnage	Au Grade (g/t)	Au Ounces
Indicated	131,418	10.00	42,250
Inferred	95,018	8.18	24,991
Total	226,436	9.24	67,241

QUALIFICATIONS

The Comet Vale Project Mineral Resource estimate and associated statements have been compiled and prepared by Mrs Jacinta Blincow (Senior Resource Geologist, Right Solutions Australia (RSA)).

Mrs Blincow is a qualified geologist with over 12 years' experience in geology and resource evaluation. Jacinta is a member of the Australian Institute of Geoscientists (AIG) and has sufficient experience to qualify as a Competent Person under the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves, 2012 Edition (JORC Code, 2012).

The Mineral Resources quoted in this report are based on the information supplied by Andrew Chirnside from Labyrinth Resources Limited and compiled by Jacinta Blincow. At the time of preparation of this estimate, Mr Chirnside is a full-time employee of Labyrinth Resources Limited.

COMPETENT PERSONS STATEMENTS DECLARATION 1

The Comet Vale Project Resources as presented in this report have been prepared under the guidelines of the JORC Code (2012).

I, Andrew Chirnside, confirm that I am the Competent Person for the report and:

- I have read and understood the requirement of the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resource and Ore Reserve (JORC Code, 2012);
- I the Competent Person as defined by the JORC Code (2012), having a minimum of five years' experience that is relevant to the style of mineralisation and type of deposit described in the report and to the activity for which I am accepting responsibility;
- I am a Member of AIG; and
- I have reviewed the report to which this Consent Statement applies.

Neither the author nor RSA have any material interest or entitlement, direct or indirect, in the securities of Labyrinth Resources Limited. RSA commenced providing geological services to Labyrinth Resources Limited in 2022.

I verify that the Report is based on is fairly and accurately reflects the form and context in which it appears, information in my supporting documentation relating to Mineral Resources.

Andrew Chirnside

BSc (Mineral Exploration and Mining Geology), MAIG Chief Geologist - Labyrinth Resources Limited Level 1, Suite 5, 460 Roberts Road SUBIACO WA 6008

DECLARATION 2

The Comet Vale Project Mineral Resources as presented in this report have been prepared under the guidelines of the JORC Code (2012).

I, Jacinta Blincow, confirm that I am the Competent Person for the report and:

- I have read and understood the requirement of the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resource and Ore Reserve (JORC Code, 2012);
- I the Competent Person as defined by the JORC Code (2012), having a minimum of five years' experience that is relevant to the style of mineralisation and type of deposit described in the report and to the activity for which I am accepting responsibility;
- Lam a Member of AIG: and
- I have reviewed the report to which this Consent Statement applies.

Neither the author nor Right Solutions Australia Pty Ltd have any material interest or entitlement, direct or indirect, in the securities of Labyrinth Resources Limited. Right Solutions Australia Pty Ltd commenced providing geological services to Labyrinth Resources Limited in 2022

I verify that the Report is based on is fairly and accurately reflects the form and context in which it appears, information in my supporting documentation relating to Mineral Resources.

Jacinta Cook

BSc (Mineral Exploration and Mining Geology), MAIG Senior Resource Geologist - Right Solutions Australia Pty Ltd Suite 6, 20 Twickenham Road BURSWOOD WA 6100

APPENDIX

COMET VALE PROJECT – JORC TABLE 1 (JORC CODE, 2012 EDITION)

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Comment
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 No sampling activities have been conducted at the Comet Vale Project (CVP) by Labyrinth Resources Limited (LRL). Sampling methods undertaken at CVP, by previous owners, have included reverse circulation (RC), reverse circulation with diamond tail (RC_DDT), aircore (AC), diamond drilling (DDH) and face chip sampling. Historical sampling of drillholes and face channels, the nature and quality of which is considered to be done using Industry Standard practices and standard sampling protocols. LRL are satisfied that the historical sampling of drill core, drill samples and face samples was carried out as per industry standard, and similar to, or in accordance with LRL sampling and QAQC procedures. The majority of the historic drillholes have been sampled to 1m intervals to provide a 2.5-3 kg sample for analysis. Historical analysis methods include fire assay, aqua regia and unknown methods. Analysis methods are recorded in the CVP database by the following codes: FA/AAS, AR_AAS and LW_AAS.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc.).	 Drilling methods undertaken at CVP by previous owners have included reverse circulation (RC), reverse circulation with diamond tail (RC_DDT), aircore (AC), diamond drilling (DDH). Historical surface and underground diamond core drilling techniques are unknown however assumed to have been carried out to industry standard at that time.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 It has been noted that recoveries for historic diamond drilling were rarely less than 100% although recovery data has not been provided. Minor core loss was most likely due to drilling conditions and not ground conditions. Diamond drilling has high recoveries, due to the competent nature of the ground, therefore loss of material is minimised. There is no apparent sample bias. Rock chip samples, taken by the geologist underground, do not have sample recovery issues. Underground faces are sampled left to right/bottom to top across the face allowing a representative sample to be taken.

Criteria	JORC Code explanation	Comment
		 It is unknown what, if any, measures were taken to ensure sample recovery and representativity of the sample with historic sampling. There is no known relationship between sample recovery and grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	 It has been assumed by LRL that drill core was logged geologically and geotechnically to a level of detail sufficient to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Logging of diamond drill core has recorded lithology, mineralogy, texture, mineralisation, alteration and veining. Logging is qualitative and/or quantitative where appropriate. Historic logging varies in its completeness. Qualitative and quantitative logging of historic data varies in its completeness. Some historic diamond core photography has been preserved. Underground faces were photographed and mapped.
Subsampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 Diamond drill core samples were obtained by cutting the core in half, along the entire length of each sampling interval. Half core samples are collected over predetermined sampling intervals, from the same side, and submitted for analysis. Drill core sample lengths can be variable in a mineralized zone, minimum sampling width is 0.01 metres. This enables the capture of assay data for narrow structures and localized grade variations. Due to amalgamation of data with historical companies, not all core sample methods have been recorded. Various sampling methods for historic AC and RC drilling have been carried out including scoop, spear, riffle and cyclone split. Underground face samples were chip sampled from the wall using a hammer It is unknown if wet sampling was carried out previously. All sub-sampling activities are carried out by commercial certified laboratory and are considered to be appropriate. Industry standard practice is assumed at the time of historic RC, AC and DDH sampling. No duplicate samples are recorded in the database including Field Duplicates from historical data. For a proportion of diamond drill core the remaining half core, portion not sampled, is retained in core trays for future reference. There is sufficient drilling data and underground mapping and sampling data to satisfy LRL that the sampling is representative of the in-situ material collected Analysis of drilling data and mine production data supports the appropriateness of sample sizes.

Criteria	JORC Code explanation	Comment
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Documentation regarding more historical holes and their sample analyses are not well documented. Historic sampling includes fire assay, aqua regia and unknown methods. It is assumed the quality of the historical assays is within industry standards. All historical assay results for gold are considered total. QAQC data is not stored in the database Labyrinth Resources Limited has acquired post acquisition. It has been assumed at the time of assaying, QAQC was completed and acceptable levels of accuracy and precision were established prior to accepting the sample data. No geophysical tools have been utilised to determine assay results at the Comet Vale Project.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Assumptions are made that historic core samples with significant intersections were reviewed by Senior Geological personnel to confirm the results. No specific twinned holes were drilled, however due to the drilling density several intersections are often in close proximity. Wedged holes were completed which contained overlapping samples in some areas. These were reviewed and removed from the dataset prior to running the estimation. Data from previous owners was taken from a database compilation and was validated as much as practicable before entry into the SQL database. The SQL server database is configured for optimal validation through constraints, library tables and triggers. Hard copies of face mapping, backs mapping and sampling records are kept on site. Digital scans are also kept on the corporate server. The database is secure and password protected by the Database Administrator to prevent accidental or malicious adjustments have been made to assay data. First gold assay is utilised for grade review.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Historic drilling was located using mine surveyors and standard survey equipment The majority of downhole surveys for historic RC, AC and DD drilling are estimates only. More recent (post 1990) drilling has been surveyed with downhole survey tools at regular intervals including gyroscope and camera. Underground voids are surveyed by mine surveyors. The survey control on these voids is considered adequate to support the drill and mine planning. Historic data was exported from the database in MGA94_51 on export from the database. DGPS survey has been used to establish a topographic surface from historic drilling

0.11	IODO O LI	0
Criteria	JORC Code explanation	Comment
Data spacing and distribution	Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The nominal drill spacing is variable ranging from less than 25m x 25m with some areas of the deposit at 100m x 100m or greater. This spacing includes data that has been verified from previous exploration activities on the project.
		Underground level development is 15-45 meters between levels and face sampling is <1m to 10m spacing. This close spaced production data provides insights into the geological and grade continuity and forms the basis of exploration drill spacing.
	Whether sample compositing has been applied.	The Competent Person considers the data reported to be sufficient to establish the degree of geological and grade continuity appropriate for future Mineral Resource classification categories adopted for Comet Vale.
		Diamond drill core and faces are sampled to geological intervals; compositing is not applied until the estimation stage.
		Reverse circulation drilling are sampled to 1m composite lengths.
		Samples were composited in the estimation stage to a fundamental lengths of 1m.
		Some historic AC drilling was sampled with 3-4m composite samples. Anomalous zones were resampled at 1m intervals in some cases; it is unknown at what threshold this occurred.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Sampling of the ore domains has been conducted in most cases perpendicular to the lode orientations where the mineralisation controls are well understood. It is possible, where mineralisation controls were not well understood, drilling may not be at the correct angle for interpretation of the mineralisation overall mineralisation in this deposit has been optimally intersected. There is no record of any drilling or sample bias that has been introduced because of the relationship between the orientation of the drilling and that of the mineralised structures.
Sample security	The measures taken to ensure sample security.	Historical samples are assumed to have been under the security of the respective tenement holders until delivered to the laboratory where samples would be expected to have been under restricted access.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audits or reviews have been conducted for the purposes of this report.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Comment
Mineral tenement and land tenure status	nt and location and ownership including	 The Comet Vale Project is located on M29/197, M29/232, M29/198, M29/52, M29/321, M29/185, M29/200, M29/233, M29/270, M29/186, M29/235, M29/85 and M29/199. The mining leases are in joint venture with 51% Labyrinth Resource Limited Pty and a private group 49% Sand Queen Gold Mines.
	environmental settings. The security of the tenure held at the	The mining leases are subject to a 2% Net Smelter Royalty payable to MTAB Pty Ltd.
	time of reporting along with any known impediments to obtaining a licence to operate in the area.	All production is subject to a Western Australian state government 'NSR' royalty of 2.5%.
		All bonds have been retired across these mining leases and they are all currently subject to the conditions imposed by the MRF.
		 There are currently no native title or historical sites claims applied for, or determined, over the mining leases. The tenements are in good standing and the licence to operate already exists. There are no known impediments to obtaining additional licences to operate in the area.
Exploration done by other parties	Acknowledgement and appraisal of exploration by other parties.	The Comet Vale area has been explored with drilling for over 60 years by numerous companies. Gold was first discovered in 1987 with the main orebodies (Sand Queen and Gladsome) not discovered until 1904. Sporadic mining occurred from 1928 to 1948 and again in the late 1980's.
		In 2002 Reed Resources Pty Ltd dewatered the refurbished shaft to gain access underground to Level 4. Pre-feasibility studies were completed with visuals from underground and mapping supporting the geological model. In 2006, mining commenced with the plan to mine more than 65,000 ounces of gold in joint venture with Kingrose Pty Ltd. Mining ceased in June 2010 after mining was completed due to needing a long term milling solution. In this time, 71,074t at 10.27g/t Au for 21,915 ounces was mined.
		In 2018, Orminex Ltd joint venture with Mineral Vetnures began a 27 month underground mine plan. Two successful gold pours were completed however in 2020, an unsuccessful drilling program put a hold on further development.
Geology	Deposit type, geological setting and style of mineralisation.	The Comet Vale mineralisation is considered to be part of the Ora Banda Domain and grantic rocks of the Goongarrie Monzogranite to the west and the Comet Vale Monzogranite to the north.
		The Missouri Basalt is conformably overlain to the east by ultramafic rocks. In between the Basalt and Ultramafics is a Diorite zone with multiple porphyry units and quartz veining.
		Gold mineralisation occurred late in the deformation history. Economic gold mineralisation is mostly within

Criteria	JORC Code explanation	Comment
		Domain 1, a quartz vein striking up to 1.3km in length. Multiple generations of quartz are present at Comet Vale with laminated veins being known to carry high grades on the hanging-wall or foot-wall of the quartz unit. Gold appears as free particles and is spatially associated with pyrite, pyrrhotite, sphalerite, galena and chalcopyrite.
Drillhole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: • easting and northing of the drillhole collar • elevation or RL (Reduced Level - elevation above sea level in metres) of the drillhole collar • dip and azimuth of the hole • downhole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 A relevant drillhole data is reported in the Resource Report (Comet Vale Project Mineral Resource Estimate, R104.2023 LRL Comet Vale ITR available from LRL) associated with the model build. Future drill hole data will be periodically released or when a result materially changes the economic value of the project.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No exploration results are being reported at the time of the ASX announcement as Labyrinth Limited Pty has not completed any drilling or sampling since their acquisition of Comet Vale.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known').	No exploration results are being reported at the time of the ASX announcement as Labyrinth Limited Pty has not completed any drilling or sampling since their acquisition of Comet Vale.

Criteria	JORC Code explanation	Comment
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	Refer to Appendices 2 and 3 the Resource Report. (Comet Vale Project Mineral Resource Estimate, R104.2023 LRL Comet Vale ITR available from LRL)
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	No exploration results are being reported at the time of the ASX announcement as Labyrinth Limited Pty has not completed any drilling or sampling since their acquisition of Comet Vale.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No exploration results are being reported at the time of the ASX announcement as Labyrinth Limited Pty has not completed any drilling or sampling since their acquisition of Comet Vale.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Labyrinth Resources Limited has reviewed both the historical and current Mineral Resource Estimations (MRE) and geology interpretations. The current MRE is referred to as to 2023 MRE. Utilising the 2023 MRE, drilling is being scheduled to test the next one to two-year mine plan for underground. No diagrams have been included in this report to show the proposed drilling plans for the Comet Vale Project.

Section 3: Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Comment
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	The database provided to LRL was an extract from an SQL database. The database is secure and password protected by the Database Administrator to prevent accidental or malicious adjustments to data. All exploration data control is managed centrally, from drill hole planning to final assay, survey and geological capture.
	Data validation procedures used.	 Data from previous owners was taken to be correct and valid. The SQL server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications.
		Validation of data included visual checks of hole traces, analytical and geological data.

