Livingstone delivers updated shallow Mineral Resource at Homestead

MBK's Livingstone Project in WA continues to deliver shallow resources with significant potential for further exploration success and resource growth

Highlights

> Updated JORC 2012 Homestead Mineral Resource Estimate converts 83\% to indicated classification
> MRE comprises $40,300 \mathrm{oz}$ using $0.5 \mathrm{~g} / \mathrm{t}$ cutoff with a resource grade of $1.42 \mathrm{~g} / \mathrm{t}$ gold
> The bulk of the deposit is shallow, between surface and 75 m depth and amenable to open pit mining
> Mineralisation remains open at depth and represents an opportunity for further growth, together with the nearby Winja satellite deposit
> With the Homestead and Kingsley project ${ }^{1}$ combined resources at Livingstone now total just over 70,000 oz of gold reported to JORC 2012
> Resource extension and exploration drilling at Livingstone’s Kingsley East, Livingstone North, Stanley, Dampier and VHF prospects planned to commence in Q2 2023

Table 1 - Homestead Mineral Resource Estimate

Classification	kTonnes	Au_g/t	Au_k_ounces
Indicated	707	1.47	33.3
Inferred	173	1.25	7.0
Total	880	1.42	40.3

Notes:

- Some numerical differences may occur due to rounding
- Open cut resources above 380 mRL reported above a cut-off grade of $0.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
- Underground resources below 380 mRL reported above a cut-off grade of $1.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
- Includes holes drilled up to and including 29 May 2022

[^0]
METAL BANK LIMITED

Metal Bank Limited (ASX: MBK) ('Metal Bank', 'MBK' or the 'Company') is pleased to report a JORC 2012 Mineral Resource Estimate ("MRE") for the Homestead gold deposit (Homestead) of 880Kt at $1.42 \mathrm{~g} / \mathrm{t}$ Au for $40,300 \mathrm{oz}$ Au ($0.5 \mathrm{~g} / \mathrm{t}$ Au cut-off), with over 80% of the Resource within Indicated classification. The Homestead deposit represents just one of a number of advanced gold targets in MBK's Livingstone Gold Project in the Bryah Basin near Meekatharra in Western Australia.

The previous JORC 2004 Inferred Resource of 49,909oz Au for Homestead was originally reported by Talisman Mining Ltd and by Kingston Resources Limited ${ }^{2}$. Recent drilling of 10 RC holes by MBK in 2022 permitted this 2012 JORC Resource classification update by demonstrating continuity of mineralisation, QA/QC of previous work and applying updated economic parameters. The MRE was prepared by Cube Consulting of Perth using geological and mineralisation interpretation by MBK geologists.

The mineralisation remains open at depth and represents an opportunity for further growth, together with the nearby Winja satellite deposit.

Figure 1 - NNW Isoview of Homestead Mineral resource and optimised pit shell.

[^1]
MBK

METAL BANK LIMITED

Commenting on the updated Resource, Metal Bank's Chair, Inés Scotland said:

"The improved confidence classification from inferred to indicated of the Resource highlights the potential for numerous shallow mineable deposits at the Livingstone project and provides a platform to further build the gold resource inventory during 2023.

Livingstone is a multi-commodity project with previous reported sulphide nickel exploration and other essential base metals. While we continue to grow the shallow gold resources with exploration success and in-fill drilling, we will also be following up on the other potential commodities that the Livingstone project hosts".

Figure 2: Homestead Resource plan view $-0.5 \mathrm{~g} / \mathrm{t}$ Au mineralisation shell

Geology

The geology of the Homestead Prospect consists of variably outcropping talc-chlorite-carbonate ultramafic rocks/schists and mafic rocks/schists of the Narracoota Volcanics, as well as minor phyllites, dolomites and intermediate/felsic rocks. These basement units are covered by a thin veneer of colluvial pisolitic laterite and recent alluvial cover. A partially stripped ferruginous
laterite/saprolite profile is well developed over the prospect area, with this in places covered by minor silcrete or siliceous calcrete.

