Copper-cobalt grades continue at depth at Millennium

Remaining RC and diamond drilling assays received

Highlights

> Remaining assays received from recently completed drilling at Millennium Cu-Co-Au

- Diamond drill extension results include:
- 17 m @ $0.43 \% \mathrm{Cu}, 0.11 \%$ Co and $0.08 \mathrm{~g} / \mathrm{t}$ Au from 234m (MI22RDO2)
- 1m @ 2.08\% Co and 0.15g/t Au from 179m (MI22RD05)
- 2 m @ 0.52% Co from 237m (MI22RD05)
- 6 m @ $0.52 \% \mathrm{Cu}, 0.08 \%$ Co and $0.18 \mathrm{~g} / \mathrm{t}$ Au from 265m (MI22RD05)
- Remaining RC results from the Northern Area including:
- 16m @ 0.42\% Cu from 9m (MI22RC016)
- 6m @ 0.27\% Cu from 35m (MI22RCO18) towards the Quamby/Fountain Range Fault Zone
> Resource review and upgrade work in progress

Metal Bank Limited (ASX: MBK) ('Metal Bank', 'MBK’ or the 'Company') is pleased to provide an exploration update from its Millennium copper-cobalt-gold (Cu-Co-Au) project in Queensland (MBK earning up to 80\%). All assay results have now been received for MBK's diamond drill (DD) hole depth extensions in the Southern and Central Resource areas, along with results for reverse circulation (RC) exploration drilling in the Northern Area, as part of the resource infill and extension drilling completed in September. Notable results include:

Diamond drill extensions:

- 17m @ 0.43\% Cu, 0.11\% Co and 0.08g/t Au from 234m (MI22RDO2)
- 1m @ 2.08\% Co and 0.15g/t Au from 179m (MI22RD05)
- 2m @ 0.52\% Co from 237m (MI22RD05)
- 6 m @ $0.52 \% \mathrm{Cu}, 0.08 \%$ Co and $0.18 \mathrm{~g} / \mathrm{t}$ Au from 265m (MI22RD05)

RC results from the Northern Area:

- 16m @ 0.42\% Cu from 9m (MI22RC016)
- 6m @ 0.27\% Cu from 35m (MI22RCO18) towards the Fountain Range/Quamby Fault Zone

The cobalt grades reiterate Millennium as one of Australia's highest grade undeveloped battery metals projects, contained within granted mining licenses and will form part of the Millennium resource update along with metallurgical sampling. Of particular note are strong cobalt (Co) grades hosted in hydrothermal veins and crackle breccias including discrete high-grade zones at depth potentially amenable to underground extraction below the bulk of the near surface Cu-Co-Au resource.

Importantly, diamond drilling results confirm the size and continuity of copper-cobalt-gold mineralisation at depth consistent with previous results. This continuity of grades at depth in several areas will allow for an increase to the existing 2012 Inferred Resource of 5.9 Mt @ $1.08 \%{ }^{1} \mathrm{CuEq}$ (Figure 1).

In addition, the encouraging copper values returned in the Northern Area towards the regional Fountain Range/Quamby Fault Zone represent newly identified mineralisation west of the existing Millennium Resource.

These results follow on from the first diamond drill hole assays and RC drilling results reported earlier this month ${ }^{2}$, which also returned high cobalt grades and validated and extended the existing Resource, including holes MI22RC08 and MI22RC09 which extended the scope of the Central Area resource some 120m north of the existing JORC 2012 Inferred Resource.

Commenting on the results, Metal Bank's Chair, Inés Scotland said:

"Our work demonstrates the critical minerals opportunity at the Millennium Project extends to depth below the existing bulk near surface copper-cobalt-gold Resource. The high-grade cobalt intersections at depth show strong support for potential underground extraction and the results in the Northern Area provide potential for adding further to the mineralisation at Millennium. We are now in the process of reviewing all results and planning the next phase of work."

Millennium 2022 Work Program

All results from the recently completed drilling program have now been received, including one shallow infill DD hole (MI22DDO2) in the Southern Area, three DD tail extensions to existing RC holes toward the base of the existing resource (MI22RD02, MI22RD04 and MI22RD05) in the Southern and Northern Areas, and seven RC drill holes in the Northern Area testing for extensions to copper mineralisation as reported in initial preliminary drilling in 2021^{3}.

These results are presented in Table 1 and Figure 1 with cross-sections in Figures 2, 3 and 4.

[^0]

Figure 1: Millennium Project overview showing new drilling results

Table 1: Millennium drilling notable intersections

HOLE ID	FROM	INTERVAL (m)	$\mathrm{Cu} \%$	Co \%	Aug/t
MI22DD02	18	1	0.24	0.02	<0.01
MI22RD02	131	1	0.21	0.03	0.01
and	205	1	0.02	0.33	0.05
and	217	1	0.27	0.15	0.03
and	223	1	0.06	0.16	0.01
and	234	17	0.43	0.11	0.08
MI22RD04	138	2	0.33	0.19	0.17
and	152	16	0.36	0.05	0.11
and	171	2	0.17	0.14	0.03
and	196	1	0.01	0.12	0.02
and	198	1	0.28	0.02	0.02
and	210	1	0.3	0.08	0.01
and	277	1	0.22	<0.01	<0.01
MI22RD05	179	1	0.01	2.08	0.15
and	188	2	0.45	0.11	0.18
and	214	11	0.27	0.02	0.08
and	237	2	0.02	0.52	0.02
and	250	1	0.01	0.02	0.13
and	257	1	0.03	0.15	0.02
and	262	1	0.01	0.17	0.01
and	265	6	0.52	0.08	0.18
MI22RC16	9	16	0.42	<0.01	<0.01
MI22RC17	79	1	0.22	<0.01	0.02
MI22RC18	35	6	0.27	<0.01	0.01

NOTE: 0.2% Cu cut-off, $3 m$ maximum internal dilution unless indicated by*. Results $>0.1 \%$ Co reported individually if Cu above cut-off is not present.

SOUTHERN AREA

Hole MI22RD02 (Figures 1 and 2) intersected $17 \mathrm{~m} @ 0.43 \% \mathrm{Cu}$ and $0.11 \% \mathrm{Co}$ (with minor Au) some 80 m below previous drilling in the centre of the Southern Area resource. This result supports the continuation of the modelled Resource at depth, which remains open.

Figure 2: Millennium 7722800N cross-section showing MI22RD02 results, previous drilling intersections and 2016 resource model

CENTRAL AREA

Drilling successfully extended mineralisation $>100 \mathrm{~m}$ down dip of the Millennium structure in the Central Area (Figures 1 and 3), with MI22RD05 returning multiple high grade Co intersections including $1 \mathrm{~m} @ 2.08 \%$ Co and $0.15 \mathrm{~g} / \mathrm{t}$ Au from 179 m , and 2 m @ 0.52% Co from 237 m . A broad Cu-

MBI

METAL BANK LIMITED
Co-Au intersection more typical of the Millennium system returned $6 \mathrm{~m} @ 0.52 \% \mathrm{Cu}$ and $0.08 \% \mathrm{Co}$ approximately 110 m below previous drilling on section. Results from the Central Area confirm mineralisation remains open at depth and provides strong support for narrow high grade underground potential below the bulk near surface Cu-Co-Au resource.

Figure 3: Millennium 7723500N cross-section showing MI22RD05 results, previous drilling intersections and 2016 resource model

NORTHERN AREA

Results from the copper-dominant Northern Area included broad near surface Cu intersections of 16m @ 0.42\% Cu from 9m (MI22RCO16) and 6m @ 0.27\% Cu from 35m (MI22RCO18) (Figures 1 and 4).

Figure 4: Millennium 7724700N cross-section showing MI22RC18 results west of the interpreted Millennium mineralisation northern extension identified in 2021 drilling

METAL BANK LIMITED
These broad shallow results confirm and additional $>300 \mathrm{~m}$ strike extend north of the main Millennium Cu-Co-Au mineralisation. In addition, the Fountain Range/Quamby Fault Zone remains an important area of interest with initial scout drilling successful in defining anomalous Cu mineralisation. MBK plans further work programs for 2023 to identify additional mineralised structures in the area of interest along with the potential for genetic links to the Millennium Cu-CoAu mineralisation.