Criteria	JORC Code explanation	Comment
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	 The competent person is an employee of Right Solutions Australia Pty Ltd. The Competent Person has an appreciation of the Comet Vale deposit geology and the historical mining activities that occurred there. No site visit was undertaken during March 2023 due to Comet Vale being on care and maintenance.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology.	 The interpretation has been based on the detailed geological work completed by previous owners of the project. LRL has reviewed and validated the historical interpretation of the Comet Vale Project. This knowledge is based on extensive geological logging of drill core. RC chips, underground face sampling and assay data. Results of recent underground mining in the past 10 years have also been used. Mineralisation of ore domains are defined by quartz veining, occurrence of sulphides (pyrite, pyrrhotite and pyrite) and elevated gold grade (>0.5 g/t). The interpretations have been constructed using all available geological logging descriptions including but not limited to, stratigraphy, lithology, texture, and alteration. Two ore domains were updated while eight ore domains have been added based on additional information (drillhole and face data). In total, ten domains were modelled for the purpose of the estimation under LRL's review of the data and future drill targets. Cross sectional interpretations of the mineralisation have been created and form the basic framework through which the 3D wireframe solid is built. RSA has not considered any alternative interpretation on this resource. LRL will continue to review all the resource data with the aim of validating the current interpretation and its extents. The wireframed domains were terminated along known structures. Mineralisation styles, geological homogeneity, and grade distributions for each domain (used to highlight any potential for bimodal populations) are all assessed to ensure effective estimation of the domains. Domains 1 and 2 were extended down dip for target generation in future surface drill planning. The main factors affecting continuity are; Quartz veining within the hosting Missouri Basalt. Proximity to the porphyry units results in an increase of grade. Laminations within the quartz veins is not continuous and varies from hanging wall to footwall pr

Criteria JORC Code	explanation	Comment
Mineral Reso (along strike and depth b	nd variability of the ource expressed as length or otherwise), plan width, pelow surface to the upper mits of the Mineral	 The underground section of Comet Vale has a strike length of 1.3km with underground development covering 180m down dip with a further 225m down dip drilled. In the Open pit shallow dipping (-22 degrees) mineralisation zones have been modelled. This area has multiple grade shells with a short strike and down dip length of 70m x 60m. Mineralisation is still open down dip on domains 1 and 2 where underground development has
		occurred.
modelling techniques estimation to key assumpt of extreme gointerpolation maximum diafrom data per assisted estimation of computer sortius and the assumpt recovery of the search extreme gointerpolation of the averation of the averation of the averation of the search extremely assumpt selective minum and the search extremely assumpt to the averation of the aver	f deleterious elements or rade variables of gnificance (e.g. sulphur for rainage characterisation). of block model of the block size in relation are sample spacing and employed. It ions behind modelling of the block correlation riables. Of how the geological on was used to control the	 Two ore domains (1 and 2) were estimated using ordinary kriging Eight ore domains and a waste domain surrounding the ore domains were estimated using inverse distance to the power of 2 on 5mE x 5mN x 5mRL parent blocks size. Search parameters are consistent with geological observation of the mineralisation geometry, with three to four search passes completed: Examples of search and variogram parameters for the resource model are as follows; Ordinary Kriging (OK), Inverse Distance Squared (ID2), Inverse Distance Cubed (ID3) and Nearest Neighbour (NN) were completed on all domains as validation of the OK grades. The results were found to be satisfactory. No assumptions have been made with respect to the recovery of by-products. There has been no estimate at this point of deleterious elements. The resource used the parent block size of 5m(X) by 5m(Y) by 5m(Z). These were deemed appropriate for the majority of the resource, where the nominal drill spacing is in the order of 25m x 25m and a large proportion of closely spaced underground face samples. Parent blocks in the ore domains were sub-celled to 0.3125m(X) by 0.3125m(Y) by 0.3125m(Y) by 0.3125m(Y) by 1.25m (Y) by 1.25m (Z) using a half by half method to ensure that the wireframe boundaries were honoured and preserved the location and shape of the mineralisation. Search ranges have been informed by variogram modelling and knowledge of the drill spacing and the known mineralisation geometry including direction of maximum continuity. Three search estimation runs are used except for domains 1 and 2 which included a fourth search to populate an estimation in the extended wireframes. The fourth search pass has an unclassified resource

Criteria	JORC Code explanation	Comment
		 The model has been sub-celled to reflect the narrow veining with the updated domains using the Datamine implicit modelling to a minimum width of 0.3m. No assumptions have been made regarding correlation between variables. The geological interpretation strongly correlates with the mineralised domains. Specifically, where the mineralised domain corresponds with quartz veining. Ore wireframe boundaries including those where lithology and mineralisation correspond, hard boundaries are enforced. Note the accuracies for majority of the domains are at mine scale and have been mined. The purpose of these hard ore domains are to identify the mineralised zones. When the lithology and veining, was less than 0.3 meters the updated domains were modelled to a 0.3 meter minimum width, these hard lithology boundaries were not honoured in this instance.
		not honoured in this instance. Top-cuts were employed to reduce the risk of overestimating in the local areas where a few high-grade samples existed. High Grade DOM_CODE Cut (g/t) 1 120 2 35 3 20 4 20 5 20 6 20 7 20 8 20 9 20 10 20 100 2 Several key model validation steps have been taken to validate the resource estimate;
		 The mineral resource model has been stepped through visually in sectional and plan view to appreciate the composite grades used in the estimate and the resultant block grades. This has also been carried out in 3D with the composite grades and a point cloud of the model grades. Northing, Easting and Elevation swath plots have been constructed to evaluate the composited assay means against the mean block estimates
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All tonnages are estimated on a dry basis
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The cut-off selected for reporting material is 0.5g/t Au cut-off when within 100m of the surface topography (>275mRL) and for material below is a 2.5/t Au cut-off. Material within 100m of surface is aimed to be mined by open pit methods and material outside to be mined using underground methods.

Criteria	JORC Code explanation	Comment
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 The model has been developed to take into consideration for the development of small scale open pit methods and mechanical and airleg development underground. The mining methods for underground is open stoping and air leg gallery stopes. Minimum height is approximately 3.8m with Jumbo development and 3.0m for air leg development with the resource reported on similar size panels to reflect this relationship. For open pit mining additional drilling and pit mapping will be required for certain ore domains.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Based on historical mining at Comet Vale, gold recovery factors for fresh ore are ~120% (047_BMGS_GBF_Toll_4_Reconciliation) No mining factors have been applied to the 2023 MRE.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	The project covers an area that has been previously impacted by mining.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	 The bulk density of 2.7g/cm3 was assigned to all domains in the resource model and was determined from the previous reports by Cube Consulting for Reed Resources in 2010. LRL hold 60 fresh rock density values ranges between 2.65g/cm³ and 3.01g/cm³ with an average of 2.71g/cm³, supporting the previous density used for estimation. LRL database contains density values for fresh rock only.

Criteria	JORC Code explanation	Comment
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Collection of bulk density values will occur in upcoming surface drill program across oxidation zones and lithologies
Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit.	 The Mineral Resource model is classified as a combination of indicated, inferred and unclassified. The classification of the Mineral Resource was determined based on geological confidence and continuity, drill density/spacing, search volume and the average sample distance. For ore domains 1 and 2 within search pass 1, 2 or 3, the classification of Indicated Resources; an average sampling distance within 35m was required, the classification of Inferred Resources; an average sampling distance within 70m was required. Search pass 4 was unclassified as wireframes were extended at great length for target generation. For ore domains 3 to 10, the classification was Inferred Resources due to the nature of grade shells with no core photos or pit wall mapping. As a Competent Person, Jacinta Blincow considers that the result appropriately reflects a reasonable view of the deposit categorisation. All care has been taken to account for relevant factors influencing the mineral resource estimate. Resource categories have been chosen to support amount of data and interpretation provided for each domain. The geological model and the mineral resource estimate reflect the competent person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	Internal reviews have been conducted for this resource estimate. The reviews covered all aspects of the estimate including source data, geological model, resource estimate and classification. In addition, the reporting of the Mineral Resources. The findings from the review show that the data, interpretation, estimation parameters, implementation, validation, documentation and reporting are all fit for purpose with no material errors or omissions.

		*
Criteria	JORC Code explanation	Comment
Discussion of relative accuracy/confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	The mineral resource has been reported in accordance with the guidelines established in the 2012 edition of the JORC code. The resource estimate is a global resource estimate. As for all estimates, the results come from a single deterministic interpolation process, which minimises error by smoothing of the sample data variance. Validation indicates a high level of estimate accuracy on a global basis however; this accuracy for key variables may not be available at a local mining scale which would be derived from the grade control model. The statements relate to a global estimate of tonnes and grade applicable to an open pit and underground mining strategy.

LIST OF EXCLUDED HOLES

BHID
CVRC004
RC7
3EL1\$2NL3_01
3EL1\$2NL3_02
RC6
4R7N-01
RC2
RC3
3.3L_ODS_Sludge_Ring51
3.3L_ODS_Sludge_Ring55
3.3L_ODS_Sludge_Ring59
3.3L_ODS_Sludge_Ring63
3.3L_ODS_Sludge_Ring67
3.3L_ODS_Sludge_Ring71
3.6L_ODS_Sludge_01
3.6L_ODS_Sludge_02
4.0L_ODS_sludgehole_face_01
4.0L_ODS_sludgehole_face_02
4.0L_ODS_sludgehole_face_03
4.0L_ODS_sludgehole_HW_01

HOLES INCLUDED IN THE RESOURCE

BHID	BHID	BHID	BHID
18DD001	4M3S3-063B	4M7S2-11	BSC002
18DD002	4M3S3-07	4M7S2-12	BSC003
3EL1S1FW-08	4M3S3-071A	4M7S2L1-01	BSC004
3EL1S1L3-01	4M3S3-072A	4M7S2L1-02	BSC005
3EL1S1RS-01	4M3S3-07A	4M7S2L1-03	BSC006
4M3FWR-01	4M3S3-07D	4M7S2L1-04	CGC01
4M3FWR-02	4M3S3-08	4M7S2L2-01	CGC02
4M3FWR-03	4M3S3-081A	4M7S2R-03	CGC03
4M3FWR-04	4M3S3-08A	4M7S2R-04	CGC04
4M3S2-02	4M3S3-09	4M7S3-02	CGC05
4M3S2-03	4M3S3-10	4M7S3-02A	CV01
4M3S2-03A	4M3S5-07B	4M7S3-02B	CV01-W1
4M3S2-044	4M3S5-08B	4M7S3-02C	CV01-W2
4M3S2-04A	4M6-07B	4M7S3-03	CV01-W3
4M3S2-05	4M6FM1-01	4M7S3-03A	CV02
4M3S2-05A	4M6FW-07C	4M7S3-04	CV02-W1
4M3S2-06	4M6FW-08A	4M7S3-04A	CV02-W2
4M3S2-07	4M6FWL3-01	4M7S3-04B	CV03
4M3S2-07A	4M6FWL3-02	4M7S3-04C	CV04
4M3S2-08	4M6L2-01	4M7S3-05	CV05
4M3S2-08A	4M6R2FW-01	4M7S3-05A	CV06
4M3S2-09	4M6R2FW-02	4M7S3-05B	CV07
4M3S2-10	4M6R2FW-03	4M7S3-05E	CV08
4M3S2-11	4M6S4-02	4M7S3-06	CVII
4M3S2F-01	4M6S4-03	4M7S3-06A	CV12
4M3S2FW-04A	4M6S4-06	4M7S3-06B	CVC001
4M3S2FW-05A	4M6S4-10	4M7S3-06C	CVC003
4M3S2FW-06A	4M6S4-10A	4M7S3-06D	CVC010
4M3S2FW-06C	4M6S4-11	4M7S3-06E	CVC012
4M3S2FW-07A	4M6S4-11A	4M7S3-07	CVC013
4M3S2FW-08A	4M6S4-12	4M7S3-07A	CVC014
4M3S2FW-09A	4M6S4-12A	4M7S3-07E	CVC015
4M3S2FW-10	4M7S1-08	4M7S3-08	CVC016
4M3S2R1-01	4M7S12-01	4M7S3-08A	CVC017
4M3S3-03	4M7S12-02	4M7S3-08D	CVC018
4M3S3-03B	4M7S1L1-01	4M7S3-09	CVC019
4M3S3-04	4M7S2-04	4M7S3-09A	CVC020
4M3S3-05	4M7S2-05	4M7S3-09B	CVC021
4M3S3-05A	4M7\$2-07	4M7S3-09C	CVC022
4M3S3-06	4M7S2-08	4M7S3-10	CVC023
4M3S3-061A	4M7S2-09	4M7S3-10A	CVC024
4M3S3-062B	4M7S2-10	BSC001	CVC025

			•	
BHID	BHID	BHID	внір	
CVOP001	DRC024	DRC070	DRC114	
CVOP002	DRC025	DRC071	DRC115	
CVOP003	DRC026	DRC072	DRC116	
CVOP004	DRC027	DRC073	DRC117	
CVOP005	DRC028	DRC074	DRC118	
CVOP006	DRC029	DRC075	DRC119	
CVOP007	DRC030	DRC076	DRC120	
CVRC001	DRC031	DRC077	DRC121	
CVRC002	DRC032	DRC078	DRC122	
CVRC003	DRC034	DRC079	DRC123	
CVRC005	DRC035	DRC080	DRC124	
CVRC006	DRC036	DRC081	DRC125	
CVRC007	DRC037	DRC082	DRC126	
CVRC008	DRC039	DRC083	DRC127	
CVRD004	DRC040	DRC084	DRC128	
DGCVR01	DRC041	DRC085	DRC129	
DGCVR02	DRC042	DRC086	DRC130	
DGCVR03	DRC043	DRC087	DRC131	
DGCVR04	DRC044	DRC088	DRC132	
DGCVR05	DRC045	DRC089	DRC133	
DGCVR06	DRC046	DRC090	DRC134	
DGCVR07	DRC047	DRC091	DRC135	
DGCVR08	DRC048	DRC092	DRC136	
DRC003	DRC049	DRC093	DRC137	
DRC004	DRC050	DRC094	DRC138	
DRC005	DRC051	DRC095	DRC139	
DRC006	DRC052	DRC096	DRC140	
DRC007	DRC053	DRC097	DRC141	
DRC008	DRC054	DRC098	DRC142	
DRC009	DRC055	DRC099	DRC143	
DRC010	DRC056	DRC100	DRC144	
DRC011	DRC057	DRC101	DRC145	
DRC012	DRC058	DRC102	DRC146	
DRC013	DRC059	DRC103	DRC147	
DRC014	DRC060	DRC104	DRC148	
DRC015	DRC061	DRC105	DRC149	
DRC016	DRC062	DRC106	DRC150	
DRC017	DRC063	DRC107	DRC151	
DRC018	DRC064	DRC108	DRC152	
DRC019	DRC065	DRC109	DRC153	
DRC020	DRC066	DRC110	DRC154	
DRC021	DRC067	DRC111	DRC155	
DRC022	DRC068	DRC112	DRC156	
DRC023	DRC069	DRC113	DRC157	
				

BHID	BHID	BHID	BHID
DRC158	DRC203	GRC17	JVC026
DRC159	DRC204	GRC18	JVC027
DRC160	DRC205	GRC19	JVC028
DRC161	DRC206	GRC20	JVC029
DRC162	ELC02	GRC21	JVC030
DRC163	ELC03	GRC22	JVC031
DRC164	ELC04	GRC23	JVC032
DRC165	ELC05	GRC24	JVC033
DRC166	ELC06	GRC25	JVC034
DRC167	ELC07	GRC26	JVC035
DRC168	ELC08	GRC27	JVC036
DRC170	ELC09	GRC28	JVC037
DRC171	ELC10	GRC29	JVC038
DRC172	ELC11	GRC30	JVC039
DRC173	ELC12	GRC31	JVC042
DRC174	ELC13	GRC32	JVC043
DRC175	ELC14	GRC33	JVC044
DRC176	ETC001	GRC34	JVC045
DRC177	ETC002	GRC35	JVC046
DRC178	ETC003	JVC001	JVC047
DRC179	ETC004	JVC002	JVC048
DRC180	ETC005	JVC003	JVC049
DRC181	ETC006	JVC004	JVC051
DRC182	ETC007	JVC005	JVC053
DRC183	ETC008	JVC006	JVC054
DRC184	ETC009	JVC007	JVC055
DRC185	ETC010	JVC008	JVC057
DRC186	ETC011	JVC009	JVC058
DRC187	ETC012	JVC010	JVC059
DRC188	GRC01	JVC011	JVC060
DRC189	GRC02	JVC012	JVC061
DRC190	GRC03	JVC013	JVC062
DRC191	GRC04	JVC014	JVC063
DRC192	GRC06	JVC015	JVC064
DRC193	GRC07	JVC016	JVC065
DRC194	GRC08	JVC017	JVC066
DRC195	GRC09	JVC018	JVC067
DRC196	GRC10	JVC019	JVC068
DRC197	GRC11	JVC020	JVC069
DRC198	GRC12	JVC021	JVC070
DRC199	GRC13	JVC022	JVC071
DRC200	GRC14	JVC023	JVCD040
DRC201	GRC15	JVC024	JVCD041
DRC202	GRC16	JVC025	JVCD050

		▼		
BHID	BHID	BHID	BHID	
PGGC001	PGGC045	PGGC089	SPWGC025	
PGGC002	PGGC046	PGGC090	SPWGC026	
PGGC003	PGGC047	PGGC091	SPWGC027	
PGGC004	PGGC048	PGGC092	SPWGC028	
PGGC005	PGGC049	PGGC093	SPWGC029	
PGGC006	PGGC050	PGGC094	SPWGC030	
PGGC007	PGGC051	PGGC095	SPWGC031	
PGGC008	PGGC052	PGGC096	SPWGC032	
PGGC009	PGGC053	PGGC097	SPWGC033	
PGGC010	PGGC054	PGGC098	SPWGC034	
PGGC011	PGGC055	PGGC099	SPWGC035	
PGGC012	PGGC056	PGGC100	SPWGC036	
PGGC013	PGGC057	PGGC101	SPWGC037	
PGGC014	PGGC058	PGGC102	SPWGC038	
PGGC015	PGGC059	PGGC103	SPWGC039	
PGGC016	PGGC060	PGGC104	SPWGC040	
PGGC017	PGGC061	PGGC105	SPWGC041	
PGGC018	PGGC062	PGGC106	SPWGC042	
PGGC019	PGGC063	PGGC107	SPWGC043	
PGGC020	PGGC064	PGGC108	SPWGC044	
PGGC021	PGGC065	SPWGC001	SPWGC045	
PGGC022	PGGC066	SPWGC002	SPWGC046	
PGGC023	PGGC067	SPWGC003	SPWGC047	
PGGC024	PGGC068	SPWGC004	SPWGC048	
PGGC025	PGGC069	SPWGC005	SPWGC049	
PGGC026	PGGC070	SPWGC006	SPWGC050	
PGGC027	PGGC071	SPWGC007	SPWGC051	
PGGC028	PGGC072	SPWGC008	SPWGC052	
PGGC029	PGGC073	SPWGC009	SPWGC053	
PGGC030	PGGC074	SPWGC010	SPWGC054	
PGGC031	PGGC075	SPWGC011	SPWGC055	
PGGC032	PGGC076	SPWGC012	SPWGC056	
PGGC033	PGGC077	SPWGC013	SPWGC057	
PGGC034	PGGC078	SPWGC014	SPWGC058	
PGGC035	PGGC079	SPWGC015	SPWGC059	
PGGC036	PGGC080	SPWGC016	SPWGC060	
PGGC037	PGGC081	SPWGC017	SPWGC061	
PGGC038	PGGC082	SPWGC018	SPWGC062	
PGGC039	PGGC083	SPWGC019	SPWGC063	
PGGC040	PGGC084	SPWGC020	SPWGC064	
PGGC041	PGGC085	SPWGC021	SPWGC065	
PGGC042	PGGC086	SPWGC022	SPWGC066	
PGGC043	PGGC087	SPWGC023	SPWGC067	
PGGC044	PGGC088	SPWGC024	SPWGC068	