The deposit is linear in shape, striking towards the WNW (~ 280), Au mineralisation is hosted in a system of steeply NNE-dipping structurally controlled orogenic quartz/carbonate veins and shears with mineralised shoots ranging from 2 m to 15 m thick. Within these veins, mineralisation within the oxidised zone is associated with limonite replacement of pyrite and carbonate minerals. The weathering profile is locally depressed over the mineralisation, coincident with the dip of the mineralised lodes. The bulk of mineralisation is shallow, between surface and 75 m depth, within the oxidised and transitional zone, amenable to open pit mining. There has been a certain degree of lateritic enrichment/mobilisation of gold, with a small near-surface, near-lode supergene gold blanket developed principally on the hanging-wall of the mineralised lode position. Below the base of oxidation, fresh mineralisation is hosted within quartz-carbonate-chlorite- (pyrite)-(gold) assemblages, with suggestion of a moderate to strong quartz-pyrite-carbonate proximal alteration associated with the gold mineralisation, possibly within a (distal) chloritic envelope.

Due to the shallow nature of drilling a number of down-dip extensions of mineralised shoots in the existing Mineral Resource area remain untested and represent an opportunity for significant growth. This includes an apparent grade increase at depth in several areas based on drilling to date, and there are also adjacent and sub-parallel splays, shoots and intersections of note. These zones currently fall outside of pit shell modelling and the Mineral Resource Estimate, and will require further validation work to add to the Homestead Au Resource inventory.

Figure 3: Homestead $+/-25 \mathrm{~m}$ Long Section showing resource $0.5 \mathrm{~g} / \mathrm{t}$ Au model and drilling intersections.

Figure 4: Homestead 578650 E Cross Section $+/-25 \mathrm{~m}$ showing resource $0.5 \mathrm{~g} / \mathrm{t}$ Au model and drilling intersections.

Figure 5: Homestead 578700E Cross Section $+/-25 \mathrm{~m}$ showing resource $0.5 \mathrm{~g} / \mathrm{t}$ Au model and drilling intersections.

METAL BANK LIMITED

\mathbf{S}
R.L. (m)

Figure 6: Homestead 578750E Cross Section $+/-25 \mathrm{~m}$ showing resource $0.5 \mathrm{~g} / \mathrm{t}$ Au model and drilling intersections.

Forward Plan

The Homestead Au deposit represents only one of a number of quality gold prospects within the Livingstone project.

MBK's work program for the Livingstone Project for the next 12 months is aimed to build existing Resources and identify new deposits, and includes:

- Resource infill and extension drilling at the Kingsley deposit;
- Maiden Resource Estimation at the Livingstone North prospect; and
- Development and testing of additional advanced and regional targets to identify a clear path to defining additional Resources within the tenement package.

The Company is preparing to award drilling contracts in anticipation of drilling programs commencing in June 2023.

[^2]
METAL BANK LIMITED

The Livingstone Project Overview

The Livingstone Project is an advanced gold exploration project located 140 km northwest of Meekatharra in Western Australia. It includes $313 \mathrm{~km}^{2}$ of granted exploration licences covering the entire western arm of the Proterozoic Bryah-Padbury Basin (host to the Fortnum, Horseshoe and Peak Hill gold deposits and >2Moz Au endowment)

The Livingstone Project provides:

- The Homestead deposit hosting 40,300oz Au (Indicated and Inferred, JORC 2012);
- the Kingsley deposit hosting 30,500oz Au (Inferred, JORC 2012)³;
- the Kingsley Exploration Target ${ }^{3}$ of 290-400kt at $1.8-2.0 \mathrm{~g} / \mathrm{t}$ for $16,800-25,700 \mathrm{oz} \mathrm{Au}$;
- the Livingstone prospect with extensive Au-in soil anomaly, historical mining activities and historical and recent high-grade drilling intersections ${ }^{4}$;
- multiple advanced gold targets (Figure 7), inadequately tested to date including Hilltop, Stanley, Winja, Winja West, VHF; and
- over 10 regional greenfields targets identified by independent experts with 40 km prospective strike length.