Millennium Project - MBK earning up to 80\%

The Millennium Copper and Cobalt Project near Cloncurry in NW QLD currently holds a JORC 2012compliant Inferred Resource of 5.9 Mt @ $1.08 \% \mathrm{CuEq}^{4}$ (Cu-Co-Au-Ag) across 5 granted Mining Leases with significant potential for expansion. It is located 19km from the Rocklands copper-cobalt project with an established processing plant capable of treating Millennium-style ores once recommissioned.

MBK's 2021 drill results and other previous drilling, in conjunction with significant appreciation in copper and cobalt prices since maiden Resource reporting, provided support for an initial Exploration Target ${ }^{4}$ for the Project of $8-10 \mathrm{Mt}$ @ 1.0-1.1\% CuEq.

MBK developed a three-phase work program for Millennium in 2022^{5} seeking to confirm the Exploration Target for the Project, and future Resource expansion and development potential. The Exploration Target is based on extensions both along strike and at depth in both the Southern and Central Area copper-cobalt-gold Resources and in the Northern Area, where shallow copper intervals at broad spacing have been returned some 800-1000m north of the closest Resource.

MBK's phase 2 drilling program at Millennium was completed in September. Assay results returned high cobalt grades, extended the depth of the Resource and the scope of the central area resource some 120m north of the existing JORC 2012 Inferred Resource. All results from the 2022 drilling program will be reviewed in detail with Resource upgrade work and planning to then commence for the next phase of work at Millennium.

It should be noted that the Exploration Target is conceptual in nature. There has been insufficient drilling at depth of the existing Resource and in the Northern Area of the project and insufficient information relating to the Reasonable Prospects of Eventual Economic Extraction (RPEEE) of the Millennium project to estimate a Mineral Resource over the Exploration Target area, and it is uncertain if further study will result in the estimation of a Mineral Resource over this area. It is acknowledged that the currently available data is insufficient spatially in terms of the density of drill holes, and in quality, in terms of MBK's final audit procedures for down hole data, data acquisition and processing, for the results of this analysis to be classified as a Mineral Resource in accordance with the JORC Code.

Authorised by the Board

For further information contact:

Inés Scotland - Executive Chair: ines@metalbank.com.au
Sue-Ann Higgins - Director and Company Secretary: sue-ann@metalbank.com.au

[^1]METAL BANK LIMITED

About Metal Bank

Metal Bank Limited is an ASX-listed minerals exploration company (ASX: MBK) holding a significant portfolio of advanced gold and copper exploration projects with substantial growth upside, including:

- the right to earn up to 80% of the Millennium Copper \& Cobalt project which holds an inferred 2012 JORC resource of 5.9 Mt @ 1.08% CuEq ${ }^{6}$, across 5 granted Mining Leases with significant potential for expansion;
- a 75\% interest in the advanced Livingstone Gold Project in WA which holds a JORC 2004 Inferred Resource of 49,900oz Au ${ }^{7}$ at the Homestead prospect, a JORC 2012 Inferred Resource of $30,500 \mathrm{oz}{ }^{8} \mathrm{Au}$ at Kingsley, and an Exploration Target ${ }^{8}$ of $290-400 \mathrm{Kt}$ at $1.8-2.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ for 16,800-25,700oz Au at Kingsley; and
- the 8 Mile, Wild Irishman and Eidsvold Gold projects in South East Queensland where considerable work by MBK to date has drill-proven both high grade vein-style and bulk tonnage intrusion-related Au mineralisation.

Metal Bank's exploration programs at these projects are focussed on:

- short term resource growth - advancing existing projects to substantially increase JORC Resources;
- identifying additional mineralisation at each of its projects; and
- assessing development potential and including fast tracking projects through feasibility and development to production.

Metal Bank is also committed to a strategy of diversification and growth through identification of new exploration opportunities which complement its existing portfolio and pursuit of other opportunities to diversify the Company's assets through acquisition of advanced projects or cashflow generating assets to assist with funding of the exploration portfolio.

[^2]METAL BANK LIMITED

Competent Person Statements

The information in this announcement that relates to exploration results and Mineral Resources and Ore Reserves for the Millennium Project was prepared and reported in accordance with the ASX Announcements and Global Energy Metals Corporation (GEMC) News Releases referenced in this announcement. The information in this announcement that relates to Mineral Resources of the Millennium Project is based on information compiled by Ms Elizabeth Haren, a Competent Person who is a Member and Chartered Professional of the Australasian Institute of Mining and Metallurgy and a full time employee of Haren Consulting Pty Ltd.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant ASX announcements and News Releases. In the case of Mineral Resource estimates and Ore Reserve estimates, all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original ASX announcements or News Releases.

The information in this announcement, that relates to MBK Exploration Results, Mineral Resources and Exploration Target statements is based on information compiled or reviewed by Mr Rhys Davies. Mr Davies is a contractor to the Company and eligible to participate in the Company's equity incentive plan. Mr Davies is a Member of The Australasian Institute of Geoscientists has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Davies consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

It should be noted that the MBK Exploration Targets described in this announcement are conceptual in nature and there is insufficient information to establish whether further exploration will result in the determination of Mineral Resources. As a Cautionary Statement, an Exploration Target is a statement or estimate of the exploration potential of a mineral deposit in a defined geological setting where the statement or estimate, quoted as a range of tonnes and a range of grade, relates to mineralization where there has been insufficient exploration to estimate a Mineral Resource. The potential quantity and grade of the Exploration Targets is conceptual in nature, there has been insufficient exploration to estimate an additional Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The Exploration Targets take no account of geological complexity that may be encountered, possible mining method or metallurgical recovery factors. It is acknowledged that the currently available data is insufficient spatially in terms of the density of drill holes, and in quality, in terms of MBK's final audit procedures for down hole data, data acquisition and processing, for the results of this analysis to be classified as Mineral Resources in accordance with the JORC Code.

APPENDIX 1: MILLENNIUM DRILL HOLE DETAILS

HOLE _ID	HOLE TYPE	EASTING	NORTHING	RL	DIP	AZI	EOH
MI22DD02	DD	415822.51	7722428.14	243.36	-55	90	57.8
MI22RC12	RC	416209.04	7724038.24	249.19	-60	90	97
MI22RC13	RC	416254.37	7724045.96	244.59	-60	90	60
MI22RC14	RC	416235.4	7724248.57	249.96	-60	90	94
MI22RC15	RC	416284.77	7724348.09	245.11	-60	90	103
MI22RC16	RC	416308.51	7724524.3	240.19	-60	90	107
MI22RC17	RC	416317.17	7724600.97	247.44	-60	90	97
MI22RC18	RC	416329.63	7724697.97	246.38	-60	260	109
MI22RD02	DD TAIL	415807.46	7722795.18	253.38	-70	90	261.9
MI22RD04	DD TAIL	415973.35	7723398.37	249.45	-80	90	285.6
MI22RD05	DD TAIL	415981.61	7723506.56	246.93	-72	100	299.9

APPENDIX 2: MILLENNIUM DRILLING RESULTS

HOLE ID	FROM	TO	INT (m)	Cu ppm	Co ppm	Au g/t
MI22DD02	0	1	1	1110	320	-0.01
MI22DD02	1	2	1	490	150	-0.01
MI22DD02	2	4	2	650	300	-0.01
MI22DD02	4	5	1	350	170	-0.01
MI22DD02	5	6	1	190	170	-0.01
MI22DD02	6	7	1	440	200	-0.01
MI22DD02	7	8	1	540	410	0.01
MI22DD02	8	9	1	860	640	0.01
MI22DD02	9	10	1	440	270	0.02
MI22DD02	10	11	1	1650	350	0.03
MI22DD02	11	12	1	1390	310	-0.01
MI22DD02	12	13	1	1330	770	-0.01
MI22DD02	13	14	1	1300	250	-0.01
MI22DD02	14	15	1	1820	300	-0.01
MI22DD02	15	16	1	1260	140	-0.01
MI22DD02	16	17	1	1720	230	-0.01
MI22DD02	17	18	1	1490	210	-0.01
MI22DD02	18	19	1	2420	160	-0.01
MI22DD02	19	20	1	440	60	0.04
MI22DD02	20	21	1	200	40	0.03
MI22DD02	21	22	1	420	10	0.02
MI22DD02	22	23	1	230	60	-0.01
MI22DD02	23	24	1	100	20	0.01
MI22DD02	24	25	1	100	50	-0.01
MI22DD02	25	26	1	500	50	-0.01
MI22DD02	26	27	1	20	10	-0.01
MI22DD02	27	28	1	60	20	-0.01
MI22DD02	28	29	1	190	10	-0.01
MI22DD02	29	30	1	40	10	-0.01