			V	
BHID	BHID	BHID	BHID	
SPWGC069	SPWGC114	SPWGC159	2.5L_ODN_019	
SPWGC070	SPWGC115	SPWGC160	2.5L_ODN_020	
SPWGC071	SPWGC116	SPWGC161	2.5L_ODN_021	
SPWGC072	SPWGC117	SPWGC162	2.5L_ODN_022	
SPWGC073	SPWGC118	SPWGC163	2.5L_ODN_023	
SPWGC074	SPWGC119	SPWGC164	2.5L_ODN_024	
SPWGC075	SPWGC120	SPWGC165	2.5L_ODN_025	
SPWGC076	SPWGC121	SPWGC166	2.5L_ODN_026	
SPWGC077	SPWGC122	SPWGC167	2.5L_ODN_027	
SPWGC078	SPWGC123	SPWGC168	2.5L_ODN_028	
SPWGC079	SPWGC124	SPWGC169	2.5L_ODN_029	
SPWGC080	SPWGC125	SPWGC170	2.5L_ODN_030	
SPWGC081	SPWGC126	SPWGC171	2.5L_ODN_031	
SPWGC082	SPWGC127	SPWGC172	2.5L_ODN_032	
SPWGC083	SPWGC128	SPWGC173	2.5L_ODN_033	
SPWGC084	SPWGC129	SPWGC174	2.5L ODN 034	
SPWGC085	SPWGC130	SPWGC175	2.5L_ODN_035	
SPWGC086	SPWGC131	2.5_ACC_001	2.5L_ODN_Backs_0m	
SPWGC087	SPWGC132	2.5_ACC_002	2.5L_ODN_Backs_12m	
SPWGC088	SPWGC133	2.5_ACC_003	2.5L_ODN_Backs_15m	
SPWGC089	SPWGC134	2.5_ACC_004	2.5L_ODN_Backs_18m	
SPWGC090	SPWGC135	2.5_ACC_005	2.5L_ODN_Backs_21m	
SPWGC091	SPWGC136	2.5_ACC_006	2.5L_ODN_Backs_24m	
SPWGC092	SPWGC137	2.5_ESC_001	2.5L_ODN_Backs_27m	
SPWGC093	SPWGC138	2.5L_ACC_Backs_001	2.5L_ODN_Backs_30m	
SPWGC094	SPWGC139	2.5L_ACC_Backs_002	2.5L_ODN_Backs_33m	
SPWGC095	SPWGC141	2.5L_ODN_001	2.5L_ODN_Backs_36m	
SPWGC096	SPWGC142	2.5L_ODN_002	2.5L_ODN_Backs_39m	
SPWGC097	SPWGC143	2.5L_ODN_003	2.5L_ODN_Backs_3m	
SPWGC098	SPWGC144	2.5L_ODN_004	2.5L_ODN_Backs_42m	
SPWGC099	SPWGC145	2.5L_ODN_005	2.5L ODN Backs 45m	
SPWGC101	SPWGC146	2.5L_ODN_006	2.5L_ODN_Backs_48m	
SPWGC102	SPWGC147	2.5L ODN 007	2.5L_ODN_Backs_51m	
SPWGC103	SPWGC148	2.5L_ODN_008	2.5L_ODN_Backs_54m	
SPWGC104	SPWGC149	2.5L_ODN_009	2.5L_ODN_Backs_57m	
SPWGC105	SPWGC150	2.5L_ODN_010	2.5L_ODN_Backs_60m	
SPWGC106	SPWGC151	2.5L_ODN_011	2.5L_ODN_Backs_63m	
SPWGC107	SPWGC152	2.5L_ODN_012	2.5L_ODN_Backs_66m	
SPWGC108	SPWGC153	2.5L_ODN_013	2.5L_ODN_Backs_69m	
SPWGC109	SPWGC154	2.5L_ODN_014	2.5L_ODN_Backs_6m	
SPWGC110	SPWGC155	2.5L_ODN_015	2.5L_ODN_Backs_9m	
SPWGC111	SPWGC156	2.5L_ODN_016	2.5L_ODN_LH_SH001	
SPWGC112	SPWGC157	2.5L_ODN_017	2.5L_ODN_LH_\$H002	
SPWGC113	SPWGC158	2.5L_ODN_018	2.5L_ODN_LH_SH003	
01 1100110	31 44 9 0 1 3 0	Z.UL_ODN_010	Z.UL_ODN_LN_U0U0	

BHID	BHID	BHID	BHID
2.5L_ODN_LH_SH004	2L_ESC_Rise_002	2L_ODN_033	2L_ODS_backs_strip_008
2.5L_ODN_LH_SH005	2L_N_SQ_stope_001	2L_ODN_034	2L_ODS_MH6
2.5L ODN LH SH006	2L_N_SQ_stope_002	2L_ODN_035	2L_ODS_MH6_ore_only
2.5L_ODN_LH_SH007	2L_N_SQ_stope_003	2L_ODN_036	2L_P1_001
2.5L_ODN_LH_SH009	2L_N_SQ_stope_004	2L_ODN_037	2L_P2_001
2.5L_ODN_LH_SH010	2L_north_SH001	2L_ODN_038	2L_P2_002
2.5L_ODN_Rise1	2L_north_SH002	 2L_ODN_039	2L_P2_003
2.5L_ODS_001	2L_north_SH003	2L_ODN_040	2L_P2_004
2.5L_ODS_002	2L_north_SH004	2L_ODN_041	2L_P2_005
2.5L_ODS_003	2L_north_SH005	2L_ODN_042	2L_P2_006
2.5L_ODS_004	2L_north_SH006	2L_ODN_043	2L_P2_007
2.5L_ODS_005	2L_north_SH007	2L_ODN_044	2L_P2_008
2.5L_OD\$_006	2L_ODN_001	2L_ODN_045	2L_P2_009
2.5L_ODS_ALR_001	2L_ODN_002	2L_ODN_046	2L_P2_010
2.5L_ODS_Backs_0m	2L_ODN_003	2L_ODN_047	2L_P2_011
2.5L_ODS_Backs_12m	2L_ODN_004	2L_ODN_2W22	2L_P2_lift01_backs_001
2.5L_ODS_Backs_15m	2L_ODN_005	2L_ODN_AL_Strip_001	2L_P2_lift01_backs_002
2.5L_ODS_Backs_18m	2L_ODN_006	2L_ODN_AL_Strip_002	2L_P2_rise1_001
2.5L_ODS_Backs_21m	2L_ODN_007	2L_ODN_AL_Strip_003	2L_P2_rise1_002
2.5L_ODS_Backs_24m	2L_ODN_008	2L_ODN_AL_Strip_004	2L_P2_Rise1_comp_01
2.5L_ODS_Backs_3m	2L_ODN_009	2L_ODN_AL_Strip_005	2L_P2_SH001
2.5L_ODS_Backs_6m	2L_ODN_010	2L_ODN_stope_back_1	2L_P2_SH003
2.5L_ODS_Backs_9m	2L_ODN_011	2L_ODN_stope_back_2	2L_P2_SH004
2.5L_SH_001	2L_ODN_012	2L_ODN_stope_back_3	2L_P2_SH005
2.5L_SH_002	2L_ODN_013	2L_ODN_stope_back_4	2L_P2_SH006
2.5L_SH_003	2L_ODN_014	2L_ODN_stope_back_5	2L_\$1_001
2.7_Refuge_cuddy_001	2L_ODN_015	2L_ODN_stope_back_6	2L_S1_R1_001
2.7_Refuge_cuddy_002	2L_ODN_016	2L_ODN_stope_back_7	2l_South_stope_south
2L_ACC_001	2L_ODN_017	2L_ODN_stope_back_8	2L_SP_SH01
2L_ACC_002	2L_ODN_018	2L_ODN_stope_back_9	2L_SP_SH02
2L_BP_Slot_001	2L_ODN_019	2L_ODS_001	2LM6S_03
2L_BP_Slot_002	2L_ODN_020	2L_ODS_002	2LM6S_05
2L_BP_Slot_003	2L_ODN_021	2L_ODS_003	2LM6S_06
2L_BP_Slot_004	2L_ODN_022	2L_OD\$_004	2LM6S_08
2L_BP_Slot_005	2L_ODN_023	2L_ODS_005	2LM6S_09
2L_BP_Slot_006	2L_ODN_024	2L_ODS_006	2LM6S1N_03
2L_BP_Slot_007	2L_ODN_025	2L_ODS_007	2LR10L1_01
2L_BP_Slot_008	2L_ODN_026	2L_ODS_backs_strip_001	2LR10L1_02
2L_BP_Slot_009	2L_ODN_027	2L_ODS_backs_strip_002	2LR10L1_03
2L_BYPASS_001	2L_ODN_028	2L_ODS_backs_strip_003	2LR10L1_04
2L_BYPASS_002	2L_ODN_029	2L_ODS_backs_strip_004	2LR10L1_05
2L_BYPASS_003	2L_ODN_030	2L_ODS_backs_strip_005	2LR10L1_06
2L_BYPASS_004	2L_ODN_031	2L_ODS_backs_strip_006	2LR10L2_01
2L_ESC_Rise_001	2L_ODN_032	2L_ODS_backs_strip_007	2LR10L2_02

BHID	BHID	BHID	BHID
2LR10L2_03	2LR10S2L2_02	3.3L_ODN_Rise_01	3EL1FWLS_02
2LR10L3_01	2LR10S2L2_04	3.3L_ODS_001	3EL1FWLS_03
2LR10L3_02	2LR10S2L3_01	3.3L_ODS_002A	3EL1FWLS_04
2LR10L3_03	2LR10S2L3_02	3.3L_ODS_002B	3EL1HWN-04
2LR10L4_01	2LR10S2N_01	3.3L_ODS_002C	3EL1L1S_01_01
2LR10L4_02	2LR10S2N_02	3.3L_OD\$_003	3EL1L1S_02_01
2LR10L4_03	2LR10S2N_03	3.3L_ODS_004	3EL1N_02
2LR10L5_01	2LR10S2N_04	3.3L_ODS_005	3EL1N_03
2LR10L5_02	2LR10S2N_05	3.3L_ODS_006	3EL1N_04
2LR10L5_03	2LR10S2N_06	3.3L_ODS_007	3EL1N_05
2LR10L6_01	2M6R2N_02	3.3L_ODS_008	3EL1NBS_01
2LR10L6_02	2M6S_07	3.3L_ODS_009	3EL1NBS_02
2LR10L6_03	2M7R_01	3.3L_ODS_010	3EL1NBS_03
2LR10L6_04	2M7R_02	3.3L_ODS_011	3EL1NBS_04
2LR10L6_05	2W67D_001	3.3L_ODS_012	3EL1NBS_05
2LR10L6_06	2W67D_002	3.3L_ODS_Rise_01	3EL1S_01
2LR10L6_07	2W73_001	3.3L_south_face_001	3EL1S_02
2LR10L6_08	2W73_001	3.5L_SP_01	3EL1S_03
2LR10L7_01	2W97R	3.6L_Lift3_01	3EL1S_04
2LR10L7_03	3.3_sub_historic_FW	3.6L_Lift3_02	3EL1S_05
2LR10N_01	3.3_sub_historic_HW	3.6L_Lift3_03	3EL1S_06
2LR10N_02	3.3L_ACC_001	3.6L_Lift3_04	3EL1S_07
2LR10N_03	3.3L_ACC_002	3.6L_Lift3_05	3EL1S_08
2LR10N_04	3.3L_acc_walls_overbreak		3EL1S_09
2LR10S_01	3.3L_acc_walls_overbreak		3EL1S_10
2LR10S_02	3.3L_acc_walls_overbreak		3EL1S_11
2LR10S_03	3.3L_ODN_001	3.6L_Lift5_04	3EL1S_12
2LR10S_04	3.3L_ODN_001_re_0m	3.6L_ODN_001	3EL1S1FW-02
2LR10S_05	3.3L_ODN_001_re_1m	3.6L_ODN_002	3EL1S1HW-01
2LR10S_06	3.3L ODN 001_re_2m	3.6L_ODN_003	3EL1S1HW-02
2LR10S_07	3.3L_ODN_002	3.6L_ODN_004	3EL1S1HWN-03
2LR10S_08	3.3L_ODN_003	3.6L_ODN_005	3EL1S1HWN-06
2LR10S_09	3.3L_ODN_004	3.6L_ODN_006	3EL1S1HWS-01
2LR10S_10	3.3L_ODN_005A	3.6L_ODN_Rise1	3EL1S1HWS-02
2LR10S_11	3.3L_ODN_005B	3.6L_ODS_001	3EL1S1HWS-05
2LR10S_12	3.3L_ODN_005C	3.6L_OD\$_002	3EL1S1HWS-07
2LR10S_13	3.3L_ODN_006	3.6L_OD\$_003	3EL1-S1N-01
2LR10S_14	3.3L_ODN_007	3E1LS4FLBN_03	3EL1S2BS_01
2LR10S_15	3.3L_ODN_008	3E1S4NBS_01	3EL1S2BS_02
2LR10S_16	3.3L_ODN_009	3EL1FWLL_01	3EL1S2L6_01
2LR10S2L1_01	3.3L_ODN_010	3EL1FWLL_01_02	3EL1S2L6_02
2LR10S2L1_02	3.3L_ODN_011	3EL1FWLL_01_03	3EL1S2L6_03
2LR10S2L1_03	3.3L_ODN_012	3EL1FWLL_02	3EL1S2L6_03
2LR10S2L1_03	3.3L_ODN_013	3EL1FWLS_01	3EL1S2L7_01
ZLN 103ZL1_04	0.0L_ODIN_010	OLLII YYLO_UI	JLLIJZL/_UI