Figure 7: Livingstone Project advanced gold prospects

[^3]
Authorised by the Board

For further information contact:

Inés Scotland - Executive Chair: ines@metalbank.com.au
or
Sue-Ann Higgins - Director and Company Secretary: sue-ann@metalbank.com.au

Competent Person Statements

The information in this announcement that relates to Mineral Resource Estimation of the Homestead Deposit is based on information compiled by Mr. Michael Job, a Competent Person who is a Fellow of the Australasian Institute of Mining and Metallurgy and a full time employee of Cube Consulting Pty Ltd. Mr. Job has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Job consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Resource Project	Competent Person	Organization	Responsibility	Section
Homestead	Mr. Michael Job	Cube Consulting Pty Ltd	Resources and Reserves	JORC Table 3-Mineral resource estimation
Homestead	Mr. Rhys Davies	Metal Bank Pty Ltd	Exploration results and Exploration Targets	JORC Table 1 \& 2 Review, Body Release.

The information in this announcement, including the Annexures, that relates to MBK Exploration Results, and Exploration Target statements is based on information compiled or reviewed by Mr. Rhys Davies. Mr. Davies is a contractor to the Company and eligible to participate in the Company's equity incentive plan. Mr. Davies is a Member of The Australasian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Davies consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant ASX announcements and News Releases. In the case of Mineral Resource estimates and Ore Reserve estimates, all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original ASX announcements or News Releases.

About Metal Bank

Metal Bank Limited is an ASX-listed minerals exploration company (ASX: MBK) holding a significant portfolio of advanced gold and copper exploration projects with substantial growth upside, and is pursuing business growth opportunities in the Middle East North Africa Region (MENA), including:

- the right to earn up to 80% of the Millennium Copper \& Cobalt project which holds an inferred 2012 JORC resource of 5.9 Mt @ 1.08% CuEq 5, across 5 granted Mining Leases with significant potential for expansion;
- a 75\% interest in the advanced Livingstone Gold Project in WA which holds a JORC 2012 Inferred Resource of 40,300oz Au at the Homestead prospect, a JORC 2012 Inferred Resource ${ }^{6}$ of 30,500oz Au at Kingsley, and an Exploration Target ${ }^{6}$ of 290-400Kt at 1.8 - $2.0 \mathrm{~g} / \mathrm{t}$ Au for 16,800-25,700oz Au at Kingsley;
- the 8 Mile, Wild Irishman and Eidsvold Gold projects in South East Queensland where considerable work by MBK to date has drill-proven both high grade vein-style and bulk tonnage intrusion-related Au mineralisation; and
- negotiations on a MOU leading to an exploration license in the MENA region focused on copper and base metals.

Metal Bank's exploration programs at these projects are focussed on:

- short term resource growth - advancing existing projects to substantially increase JORC Resources;
- identifying additional mineralisation at each of its projects; and
- assessing development potential and including fast tracking projects through feasibility and development to production, particularly at the Millennium Project in Queensland, where the copper and cobalt project is contained within granted mining licenses.

Metal Bank is also committed to a strategy of diversification and growth through identification of new exploration opportunities which complement its existing portfolio and pursuit of other opportunities to diversify the Company's assets.

Figure 8: MBK projects location map

[^4]| Board of Directors and Management | Registered Office |
| :---: | :---: |
| Inés Scotland (Executive Chair) | Metal Bank Limited |
| | Suite 506, Level 5 |
| | 50 Clarence Street |
| Guy Robertson (Executive Director) | Sydney NSW 2000 |
| | AUSTRALIA |
| | Phone: +61290787669 |
| Sue-Ann Higgins
 (Executive Director and Company Secretary) | Email: info@metalbank.com.au |
| | Share Registry |
| Rhys Davies
 (Exploration Manager) | Automic Registry Services |
| | Phone: 1300288664 (local) |
| | +61296985414 (international) |
| Trevor Wright (Technical Advisor) | Email: hello@automic.com.au |
| | Web site: www.automic.com.au |
| | Please direct all shareholding enquiries to the share registry. |