MI22DD02	30	31	1	50	10	-0.01
MI22DD02	31	32	1	80	20	-0.01
MI22DD02	32	33	1	40	20	-0.01
MI22DD02	33	34	1	50	20	-0.01
MI22DD02	34	35	1	20	10	-0.01
MI22DD02	35	36	1	170	100	-0.01
MI22DD02	36	37	1	20	20	-0.01
MI22DD02	37	38	1	20	10	-0.01
MI22DD02	38	39	1	90	20	0.01
MI22DD02	39	40	1	20	10	-0.01
MI22DD02	40	41	1	50	40	-0.01
MI22DD02	41	42	1	30	20	-0.01
MI22DD02	42	43	1	60	20	-0.01
MI22DD02	43	44	1	190	60	-0.01
MI22DD02	44	45	1	140	80	0.01
MI22DD02	45	46	1	80	20	-0.01
MI22DD02	46	47	1	130	60	-0.01
MI22DD02	47	48	1	70	20	-0.01
MI22DD02	48	49	1	130	10	-0.01
MI22DD02	49	50	1	60	10	-0.01
MI22DD02	50	51	1	40	10	-0.01
MI22DD02	51	52	1	40	10	-0.01
MI22DD02	52	53	1	30	-10	-0.01
MI22DD02	53	54	1	20	10	-0.01
MI22DD02	54	55	1	20	10	-0.01
MI22DD02	55	56	1	20	10	-0.01
MI22DD02	56	57	1	40	-10	0.01
MI22DD02	57	57.8	0.8	50	10	-0.01
MI22RC12	1	5	4	120	20	0.01
MI22RC12	5	9	4	190	50	0.01
MI22RC12	9	11	2	190	10	-0.01
MI22RC12	11	13	2	250	20	-0.01
MI22RC12	13	17	4	120	20	0.01
MI22RC12	17	21	4	150	30	0.01
MI22RC12	21	25	4	130	30	-0.01
MI22RC12	25	29	4	90	30	0.01
MI22RC12	29	33	4	90	20	-0.01
MI22RC12	33	37	4	80	20	-0.01
MI22RC12	37	41	4	100	10	-0.01
MI22RC12	41	45	4	80	10	-0.01
MI22RC12	45	49	4	40	10	-0.01
MI22RC12	49	53	4	60	10	-0.01
MI22RC12	53	57	4	60	10	-0.01
MI22RC12	57	61	4	60	10	-0.01
MI22RC12	61	65	4	120	10	-0.01
MI22RC12	65	69	4	450	40	0.01
MI22RC12	69	73	4	130	20	-0.01

MI22RC12	73	77	4	140	10	-0.01
MI22RC12	77	81	4	150	10	0.01
MI22RC12	81	85	4	210	20	-0.01
MI22RC12	85	90	5	110	10	-0.01
MI22RC12	90	94	4	160	20	-0.01
MI22RC12	94	97	3	280	30	-0.01
MI22RC13	0	4	4	80	10	0.01
MI22RC13	4	8	4	60	10	-0.01
MI22RC13	8	12	4	80	10	0.01
MI22RC13	12	16	4	120	10	-0.01
MI22RC13	16	20	4	200	20	-0.01
MI22RC13	20	23	3	170	20	0.01
MI22RC13	23	24	1	510	30	-0.01
MI22RC13	24	25	1	720	80	0.01
MI22RC13	25	26	1	210	40	-0.01
MI22RC13	26	27	1	10	-10	-0.01
MI22RC13	27	28	1	10	-10	-0.01
MI22RC13	28	29	1	10	-10	-0.01
MI22RC13	29	30	1	10	10	-0.01
MI22RC13	30	31	1	10	10	-0.01
MI22RC13	31	32	1	-10	-10	-0.01
MI22RC13	32	33	1	10	-10	-0.01
MI22RC13	33	34	1	10	10	-0.01
MI22RC13	34	35	1	-10	20	-0.01
MI22RC13	35	36	1	30	50	-0.01
MI22RC13	36	40	4	50	30	-0.01
MI22RC13	40	44	4	30	10	-0.01
MI22RC13	44	46	2	30	10	-0.01
MI22RC13	46	49	3	50	20	-0.01
MI22RC13	49	51	2	140	60	0.01
MI22RC13	51	55	4	150	50	0.01
MI22RC13	55	60	5	90	110	-0.01
MI22RC14	0	3	3	50	10	0.01
MI22RC14	3	7	4	60	10	0.01
MI22RC14	7	11	4	260	20	-0.01
MI22RC14	11	13	2	240	10	-0.01
MI22RC14	13	17	4	160	10	-0.01
MI22RC14	17	20	3	150	10	-0.01
MI22RC14	20	24	4	150	10	-0.01
MI22RC14	24	28	4	90	10	-0.01
MI22RC14	28	32	4	80	10	-0.01
MI22RC14	32	36	4	80	20	-0.01
MI22RC14	36	40	4	90	10	-0.01
MI22RC14	40	44	4	50	10	-0.01
MI22RC14	44	48	4	60	20	-0.01
MI22RC14	48	52	4	50	10	-0.01
MI22RC14	52	56	4	60	10	-0.01

MI22RC14	56	60	4	70	10	-0.01
MI22RC14	60	64	4	40	10	-0.01
MI22RC14	64	68	4	110	40	0.01
MI22RC14	68	72	4	60	10	-0.01
MI22RC14	72	76	4	60	10	-0.01
MI22RC14	76	80	4	70	10	-0.01
MI22RC14	80	84	4	60	10	-0.01
MI22RC14	84	88	4	60	10	-0.01
MI22RC14	88	92	4	70	20	-0.01
MI22RC14	92	94	2	30	10	-0.01
MI22RC15	1	5	4	40	10	-0.01
MI22RC15	5	9	4	30	-10	-0.01
MI22RC15	9	13	4	50	10	-0.01
MI22RC15	13	17	4	60	10	-0.01
MI22RC15	17	21	4	40	-10	-0.01
MI22RC15	21	25	4	90	10	-0.01
MI22RC15	25	29	4	50	10	-0.01
MI22RC15	29	33	4	40	10	-0.01
MI22RC15	33	37	4	20	-10	-0.01
MI22RC15	37	41	4	30	10	-0.01
MI22RC15	41	45	4	20	10	-0.01
MI22RC15	45	49	4	20	10	-0.01
MI22RC15	49	53	4	30	10	-0.01
MI22RC15	53	57	4	30	-10	-0.01
MI22RC15	57	61	4	50	10	-0.01
MI22RC15	61	65	4	50	10	-0.01
MI22RC15	65	69	4	80	10	-0.01
MI22RC15	69	73	4	230	10	-0.01
MI22RC15	73	77	4	130	10	-0.01
MI22RC15	77	81	4	100	10	-0.01
MI22RC15	81	85	4	40	10	-0.01
MI22RC15	85	89	4	60	10	-0.01
MI22RC15	89	93	4	30	10	-0.01
MI22RC15	93	97	4	300	10	-0.01
MI22RC15	97	101	4	610	10	-0.01
MI22RC15	101	103	2	330	10	-0.01
MI22RC16	1	5	4	400	10	0.01
MI22RC16	5	9	4	870	30	-0.01
MI22RC16	9	13	4	2180	20	-0.01
MI22RC16	13	14	1	8510	30	-0.01
MI22RC16	14	18	4	7690	10	-0.01
MI22RC16	18	21	3	1680	10	-0.01
MI22RC16	21	25	4	3680	20	-0.01
MI22RC16	25	29	4	190	10	-0.01
MI22RC16	29	33	4	80	10	-0.01
MI22RC16	33	36	3	50	-10	-0.01
MI22RC16	36	40	4	80	120	-0.01