BHID	BHID	BHID	BHID
3EL1S2L7_02	3EL1\$2\$_14	3EL1S4S_08	3L_backs_6684478
3EL1S2L7_03	3EL1S2S_15	3EL1S4S_09	3L_backs_6684538
3EL1S2L8_01	3EL1S2S_16	3EL1S4S_10	3L_backs_6684545
3EL1S2L9_01	3EL1S2S_17	3EL1S4S_11	3L_Esc_Rise_01
3EL1S2L9_02	3EL1S2SL1_01	3EL1S4S_14	3L_fs_6684566
3EL1S2L9_03	3EL1S2SL1_02	3EL1\$4\$B\$_03	3L_south_face_001
3EL1S2L9_04	3EL1S2SL1_03	3EL1S4SBS_04	3L_stope_panel_backs_0m
3EL1S2L9_05	3EL1S2SL2_01	3EL1S4SBS_07	3L_stope_panel_backs_10m
3EL1S2L9_06	3EL1S2SL2_02	3EL1S4SFWL_01	3L_stope_panel_backs_15m
3EL1S2N_01	3EL1\$2\$L2_03	3EL1S4SFWL_02	3L_stope_panel_backs_20m
3EL1S2N_02	3EL1S2SL2_04	3EL1S4SFWL_03	3L_stope_panel_backs_5m
3EL1S2N_03	3EL1\$2\$L2_05	3EL1S4SFWL_04	3L3B4B_06
3EL1S2N_04	3EL1\$2\$L2_06	3EL1S4SFWL_06	3LEL1Nth_01
3EL1S2N_05	3EL1S4FLBL2N_01	3EL1S4SFWL_07	3LN_01
3EL1S2N_06	3EL1S4FLBL2N_02	3EL1S4SFWLFB_01	3LR7_01
3EL1S2N_07	3EL1S4FLBL2N_03	3EL1SBS_01	3LR7_02
3EL1S2N_08	3EL1S4FLBL2S_01	3EL1SBS_02	3LR7_03
3EL1S2NL1_01	3EL1S4FLBN_01	3EL1SBS_03	3LR7_04
3EL1S2NL1_02	3EL1S4FLBN_02	3EL1SBS_04	3LR7_05
3EL1S2NL1_03	3EL1S4FLBN_03	3EL1SBS_05	3LR7_06
3EL1S2NL1_04	3EL1S4FLBN_04	3EL1SBS_06	3LR7B1L1_01
3EL1S2NL2_01	3EL1S4FWL_02	3EL1SL_02_01	3LR7B1L1_02
3EL1S2NL2_02	3EL1S4FWLN_03	3EL1SL_02_02	3LR7B1L1_03
3EL1S2NL2_03	3EL1S4N_02	3EL1SL_02_03	3LR7B1L2_01
3EL1S2NL2_04	3EL1S4N_03	3EL1SRS-01	3LR7B2L1_01
3EL1S2NL3_03	3EL1S4N_04	3ELS2NL3_01	3LR7B2L1_02
	3EL1S4N_05	3ELS2NL3_02	3LR7B2L2_01
3EL1S2NL3_05	3EL1S4NBS_01	3ELS2NL3_05	3LR7B3L1_03
3EL1S2NL3_06	3EL1S4NFWL_01	3ELS2NL4_03	3LR7B3L1_04
3EL1S2NL4_01	3EL1S4NFWL_02	3L_4L_escape_001	3LR7B3L2_01
3EL1S2NL4_03	3EL1S4NFWL_04	3L_4L_escape_002	3LR7B3L2_02
3EL1S2NL5_03	3EL1S4NFWL_05	3L_4L_escape_003	3LR7B3L3_01
3EL1S2S_01	3EL1S4NFWL_06	3L_backs_6684214	3LR7N_04
3EL1S2S_02	3EL1S4NFWL_07	3L_backs_6684247	3LR7N_05
3EL1323_02 3EL1S2S_03	3EL1S4NL1_01	3L_backs_6684309	3LR7N_06
3EL1323_05 3EL1S2S_05	3EL1S4NL1_02	3L_backs_6684310	3LR7N_07
3EL1323_03 3EL1S2S_06	3EL1S4NL2_01	3L_backs_6684320	3LR7N_08
3EL1S2S_06 3EL1S2S_07	3EL1S4R2N_02	3L_backs_6684337	3LR7N_09
3EL1S2S_08	3EL1S4S_02	3L_backs_6684341	3LR7N_11
3EL1S2S_09	3EL1S4S_03	3L_backs_6684352	3LR7N_12
3EL1S2S_10	3EL1S4S_04	3L_backs_6684396	3LR7N_13
3EL1S2S_11	3EL1S4S_05	3L_backs_6684419	3LR7N_14
3EL1S2S_12	3EL1S4S_06	3L_backs_6684438	3LR7N_15
3EL1S2S_13	3EL1S4S_07	3L_backs_6684451	3LR7N_16