APPENDIX 1

Drillhole and Assay data

TABLE 1-2022 Drillhole data

Lease_ID	Hole id	Hole Type	Easting	Northing	RL	Grid	Max Depth	Azimuth	Dip
E52/3403	HS22RC001	RC	578495.5	7170739.3	470.0	MGA94_50	50	180.0	-60
E52/3403	HS22RC002	RC	578601.9	7170738.4	470.0	MGA94_50	85	180.0	-60
E52/3403	HS22RC003	RC	578693.0	7170693.1	469.2	MGA94_50	60	180.0	-60
E52/3403	HS22RC004	RC	578884.3	7170689.0	467.1	MGA94_50	100	180.0	-60
E52/3403	HS22RC005	RC	578878.0	7170736.2	467.1	MGA94_50	160	180.0	-60
E52/3403	HS22RC006	RC	578827.4	7170700.3	467.4	MGA94_50	120	180.0	-60
E52/3403	HS22RC007	RC	578798.7	7170678.5	467.9	MGA94_50	110	180.0	-60
E52/3403	HS22RC008	RC	578558.0	7170865.0	467.1	MGA94_50	180	180.0	-60
E52/3403	HS22RC009	RC	578700.6	7170746.7	468.9	MGA94_50	150	180.0	-60
E52/3403	HS22RC010	RC	578553.4	7170814.2	469.8	MGA94_50	180	180.0	-60

TABLE 2 - Homestead drilling results

Sampleld	Hole_ID	Depth_From	Depth_To	Au_ppm
L11990	HS22RC001	0	1	0.06
L11991	HS22RC001	1	2	0.03
L11992	HS22RC001	2	3	0.01
L11993	HS22RC001	3	4	-0.01
L11994	HS22RC001	4	5	-0.01
L11995	HS22RC001	5	6	-0.01
L11996	HS22RC001	6	7	-0.01
L11997	HS22RC001	7	8	-0.01
L11998	HS22RC001	8	9	-0.01
L11999	HS22RC001	9	10	0.01
L12001	HS22RC001	10	11	-0.01
L12002	HS22RC001	11	12	0.01
L12003	HS22RC001	12	13	-0.01
L12004	HS22RC001	13	14	-0.01
L12005	HS22RC001	14	15	0.01
L12006	HS22RC001	15	16	-0.01
L12007	HS22RC001	16	17	-0.01
L12008	HS22RC001	17	18	-0.01
L12009	HS22RC001	18	19	0.01
L12010	HS22RC001	19	20	0.31
L12011	HS22RC001	20	21	0.15
L12012	HS22RC001	21	22	0.04
L12013	HS22RC001	22	23	0.33
L12014	HS22RC001	23	24	0.03
L12015	HS22RC001	24	25	0.25
L12016	HS22RC001	25	26	0.54
L12017	HS22RC001	26	27	0.1
L12018	HS22RC001	27	28	0.04
L12019	HS22RC001	28	29	0.17
L12021	HS22RC001	29	30	6.48
L12022	HS22RC001	30	31	2.11
L12023	HS22RC001	31	32	0.55
L12024	HS22RC001	32	33	0.26
L12025	HS22RC001	33	34	0.14
L12026	HS22RC001	34	35	0.03
L12027	HS22RC001	35	36	0.05
L12028	HS22RC001	36	37	0.19
L12029	HS22RC001	37	38	0.17
L12030	HS22RC001	38	39	0.28
L12031	HS22RC001	39	40	0.1
L12032	HS22RC001	40	41	0.03
L12033	HS22RC001	41	42	0.02
L12034	HS22RC001	42	43	0.02
L12035	HS22RC001	43	44	0.04