MI22RC16	40	44	4	30	40	-0.01
MI22RC16	44	48	4	20	30	-0.01
MI22RC16	48	52	4	30	50	-0.01
MI22RC16	52	56	4	10	30	-0.01
MI22RC16	56	60	4	10	60	-0.01
MI22RC16	60	64	4	740	70	-0.01
MI22RC16	64	68	4	320	60	-0.01
MI22RC16	68	72	4	20	10	-0.01
MI22RC16	72	76	4	60	10	-0.01
MI22RC16	76	78	2	20	20	-0.01
MI22RC16	78	82	4	80	30	-0.01
MI22RC16	82	86	4	50	20	-0.01
MI22RC16	86	89	3	140	40	-0.01
MI22RC16	89	93	4	460	80	0.02
MI22RC16	93	95	2	410	60	-0.01
MI22RC16	95	97	2	420	60	-0.01
MI22RC16	97	101	4	480	20	-0.01
MI22RC16	101	105	4	50	10	-0.01
MI22RC16	105	107	2	90	30	-0.01
MI22RC17	1	5	4	300	30	-0.01
MI22RC17	5	9	4	150	20	-0.01
MI22RC17	9	13	4	170	20	-0.01
MI22RC17	13	17	4	80	10	-0.01
MI22RC17	17	21	4	100	20	-0.01
MI22RC17	21	22	1	30	10	-0.01
MI22RC17	22	26	4	150	40	-0.01
MI22RC17	26	30	4	290	40	-0.01
MI22RC17	30	34	4	290	40	-0.01
MI22RC17	34	36	2	140	20	-0.01
MI22RC17	36	40	4	300	20	-0.01
MI22RC17	40	41	1	300	20	-0.01
MI22RC17	41	42	1	60	10	-0.01
MI22RC17	42	43	1	30	10	-0.01
MI22RC17	43	44	1	10	-10	-0.01
MI22RC17	44	45	1	20	-10	-0.01
MI22RC17	45	46	1	20	20	-0.01
MI22RC17	46	47	1	160	10	-0.01
MI22RC17	47	48	1	220	20	-0.01
MI22RC17	48	49	1	240	30	-0.01
MI22RC17	49	50	1	320	30	-0.01
MI22RC17	50	51	1	190	40	-0.01
MI22RC17	51	52	1	230	30	-0.01
MI22RC17	52	53	1	940	150	0.01
MI22RC17	53	54	1	200	40	-0.01
MI22RC17	54	55	1	410	80	-0.01
MI22RC17	55	56	1	490	50	-0.01
MI22RC17	56	57	1	120	10	-0.01

MI22RC17	57	58	1	220	30	-0.01
MI22RC17	58	59	1	310	40	-0.01
MI22RC17	59	60	1	270	20	-0.01
MI22RC17	60	61	1	410	70	-0.01
MI22RC17	61	62	1	290	40	-0.01
MI22RC17	62	63	1	140	50	-0.01
MI22RC17	63	64	1	20	20	-0.01
MI22RC17	64	65	1	40	20	-0.01
MI22RC17	65	66	1	90	30	-0.01
MI22RC17	66	67	1	110	30	-0.01
MI22RC17	67	68	1	100	160	0.02
MI22RC17	68	69	1	1330	370	0.03
MI22RC17	69	70	1	1450	210	0.02
MI22RC17	70	71	1	380	160	0.01
MI22RC17	71	72	1	470	60	0.01
MI22RC17	72	73	1	1120	100	0.02
MI22RC17	73	74	1	40	60	-0.01
MI22RC17	74	75	1	1290	50	0.02
MI22RC17	75	76	1	200	440	0.02
MI22RC17	76	77	1	140	40	-0.01
MI22RC17	77	78	1	340	60	-0.01
MI22RC17	78	79	1	120	30	-0.01
MI22RC17	79	80	1	2220	60	0.02
MI22RC17	80	81	1	220	50	0.03
MI22RC17	81	82	1	330	70	0.01
MI22RC17	82	83	1	50	30	-0.01
MI22RC17	83	84	1	20	10	-0.01
MI22RC17	84	85	1	20	10	-0.01
MI22RC17	85	86	1	40	20	-0.01
MI22RC17	86	87	1	10	10	-0.01
MI22RC17	87	88	1	80	20	-0.01
MI22RC17	88	89	1	40	50	-0.01
MI22RC17	89	90	1	60	50	-0.01
MI22RC17	90	91	1	20	40	-0.01
MI22RC17	91	94	3	40	20	-0.01
MI22RC17	94	97	3	60	30	-0.01
MI22RC18	1	4	3	200	20	-0.01
MI22RC18	4	7	3	170	70	0.01
MI22RC18	7	10	3	160	50	-0.01
MI22RC18	10	14	4	180	50	0.01
MI22RC18	14	19	5	160	50	0.01
MI22RC18	19	23	4	290	40	0.01
MI22RC18	23	27	4	120	30	0.01
MI22RC18	27	31	4	970	60	0.01
MI22RC18	31	35	4	150	40	0.01
MI22RC18	35	37	2	2370	40	0.01
MI22RC18	37	41	4	2870	40	0.01

MI22RC18	41	44	3	320	30	0.01
MI22RC18	44	47	3	170	30	0.01
MI22RC18	47	51	4	170	10	0.01
MI22RC18	51	54	3	450	40	0.01
MI22RC18	54	58	4	60	10	-0.01
MI22RC18	58	62	4	110	10	-0.01
MI22RC18	62	64	2	170	10	-0.01
MI22RC18	64	65	1	240	20	0.01
MI22RC18	65	69	4	240	40	0.01
MI22RC18	69	73	4	170	40	0.01
MI22RC18	73	77	4	170	40	0.01
MI22RC18	77	81	4	170	40	0.01
MI22RC18	81	85	4	170	50	0.01
MI22RC18	85	89	4	180	40	-0.01
MI22RC18	89	92	3	170	40	-0.01
MI22RC18	92	96	4	500	30	-0.01
MI22RC18	96	100	4	420	20	-0.01
MI22RC18	100	104	4	650	20	0.01
MI22RC18	104	109	5	330	30	-0.01
MI22RD02	83	84	1	100	30	0.01
MI22RD02	86	87	1	30	50	-0.01
MI22RD02	89	90	1	50	50	-0.01
MI22RD02	90	91	1	10	40	-0.01
MI22RD02	91	92	1	90	50	-0.01
MI22RD02	92	93	1	80	60	-0.01
MI22RD02	93	94	1	60	50	0.01
MI22RD02	94	95	1	100	50	-0.01
MI22RD02	95	96	1	80	40	-0.01
MI22RD02	96	97	1	50	30	0.05
MI22RD02	97	98	1	140	60	-0.01
MI22RD02	98	99	1	170	70	-0.01
MI22RD02	99	100	1	40	30	-0.01
MI22RD02	105	106	1	20	20	-0.01
MI22RD02	106	107	1	50	10	0.01
MI22RD02	107	108	1	20	20	0.04
MI22RD02	108	109	1	20	10	0.05
MI22RD02	109	110	1	50	20	0.03
MI22RD02	110	111	1	40	20	0.02
MI22RD02	111	112	1	70	30	-0.01
MI22RD02	112	113	1	40	30	-0.01
MI22RD02	113	114	1	30	10	-0.01
MI22RD02	114	115	1	70	20	-0.01
MI22RD02	115	116	1	120	50	-0.01
MI22RD02	116	117	1	90	60	-0.01
MI22RD02	117	118	1	120	50	-0.01
MI22RD02	118	119	1	30	30	0.01
MI22RD02	119	120	1	110	30	-0.01

MI22RD02	120	121	1	40	80	0.01
MI22RD02	121	122	1	100	90	0.01
MI22RD02	122	123	1	1050	70	-0.01
MI22RD02	123	124	1	110	30	-0.01
MI22RD02	124	125	1	330	100	-0.01
MI22RD02	125	126	1	320	50	-0.01
MI22RD02	126	127	1	310	60	-0.01
MI22RD02	127	128	1	230	50	-0.01
MI22RD02	128	129	1	230	50	-0.01
MI22RD02	129	130	1	180	30	-0.01
MI22RD02	130	131	1	510	90	-0.01
MI22RD02	131	132	1	2090	250	0.01
MI22RD02	132	133	1	1020	260	0.01
MI22RD02	133	134	1	540	50	-0.01
MI22RD02	134	135	1	200	120	-0.01
MI22RD02	135	136	1	50	30	-0.01
MI22RD02	136	137	1	30	20	-0.01
MI22RD02	137	138	1	70	40	-0.01
MI22RD02	138	139	1	60	30	-0.01
MI22RD02	139	140	1	70	30	-0.01
MI22RD02	140	141	1	110	30	-0.01
MI22RD02	141	142	1	90	30	-0.01
MI22RD02	142	143	1	70	20	-0.01
MI22RD02	143	144	1	40	20	-0.01
MI22RD02	144	145	1	40	30	-0.01
MI22RD02	145	146	1	60	30	-0.01
MI22RD02	146	147	1	150	20	-0.01
MI22RD02	147	148	1	50	30	-0.01
MI22RD02	148	149	1	110	50	0.01
MI22RD02	149	150	1	270	20	-0.01
MI22RD02	150	151	1	30	50	-0.01
MI22RD02	151	152	1	70	50	-0.01
MI22RD02	152	153	1	210	40	-0.01
MI22RD02	153	154	1	60	40	-0.01
MI22RD02	154	155	1	40	40	-0.01
MI22RD02	155	156	1	50	30	-0.01
MI22RD02	156	157	1	110	30	-0.01
MI22RD02	157	158	1	60	30	-0.01
MI22RD02	158	159	1	60	50	-0.01
MI22RD02	159	160	1	260	180	-0.01
MI22RD02	160	161	1	30	30	-0.01
MI22RD02	161	162	1	30	40	-0.01
MI22RD02	162	163	1	20	20	-0.01
MI22RD02	163	164	1	30	40	-0.01
MI22RD02	164	165	1	1070	320	0.01
MI22RD02	165	166	1	40	40	-0.01
MI22RD02	166	167	1	50	30	-0.01