3187N_17	BHID	BHID	BHID	ВНID
SIR7N 18 SIR7S2S 06 SIR7S3L6S 02 SISSBILL 05	3LR7N_17	3LR7S2S_05	3LR7S3L6S_01	3LS2B1L1_04
31R75_01 31R752S_07 31R75316S_03 31S2811_06 31R75_02 31R752S_09 31R753LS_04 31S2811_07 31R75_03 31R752S_09 31R753LS_04 31S2811_07 31R75_04 31R752S_10 31R753N_01 31S2811_04 31R75_05 31R752S_11 31R753N_02 31S2811_05 31R75_06 31R752S_11 31R753N_02 31S2811_01 31R75_07 31R752S_1_02 31R753N_04 31S2813_01 31R75_07 31R752S_1_02 31R753N_00 31S2813_02 31R75_08 31R752S_1_02 31R753N_00 31S2811_02 31R75_09 31R752S_1_00 31R753N_00 31S2811_00 31R75_09 31R752S_1_00 31R753N_00 31S2811_00 31R75_00 31R752S_1_00 31R753N_00 31S2811_00 31R75_10 31R752S_1_00 31R753N_00 31S2811_00 31R75_10 31R752S_1_00 31R753N_00 31S2811_00 31R75_11 31R753N_00 31R753N_00 31S2811_00 31R75_11 31R753N_00 31R753N_00 31S2811_00 31R75_11 31R753N_00 31R753N_00 31S2811_00 31R75_11 31R753N_00 31R753N_10 31S2811_00 31R75_11 31R753N_10 31R753N_10 31S2811_00 31R75_10 31R753N_00 31R753N_10 31S2811_00 31R75_10 31R753N_00 31R753N_10 31S2811_00 31R75_10 31R753N_10 31R753N_10 31S2811_00 31R75_10 31R75_10 31S2811_00 31R75_10 31R75_10 31S2811_00 31R75_10 31R75_10 31S2811_00 31R75_10 31S2811_00 31R75_10 31R75_10 31S2811_00 31R75_10 31S2811_00 31R75_10 31R75_10 31S2811_00 31R75_10 31R75_10 30 31R75_10 31S2811_00 31R75_10 31S2811_00 31R75_10 31				
SURYS_02 SURYS_SS_08 SURYS_SS_04 SURYS_SS_07 SURYS_08 SURYS_09 SURYS_08 SURYS_08 SURYS_08 SURYS_08 SURYS_08 SURYS_09 SURYS_08 SURYS_	-			
SURYS 03 SURYS 25 09 SURYS 3N SUSSBILL 08	-			
3LR7S_04 3LR7S2S_10 3LR7S3N_01 3LS2B1L2_04	-			
3LR7S 05 3LR7S2S 11 3LR7S3N 02 3LS2B1L2 05				
31R7S 06 31R7S2S1 01 31R7S3N 03 31S2B1L3 01 31R7S 07 31R7S2S1 102 31R7S3N 04 31S2B1L3 02 31R7S 08 31R7S2S1 03 31R7S3N 05 31S2B1L4 01 31R7S 09 31R7S2S1 01 31R7S3NBS 01 31S2B1L4 02 31R7S 10 31R7S2S1 02 31R7S3NBS 02 31S2B1L4 03 31R7S 11 31R7S2S1 03 31R7S3NBS 02 31S2B1L4 03 31R7S 11 31R7S2S1 03 31R7S3NBS 03 31S2B1L5 01 31R7S 12 31R7S2S1 05 31R7S3NBS 04 31S2B1L5 02 31R7S 13 31R7S2S1 05 31R7S3NBS 05 31S2B1L5 03 31R7S 14 31R7S2S1 06 31R7S3NBS 05 31S2B1L5 03 31R7S 15 31R7S31 03 31R7S3N1 01 31S2B1L5 04 31R7S 16 31R7S31 03 31R7S3N1 01 31S2B1L5 04 31R7S 16 31R7S31 03 31R7S3N1 03 31S2B1L5 04 31R7S 16 31R7S31 04 31R7S3N1 03 31S2B1L5 06 31R7S 17 31R7S31 04 31R7S3N1 04 31S2B1L5 06 31R7S 17 31R7S3B 04 31R7S3N1 04 31S2B1L5 06 31R7S2BS 01 31R7S31 04 31R7S3N1 04 31S2B1L5 06 31R7S2BS 02 31R7S31 04 31R7S3N1 05 31S2B1L5 07 31R7S2BS 02 31R7S31 05 31R7S3N1 02 31S2B1L5 08 31R7S2BS 04 31R7S31 05 31R7S3N1 02 31S2B1L5 09 31R7S2BS 04 31R7S31 05 31R7S3N 02 31S2B1L5 10 31R7S2N 02 31R7S31 05 31R7S3 01 31S2B1 15 10 31R7S2N 03 31R7S31 05 31R7S3 01 31S2B1 15 10 31R7S2N 04 31R7S31 05 31R7S3 04 31S2B1 15 10 31R7S2N 05 31R7S31 25 04 31R7S3 04 31S2B1 20 31R7S2N 06 31R7S31 30 31R7S3 05 31S2B2 2 0 31R7S2N 06 31R7S31 30 31R7S3 06 31S2B2 2 0 31R7S2N 10 31R7S31 30 31R7S3 06 31S2B2 2 0 31R7S2N 10 31R7S31 30 31R7S3 50 31S2B2 2 0 31R7S2N 10 31R7S31 30 31R7S3 50 31S2B2 2 0 31R7S2N 10 31R7S31 30 31R7S3 50 31S2B2 2 0 31R7S2N 10 31R7S31 30 31R7S3 50 31S2B2 2 0 31R7S2N 10 31R7S31 30 31R7S3 30 31S2B2 2 0 31R7S2N 10 31R7S31 30 31R7S3 50 31S2B2 2 0 31R7S2N 10 31R7S31 30 31R7S3 50 31S2B2 2 0 31R7S2N 30 31R7S31 30 31R7S3 30 31S2B2 3 0 31R7S2N 30 31R7S31 45 01 31R7S3 30 31S2B2 3 0 31R7S2N 30 31RRS31 4				-
31R7S_0P				
3LR7S_08 3LR7S2SLI_03 3LR7S3NL_05 3LS2BILL_01				
3LR7S_10 3LR7S2SL2_01 3LR7S3NBS_01 3LS2B1L4_02				
3LR7S_110 3LR7S2SL2_02 3LR7S3NBS_02 3LS2B1L5_01				
3LR75_11 3LR752SL2_03 3LR753NBS_03 3LS2B1L5_01				
3LR7S 12 3LR7S2SL2 04 3LR7S3NBS 04 3LS2B1L5 02	•			
3LR7S_13 3LR7S_2L2_05 3LR7S_3NBS_05 3LS2B_1L5_03 3LR7S_14 3LR7S_2L2_06 3LR7S_3NL1_01 3LS2B_1L5_04 3LR7S_15 3LR7S_3L1S_03 3LR7S_3NL1_02 3LS2B_1L5_04 3LR7S_16 3LR7S_3L1S_03A 3LR7S_3NL1_03 3LS2B_1L5_05 3LR7S_17 3LR7S_3LIS_04 3LR7S_3NL1_04 3LS2B_1L5_06 3LR7S_2D_1 3LR7S_3LIS_04A 3LR7S_3NL1_05 3LS2B_1L5_07 3LR7S_2BS_01 3LR7S_3LIS_05 3LR7S_3NL1_05 3LS2B_1L5_07 3LR7S_2BS_02 3LR7S_3LIS_05 3LR7S_3NL2_01 3LS2B_1L5_09 3LR7S_2BS_03 3LR7S_3LIS_05 3LR7S_3NL2_02 3LS2B_1L5_09 3LR7S_2BS_04 3LR7S_3LIS_06 3LR7S_3NL2_02 3LS2B_1L5_10 3LR7S_2D_02 3LR7S_3LIS_06 3LR7S_3NL2_02 3LS2B_1L5_10 3LR7S_2N_02 3LR7S_3LIS_06 3LR7S_3S_01 3LS2B_1L5_11 3LR7S_2N_03 3LR7S_3LIS_05 3LR7S_3S_01 3LS2B_1L5_11 3LR7S_2N_04 3LR7S_3LIS_05 3LR7S_3S_02 3LS2B_1L5_12 3LR7S_2N_05 3LR7S_3LIS_06 3LR7S_3S_03 3LS2B_1L5_12 3LR7S_2N_06 3LR7S_3LIS_04 3LR7S_3S_04 3LS2B_1L2_02 3LR7S_2N_06 3LR7S_3LIS_04 3LR7S_3S_06 3LS2B_1L2_02 3LR7S_2N_10 3LR7S_3LIS_05 3LR7S_3S_06 3LS2B_1L2_03 3LR7S_2NL1_01 3LR7S_3LIS_01 3LR7S_3S_06 3LS2B_1L2_03 3LR7S_2NL1_02 3LR7S_3LIS_03 3LR7S_3S_06 3LS2B_1L2_05 3LR7S_2NL1_02 3LR7S_3LIS_04 3LR7S_3S_06 3LS2B_1L2_05 3LR7S_2NL1_04 3LR7S_3LIS_05 3LR7S_3S_06 3LS2B_2L2_05 3LR7S_2NL1_04 3LR7S_3LIS_06 3LR7S_3S_09 3LS2B_2L2_06 3LR7S_2NL1_04 3LR7S_3LIS_06 3LR7S_3S_09 3LS2B_2L3_02 3LR7S_2NL1_04 3LR7S_3LIS_06 3LR7S_3S_09 3LS2B_2L3_02 3LR7S_2NL1_05 3LR7S_3LIS_06 3LR7S_3S_05 3LS2B_2L3_02 3LR7S_2NL1_06 3LR7S_3LIS_06 3LR7S_3S_06 3LS2B_2L3_02 3LR7S_2NL1_06 3LR7S_3LIS_06 3LR7S_3S_09 3LS2B_2L3_02 3LR7S_2NL1_06 3LR7S_3LIS_06 3LR7S_3S_5D_0 3LS2B_2L3_02 3LR7S_2NL1_06 3LR7S_3LIS_06 3LR7S_3S_5D_0 3LS2B_2L3_02 3LR7S_2NL1_06 3LR7S_3LIS_06 3LR7S_3S_5D_0 3LS2B_2L3_00 3LR7S_2NL1_06 3LR7S_3LIS_06 3LR7S_3S_5D_0 3LS2B_2L3_01 3LR7S_2NL1_05 3LR7S_3LIS_06 3LR7S_3LIS_06				
3LR7S_14 3LR7S2SL2_06 3LR7S3NL1_01 3LS2B1L5_03A 3LR7S_15 3LR7S3L1S_03 3LR7S3NL1_02 3LS2B1L5_05 3LR7S_16 3LR7S3L1S_04 3LR7S3NL1_03 3LS2B1L5_05 3LR7S_17 3LR7S3L1S_04 3LR7S3NL1_04 3LS2B1L5_06 3LR7S2BS_01 3LR7S3L1S_04A 3LR7S3NL1_05 3LS2B1L5_07 3LR7S2BS_02 3LR7S3LIS_05 3LR7S3NL2_01 3LS2B1L5_09 3LR7S2BS_03 3LR7S3LIS_050 3LR7S3NL2_02 3LS2B1L5_09 3LR7S2BS_03 3LR7S3LIS_050 3LR7S3NL3_02 3LS2B1L5_10 3LR7S2BS_04 3LR7S3LIS_06 3LR7S3NL3_02 3LS2B1L5_11 3LR7S2N_02 3LR7S3LIS_06 3LR7S3NL3_02 3LS2B1L5_11 3LR7S2N_03 3LR7S3LIS_00 3LR7S3S_01 3LS2B1L5_11 3LR7S2N_04 3LR7S3LIS_03 3LR7S3S_02 3LS2B1L5_12 3LR7S2N_04 3LR7S3LIS_04 3LR7S3S_03 3LS2B1L5_12 3LR7S2N_05 3LR7S3LIS_04 3LR7S3S_04 3LS2B2L2_01 3LR7S2N_06 3LR7S3LIS_04 3LR7S3S_05 3LS2B2L2_01 3LR7S2N_06 3LR7S3LIS_07 3LR7S3S_06 3LS2B2L2_02 3LR7S2N_06 3LR7S3LIS_07 3LR7S3S_06 3LS2B2L2_02 3LR7S2NL1_01 3LR7S3LIS_03 3LR7S3S_06 3LS2B2L2_02 3LR7S2NL1_02 3LR7S3LIS_03 3LR7S3S_06 3LS2B2L2_05 3LR7S2NL1_03 3LR7S3LIS_04 3LR7S3S_09 3LS2B2L3_06 3LR7S2NL1_04 3LR7S3LIS_05 3LR7S3S_07 3LS2B2L3_06 3LR7S2NL1_04 3LR7S3LIS_05 3LR7S3S_07 3LS2B2L3_06 3LR7S2NL1_04 3LR7S3LIS_06 3LR7S3S_07 3LS2B2L3_00 3LR7S2NL1_04 3LR7S3LIS_06 3LR7S3S_07 3LS2B2L3_00 3LR7S2NL1_04 3LR7S3LIS_06 3LR7S3S_09 3LS2B2L3_00 3LR7S2NL1_04 3LR7S3LIS_06 3LR7S3S_07 3LS2B2L3_00 3LR7S2NL1_04 3LR7S3LIS_05 3LR7S3S_07 3LS2B2L3_00 3LR7S2NL1_04 3LR7S3LIS_06 3LR7S3S_07 3LS2B2L3_00 3LR7S2NL1_04 3LR7S3LIS_05 3LR7S3S_07 3LS2B2L3_00 3LR7S2NL1_04 3LR7S3LIS_05 3LR7S3S_07 3LS2B2L3_01 3LR7S2NL1_05 3LR7S3LIS_06 3LR7S3S_07 3LS2B2L3				-
3LR7S_15 3LR7S3LIS_03 3LR7S3NLI_02 3LS2B1L5_04 3LR7S_16 3LR7S3LIS_03A 3LR7S3NLI_03 3LS2B1L5_05 3LR7S_17 3LR7S3LIS_04 3LR7S3NLI_05 3LS2B1L5_06 3LR7S2BS_01 3LR7S3LIS_04A 3LR7S3NLI_05 3LS2B1L5_07 3LR7S2BS_02 3LR7S3LIS_05 3LR7S3NL2_01 3LS2B1L5_09 3LR7S2BS_03 3LR7S3LIS_06 3LR7S3NL2_02 3LS2B1L5_09 3LR7S2BS_04 3LR7S3LIS_06 3LR7S3NL3_02 3LS2B1L5_10 3LR7S2N_02 3LR7S3L2S_01 3LR7S3S_01 3LS2B1L5_11 3LR7S2N_03 3LR7S3L2S_02 3LR7S3S_02 3LS2B1L5_11 3LR7S2N_04 3LR7S3L2S_03 3LR7S3S_03 3LS2B2L2_01 3LR7S2N_05 3LR7S3L2S_04 3LR7S3S_04 3LS2B2L2_02 3LR7S2N_06 3LR7S3LS_04 3LR7S3S_05 3LS2B2L2_03 3LR7S2NL1_01 3LR7S3LS_01 3LR7S3S_06 3LS2B2L2_03 3LR7S2NL1_01 3LR7S3LS_02 3LR7S3S_06 3LS2B2L2_03 3LR7S2NL1_01 3LR7S3LS_03 3LR7S3S_06 3LS2B2L2_05 3LR7S2NL1_04 3LR7S3LS_04 3LR7S3S_06 3LS2B2L2_05 3LR7S2NL2_01 3LR7S3LS_04 3LR7S3S_06 3LS2B2L3_02 3LR7S2NL2_02 3LR7S3LS_04 3LR7S3S_06 3LS2B2L3_02 3LR7S2NL2_03 3LR7S3LS_04 3LR7S3S_06 3LS2B2L3_02 3LR7S2NL1_03 3LR7S3LS_04 3LR7S3S_06 3LS2B2L3_02 3LR7S2NL1_04 3LR7S3LS_04 3LR7S3S_06 3LS2B2L3_02 3LR7S2NL2_01 3LR7S3LS_05 3LR7S3S_06 3LS2B2L3_02 3LR7S2NL2_02 3LR7S3LS_04 3LR7S3S_05 3LS2B2L3_02 3LR7S2NL2_02 3LR7S3LS_04 3LR7S3S_05 3LS2B2L3_02 3LR7S2NL2_03 3LR7S3LS_04 3LR7S3S_05 3LS2B2L3_02 3LR7S2NL2_04 3LR7S3LS_05 3LR7S3S_06 3LS2B2L3_02 3LR7S2NL3_03 3LR7S3LS_04 3LR7S3S_05 3LS2B2L3_02 3LR7S2NL3_04 3LR7S3LS_05 3LS2B2L3_03 3LR7S2NL3_05 3LR7S3LS_06 3LS2B2L3_01 3LR7S2NL3_06 3LR7S3LS_01 3LS2B2L3_01 3LR7S2NL3_05 3LR7S3LS_01 3LS2B2L3_01 3LR7S2NL3_05 3LR7S3LS_06 3LS2B3L1_01 3LR7S2NL3_05 3LR7S3LS_06 3LS2B3L1_01 3LR7S2NL3_05 3LR7S3LS_06				
3LR7S_16 3LR7S3LIS_03A 3LR7S3NLI_03 3LS2BILS_05 3LR7S_17 3LR7S3LIS_04 3LR7S3NLI_04 3LS2BILS_06 3LR7S2BS_01 3LR7S3LIS_04A 3LR7S3NLI_05 3LS2BILS_07 3LR7S2BS_02 3LR7S3LIS_05 3LR7S3NLI_05 3LS2BILS_08 3LR7S2BS_03 3LR7S3LIS_05 3LR7S3NLI_02 3LS2BILS_09 3LR7S2BS_04 3LR7S3LIS_06 3LR7S3NLI_02 3LS2BILS_10 3LR7S2BS_04 3LR7S3LIS_06 3LR7S3NLI_02 3LS2BILS_10 3LR7S2N_02 3LR7S3LIS_06 3LR7S3NLI_02 3LS2BILS_11 3LR7S2N_03 3LR7S3LIS_02 3LR7S3S_01 3LS2BILS_11 3LR7S2N_04 3LR7S3LIS_02 3LR7S3S_02 3LS2BILS_12 3LR7S2N_05 3LR7S3LIS_03 3LR7S3S_03 3LS2BILS_12 3LR7S2N_06 3LR7S3LIS_07 3LR7S3S_05 3LS2BILS_03 3LR7S2NL1_01 3LR7S3LIS_01 3LR7S3S_06 3LS2BILS_03 3LR7S2NL1_01 3LR7S3LIS_02 3LR7S3S_06 3LS2BILS_03 3LR7S2NL1_02 3LR7S3LIS_03 3LR7S3S_06 3LS2BILS_06 3LR7S2NL1_03 3LR7S3LIS_03 3LR7S3S_06 3LS2BILS_06 3LR7S2NL1_04 3LR7S3LIS_05 3LR7S3S_06 3LS2BILS_06 3LR7S2NL1_04 3LR7S3LIS_05 3LR7S3S_06 3LS2BILS_06 3LR7S2NL1_04 3LR7S3LIS_05 3LR7S3S_07 3LS2BILS_06 3LR7S2NL1_04 3LR7S3LIS_06 3LR7S3S_07 3LS2BILS_06 3LR7S2NL1_04 3LR7S3LIS_06 3LR7S3S_07 3LS2BILS_06 3LR7S2NL1_05 3LR7S3LIS_06 3LR7S3S_07 3LS2BILS_06 3LR7S2NL1_06 3LR7S3LIS_06 3LR7S3LIS_06 3LR7S3S_07 3LR7S2NL1_06 3LR7S3LIS_06 3LR7S3LIS_06	3LR7S_15			
31875_17 318753115_04 31875311_04 318753115_06 31875315_07 31875285_01 318753115_05 318753115_05 318753115_05 318753115_05 318753115_05 318753115_05 318753115_05 318753115_05 318753115_06 318753115_05 318753115_06 318753115_00 318753115_06 318753115_00 318753115_00 318753115_00 318753115_00 318753115_00 318753115_00 318753115_00 318753115_00 318753115_00 318753115_00 318753115_00 318753115_01 318753115_11 3187521_02 318753125_02 3187535_02 318753115_11 3187521_03 318753125_02 3187535_02 318753115_12 3187521_05 318753125_03 3187535_03 31828115_12 3187521_05 318753125_04 3187535_04 3182812_02 3187521_05 318753135_07 3187535_05 3182812_03 31875211_01 318753135_01 3187535_06 31828212_03 31875211_02 318753135_02 3187535_06 31828212_05 31875211_02 318753135_02 3187535_06 31828212_05 31875211_02 318753135_03 3187535_06 31828212_05 31875211_04 318753135_04 3187535_06 318753135_02 3187535_06 31828213_02 31875211_04 318753135_04 3187535_06 31875313_02 318753135_02 3187535_06 31828213_02 31875211_04 318753135_06 3187535_06 31875313_02 318753135_06 3187535_06 31828213_02 31875211_04 318753135_06 3187535_06 31875313_02 318753135_06 3187535_06 31828213_02 31875211_04 318753135_06 3187535_06 3187535_06 31828213_02 31875211_04 318753135_06 3187535_06 3187535_06 31875315_00 31828213_00 318753145_00 31				
3LR752BS_01 3LR753L1S_04A 3LR753NL1_05 3LS2B1L5_07 3LR752BS_02 3LR753L1S_05 3LR753NL2_01 3LS2B1L5_08 3LR752BS_03 3LR753L1S_050 3LR753NL2_02 3LS2B1L5_09 3LR752BS_04 3LR753L1S_06 3LR753NL3_02 3LS2B1L5_10 3LR752N_02 3LR753L2S_01 3LR753S_01 3LS2B1L5_11 3LR752N_03 3LR753L2S_02 3LR753S_02 3LS2B1L5_12 3LR752N_04 3LR753L2S_03 3LR753S_03 3LS2B2L2_01 3LR752N_05 3LR753L2S_04 3LR753S_03 3LS2B2L2_01 3LR752N_06 3LR753L2S_04 3LR753S_05 3LS2B2L2_02 3LR752N_06 3LR753L3S_01 3LR753S_05 3LS2B2L2_03 3LR752NL1_01 3LR753L3S_01 3LR753S_05 3LS2B2L2_04 3LR752NL1_02 3LR753L3S_02 3LR753S_07 3LS2B2L2_05 3LR752NL1_03 3LR753L3S_03 3LR753S_08 3LS2B2L2_05 3LR752NL1_04 3LR753L3S_04 3LR753S_09 3LS2B2L3_02 3LR752NL2_01 3LR753L3S_06 3LR753S_06 3LS2B2L3_02 3LR752NL2_01 3LR753L3S_06 3LR753S_06 3LS2B2L3_02 3LR752NL2_02 3LR753L3S_06 3LR753S_09 3LS2B2L3_02 3LR752NL2_03 3LR753L4S_06 3LR753S_06 3LS2B2L3_03 3LR752NL2_03 3LR753L4S_06 3LR753S_06 3LS2B2L3_03 3LR752NL2_03 3LR753L4S_01 3LR753S_01 3LS2B2L4_01 3LR752NL3_04 3LR753L4S_02 3LS01 3LS2B2L4_01 3LR752NL3_04 3LR753L4S_04 3LS1B_3_Shh 3LS2B2L5_01 3LR752NL3_04 3LR753L4S_04 3LS1B_3_Shh 3LS2B2L5_01 3LR752NL3_04 3LR753L4S_04 3LS1B_3_Shh 3LS2B2L5_01 3LR752NL3_05 3LR753L5_04 3LS1B_0.				
3LR752BS_02 3LR753LIS_05 3LR753NL2_01 3LS2BIL5_08 3LR752BS_03 3LR753LIS_05a 3LR753NL2_02 3LS2BIL5_09 3LR752BS_04 3LR753LIS_06 3LR753NL3_02 3LS2BIL5_10 3LR752N_02 3LR753L2S_01 3LS2BIL5_11 3LR752N_03 3LR753L2S_02 3LR753S_02 3LS2BIL5_12 3LR752N_04 3LR753L2S_03 3LR753S_03 3LS2B2L2_01 3LR752N_05 3LR753LS_04 3LR753S_05 3LS2B2L2_02 3LR752N_06 3LR753L3_07 3LR753S_05 3LS2B2L2_03 3LR752NL1_01 3LR753L3S_01 3LS2B2L2_03 3LR752NL1_02 3LR753L3S_02 3LR753S_06 3LS2B2L2_04 3LR752NL1_03 3LR753L3S_03 3LS2B2L2_06 3LR752NL1_04 3LR753L3S_03 3LR753S_06 3LS2B2L2_06 3LR752NL1_03 3LR753L3S_04 3LR753S_06 3LS2B2L3_05 3LR752NL2_03 3LR753L3S_06 3LR753S_08 3LS2B2L3_02 3LR752NL2_01 3LR753L3S_06 3LR753S_09 3LS2B2L3_02 3LR752NL2_02 3LR753L3S_06 3LR753S_05				
SURFS2BS_03 SURFS3LIS_05\to SURFS3NL2_02 SUS2BIL5_09				
3LR752BS_04 3LR753LIS_06 3LR753NL3_02 3LS2B1LS_10 3LR752N_02 3LR753L2S_01 3LR753S_01 3LS2B1LS_11 3LR752N_03 3LR753L2S_02 3LR753S_02 3LS2B1LS_12 3LR752N_04 3LR753L2S_03 3LR753S_03 3LS2B2L2_01 3LR752N_05 3LR753L2S_04 3LR753S_04 3LS2B2L2_02 3LR752N_06 3LR753L3_07 3LR753S_05 3LS2B2L2_03 3LR752NL1_01 3LR753L3S_01 3LR753S_06 3LS2B2L2_04 3LR752NL1_01 3LR753L3S_02 3LR753S_06 3LS2B2L2_05 3LR752NL1_02 3LR753L3S_02 3LR753S_07 3LS2B2L2_05 3LR752NL1_03 3LR753L3S_03 3LR753S_08 3LS2B2L2_06 3LR752NL1_04 3LR753L3S_04 3LR753S_09 3LS2B2L3_02 3LR752NL2_01 3LR753L3S_05 3LR753S_10 3LS2B2L3_03 3LR752NL2_01 3LR753L3S_06 3LR753S_10 3LS2B2L3_03 3LR752NL2_02 3LR753L3S_06 3LR753SBS_01 3LS2B2L3_01 3LR752NL2_03 3LR753L4S_01 3LR753SBS_02 3LS2B2L4_01 3LR752NL3_02 3LR753L4S_02 3LS01 3LS2B2L4_02 3LR752NL3_03 3LR753L4S_03 3LS1B1Nth_01 3LS2B2L5_01 3LR752NL3_04 3LR753L4S_04 3LS1B3_5th 3LS2B2L5_01 3LR752NL3_05 3LR753LS_01 3LS1FW-02 3LS2B2L5_01 3LR752NL3_06 3LR753LS_01 3LS1FW-02 3LS2B2L1_01 3LR752NL4_01 3LR753LS_02 3LS1S_01 3LS2B4L1_01 3LR752NL4_04 3LR753LS_03 3LS1B_01 3LS2B4L1_01 3LR752NL4_04 3LR753LS_03 3LS1S_01 3LS2B4L1_02 3LR752NL4_04 3LR753LS_03 3LS1S_01 3LS2B4L1_02 3LR752NL4_04 3LR753LS_03 3LS2B1L1_01 3LS2B4L1_02 3LR752NL4_04 3LR753LS_03 3LS2B1L1_01 3LS2B4L1_03 3LR752NL4_04 3LR753LS_04 3LS2B1L1_01 3LS2B4L1_03 3LR752NL4_04 3LR753LS_05 3LS2B1L1_02 3LS2B4L1_04 3LR752NL5_03 3LR753LS_04 3LS2B1L1_02 3LS2B4L1_04 3LR752NL5_03 3LR753LS_05 3LS2B1L1_02 3LS2B4L1_04 3LR752NL5_03 3LR753LS_05 3LS2B1L1_02 3LS2B4L1_04 3LR752NL5_03 3LR753LS_05 3LS2B1L1_02 3LS2B4L1_04 3LR752NL5_03 3LS2B1L1_04 3LS2B4L1_04 3LR752NL5_03 3LS2B1L1_04 3LS2B4L1_04 3LR752NL5_03 3LS2B1L1_02 3LS2B4L1_04 3LR752NL5_03 3LS2B1L1_04 3LS2B4L1_04 3	•			
3LR752N_02 3LR753L2S_01 3LR753S_01 3LS2B1L5_11 3LR752N_03 3LR753L2S_02 3LR753S_02 3LS2B1L5_12 3LR752N_04 3LR753L2S_03 3LR753S_03 3LS2B2L2_01 3LR752N_05 3LR753L2S_04 3LR753S_04 3LS2B2L2_02 3LR752N_06 3LR753L3_07 3LR753S_05 3LS2B2L2_03 3LR752NL1_01 3LR753L3S_01 3LR753S_06 3LS2B2L2_04 3LR752NL1_02 3LR753L3S_02 3LR753S_07 3LS2B2L2_05 3LR752NL1_03 3LR753L3S_03 3LR753S_08 3LS2B2L2_06 3LR752NL1_04 3LR753L3S_04 3LR753S_09 3LS2B2L3_02 3LR752NL2_01 3LR753L3S_05 3LR753S_09 3LS2B2L3_02 3LR752NL2_01 3LR753L3S_06 3LR753S_01 3LS2B2L3_02 3LR752NL2_02 3LR753L4S_01 3LR753SS_02 3LS2B2L4_01 3LR752NL3_03 3LR753L4S_02 3LS01 3LS2B2L4_01 3LR752NL3_04 3LR753L4S_03 3LS1B1Nth_01 3LS2B2L5_01 3LR752NL3_04 3LR753L4S_04 3LS1B3_Sth 3LS2B2L6_01				
3LR7S2N_04 3LR7S3L2S_03 3LS2B2L2_01 3LR7S2N_05 3LR7S3L2S_04 3LR7S3S_04 3LS2B2L2_02 3LR7S2N_06 3LR7S3L3_07 3LR7S3S_05 3LS2B2L2_03 3LR7S2NL1_01 3LR7S3L3S_01 3LR7S3S_06 3LS2B2L2_04 3LR7S2NL1_02 3LR7S3L3S_02 3LR7S3S_07 3LS2B2L2_05 3LR7S2NL1_03 3LR7S3L3S_03 3LR7S3S_08 3LS2B2L2_06 3LR7S2NL1_04 3LR7S3L3S_04 3LR7S3S_09 3LS2B2L3_02 3LR7S2NL2_01 3LR7S3L3S_05 3LR7S3S_10 3LS2B2L3_03 3LR7S2NL2_02 3LR7S3LS_06 3LR7S3BS_01 3LS2B2L3_01 3LR7S2NL2_03 3LR7S3LS_01 3LR7S3LS_01 3LS2B2L4_01 3LR7S2NL3_03 3LR7S3LS_02 3LS2B2L4_02 3LR7S2NL3_03 3LR7S3LS_03 3LS1B1NH_01 3LS2B2L5_01 3LR7S2NL3_04 3LR7S3LS_04 3LS1B3_Sth 3LS2B2L6_01 3LR7S2NL3_05 3LR7S3LS_02 3LS1B_01 3LS2B2L6_01 3LR7S2NL4_01 3LR7S3LS_02 3LS1B_01 3LS2B4L1_01 3LR7S2NL4_04 3LR7S3LS_03	3LR7S2N_02			3LS2B1L5_11
3LR7S2N_04 3LR7S3L2S_03 3LS2B2L2_01 3LR7S2N_05 3LR7S3L2S_04 3LR7S3S_04 3LS2B2L2_02 3LR7S2N_06 3LR7S3L3_07 3LR7S3S_05 3LS2B2L2_03 3LR7S2NL1_01 3LR7S3L3S_01 3LR7S3S_06 3LS2B2L2_04 3LR7S2NL1_02 3LR7S3L3S_02 3LR7S3S_07 3LS2B2L2_05 3LR7S2NL1_03 3LR7S3L3S_03 3LR7S3S_08 3LS2B2L2_06 3LR7S2NL1_04 3LR7S3L3S_04 3LR7S3S_09 3LS2B2L3_02 3LR7S2NL2_01 3LR7S3L3S_05 3LR7S3S_10 3LS2B2L3_03 3LR7S2NL2_02 3LR7S3LS_06 3LR7S3BS_01 3LS2B2L3_01 3LR7S2NL2_03 3LR7S3LS_01 3LR7S3LS_01 3LS2B2L4_01 3LR7S2NL3_03 3LR7S3LS_02 3LS2B2L4_02 3LR7S2NL3_03 3LR7S3LS_03 3LS1B1NH_01 3LS2B2L5_01 3LR7S2NL3_04 3LR7S3LS_04 3LS1B3_Sth 3LS2B2L6_01 3LR7S2NL3_05 3LR7S3LS_02 3LS1B_01 3LS2B2L6_01 3LR7S2NL4_01 3LR7S3LS_02 3LS1B_01 3LS2B4L1_01 3LR7S2NL4_04 3LR7S3LS_03	3LR7S2N_03	3LR7S3L2S_02	3LR7S3S_02	3LS2B1L5_12
3LR752N_06 3LR753L3_07 3LR753S_05 3LS2B2L2_03 3LR752NL1_01 3LR753L3S_01 3LR753S_06 3LS2B2L2_04 3LR752NL1_02 3LR753L3S_02 3LR753S_07 3LS2B2L2_05 3LR752NL1_03 3LR753L3S_03 3LR753S_08 3LS2B2L2_06 3LR752NL1_04 3LR753L3S_04 3LR753S_09 3LS2B2L3_02 3LR752NL2_01 3LR753L3S_05 3LR753S_10 3LS2B2L3_03 3LR752NL2_02 3LR753L3S_06 3LR753BS_01 3LS2B2L3_03 3LR752NL2_03 3LR753L4S_01 3LR753BS_02 3LS2B2L4_01 3LR752NL3_03 3LR753L4S_02 3LS01 3LS2B2L4_02 3LR752NL3_04 3LR753L4S_03 3LS1B1Nth_01 3LS2B2L5_01 3LR752NL3_04 3LR753L4S_04 3LS1B3_5th 3LS2B2L5_01 3LR752NL3_05 3LR753L5S_01 3LS1FW-02 3LS2B2L7_01 3LR752NL4_01 3LR753L5S_03 3LS2 IL3_01 3LS2B4L1_01 3LR752NL4_04 3LR753L5S_03 3LS2 IL3_01 3LS2B4L1_02 3LR752NL5_03 3LR753L5S_04 3LS2BIL1_01 3LS2B4L1_03 <t< td=""><td>3LR7S2N_04</td><td></td><td>3LR7S3S_03</td><td>3LS2B2L2_01</td></t<>	3LR7S2N_04		3LR7S3S_03	3LS2B2L2_01
3LR752NL1_01 3LR753L3S_01 3LR753S_06 3LS2B2L2_04 3LR752NL1_02 3LR753L3S_02 3LR753S_07 3LS2B2L2_05 3LR752NL1_03 3LR753L3S_03 3LR753S_08 3LS2B2L2_06 3LR752NL1_04 3LR753L3S_04 3LR753S_09 3LS2B2L3_02 3LR752NL2_01 3LR753L3S_05 3LR753S_10 3LS2B2L3_03 3LR752NL2_02 3LR753L3S_06 3LR753SBS_01 3LS2B2L3_N_01 3LR752NL2_03 3LR753L4S_01 3LR753SBS_02 3LS2B2L4_01 3LR752NL3_03 3LR753L4S_02 3LS01 3LS2B2L4_02 3LR752NL3_04 3LR753L4S_03 3LS1B1Nth_01 3LS2B2L5_01 3LR752NL3_04 3LR753L4S_04 3LS1B3_5th 3LS2B2L6_01 3LR752NL3_05 3LR753L5S_01 3LS1FW-02 3LS2B2L7_01 3LR752NL4_01 3LR753L5S_02 3LS1S_01 3LS2B4L1_01 3LR752NL4_04 3LR753L5S_03 3LS2B1L1_01 3LS2B4L1_02 3LR752NL5_03 3LR753L5S_04 3LS2B1L1_01 3LS2B4L1_03 3LR752NL5_03 3LR753L5S_05 3LS2B1L1_02 3LS2B4L1_04 <	3LR7S2N_05	3LR7S3L2S_04	3LR7S3S_04	3LS2B2L2_02
3LR7S2NL1_02 3LR7S3L3S_02 3LR7S3S_07 3LS2B2L2_05 3LR7S2NL1_03 3LR7S3L3S_03 3LR7S3S_08 3LS2B2L2_06 3LR7S2NL1_04 3LR7S3L3S_04 3LR7S3S_09 3LS2B2L3_02 3LR7S2NL2_01 3LR7S3L3S_05 3LR7S3S_10 3LS2B2L3_03 3LR7S2NL2_02 3LR7S3L3S_06 3LR7S3SBS_01 3LS2B2L3N_01 3LR7S2NL2_03 3LR7S3L4S_01 3LR7S3SBS_02 3LS2B2L4_01 3LR7S2NL3_02 3LR7S3L4S_02 3LS01 3LS2B2L4_02 3LR7S2NL3_03 3LR7S3L4S_03 3LS1B1Nth_01 3LS2B2L5_01 3LR7S2NL3_04 3LR7S3L4S_04 3LS1B3_Sth 3LS2B2L6_01 3LR7S2NL3_05 3LR7S3L5S_01 3LS1FW-02 3LS2B2L7_01 3LR7S2NL4_01 3LR7S3L5S_02 3LS1S_01 3LS2B4L1_01 3LR7S2NL4_04 3LR7S3L5S_03 3LS2 1L3_01 3LS2B4L1_02 3LR7S2NL5_03 3LR7S3L5S_04 3LS2B1L1_01 3LS2B4L1_02 3LR7S2NL5_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2N_06	3LR7S3L3_07	3LR7S3S_05	3LS2B2L2_03
3LR7S2NL1_03 3LR7S3L3S_03 3LR7S3S_08 3LS2B2L2_06 3LR7S2NL1_04 3LR7S3L3S_04 3LR7S3S_09 3LS2B2L3_02 3LR7S2NL2_01 3LR7S3L3S_05 3LR7S3S_10 3LS2B2L3_03 3LR7S2NL2_02 3LR7S3L3S_06 3LR7S3SBS_01 3LS2B2L3_001 3LR7S2NL2_03 3LR7S3L4S_01 3LR7S3SBS_02 3LS2B2L4_01 3LR7S2NL3_02 3LR7S3L4S_02 3LS01 3LS2B2L4_02 3LR7S2NL3_03 3LR7S3L4S_03 3LS1B1Nth_01 3LS2B2L5_01 3LR7S2NL3_04 3LR7S3L4S_04 3LS1B3_Sth 3LS2B2L6_01 3LR7S2NL3_05 3LR7S3L5S_01 3LS1FW-02 3LS2B2L7_01 3LR7S2NL4_01 3LR7S3L5S_02 3LS1S_01 3LS2B4L1_01 3LR7S2NL4_04 3LR7S3L5S_03 3LS2B1L1_01 3LS2B4L1_02 3LR7S2NL5_03 3LR7S3L5S_04 3LS2B1L1_01 3LS2B4L1_03 3LR7S2NL5_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2NL1_01	3LR7S3L3S_01	3LR7S3S_06	3LS2B2L2_04
3LR7S2NL1_04 3LR7S3L3S_04 3LR7S3S_09 3LS2B2L3_02 3LR7S2NL2_01 3LR7S3L3S_05 3LR7S3S_10 3LS2B2L3_03 3LR7S2NL2_02 3LR7S3L3S_06 3LR7S3SBS_01 3LS2B2L3N_01 3LR7S2NL2_03 3LR7S3L4S_01 3LR7S3SBS_02 3LS2B2L4_01 3LR7S2NL3_02 3LR7S3L4S_02 3LS01 3LS2B2L4_02 3LR7S2NL3_03 3LR7S3L4S_03 3LS1B1Nth_01 3LS2B2L5_01 3LR7S2NL3_04 3LR7S3L4S_04 3LS1B3_Sth 3LS2B2L6_01 3LR7S2NL3_05 3LR7S3L5S_04 3LS1FW-02 3LS2B2L7_01 3LR7S2NL4_01 3LR7S3L5S_02 3LS1S_01 3LS2B4L1_01 3LR7S2NL4_04 3LR7S3L5S_03 3LS2B1L1_01 3LS2B4L1_02 3LR7S2NL5_03 3LR7S3L5S_04 3LS2B1L1_01 3LS2B4L1_03 3LR7S2NL5_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2NL1_02	3LR7S3L3S_02	3LR7S3S_07	3LS2B2L2_05
3LR7S2NL2_01 3LR7S3L3S_05 3LR7S3S_10 3LS2B2L3_03 3LR7S2NL2_02 3LR7S3L3S_06 3LR7S3SBS_01 3LS2B2L3N_01 3LR7S2NL2_03 3LR7S3L4S_01 3LR7S3SBS_02 3LS2B2L4_01 3LR7S2NL3_02 3LR7S3L4S_02 3LS01 3LS2B2L4_02 3LR7S2NL3_03 3LR7S3L4S_03 3LS1B1Nth_01 3LS2B2L5_01 3LR7S2NL3_04 3LR7S3L4S_04 3LS1B3_Sth 3LS2B2L6_01 3LR7S2NL3_05 3LR7S3L5S_01 3LS1FW-02 3LS2B2L7_01 3LR7S2NL4_01 3LR7S3L5S_02 3LS1S_01 3LS2B4L1_01 3LR7S2NL4_04 3LR7S3L5S_03 3LS2 1L3_01 3LS2B4L1_02 3LR7S2NL5_03 3LR7S3L5S_04 3LS2B1L1_01 3LS2B4L1_03 3LR7S2NS_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2NL1_03	3LR7S3L3S_03	3LR7S3S_08	3LS2B2L2_06
3LR7S2NL2_02 3LR7S3L3S_06 3LR7S3SBS_01 3LS2B2L3N_01 3LR7S2NL2_03 3LR7S3L4S_01 3LR7S3SBS_02 3LS2B2L4_01 3LR7S2NL3_02 3LR7S3L4S_02 3LS01 3LS2B2L4_02 3LR7S2NL3_03 3LR7S3L4S_03 3LS1B1Nth_01 3LS2B2L5_01 3LR7S2NL3_04 3LR7S3L4S_04 3LS1B3_Sth 3LS2B2L6_01 3LR7S2NL3_05 3LR7S3L5S_01 3LS1FW-02 3LS2B2L7_01 3LR7S2NL4_01 3LR7S3L5S_02 3LS1S_01 3LS2B4L1_01 3LR7S2NL4_04 3LR7S3L5S_03 3LS2 1L3_01 3LS2B4L1_02 3LR7S2NL5_03 3LR7S3L5S_04 3LS2B1L1_01 3LS2B4L1_03 3LR7S2S_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2NL1_04	3LR7S3L3S_04	3LR7S3S_09	3LS2B2L3_02
3LR7S2NL2_03 3LR7S3L4S_01 3LR7S3SBS_02 3LS2B2L4_01 3LR7S2NL3_02 3LR7S3L4S_02 3LS01 3LS2B2L4_02 3LR7S2NL3_03 3LR7S3L4S_03 3LS1B1Nth_01 3LS2B2L5_01 3LR7S2NL3_04 3LR7S3L4S_04 3LS1B3_Sth 3LS2B2L6_01 3LR7S2NL3_05 3LR7S3L5S_01 3LS1FW-02 3LS2B2L7_01 3LR7S2NL4_01 3LR7S3L5S_02 3LS1S_01 3LS2B4L1_01 3LR7S2NL4_04 3LR7S3L5S_03 3LS2 1L3_01 3LS2B4L1_02 3LR7S2NL5_03 3LR7S3L5S_04 3LS2B1L1_01 3LS2B4L1_03 3LR7S2S_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2NL2_01	3LR7S3L3S_05	3LR7S3S_10	3LS2B2L3_03
3LR7S2NL3_02 3LR7S3L4S_02 3LS01 3LS2B2L4_02 3LR7S2NL3_03 3LR7S3L4S_03 3LS1B1Nth_01 3LS2B2L5_01 3LR7S2NL3_04 3LR7S3L4S_04 3LS1B3_Sth 3LS2B2L6_01 3LR7S2NL3_05 3LR7S3L5S_01 3LS1FW-02 3LS2B2L7_01 3LR7S2NL4_01 3LR7S3L5S_02 3LS1S_01 3LS2B4L1_01 3LR7S2NL4_04 3LR7S3L5S_03 3LS2 1L3_01 3LS2B4L1_02 3LR7S2NL5_03 3LR7S3L5S_04 3LS2B1L1_01 3LS2B4L1_03 3LR7S2S_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2NL2_02	3LR7S3L3S_06	3LR7S3SBS_01	3LS2B2L3N_01
3LR7S2NL3_03 3LR7S3L4S_03 3LS1B1Nth_01 3LS2B2L5_01 3LR7S2NL3_04 3LR7S3L4S_04 3LS1B3_Sth 3LS2B2L6_01 3LR7S2NL3_05 3LR7S3L5S_01 3LS1FW-02 3LS2B2L7_01 3LR7S2NL4_01 3LR7S3L5S_02 3LS1S_01 3LS2B4L1_01 3LR7S2NL4_04 3LR7S3L5S_03 3LS2 1L3_01 3LS2B4L1_02 3LR7S2NL5_03 3LR7S3L5S_04 3LS2B1L1_01 3LS2B4L1_03 3LR7S2S_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2NL2_03	3LR7S3L4S_01	3LR7S3SBS_02	3LS2B2L4_01
3LR7S2NL3_04 3LR7S3L4S_04 3LS1B3_Sth 3LS2B2L6_01 3LR7S2NL3_05 3LR7S3L5S_01 3LS1FW-02 3LS2B2L7_01 3LR7S2NL4_01 3LR7S3L5S_02 3LS1S_01 3LS2B4L1_01 3LR7S2NL4_04 3LR7S3L5S_03 3LS2 1L3_01 3LS2B4L1_02 3LR7S2NL5_03 3LR7S3L5S_04 3LS2B1L1_01 3LS2B4L1_03 3LR7S2S_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2NL3_02	3LR7S3L4S_02	3LS01	3LS2B2L4_02
3LR7S2NL3_05 3LR7S3L5S_01 3LS1FW-02 3LS2B2L7_01 3LR7S2NL4_01 3LR7S3L5S_02 3LS1S_01 3LS2B4L1_01 3LR7S2NL4_04 3LR7S3L5S_03 3LS2 1L3_01 3LS2B4L1_02 3LR7S2NL5_03 3LR7S3L5S_04 3LS2B1L1_01 3LS2B4L1_03 3LR7S2S_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2NL3_03	3LR7S3L4S_03	3L\$1B1Nth_01	3LS2B2L5_01
3LR7S2NL4_01 3LR7S3L5S_02 3LS1S_01 3LS2B4L1_01 3LR7S2NL4_04 3LR7S3L5S_03 3LS2 1L3_01 3LS2B4L1_02 3LR7S2NL5_03 3LR7S3L5S_04 3LS2B1L1_01 3LS2B4L1_03 3LR7S2S_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2NL3_04	3LR7S3L4S_04	3LS1B3_Sth	3L\$2B2L6_01
3LR7S2NL4_04 3LR7S3L5S_03 3LS2 1L3_01 3LS2B4L1_02 3LR7S2NL5_03 3LR7S3L5S_04 3LS2B1L1_01 3LS2B4L1_03 3LR7S2S_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2NL3_05	3LR7S3L5S_01	3LS1FW-02	3L\$2B2L7_01
3LR7S2NL5_03 3LR7S3L5S_04 3LS2B1L1_01 3LS2B4L1_03 3LR7S2S_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2NL4_01	3LR7S3L5S_02	3L\$1\$_01	3LS2B4L1_01
3LR7S2S_03 3LR7S3L5S_05 3LS2B1L1_02 3LS2B4L1_04	3LR7S2NL4_04	3LR7S3L5S_03	3LS2 1L3_01	3L\$2B4L1_02
	3LR7S2NL5_03	3LR7\$3L5\$_04	3LS2B1L1_01	3LS2B4L1_03
	3LR7S2S_03	3LR7S3L5S_05	3LS2B1L1_02	3L\$2B4L1_04
3LR7S2S_04 3LR7S3L5S_06 3LS2B1L1_03 3LS2B4L1_05	3LR7S2S_04	3LR7S3L5S_06	3LS2B1L1_03	3L\$2B4L1_05