L12036	HS22RC001	44	45	0.02
L12037	HS22RC001	45	46	-0.01
L12038	HS22RC001	46	47	0.02
L12039	HS22RC001	47	48	0.28
L12041	HS22RC001	48	49	0.08
L12042	HS22RC001	49	50	0.02
L12043	HS22RC002	0	1	0.06
L12044	HS22RC002	1	2	0.09
L12045	HS22RC002	2	3	0.02
L12046	HS22RC002	3	4	0.01
L12047	HS22RC002	4	5	0.12
L12048	HS22RC002	5	6	0.01
L12049	HS22RC002	6	7	0.02
L12051	HS22RC002	7	8	0.01
L12052	HS22RC002	8	9	-0.01
L12053	HS22RC002	9	10	0.01
L12054	HS22RC002	10	11	0.05
L12055	HS22RC002	11	12	0.02
L12056	HS22RC002	12	13	0.01
L12057	HS22RC002	13	14	0.07
L12058	HS22RC002	14	15	0.01
L12059	HS22RC002	15	16	0.01
L12061	HS22RC002	16	17	0.01
L12062	HS22RC002	17	18	-0.01
L12063	HS22RC002	18	19	-0.01
L12064	HS22RC002	19	20	-0.01
L12065	HS22RC002	20	21	0.02
L12066	HS22RC002	21	22	0.01
L12067	HS22RC002	22	23	0.05
L12068	HS22RC002	23	24	2.06
L12069	HS22RC002	24	25	1.4
L12070	HS22RC002	25	26	1.63
L12071	HS22RC002	26	27	1.46
L12072	HS22RC002	27	28	0.74
L12073	HS22RC002	28	29	0.97
L12074	HS22RC002	29	30	1.12
L12075	HS22RC002	30	31	0.6
112076	HS22RC002	31	32	16.25
L12077	HS22RC002	32	33	1.04
L12078	HS22RC002	33	34	0.42
L12079	HS22RC002	34	35	1.4
L12081	HS22RC002	35	36	0.16
L12082	HS22RC002	36	37	0.53
L12083	HS22RC002	37	38	0.14
L12084	HS22RC002	38	39	0.03
L12085	HS22RC002	39	40	0.08

L12086	HS22RC002	40	41	0.26
L12087	HS22RC002	41	42	0.11
L12088	HS22RC002	42	43	0.32
L12089	HS22RC002	43	44	0.46
L12090	HS22RC002	44	45	0.04
L12091	HS22RC002	45	46	1.18
L12092	HS22RC002	46	47	0.32
L12093	HS22RC002	47	48	0.1
L12094	HS22RC002	48	49	0.07
L12095	HS22RC002	49	50	0.05
L12096	HS22RC002	50	51	0.04
L12097	HS22RC002	51	52	0.02
L12098	HS22RC002	52	53	0.01
L12099	HS22RC002	53	54	0.13
L12101	HS22RC002	54	55	1.08
L12102	HS22RC002	55	56	0.29
L12103	HS22RC002	56	57	0.03
L12104	HS22RC002	57	58	0.05
L12105	HS22RC002	58	59	0.02
L12106	HS22RC002	59	60	0.01
L12107	HS22RC002	60	61	0.02
L12108	HS22RC002	61	62	-0.01
L12109	HS22RC002	62	63	0.01
L12110	HS22RC002	63	64	-0.01
L12111	HS22RC002	64	65	0.01
L12112	HS22RC002	65	66	-0.01
L12113	HS22RC002	66	67	-0.01
L12114	HS22RC002	67	68	0.01
L12115	HS22RC002	68	69	0.01
L12116	HS22RC002	69	70	0.01
L12117	HS22RC002	70	71	0.02
L12118	HS22RC002	71	72	0.01
L12119	HS22RC002	72	73	-0.01
L12121	HS22RC002	73	74	-0.01
L12122	HS22RC002	74	75	0.03
L12123	HS22RC002	75	76	0.01
L12124	HS22RC002	76	77	-0.01
L12125	HS22RC002	77	78	0.02
L12126	HS22RC002	78	79	0.29
L12127	HS22RC002	79	80	0.13
L12128	HS22RC002	80	81	0.02
L12129	HS22RC002	81	82	0.02
L12130	HS22RC002	82	83	0.03
L12131	HS22RC002	83	84	0.06
L12132	HS22RC002	84	85	0.11
L12133	HS22RC003	0	1	0.19
L12134	HS22RC003	1	2	0.04