MI22RD02	167	168	1	50	20	-0.01
MI22RD02	168	169	1	50	30	-0.01
MI22RD02	169	170	1	150	40	0.1
MI22RD02	170	171	1	30	30	-0.01
MI22RD02	171	172	1	60	40	-0.01
MI22RD02	172	173	1	60	40	-0.01
MI22RD02	173	174	1	20	30	-0.01
MI22RD02	174	175	1	20	40	-0.01
MI22RD02	175	176	1	40	40	-0.01
MI22RD02	176	177	1	40	40	-0.01
MI22RD02	177	178	1	20	40	-0.01
MI22RD02	178	179	1	110	40	-0.01
MI22RD02	179	180	1	30	30	-0.01
MI22RD02	180	181	1	70	20	-0.01
MI22RD02	181	182	1	40	50	-0.01
MI22RD02	182	183	1	280	50	-0.01
MI22RD02	183	184	1	120	30	-0.01
MI22RD02	184	185	1	230	30	0.01
MI22RD02	185	186	1	200	50	0.01
MI22RD02	186	187	1	60	20	-0.01
MI22RD02	187	188	1	30	20	0.01
MI22RD02	188	189	1	30	20	-0.01
MI22RD02	189	190	1	150	20	0.01
MI22RD02	190	191	1	210	30	-0.01
MI22RD02	191	192	1	310	90	-0.01
MI22RD02	192	193	1	290	60	-0.01
MI22RD02	193	194	1	250	60	-0.01
MI22RD02	194	195	1	420	50	-0.01
MI22RD02	195	196	1	310	40	0.04
MI22RD02	196	197	1	150	20	-0.01
MI22RD02	197	198	1	700	80	-0.01
MI22RD02	198	199	1	930	130	-0.01
MI22RD02	199	200	1	250	40	-0.01
MI22RD02	200	201	1	1240	330	0.01
MI22RD02	201	202	1	1230	460	0.01
MI22RD02	202	203	1	1250	820	0.03
MI22RD02	203	204	1	170	840	0.01
MI22RD02	204	205	1	310	790	0.07
MI22RD02	205	206	1	190	3310	0.05
MI22RD02	206	207	1	1160	290	-0.01
MI22RD02	207	208	1	140	650	-0.01
MI22RD02	208	209	1	440	70	-0.01
MI22RD02	209	210	1	1160	100	0.01
MI22RD02	210	211	1	860	50	0.01
MI22RD02	211	212	1	190	20	0.01
MI22RD02	212	213	1	130	20	0.01
MI22RD02	213	214	1	80	280	0.01

MI22RD02	214	215	1	40	610	0.01
MI22RD02	215	216	1	130	10	-0.01
MI22RD02	216	217	1	510	40	-0.01
MI22RD02	217	218	1	2680	1540	0.03
MI22RD02	218	219	1	1210	860	0.03
MI22RD02	219	220	1	150	20	-0.01
MI22RD02	220	221	1	1240	860	0.01
MI22RD02	221	222	1	1540	330	0.02
MI22RD02	222	223	1	1030	180	0.03
MI22RD02	223	224	1	580	1630	0.01
MI22RD02	224	225	1	1050	150	-0.01
MI22RD02	225	226	1	300	70	-0.01
MI22RD02	226	227	1	180	10	0.01
MI22RD02	227	228	1	610	130	0.01
MI22RD02	228	229	1	390	20	-0.01
MI22RD02	229	230	1	590	60	-0.01
MI22RD02	230	231	1	510	240	-0.01
MI22RD02	231	232	1	450	90	-0.01
MI22RD02	232	233	1	380	70	0.01
MI22RD02	233	234	1	100	-10	0.01
MI22RD02	234	235	1	3260	310	0.06
MI22RD02	235	236	1	7840	950	0.21
MI22RD02	236	237	1	5140	1290	0.12
MI22RD02	237	238	1	8480	1220	0.29
MI22RD02	238	239	1	5510	890	0.23
MI22RD02	239	240	1	11300	1190	0.09
MI22RD02	240	241	1	3980	350	0.14
MI22RD02	241	242	1	5180	1690	0.06
MI22RD02	242	243	1	3000	1290	0.04
MI22RD02	243	244	1	1840	1450	0.03
MI22RD02	244	245	1	1590	2160	0.03
MI22RD02	245	246	1	1970	460	0.02
MI22RD02	246	247	1	2660	1080	-0.01
MI22RD02	247	248	1	3660	1540	0.03
MI22RD02	248	249	1	3560	2130	0.03
MI22RD02	249	250	1	710	60	-0.01
MI22RD02	250	251	1	3050	460	0.01
MI22RD02	251	252	1	1290	110	0.01
MI22RD02	252	253	1	830	140	0.01
MI22RD02	253	254	1	390	70	-0.01
MI22RD02	254	255	1	190	40	0.01
MI22RD02	255	256	1	560	90	-0.01
MI22RD02	256	257	1	920	760	0.01
MI22RD02	257	258	1	490	50	-0.01
MI22RD02	258	259	1	420	70	0.01
MI22RD02	259	260	1	140	20	-0.01
MI22RD02	260	261	1	70	30	0.01

MI22RD02	261	261.9	0.9	270	10	-0.01
MI22RD04	123.7	124.2	0.5	100	30	0.01
MI22RD04	124.2	125	0.8	160	30	-0.01
MI22RD04	125	126	1	170	20	-0.01
MI22RD04	126	127	1	400	20	-0.01
MI22RD04	127	128	1	260	10	-0.01
MI22RD04	128	129	1	710	10	-0.01
MI22RD04	129	130	1	580	20	-0.01
MI22RD04	130	131	1	340	30	-0.01
MI22RD04	131	132	1	360	40	0.01
MI22RD04	132	133	1	800	50	-0.01
MI22RD04	133	134	1	200	20	-0.01
MI22RD04	134	135	1	520	70	-0.01
MI22RD04	135	136	1	560	40	-0.01
MI22RD04	136	137	1	630	60	-0.01
MI22RD04	137	138	1	1190	210	0.2
MI22RD04	138	139	1	3490	390	0.12
MI22RD04	139	140	1	3200	3470	0.22
MI22RD04	140	141	1	610	40	0.01
MI22RD04	141	142	1	390	30	-0.01
MI22RD04	142	143	1	250	20	-0.01
MI22RD04	143	144	1	220	20	-0.01
MI22RD04	144	145	1	240	40	-0.01
MI22RD04	145	146	1	190	40	-0.01
MI22RD04	146	147	1	250	60	-0.01
MI22RD04	147	148	1	140	60	-0.01
MI22RD04	148	149	1	700	220	-0.01
MI22RD04	149	150	1	930	290	-0.01
MI22RD04	150	151	1	840	260	-0.01
MI22RD04	151	152	1	930	360	-0.01
MI22RD04	152	153	1	2040	120	-0.01
MI22RD04	153	154	1	1230	350	0.01
MI22RD04	154	155	1	400	430	-0.01
MI22RD04	155	156	1	2790	660	0.01
MI22RD04	156	157	1	3550	800	0.1
MI22RD04	157	158	1	2810	610	0.11
MI22RD04	158	159	1	9590	440	0.3
MI22RD04	159	160	1	5140	340	0.2
MI22RD04	160	161	1	7540	460	0.2
MI22RD04	161	162	1	2610	640	0.07
MI22RD04	162	163	1	1210	570	0.04
MI22RD04	163	164	1	4340	420	0.15
MI22RD04	164	165	1	300	420	0.02
MI22RD04	165	166	1	2410	330	0.04
MI22RD04	166	167	1	8310	780	0.34
MI22RD04	167	168	1	3500	440	0.11
MI22RD04	168	169	1	120	400	-0.01