BHID	BHID	BHID	BHID
3LS2B4L2_01	3LS3B1L1_03	3LS3B2L3_04	3L\$3B4B_01
3LS2B4L2_02	3LS3B1L2_01	3LS3B2L4_01	3LS3B4B_02
3LS2B4L2_03	3LS3B1L2_02	3LS3B2L4_02	3LS3B4B_03
3LS2B4L3_01	3LS3B1L2_03	3LS3B2L5_01	3LS3B4B_04
3LS2B4L4_01	3LS3B1L2_04	3L\$3B2L5_02	3LS3B4B_05
3LS2B4L5_01	3LS3B1L2_05	3LS3B2L6_05	3LS3B4B 07
3LS2BS_11	3LS3B1L3_01	3LS3B3L1_01	3LS3B4L1_01
3LS2BS_12	3LS3B1L3_02	3LS3B3L1_02	3LS3B4L1_02
3LS2BS_12a	3LS3B1L3_03	3LS3B3L1_03	3LS3B4L1_03
3LS2BS_13	3LS3B1L3_05	3LS3B3L1_04	3LS3B4L1_04
3LS2BS_13a	3LS3B1L3_06	3LS3B3L2_01	3LS3B4L1_05
3LS2BS_14	3LS3B1L4_01	3L\$3B3L2_02	3LS3B4L2_01
3LS2BS_14a	3LS3B1L4_02	3LS3B3L2_03	3LS3B4L2_02
3LS2BS_15	3LS3B1L4_03	3LS3B3L2_04	3LS3B4L2_03
3LS2BS_15a	3LS3B1L4_04	3LS3B3L2_05	3LS3B4L2_04
3LS2BS_16	3LS3B1L4_05	3LS3B3L3_01	3LS3B4L2_05
3LS2BS_16a	3LS3B1L4_06	3LS3B3L3_02	3LS3B4L2_06
3LS2BS_17	3LS3B1L4_07	3LS3B3L3_03	3LS3B4L2_07
3LS2BS_17a	3LS3B1L5_01	3LS3B3L4_01	3LS3B4L3_01
3LS2HW_01	3LS3B1L5_02	3LS3B3L4_02	3LS3B4L3_02
3LS2HW_02	3LS3B1L5_03	3LS3B3L4_03	3LS3B4L3_03
3LS2HW_03	3LS3B1L5_04	3LS3B3L4_04	3LS3B4L3_04
3LS2HW_04	3LS3B1L5_05	3LS3B3L4_05	3LS3B4L3_05
3LS2HW_05	3LS3B1L6_01	3LS3B3L4_06	3LS3B4L3_06
3LS2HW_06	3LS3B1L6_02	3LS3B3L6_01	3LS3B4L4_01
3LS2HW_07	3LS3B1L6_03	3LS3B3L6_02	3LS3B4L4_02
3LS2S_01	3LS3B1L6_04	3LS3B3L6_03	3LS3B4L4_03
3LS2SBS_01	3LS3B1L7_01	3LS3B3L6_04	3LS3B4L4_04
3LS2SBS_02	3LS3B1L7_02	3LS3B3L6_05	3LS3B4L4_05
3LS2SBS_03	3LS3B1L7_03	3LS3B3L6_06	3LS3B4L4_06
3LS2SBS_04	3LS3B1R_01	3LS3B3L6_07	3LS3B4L5_01
3LS2SBS_07	3LS3B1R_02	3LS3B3L7_01	3LS3B4L5_02
3LS2SBS_08	3LS3B2L1_01	3LS3B3L7_02	3LS3B4L5_03
3LS2SBS_09	3LS3B2L1_02	3LS3B3L7_03	3LS3B4L5_04
3LS2SBS_10	3LS3B2L1_03	3LS3B3L7_05	3LS3B4L5_05
3LS2SBS_11	3LS3B2L2_01	3LS3B3L7_06	3LS3B4L5_06
3LS3B1_02	3LS3B2L2_02	3LS3B3L7_07	3LS3B4L6_01
3LS3B1_03	3LS3B2L2_03	3LS3B3L7_08	3L\$3B4L6_02
3LS3B1_04	3LS3B2L2_04	3LS3B3L7_09	3L\$3B4L6_03
3LS3B1_05	3LS3B2L2_05	3LS3B3L7_10	3LS3BS_02
3LS3B1_06	3LS3B2L2_06	3LS3B3L8_01	3LS3BS_03
3LS3B1FWN_16	3LS3B2L3_01	3LS3B3L8_02	3LS3BS_04
3LS3B1L1_01	3LS3B2L3_02	3LS3B3L8_03	3LS3FWN_01
3LS3B1L1_02	3LS3B2L3_03	3LS3B3L8_07	3LS3FWN_02