MI22RD04	169	170	1	80	270	-0.01
MI22RD04	170	171	1	70	390	-0.01
MI22RD04	171	172	1	520	430	0.02
MI22RD04	172	173	1	2930	1170	0.04
MI22RD04	173	174	1	450	1720	0.01
MI22RD04	174	175	1	20	240	-0.01
MI22RD04	175	176	1	10	140	-0.01
MI22RD04	176	177	1	180	300	-0.01
MI22RD04	177	178	1	20	200	-0.01
MI22RD04	178	179	1	330	350	-0.01
MI22RD04	179	180	1	240	420	-0.01
MI22RD04	180	181	1	70	410	-0.01
MI22RD04	181	182	1	60	240	-0.01
MI22RD04	182	183	1	70	270	-0.01
MI22RD04	183	184	1	70	220	-0.01
MI22RD04	184	185	1	20	130	-0.01
MI22RD04	185	186	1	20	120	-0.01
MI22RD04	186	187	1	540	510	-0.01
MI22RD04	187	188	1	70	310	-0.01
MI22RD04	188	189	1	110	240	-0.01
MI22RD04	189	190	1	210	250	-0.01
MI22RD04	190	191	1	120	370	-0.01
MI22RD04	191	192	1	40	310	-0.01
MI22RD04	192	193	1	90	240	-0.01
MI22RD04	193	194	1	30	390	-0.01
MI22RD04	194	195	1	260	310	-0.01
MI22RD04	195	196	1	80	180	-0.01
MI22RD04	196	197	1	120	1160	0.02
MI22RD04	197	198	1	1660	730	0.08
MI22RD04	198	199	1	2780	230	0.02
MI22RD04	199	200	1	890	350	0.01
MI22RD04	200	201	1	370	200	0.01
MI22RD04	201	202	1	330	100	-0.01
MI22RD04	202	203	1	290	120	0.01
MI22RD04	203	204	1	210	140	-0.01
MI22RD04	204	205	1	300	210	-0.01
MI22RD04	205	206	1	90	90	-0.01
MI22RD04	206	207	1	180	150	-0.01
MI22RD04	207	208	1	70	80	-0.01
MI22RD04	208	209	1	60	80	-0.01
MI22RD04	209	210	1	1050	340	0.02
MI22RD04	210	211	1	3020	790	0.01
MI22RD04	211	212	1	300	490	0.01
MI22RD04	212	213	1	130	80	-0.01
MI22RD04	213	214	1	90	80	-0.01
MI22RD04	214	215	1	220	450	-0.01
MI22RD04	215	216	1	170	80	-0.01

MI22RD04	216	217	1	80	70	-0.01
MI22RD04	217	218	1	170	110	-0.01
MI22RD04	218	219	1	290	180	-0.01
MI22RD04	219	220	1	110	60	-0.01
MI22RD04	220	221	1	170	90	-0.01
MI22RD04	221	222	1	60	30	-0.01
MI22RD04	222	223	1	170	40	-0.01
MI22RD04	223	224	1	150	150	-0.01
MI22RD04	224	225	1	90	70	-0.01
MI22RD04	225	226	1	90	70	-0.01
MI22RD04	226	227	1	290	140	-0.01
MI22RD04	227	228	1	400	310	-0.01
MI22RD04	228	229	1	120	80	-0.01
MI22RD04	229	230	1	210	40	-0.01
MI22RD04	230	231	1	220	20	0.01
MI22RD04	231	232	1	80	10	-0.01
MI22RD04	232	233	1	150	30	-0.01
MI22RD04	233	234	1	60	40	-0.01
MI22RD04	234	235	1	120	90	-0.01
MI22RD04	235	236	1	60	60	-0.01
MI22RD04	236	237	1	20	20	-0.01
MI22RD04	237	238	1	40	30	-0.01
MI22RD04	238	239	1	60	30	-0.01
MI22RD04	239	240	1	60	30	-0.01
MI22RD04	240	241	1	30	30	-0.01
MI22RD04	241	242	1	60	40	-0.01
MI22RD04	242	243	1	80	40	-0.01
MI22RD04	243	244	1	130	50	-0.01
MI22RD04	244	245	1	110	40	-0.01
MI22RD04	245	246	1	110	40	-0.01
MI22RD04	246	247	1	190	60	-0.01
MI22RD04	247	248	1	1220	280	-0.01
MI22RD04	248	249	1	450	60	-0.01
MI22RD04	249	250	1	330	50	-0.01
MI22RD04	250	251	1	500	70	0.01
MI22RD04	251	252	1	10	10	-0.01
MI22RD04	252	253	1	60	-10	-0.01
MI22RD04	253	254	1	10	-10	-0.01
MI22RD04	254	255	1	10	-10	-0.01
MI22RD04	255	256	1	-10	-10	-0.01
MI22RD04	256	257	1	10	-10	-0.01
MI22RD04	257	258	1	10	-10	-0.01
MI22RD04	258	259	1	10	-10	-0.01
MI22RD04	259	260	1	150	120	-0.01
MI22RD04	260	261	1	200	130	-0.01
MI22RD04	261	262	1	110	50	-0.01
MI22RD04	262	263	1	40	-10	-0.01

MI22RD04	263	264	1	330	10	-0.01
MI22RD04	264	265	1	390	20	-0.01
MI22RD04	265	266	1	370	-10	-0.01
MI22RD04	266	267	1	290	10	-0.01
MI22RD04	267	268	1	110	-10	-0.01
MI22RD04	268	269	1	60	-10	-0.01
MI22RD04	269	270	1	20	-10	-0.01
MI22RD04	270	271	1	20	-10	-0.01
MI22RD04	271	272	1	40	10	-0.01
MI22RD04	272	273	1	1110	200	0.06
MI22RD04	273	274	1	1550	230	0.01
MI22RD04	274	275	1	200	30	-0.01
MI22RD04	275	276	1	80	20	-0.01
MI22RD04	276	277	1	530	30	-0.01
MI22RD04	277	278	1	2220	20	-0.01
MI22RD04	278	279	1	10	10	-0.01
MI22RD04	279	280	1	-10	10	-0.01
MI22RD04	280	281	1	-10	10	-0.01
MI22RD04	281	282	1	30	20	-0.01
MI22RD04	282	283	1	20	10	-0.01
MI22RD04	283	284	1	10	30	-0.01
MI22RD04	284	285	1	-10	20	-0.01
MI22RD04	285	285.6	0.6	-10	10	-0.01
MI22RD05	157	158	1	220	20	0.01
MI22RD05	161	162	1	80	10	0.01
MI22RD05	162	163	1	310	10	0.01
MI22RD05	163	164	1	130	50	0.03
MI22RD05	164	165	1	230	30	0.02
MI22RD05	165	166	1	140	30	0.02
MI22RD05	166	167	1	300	10	0.01
MI22RD05	167	168	1	770	30	0.02
MI22RD05	170	171	1	20	-10	0.19
MI22RD05	171	172	1	110	20	-0.01
MI22RD05	172	173	1	310	180	0.02
MI22RD05	173	174	1	170	10	0.02
MI22RD05	174	175	1	110	50	0.02
MI22RD05	175	176	1	10	-10	0.04
MI22RD05	176	177	1	10	-10	0.03
MI22RD05	177	178	1	30	710	0.01
MI22RD05	178	179	1	40	50	-0.01
MI22RD05	179	180	1	60	20800	0.15
MI22RD05	180	181	1	530	80	0.03
MI22RD05	181	182	1	750	40	0.02
MI22RD05	182	183	1	540	30	-0.01
MI22RD05	183	184	1	130	10	-0.01
MI22RD05	184	185	1	300	20	-0.01
MI22RD05	185	186	1	470	40	-0.01

MI22RD05	186	187	1	1560	90	0.03
MI22RD05	187	188	1	1540	50	0.04
MI22RD05	188	189	1	4620	1990	0.25
MI22RD05	189	190	1	4410	200	0.1
MI22RD05	190	191	1	1930	240	0.07
MI22RD05	191	192	1	520	20	-0.01
MI22RD05	192	193	1	430	40	-0.01
MI22RD05	193	194	1	450	30	0.02
MI22RD05	194	195	1	370	40	-0.01
MI22RD05	195	196	1	170	20	-0.01
MI22RD05	196	197	1	140	10	-0.01
MI22RD05	197	198	1	80	20	-0.01
MI22RD05	198	199	1	70	10	-0.01
MI22RD05	199	200	1	90	20	-0.01
MI22RD05	200	201	1	400	90	-0.01
MI22RD05	201	202	1	810	140	-0.01
MI22RD05	202	203	1	900	200	-0.01
MI22RD05	203	204	1	930	160	-0.01
MI22RD05	204	205	1	940	170	0.01
MI22RD05	205	206	1	500	110	-0.01
MI22RD05	206	207	1	630	60	-0.01
MI22RD05	207	208	1	530	100	-0.01
MI22RD05	208	209	1	570	180	-0.01
MI22RD05	209	210	1	730	90	-0.01
MI22RD05	210	211	1	690	100	-0.01
MI22RD05	211	212	1	950	180	0.01
MI22RD05	212	213	1	1560	110	-0.01
MI22RD05	213	214	1	1200	150	0.03
MI22RD05	214	215	1	3770	130	0.11
MI22RD05	215	216	1	1880	120	0.05
MI22RD05	216	217	1	940	70	0.03
MI22RD05	217	218	1	5680	110	0.15
MI22RD05	218	219	1	5750	160	0.2
MI22RD05	219	220	1	1530	30	0.05
MI22RD05	220	221	1	2810	50	0.13
MI22RD05	221	222	1	1270	930	0.05
MI22RD05	222	223	1	1040	20	0.02
MI22RD05	223	224	1	1470	70	0.03
MI22RD05	224	225	1	3130	60	0.01
MI22RD05	225	226	1	460	140	0.01
MI22RD05	226	227	1	460	100	-0.01
MI22RD05	227	228	1	640	70	0.01
MI22RD05	228	229	1	750	70	-0.01
MI22RD05	229	230	1	280	150	-0.01
MI22RD05	230	231	1	1580	10	-0.01
MI22RD05	231	232	1	1000	10	-0.01
MI22RD05	232	233	1	1500	70	-0.01

MI22RD05	233	234	1	640	50	0.02
MI22RD05	234	235	1	420	280	0.01
MI22RD05	235	236	1	90	280	-0.01
MI22RD05	236	237	1	370	260	0.01
MI22RD05	237	238	1	360	4780	0.02
MI22RD05	238	239	1	70	5540	0.01
MI22RD05	239	240	1	210	240	-0.01
MI22RD05	240	241	1	50	10	-0.01
MI22RD05	241	242	1	70	20	-0.01
MI22RD05	242	243	1	230	410	-0.01
MI22RD05	243	244	1	90	10	-0.01
MI22RD05	244	245	1	140	980	-0.01
MI22RD05	245	246	1	150	300	-0.01
MI22RD05	246	247	1	200	610	0.16
MI22RD05	247	248	1	690	190	0.03
MI22RD05	248	249	1	40	20	-0.01
MI22RD05	249	250	1	140	300	0.01
MI22RD05	250	251	1	180	170	0.13
MI22RD05	251	252	1	90	150	0.04
MI22RD05	252	253	1	80	70	0.26
MI22RD05	253	254	1	90	200	0.04
MI22RD05	254	255	1	30	10	0.14
MI22RD05	255	256	1	30	20	0.01
MI22RD05	256	257	1	40	10	0.06
MI22RD05	257	258	1	310	1450	0.02
MI22RD05	258	259	1	50	50	0.26
MI22RD05	259	260	1	330	260	0.11
MI22RD05	260	261	1	110	50	-0.01
MI22RD05	261	262	1	70	290	-0.01
MI22RD05	262	263	1	110	1690	0.01
MI22RD05	263	264	1	60	50	-0.01
MI22RD05	264	265	1	570	200	0.02
MI22RD05	265	266	1	2930	1080	0.11
MI22RD05	266	267	1	2600	1510	0.09
MI22RD05	267	268	1	4710	910	0.19
MI22RD05	268	269	1	5120	610	0.15
MI22RD05	269	270	1	10550	450	0.32
MI22RD05	270	271	1	5360	110	0.22
MI22RD05	271	272	1	1260	190	0.06
MI22RD05	272	273	1	50	20	-0.01
MI22RD05	273	274	1	670	60	0.02
MI22RD05	274	275	1	1270	180	0.04
MI22RD05	275	276	1	20	20	-0.01
MI22RD05	276	277	1	30	30	0.04
MI22RD05	277	278	1	30	20	-0.01
MI22RD05	278	279	1	20	20	-0.01
MI22RD05	279	280	1	210	40	-0.01

MI22RD05	280	281	1	30	20	-0.01
MI22RD05	281	282	1	30	20	-0.01
MI22RD05	282	283	1	20	10	-0.01
MI22RD05	283	284	1	40	40	-0.01
MI22RD05	284	285	1	190	80	-0.01
MI22RD05	285	286	1	40	30	0.04
MI22RD05	286	287	1	20	10	-0.01
MI22RD05	287	288	1	20	10	-0.01
MI22RD05	288	289	1	10	10	-0.01
MI22RD05	289	290	1	50	20	-0.01
MI22RD05	290	291	1	1830	160	0.02
MI22RD05	291	292	1	250	70	-0.01
MI22RD05	292	293	1	90	30	-0.01
MI22RD05	293	294	1	2060	30	-0.01
MI22RD05	294	295	1	150	40	-0.01
MI22RD05	295	296	1	90	10	-0.01
MI22RD05	296	297	1	50	-10	-0.01
MI22RD05	297	298	1	150	20	0.01
MI22RD05	298	299	1	190	-10	-0.01
MI22RD05	299	299.9	0.9	60	10	-0.01

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	- Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	- $\quad 5.5^{\prime \prime}$ Reverse circulation (RC) drilling was used to obtain chip samples for geological logging and assaying. - $\quad \mathrm{PQ}$ and HQ core was used to obtain samples for geological logging, with $1 / 4 \mathrm{PQ}$ and $1 / 2 \mathrm{HQ}$ core samples for assay obtained via diamond core saw splitting ensuring representative samples and apexing of veining where possible - Drill holes were sited to test geophysical targets/surface geochemical and structural targets, resource infill and extension zones - $\quad 1 \mathrm{~m}$ RC samples were collected via a cyclone mounted rotary splitter for all samples, with the entire sample bagged along with a representative $\sim 1 / 16^{\text {th }}$ primary split sample off the splitter - Sample intervals were determined by the rig geologist based on visual observations with all notable RC samples undertaken in 1 m intervals, otherwise in 2-4m riffle split composites of the primary split as determined by downhole geology for RC. - Nominal/maximum 1 m sample intervals for DD - RC and DD samples were submitted to ALS Mt Isa and sample preparation consisted of the drying of the sample, the entire sample being crushed to 70% passing 6 mm and pulverized to 85% passing 75 microns in a ring and puck pulveriser. RC and DD samples are assayed for gold by 50g fire assay with AAS finish. Multielement analysis is completed using an ICPAES analysis.
Drilling techniques	- Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	- RC drilling used a $5.5^{\prime \prime}$ face sampling RC hammer and a modified Ingersoll Rand track mounted drill rig and a truck-mounted 800-series multi-purpose drill rig - Diamond drilling used HQ and PQ size core obtained via a truck-mounted 800-series multi-purpose drill rig
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	- For RC sample recoveries of less than approximately 80% are noted in the geological/sampling log with a visual estimate of the actual recovery. Very few samples were recorded with recoveries of less than 80%. No wet RC samples were recovered. - DD core recovery is accurately measured for recovery by both drillers and as part of geotechnical logging - Triple tube is used to ensure maximum core sample recovery along with careful technique, adequate drilling products and short runs in broken ground - No relationship has been observed between sample recovery and grade to date
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. - The total length and percentage of the relevant intersections logged.	- Geological logging is carried out on all RC chips and drill core. This includes lithology, alteration, sulphide percentages and vein percentages. - Geological logging of alteration type, alteration intensity, vein type and textures, \% of veining, and sulphide composition. - All RC chip trays and all core trays are photographed. - All drill holes are logged in full.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. - For all sample types, the nature, quality and appropriateness of the sample preparation technique. - Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled.	- Drill core is cut via diamond brick saw cut - PQ $1 / 4 / 4$ core, HQ $1 / 2$ core - 1 m primary RC samples were obtained using a cyclone mounted 87.5\%:12.5\% riffle splitter. - 1 m samples were taken in notable or altered/mineralised ground, otherwise composited via riffle splitter as determined by the rig geologist - Duplicated samples were collected in visual ore zones and at a frequency of at least 1 in 20. - QAQC samples (standards / blanks) were submitted at a frequency of at least 1 in 20. Regular reviews of the sampling were carried out by the Exploration Manager to ensure all procedures were followed and best industry practice carried out. - Duplicate DD sampling consisted of laboratory split subsamples of crushed core samples - Duplicate RC sampling concentrated on potentially mineralised intervals and was undertaken at the rig by riffle splitting bulk primary samples - The sample sizes, sampling technique and methods are considered to be appropriate for the nature of mineralisation within the project area.
Quality of data and laboratory tests	- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.. - Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	- DD and RC samples were assayed for Au using 50 g AuAA26 fire assay which is considered appropriate for this style of mineralisation. Fire assay is considered total assay for gold. - Multi-element analysis was conducted by standard MEICP61a protocol and considered appropriate for this style of mineralisation. It is considered a near-total assay for most relevant elements - Monitoring of results of blanks and standards is conducted regularly. QA/QC data is reviewed for bias prior to inclusion in any subsequent Mineral Resource estimate.
Verification of sampling and assaying	- The verification of significant intersections by either independent or alternative company personnel. - The use of twinned holes. - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. - Discuss any adjustment to assay data.	- \quad Significant intersections are routinely monitored through review of drill chip and drill core and by site visits when possible by the Exploration Manager. - Data is verified and checked in Micromine software. - No drill holes have been twinned. - Primary data is collected via paper and laptops in the field in self-validating data entry forms. Data is subsequently uploaded into a corporate database for further validation/checking and data management. All original files are stored as a digital record. - No adjustments have been applied to assay data.
Location of data points	- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system used. - Quality and adequacy of topographic control.	- Drill hole collar locations are initially set out (and reported) using a handheld GPS with a location error of +/-5m. - Drill hole collar locations are then checked on completion via handheld GPS with $+/-5 \mathrm{~m}$ accuracy using existing LiDAR and regional DTM data - Final pickup is done via third party surveyors, with all MBK 2021 and 2022 drill hole data picked up via via RTK-DGPS with an estimated accuracy of $<5 \mathrm{~cm}$ - Down hole surveys were completed using an Eastman film survey tool or Reflex digital survey tool at a maximum interval of 30 m . - All drilling is conducted on the MGA94 Zone 54 grid. - A complete topographic survey of the project area has not been conducted however LiDAR high resolution coverage is available over the majority of the project area