			*
BHID	BHID	BHID	BHID
3LS3FWN_03	3L\$3\$_25	4.2_ODN_002	4.3L_ODN_Rise1_3m
3LS3FWN_04	3LS3S_26	4.2L_ODN_003	4.3L_ODN_Rise1_3m_A
3LS3FWN_05	3LS3S_27	4.3L_ACC_001	4.3L_ODN_Rise1_4m_A
3LS3FWN_06	3LS3S_28	4.3L_ACC_002	4.3L_ODN_Rise1_5m_A
3LS3FWN_07	3LS3S_29	4.3L_HWS_001	4.3L_ODN_Rise1_6m_A
3LS3FWN_08	3LS3S_30	4.3L_HWS_002	4.3L_ODN_Rise1_7m_A
3LS3FWN_09	3LS3S_31	4.3L_HWS_003	4.3L_ODN_Rise2_10m_A
3LS3FWN_10	3LS3S_32	4.3L_HWS_004	4.3L_ODN_Rise2_1m
3LS3FWN_11	3LS3S_33	4.3L_HWS_005	4.3L_ODN_Rise2_1m_A
3LS3FWS_01	3LS3S_34	4.3L_HWS_006	4.3L_ODN_Rise2_2m
3LS3FWS_02	3S1FW-03	4.3L_HWS_007	4.3L_ODN_Rise2_2m_A
3LS3N_01	3S1FW-04	4.3L_HWS_008	4.3L_ODN_Rise2_3m_A
3LS3N_02	4.0_sublevel_northern_rise		4.3L_ODN_Rise2_4m_A
3LS3R3N_01	4.0_sublevel_northern_rise		4.3L_ODN_Rise2_5m_A
3LS3R3S_01	4.0_sublevel_northern_rise		4.3L_ODN_Rise2_6m_A
3LS3R3S_02	4.0 sublevel northern rise		4.3L_ODN_Rise2_7m_A
3LS3R4N_01	4.0_sublevel_northern_rise		4.3L_ODN_Rise2_8m_A
3LS3R4N_02	4.0L_ACC_entry_vein	4.3L_HWS_014	4.3L_ODN_Rise2_9m_A
3LS3R7S_01	4.0L_FWS_001	4.3L_HWS_015	4.3L_ODS_001
3LS3R7S_02	4.0L_FWS_002	4.3L_HWS_016	4.3L_ODS_002
3LS3S_01	4.0L_FWS_003	4.3L_HWS_017	4.3L_ODS_003
3LS3S_02	4.0L_FWS_004	4.3L_HWS_018	4.3L_ODS_004
3LS3S_03	4.0L_FWS_005	4.3L_HWS_019	4.3L_ODS_005
3LS3S_04	4.0L_FWS_006	4.3L_HWS_020	4.3L_ODS_006
3LS3S_05	4.0L_FWS_007	4.3L_HWS_021	4.3L_ODS_007
3LS3S_06	4.0L_FWS_Sub_001	4.3L_HWS_022	4.3L_ODS_008
3LS3S_07	4.0L_FWS_Sub_002	4.3L_HWS_023	4.3L_ODS_009
3LS3S_08	4.0L_FWS_Sub_003	4.3L_HWS_024	4.3L_ODS_010
3LS3S_09	4.0L_FWS_Sub_004	4.3L_ODN_001	4.3L_ODS_011
3LS3S_10	4.0L_FWS_Sub_005	4.3L_ODN_002	4.3L_ODS_012
3LS3S_11	4.0L_FWS_Sub_006	4.3L_ODN_003	4.3L_OD\$_013
3LS3S_12	4.0L_HWS_001	4.3L_ODN_004	4.3L_ODS_014
3LS3S_13	4.0L_HWS_002	4.3L_ODN_005	4.3L_OD\$_015
3LS3S_14	4.0L_HWS_003	4.3L_ODN_006	4.3L_ODS_016
3LS3S_15	4.0L_HWS_004	4.3L_ODN_007	4.3L_ODS_017
3LS3S_16	4.0L_HWS_005	4.3L_ODN_008	4.3L_ODS_018
3L\$3\$_17	4.0L_HWS_006	4.3L_ODN_009	4.3L_ODS_019
3LS3S_18	4.0L_HWS_007	4.3L_ODN_010	4.3L_ODS_020
3LS3S_19	4.0L_ODN_Millhole1	4.3L_ODN_011	4.3L_ODS_021
3LS3S_20	4.0L_ODS_001	4.3L_ODN_012	4.3L_ODS_022
3L\$3\$_21	4.0L_ODS_uphole_01	4.3L_ODN_Rise1_1m	4.3L_ODS_023
3L\$3\$_22	4.0L_ODS_uphole_02	4.3L_ODN_Rise1_1m_A	4.3L_ODS_024
3L\$3\$_23	4.0L_ODS_uphole_03	4.3L_ODN_Rise1_2m	4.3L_ODS_025
3LS3S_24	4.2_ODN_001	4.3L_ODN_Rise1_2m_A	4.3L_ODS_026
-			

			<u>▼</u>
BHID	BHID	BHID	BHID
4.3L_ODS_027	4.3L_OD\$_070	4B1L7-01	4M3FWN-15
4.3L_ODS_028	4.3L_ODS_071	4B1L7-02	4M3FWN-16
4.3L_ODS_028A	4.3L_OD\$_072	4BL3-03	4M3HWNS1-02
4.3L_ODS_029	4.3L_OD\$_073	4L_ACC_001	4M3NRHW-01
4.3L_ODS_030	4.3L_OD\$_074	4L_ACC_002	4M3R2S1-01
4.3L_ODS_031	4.3L_OD\$_075	4L_FWS_wall_01	4M3RT-01
4.3L_ODS_032	4.3L_OD\$_076	4L_FWS_wall_02	4M3RW-02
4.3L_ODS_033	4.3L_OD\$_left_wall_1m_con	nps4L_UG_02	4M3\$1-05
4.3L_ODS_034	4.3L_ODS_right_wall_1m_cc	mp4LBS_01	4M3S1-06
4.3L_ODS_035	4.3L_OD\$_\$H01	4LBS_02	4M3S2P1-01
4.3L_ODS_036	4.3L_OD\$_\$H02	4LBS_04	4M3S3-01
4.3L_ODS_037	4.3L_OD\$_\$H03	4LBS_05	4M3ST1-01
4.3L_ODS_038	4.3L_OD\$_\$H04	4LBS_06	4M3SUB1-02
4.3L_ODS_039	4.3L_OD\$_\$H05	4LBS_07	4M3SUB1-03
4.3L_ODS_040	4.3L_OD\$_\$H06	4LBS_08	4M4FWV-01
4.3L_ODS_041	4.3L_ODS_SH07	4LDS-25	4M5L4B1-03
4.3L_ODS_042	4.3L_ODS_SH08	4LMA_02	4M5L4B1-04
4.3L_ODS_043	4.3L_ODS_SH09	4LMA_03	4M6_FWN_04
4.3L_ODS_044	4.3L_ODS_SH10	4LMB_01	4M6FNL-01
4.3L_ODS_045	4.3L_ODS_SH11	4LMCN_01	4M6FW-05
4.3L_ODS_046	4.3L_ODS_SH12	4LMCS_01	4M6FWN-03
4.3L_ODS_047	4.3L_ODS_SH13	4LMDN_01	4M6FWN-05
4.3L_ODS_048	4.3L_ODS_SH14	4LMDN_02	4M6FWN-06
4.3L_ODS_049	4.3L_RAR_North_face	4LMDS_01	4M6FWN-07
4.3L_ODS_050	4.3L_RAR_North_Face_02	4LMHA_01	4M6FWNL-01
4.3L_ODS_051	4.3L_RAR_South_face	4LS_05	4M6FWNR-01
4.3L_ODS_052	4.3L_RAR_South_Face_02	4LS1N_01	4M6FWNR-02
4.3L_ODS_053	4B1L10-01	4LS1s_01	4M6FW-S-02
4.3L_ODS_054	4B1L10-02	4LSD-26	4M6FWS-06
4.3L_ODS_055	4B1L10-03	4LSD-28	4M7R2S-01
4.3L_ODS_056	4B1L10-04	4LSDLH-01	4M7S-02
4.3L_ODS_057	4B1L10-05	4LSQLW-01	4M7S1-02
4.3L_ODS_058	4B1L11-01	4LUG_03A	4M7S1-03
4.3L_ODS_059	4B1L11-02	4LUG03	4M7S1-04
4.3L_ODS_060	4B1L12-01	4M3FWN-01	4M7\$1-05
4.3L_ODS_061	4B1L3-01	4M3FWN-02	4M7S1-07
4.3L_ODS_062	4B1L3-02	4M3FWN-06A	4R3M7-01
4.3L_ODS_063	4B1L3-03	4M3FWN-07	4R6FW-N-01
4.3L_ODS_064	4B1L5-01	4M3FWN-08	4R6FWN-02
4.3L_ODS_065	4B1L5-02	4M3FWN-09	4R6FW-S-01
4.3L_ODS_066	4B1L5-03	4M3FWN-10	4R6FW-S-03
4.3L_ODS_067	4B1L5-04	4M3FWN-11	4R7N_01
4.3L_OD\$_068	4B1L6-01	4M3FWN-12	4R7N-02
4.3L_ODS_069	4B1L6-02	4M3FWN-14	4R7N-03

BHID	BHID	BHID	BHID
4R7S-01	SG_2A_333.5_13251.6	SG_2B_333.3_13186.5	SG_2C_337.7_13115.3
4R7S-04	SG_2A_333.5_13258	SG_2B_333.3_13192.07	SG_2C_338.7_13114.5
4R7S1-01	SG_2A_333.6_13264	SG_2B_334.3_13168.89	SG_2C_341_13110
4R7S2-01	SG_2A_333.61_13228	SG_2B_334.3_13170.93	SG_2C_341_13111
4R7S2-02	SG_2A_333.62_13265.8	SG_2B_334.3_13173.04	SG_2C_341_13112
4SD-27	SG_2A_333.64_13224.2	SG_2B_334.5_13182.42	SG_2C_341_13113.5
4SQRW-01	SG_2A_333.66_13222.6	SG_2B_334.5_13182.94	SG_2SD_13089.81
CV011	SG_2A_333.7_13218.6	SG_2B_334.5_13184.41	SG_2SD_13093.41
CVDEC001	SG_2A_333.7_13268.3	SG_2B_334.5_13184.82	SG_2SD_13094.41
CVDEC003	SG_2A_334.8_13285.69	SG_2B_334.5_13186.41	SG_2SD_13095.25
CVDEC004	SG_2A_335.4_13260.6	SG_2B_334.51_3188.31	SG_2SD_13096.39
CVDEC005	SG_2A_335.6_13269.99	SG_2B_342.6_13185.8	SG_2SD_13098.38
CVDEC006	SG_2A_335.6_13272.84	SG_2B_342_13183.83	SG_2SD_13098.39
CVDEC007	SG_2A_335.6_13274.92	SG 2B 342 13184.7	SG_2SD_13100.37
CVDEC008	SG_2A_335.6_13276.92	SG_2B_342_13189.03	SG_2SD_13101.32
CVDEC009	SG_2A_335.6_13278.77	SG_2B_342_13189.89	SG_2SD_13108.8
CVDEC010	SG_2A_335.6_13284.19	SG_2B_343.1_13185.2	SG_2SD_13111.59
CVDEC011	SG_2A_335.8_13217.45	SG_2B_343.5_13184.7	SG_2SD_13113.35
CVDEC012	SG_2A_335_13255	SG_2C_331.1_13135.79	SG_2SD_13120.16
CVRC18_001	SG_2A_336.5_13266.63	SG_2C_332.4_13135.6	SG_2SD_13129.25
CVRC18_002	SG_2A_336.5_13268.51	SG_2C_333.5_13121.88	SG_2SD_13130.83
CVRC18_003	SG_2A_336.5_13270.39	SG_2C_333.8_13102.2	SG_2SD_13134.24
CVRC18_004	SG_2A_336.5_13271.33	SG_2C_333.8_13106.1	SG_2SD_13137.22
CVRC18_005	SG_2A_336.5_13272.27	SG_2C_333.8_13116.8	SG_2SD_13143.46
CVRC18_006	SG_2A_336.9_13218	SG_2C_334.1_13135.36	SG_2SD_13148.45
CVRC18_007	SG_2A_337.1_13253.3	SG_2C_334.3_13113.93	SG_2SD_13150.17
CVRC18_008	SG_2A_337.2_13246.3	SG_2C_334.3_13115.93	SG_2SD_13155.64
CVRC18_009	SG_2A_337.2_13249.6	SG_2C_334.3_13137.85	SG_2SD_13159.25
CVRC18_010	SG_2A_337.2_13251.4	SG_2C_334.3_13140.84	SG_2SD_13162.77
EL1S4SBS_07	SG_2A_337.6_13214.03	SG_2C_334.3_13142.84	SG_2SD_13166.27
JVC040	SG_2A_338.2_13215.75	SG_2C_334.3_13142.85	SG_2SD_13168.07
JVC041	SG_2A_338.3_13244.6	SG_2C_334.3_13143.84	SG_2SD_13169.86
JVC050	SG_2A_339.7_13222.9	SG_2C_334.3_13143.85	SG_2SD_13173.45
JVC052	SG_2A_341.1_13232.1	SG_2C_334.3_13146.84	SG_2SD_13177.04
JVC056	SG_2A_341.2_13226.9	SG_2C_334.3_13149.83	SG_2SD_13186.27
RC4	SG_2A_341.8_13214.5	SG_2C_335.8_13135.12	SG_2SD_13187.67
RC5	SG_2A_341.8_13214.6	SG_2C_335_13104.9	SG_2SD_13201.86
RC8	SG_2A_341.8_13214.7	SG_2C_335_13110.3	SG_2SD_13204.93
SG_2A_328.5_13259	SG_2A_342.2_13208.2	SG_2C_335_13112.2	SG_2SD_13212.65
SG_2A_333.5_13217.4	SG_2B_333.3_13159.01	SG_2C_335_13114.3	SG_2SD_13216.39
SG_2A_333.5_13233	SG_2B_333.3_13159.35	SG_2C_335_13119.85	SG_2SD_13220.22
SG_2A_333.5_13238.14	SG_2B_333.3_13164.01	SG_2C_335_13139.84	SG_2SD_13222.15
SG_2A_333.5_13238.6	SG_2B_333.3_13168.04	SG_2C_336.3_13146.85	SG_2SD_13222.16
SG_2A_333.5_13246.6	SG_2B_333.3_13169.72	SG_2C_337.5_13134.88	SG_2SD_13227.47

BHID	BHID	BHID	BHID
SG_2SD_13233.34	SG_3SD_13145.2	SK_2A_336.6_13352.54	SPW_N_OD3.3_008
SG_2SD_13236.89	SG_3SD_13147.38	SK_2FWD_13299.9	SPW_N_OD3.3_LW01
SG_2SD_13238.26	SG_3SD_13156.52	SK_2FWD_13344.5	SPW_N_OD3.3_LW02
SG_2SD_13244.88	SG_3SD_13167.04	SK_2FWD_13359.9	SPW_N_OD3.3_LW03
SG_2SD_13248.4N	SG_3SD_13171.54	SK_2SD_13317.9	SPW_N_OD3.3_RW01
SG_2SD_13251.8	SG_3SD_13177.104	SK_2SD_13322.8	SPW_N_OD3.3_RW02
SG_3A_292.2_13119.2	SG_3SD_13179.13	SK_2SD_13341.4	SPW_N_OD3.3_RW03
SG_3A_292.2_13173.67	SG_3SD_13207.04	SK_2SD_13344.1N	SPW_N_OD3.3_RW04
SG_3A_292.2_13178.33	SG_3SD_13209.48	SK_2SD_13348.26N	SPW_N_OD3_001
SG_3A_292.2_13185.22	SG_3SD_13214.1	SK_2SD_13377.6N	SPW_N_OD3_002
SG_3A_292.2_13187.52	SG_3SD_13218.32	SK_2SD_13384	SPW_N_OD3_003
SG_3A_292.2_13195.44	SG_3SD_13228.18	SKP01	SPW_N_OD3_004
SG_3A_292.2_13204.95	SG_3SD_3216.28	SKP02	SPW_N_OD3_005
SG 3A 292.2 13207.9	SG_R1_330.8_13146.6	SPW_ACC_001	SPW_N_OD3_006
SG_3A_292.5_13168.28	SG_R1_331.7_13146.7	SPW_ACC_002	SPW_N_OD3_007
SG_3A_293.1_13170.65	SG_R1_332.5_13145	SPW_ACC_003	SPW_N_OD3_008
SG_3A_293.2_13174.57	SG_R1_332.5_13146.9	SPW_ACC_004	SPW_N_OD3_009
SG_3A_293.4_13168.7	SG_R2_332.4_13139.6	SPW_ACC_005	SPW_N_OD3_010
SG_3A_293.4_13196.1	SG_R2_332.5_13141.4	SPW_ACC_006	SPW_N_OD3_LW_Comp
SG_3A_293.4_13198.06	SG_R2_333.4_13141.5	SPW_ACC_007	SPW_N_OD3_RW_Comp
SG_3A_293.4_13200.07	SG_R2_333.6_13140.9	SPW_ACC_008	SPW_N_South_strike_LW_0_1m
SG_3A_293.4_13202.05	SG_R2_333_13139.1	SPW_ACC_009	SPW_N_South_strike_LW_1_2m
SG_3A_293.4_13204.06	SG_R4_331.2_13130.7	SPW_ACC_010	SPW_N_South_strike_RW_0_1m
SG_3A_293.4_13206.01	SG_R4_331.2_13132.1	SPW_ACC_011	SPW_N_South_strike_RW_1_2m
SG_3A_293.4_13208.05	SG_R4_332_13130.8	SPW_ACC_012	SPW_NOD_left_wall_comp
SG_3A_293.6_13164.72	SG_R4_332_13132.1	SPW_N_OD_001	SPW_NOD_right_wall_comp
SG_3A_293.7_13162.75	SG_R4_333.2_13130.3	SPW_N_OD_002	SPW_Nth_Strike_001
SG_3A_293.8_13160.7	SG_R4_333.6_13131.6	SPW_N_OD_003	SPW_Nth_Strike_002
SG_3A_294.1_13158.72	SG_R4_333_13132.7	SPW_N_OD_004	SPW_Nth_Strike_003
SG_3A_294.2_13152.79	SG3A_300.65_13214.2	SPW_N_OD_005	SPW_Nth_Strike_004
SG_3A_294.3_13154.77	SG3A_301.3_13202.95	SPW_N_OD_006	SPW_Nth_Strike_005
SG_3A_294.3_13156.74	SGP05	SPW_N_OD_007	SPW_Nth_Strike_006
SG_3A_294.4_13151	SGP06	SPW_N_OD_008	SPW_Nth_Strike_007
SG_3SD_13102.57	SGP07	SPW_N_OD_009	SPW_Nth_Strike_008
SG_3SD_13108.5	SGP08	SPW_N_OD_010	SPW_Nth_strike_009
SG_3SD_13110.5	SK_2A_331.5_13341.52	SPW_N_OD_011	SPW_OD3_SH001
SG_3SD_13112.6	SK_2A_332.0_13335.46	SPW_N_OD_012	SPW_OD3_SH002
SG_3SD_13114.6	SK_2A_332.2_13337.68	SPW_N_OD3.3_001	SPW_OD3_SH003
SG_3SD_13116.6	SK_2A_332.3_13343.41	SPW_N_OD3.3_002	SPW_OD3_SH004
SG_3SD_13118.6	SK_2A_332.6_13339.58	SPW_N_OD3.3_003	SPW_ODN_013
SG_3SD_13121.6	SK_2A_333.3_13345.24	SPW_N_OD3.3_004	SPW_ODN_014
SG_3SD_13123.1	SK_2A_334.15_13347.1	SPW_N_OD3.3_005	SPW_S_Comp_001
SG_3SD_13134.79	SK_2A_334.85_13348.3	SPW_N_OD3.3_006	SPW_S_Comp_002
SG_3SD_13142.18	SK_2A_335.1_13348.84	SPW_N_OD3.3_007	SPW_S_Comp_003

			*	
BHID	BHID	BHID	BHID	
SPW_S_OD_001	SQS_2A_330_13489	SQS_2A_338_13506	SQS_2B_331_13474	
SPW_S_OD_002	SQS_2A_330_13490	SQS_2A_338_13507	SQS_2B_331_13476	
SPW_S_OD_003	SQS_2A_330_13491	SQS_2A_338_13508	SQS_2B_331_13478	
SPW_S_OD_004	SQS_2A_330_13492	SQS_2A_338_13509	SQS_2B_331_13480	
SPW_S_OD_005	SQS_2A_330_13493	SQS_2A_338_13510	SQS_2ND_13552.18	
SPW_S_OD_006	SQS_2A_330_13494	SQS_2B_13468.5	SQS_2ND_13554.12	
SPW_S_OD_007	SQS_2A_330_13495	SQS_2B_13476.5N	SQS_2ND_13555.98	
SPW_S_OD_008	SQS_2A_330_13496	SQS_2B_13477.2	SQS_2ND_13557.69	
SPW_S_OD_009	SQS_2A_330_13497	SQS_2B_328_13447.7	SQS_2ND_13559.37	
SPW_S_OD_010	SQS_2A_330_13498	SQS_2B_328_13448.7	SQS_2ND_13562.65	
SPW_S_OD_11	SQS_2A_330_13499	SQS_2B_328_13449.6	SQS_2SD_13404.1	
SPW_S_OD_12	SQS_2A_330_13500	SQS_2B_328_13450.7	SQS_2SD_13414.2	
SPW_S_OD_13	SQS_2A_330_13501	SQS_2B_328_13451.7	SQS_2SD_13417.6	
SPW_S_OD_SH01	SQS_2A_330_13502	SQS_2B_328_13452.6	SQS_2SD_13422.9N	
SPW_S_OD_SH02	SQS_2A_330_13503	SQS_2B_328_13453.6	SQS_2SD_13439.8N	
SPWRC18_001	SQS_2A_330_13504	SQS_2B_328_13454.6	SQS_2SD_13439N	
SPWRC18_002	SQS_2A_330_13505	SQS 2B 328 13455.6	SQS_2SD_13441.99	
SPWRC18_003	SQS_2A_334_13490	SQS_2B_328_13456.6	SQS_2SD_13443.6N	
SPWRC18_004	SQS_2A_334_13491	SQS 2B 328 13457.7	SQS_2SD_13449	
SPWRC18_005	SQS_2A_334_13492	SQS_2B_328_13458.7	SQS_2SD_13461.02	
SQ_2L_ND_001	SQS_2A_334_13493	SQS_2B_328_13459.7	SQS_2SD_13466.16	
SQ_2L_ND_002	SQS_2A_334_13494	SQS_2B_328_13460.6	SQS_2SD_13468.4	
SQ_2L_SD_001	SQS_2A_334_13495	SQS_2B_328_13461.5	SQS_2SD_13471.81N	
SQ_2L_SD_002	SQS_2A_334_13496	SQS_2B_328_13462.5	SQS_2SD_13475.15	
SQ_2L_SD_003	SQS_2A_334_13497	SQS_2B_328_13463.4	SQS_2SD_13476.94	
SQ_2L_SD_004	SQS_2A_334_13498	SQS_2B_328_13464.4	SQS_2SD_13482.11	
SQ_2L_SD_005	SQS_2A_334_13499	SQS_2B_328_13465.5	SQS_2SD_13485.3N	
SQ_2L_SD_006	SQS_2A_334_13500	SQS_2B_328_13466.5	SQS_2SD_13488.9	
SQ_2L_SD_007	SQS_2A_334_13501	SQS_2B_328_13467.6	SQS_2SD_13495.93	
SQ_2L_SD_008	SQS_2A_337_13492	SQS_2B_328_13468.6	SQS_2SD_13497.6N	
SQ_2L_SD_009	SQS_2A_337_13493	SQS_2B_328_13469.5	SQS_2SD_13499.54	
SQ_2L_SD_R01_001	SQS_2A_337_13494	SQS_2B_328_13470.4	SQS_2SD_13501.08	
SQ_2L_SD_R01_002	SQS_2A_337_13495	SQS_2B_328_13471.4	SQS_2SD_13511.82	
SQ_2L_SD_R01_003	SQS_2A_337_13496	SQS_2B_328_13472.4	SQS_2SD_13515.52	
SQ_2L_SD_R01_004	SQS_2A_337_13497	SQS_2B_330.5_13451.7	SQS_2SD_13522.11	
SQ_2L_SD_R01_005	SQS_2A_337_13498	SQS_2B_330.5_13452.7	SQS_2SD_13523.74	
SQP01	SQS_2A_337_13499	SQS_2B_330.5_13453.7	SQS_2SD_13526.91	
SQP02	SQS_2A_337_13500	SQS_2B_330.5_13454.7	SQ\$_2\$D_13528.42	
SQS_2A_329.7_13506	SQS_2A_337_13501	SQS_2B_330.5_13455.7	SQ\$_2SD_13533.72	
SQS_2A_330_13484	SQS_2A_337_13511	SQS_2B_330.5_13456.7	SQ\$_2\$D_13535.86	
SQS_2A_330_13485	SQS_2A_338_13502	SQS_2B_330.5_13457.7	SQ\$_2\$D_13537.92	
SQS_2A_330_13486	SQS_2A_338_13503	SQS_2B_331_13468	SQS_2SD_13539.68	
SQS_2A_330_13487	SQS_2A_338_13504	SQS_2B_331_13470	SQ\$_2\$D_13541.05	
SQS_2A_330_13488	SQS_2A_338_13505	SQS_2B_331_13472	SQS_3A_13477.9	

			▼	
BHID	BHID	BHID	BHID	
SQS_3A_288.6_13451.3	SQS_3A_309.2_13472.2	SQS_3SD_13326	WTA039	
SQS_3A_288.6_13453.0	SQS_3A_309.2_13479.6	UG_01	WTA040	
SQS_3A_289.4_13454.9	SQS_3A_309.4_13462.4	ETA001	WTA041	
SQS_3A_289.4_13457.0	SQS_3A_309.4_13486.8	ETA002	WTA042	
SQS_3A_294_13468.52	SQS_3A_309.5_13470.6	ETA003	WTA043	
SQS_3A_295.6_13469.6	SQS_3A_309.5_13484.9	ETA004	WTA044	
SQS_3A_297.1_13470.8	SQS_3A_309.9_13477.9	ETA005	WTA045	
SQS_3A_299.8_13467.1	SQS_3A_310.2_13474	ETA006	WTA046	
SQS_3A_299.8_13472.1	SQS_3A_310.2_13478.0	ETA007	WTA047	
SQS_3A_299.8_13473.9	SQS_3A_310.2_13479.9	ETA008	WTA048	
SQS_3A_299.8_13474.9	SQS_3A_310.2_13482.0	ETA009	WTA049	
SQS_3A_299.8_13475.9	SQS_3A_311_13470.9	ETA010	WTA050	
SQS_3A_299_13479.7	SQS_3A_311_13475.3	17WB1	WTA051	
SQS_3A_299_13480.5	SQS_3A_319.2_13488.3	17WB3	WTC023	
SQS_3A_299_13482.77	SQS_3FWD_13511.19	WTA030	WTC024	
SQS_3A_300.9_13476.9	SQS_3FWD_13513.19	WTA031	WTC025	
SQS_3A_300.9_13479.8	SQS_3FWD_13519.18	WTA032	WTC026	
SQS_3A_300.9_13483.7	SQS_3FWD_13521.18	WTA033	WTC027	
SQS_3A_301.1_13481.7	SQS_3FWD_13523.18	WTA034	WTC028	
SQS_3A_301.1_13486.6	SQS_3FWD_13524.18	WTA035	WTC029	
SQS_3A_301.1_13490.7	SQS_3SD_13309.79	WTA036	WTC030	
SQS_3A_301.7_13491.4	SQS_3SD_13315.45	WTA037	WTC031	
SQS_3A_303.4_13488.4	SQS_3SD_13319	WTA038	WTC032	