Criteria	JORC Code explanation	Commentary
Data Spacing and distribution	- Data spacing for reporting of Exploration Results. - Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	- Drill holes were sited to test along strike and down dip of previous drilling. Some drill holes have been collared off the same drill pads. - The current drill hole spacing in some locations is of sufficient density to establish geological and grade continuity appropriate for a Mineral Resource. An updated mineral resource estimate will be considered once further drilling is completed. - Samples $>1 \mathrm{~m}$ are weighted mean average with a tabled cut off of 0.2% Cu with 3 m maximum internal dilution. Co at 0.1% has also been used where appropriate.
Orientation of data in relation to geological structure	- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	- Drilling is oriented to intersect known and interpreted structures as perpendicular as possible in the XY plane and in the XZ plan as required to either infill spacing vertically as required or transect the structure at best possible true widths
Sample security	- The measures taken to ensure sample security.	- Samples are delivered via MBK staff directly to ALS Mt Isa laboratory in sealed and zip-tied bags and bulk bags
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- The sampling techniques are regularly reviewed. - No issues have been identified to date

Section 2 - Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	- The Millennium project consists of 5 granted ML's 2512, 2761, 2762, 7506 and 7507 which is 100% owned by Global Energy Metals Corporation (GEMC), a TSX-listed Canadian diversified battery metals company. Metal Bank Limited (MBK) has recently entered into a formal option agreement with GEMC to earn up to 80% of the project - A review of environmental maps at the time of application did not identify any significant environmental restricted areas.
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	- Several exploration companies have completed exploration work at Millennium in recent years including China Yunnan and Hammer Metals.
Geology	- Deposit type, geological setting and style of mineralisation.	The MLs lie on the Cloncurry 1:100,000 map sheet. The Millennium Project is situated in the Quamby-Malbon Subprovince of the Eastern Succession of the Mt. Isa Inlier and lies within the predominantly metasedimentary Corella Formation of the Mary Kathleen Group The metasedimentary rocks locally comprise Milo Beds of the Tommy Creek Domain containing Palaeoproterozoic Cover Sequence 3 sediments and felsic and mafic igneous rocks with geochronological ages ranging from 1660 to 1610 Ma . The domain is underlain by Cover Sequence 2 Corella Formation belonging to the Mary Kathleen Domain (west) and Canobie Domain (east). The western margin is bordered by the Fountain Range/Quamby Fault system, a regionally extensive NNE-trending, dextral strike slip fault system that demarcates the Tommy Creek Domain from the Mary Kathleen Domain. A block of Quamby Conglomerate is situated immediately west of the Milo Beds, bound between the Quamby Fault to the east and the Fountain Range Fault to the west. In the vicinity of the Millennium Project area, the Fountain Range Fault has merged with the Pilgrim Fault, a regionally extensive NNEtrending, reverse to dextral strike slip fault system that hosts numerous mineral occurrences including the Kalman $\mathrm{Cu}, \mathrm{Au}, \mathrm{Mo}, \mathrm{Re}$ deposit and the Tick Hill Au occurrences. The Pilgrim Fault is interpreted as an east dipping fault with a surface expression of multiple stacked east stepping, steeply west dipping shears.
Drill hole information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.	- See Appendix 1 in document and document text

Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high-grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of highgrade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.		Unless specified otherwise, a nominal 0.2\% Cu lower cut-off has been applied incorporating up to 3 m of continuous internal dilution below the reporting cut-off grade and minimum 1m downhole width used to highlight zones of mineralisation. Refer Table 2. Where Cu is not present, a 0.1% Co value has been applied and reported independently Where Cu and Co are not present, a 0.5 g .t Au cut-off has been applied and reported independently No metal equivalent values have been used for reporting MBK exploration results. A CuEq\% was utilised by Hammer Metals in the 2016 resource estimate with the following commodity prices: Cu: US\$4,600/t; Co: US\$27,000/t; Au: US\$1,330/oz; and Ag: US\$20/oz
Relationship between mineralisation widths and intercept lengths	- These relationships are particularly important in the reporting of Exploration Results. - If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').		Downhole observation results are listed only and interpreted as approximately 70-75\% true width The internal geometry of the mineralisation and grade distribution is not known in enough detail to determine the true width of the mineralisation. However, in most cases a clear gross intersection angle between known mineralised structural corridor and drill hole orientation allows a reasonable estimation of interval true width should mineralisation match Refer Table 1.
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.		Refer to figures contained within this report showing the regional location of the drill holes and crosssections.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.		All results are presented in figures and tables contained within this report.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.		No other material data collected by Metal Bank Limited is presented in this report.
Further Work	- The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). - Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.		Further interpretation and review of the data will be completed in conjunction with upcoming drilling.

[^0]: ${ }^{1}$ HMX ASX Announcement dated 6 December 2016 and MBK ASX Release dated 13 December 2021 "MBK signs Earn-in and JV
 Agreement for the Millennium Project"
 ${ }^{2}$ MBK ASX Release 14 October 2022 "High Cobalt Grades confirmed in first Millennium Assays"
 ${ }^{3}$ MBK ASX Release 23 September 2021 "Millennium North drilling identified copper to 1.5% "

[^1]: ${ }^{4}$ Refer footnote 1 on page 2
 ${ }^{5}$ MBK ASX Release dated 16 March 2022 "Drilling at Millennium Copper-Cobalt-Gold Project to commence"

[^2]: ${ }^{6}$ HMX ASX Announcement dated 6 December 2016 and MBK ASX Release dated 13 December 2021 "MBK signs Earn-in and JV Agreement for the Millennium Project"
 ${ }^{7}$ 070301_HC_TR_BoundaryResourceEstimate_R2004 - Talisman Mining Ltd and KSN ASX Announcement dated 2 December 2020
 ${ }^{8}$ MBK ASX Release 18 January 2022 "Kingsley Deposit Maiden Mineral Resource Estimate and updated Exploration Target"