MBK

METAL BANK LIMITED

L12135	HS22RC003	2	3	0.03	L12187	HS22RC003	50	51	0.01	L12237	HS22RC004	38	39	-0.01
L12136	HS22RC003	3	4	0.01	L12188	HS22RC003	51	52	-0.01	L12238	HS22RC004	39	40	-0.01
L12137	HS22RC003	4	5	-0.01	L12189	HS22RC003	52	53	-0.01	L12239	HS22RC004	40	41	-0.01
L12138	HS22RC003	5	6	0.01	L12190	HS22RC003	53	54	0.02	L12241	HS22RC004	41	42	-0.01
L12139	HS22RC003	6	7	0.01	L12191	HS22RC003	54	55	0.01	L12242	HS22RC004	42	43	-0.01
L12141	HS22RC003	7	8	0.01	L12192	HS22RC003	55	56	0.06	L12243	HS22RC004	43	44	0.01
L12142	HS22RC003	8	9	0.09	L12193	HS22RC003	56	57	0.02	L12244	HS22RC004	44	45	-0.01
L12143	HS22RC003	9	10	0.07	L12194	HS22RC003	57	58	0.02	L12245	HS22RC004	45	46	0.01
L12144	HS22RC003	10	11	0.02	L12195	HS22RCOOO	58	59	0.02	L12246	HS22RC004	46	47	-0.01
L12145	HS22RC003	11	12	0.01	L12196	HS22RC003	59	60	0.01	L12247	HS22RC004	47	48	-0.01
L12146	HS22RC003	12	13	0.02	L12197	HS22RC004	0	1	0.02	L12248	HS22RC004	48	49	0.01
L12147	HS22RC003	13	14	0.02	L12198	HS22RC004	1	2	0.03	L12249	HS22RC004	49	50	-0.01
L12148	HS22RC003	14	15	0.02	L12199	HS22RC004	2	3	0.02	L12251	HS22RC004	50	51	-0.01
L12149	HS22RC003	15	16	0.01	L12201	HS22RC004	3	4	0.01	L12252	HS22RC004	51	52	-0.01
L12151	HS22RC003	16	17	0.02	L12202	HS22RC004	4	5	0.01	L12253	HS22RC004	52	53	-0.01
L12152	HS22RC003	17	18	-0.01	L12203	HS22RC004	5	6	0.01	L12254	HS22RC004	53	54	-0.01
L12153	HS22RC003	18	19	-0.01	L12204	HS22RC004	6	7	0.02	L12255	HS22RC004	54	55	-0.01
L12154	HS22RC003	19	20	-0.01	L12205	HS22RC004	7	8	0.03	L12256	HS22RC004	55	56	-0.01
L12155	HS22RC003	20	21	0.01	L12206	HS22RC004	8	9	0.01	L12257	HS22RC004	56	57	-0.01
L12156	HS22RC003	21	22	0.03	L12207	HS22RC004	9	10	0.01	L12258	HS22RC004	57	58	-0.01
L12157	HS22RC003	22	23	-0.01	L12208	HS22RC004	10	11	0.02	L12259	HS22RC004	58	59	-0.01
L12158	HS22RC003	23	24	0.01	L12209	HS22RC004	11	12	0.01	L12261	HS22RC004	59	60	0.01
L12159	HS22RC003	24	25	0.03	L12210	HS22RC004	12	13	0.05	L12262	HS22RC004	60	61	0.08
L12161	HS22RC003	25	26	0.07	L12211	HS22RC004	13	14	-0.01	L12263	HS22RC004	61	62	0.09
L12162	HS22RC003	26	27	0.01	L12212	HS22RC004	14	15	-0.01	L12264	HS22RC004	62	63	0.01
L12163	HS22RC003	27	28	-0.01	L12213	HS22RC004	15	16	0.12	L12265	HS22RC004	63	64	0.01
L12164	HS22RC003	28	29	-0.01	L12214	HS22RC004	16	17	0.03	L12266	HS22RC004	64	65	-0.01
L12165	HS22RC003	29	30	0.01	L12215	HS22RC004	17	18	0.01	L12267	HS22RC004	65	66	0.01
L12166	HS22RC003	30	31	0.01	L12216	HS22RC004	18	19	0.01	L12268	HS22RC004	66	67	0.01
L12167	HS22RC003	31	32	0.01	L12217	HS22RC004	19	20	-0.01	L12269	HS22RC004	67	68	0.01
L12168	HS22RC003	32	33	0.01	L12218	HS22RC004	20	21	-0.01	L12270	HS22RC004	68	69	0.03
L12169	HS22RC003	33	34	0.01	L12219	HS22RC004	21	22	0.01	L12271	HS22RC004	69	70	0.21
L12170	HS22RC003	34	35	0.11	L12221	HS22RC004	22	23	-0.01	L12272	HS22RC004	70	71	0.07
L12171	HS22RC003	35	36	0.05	L12222	HS22RC004	23	24	-0.01	L12273	HS22RC004	71	72	0.02
L12172	HS22RC003	36	37	1.9	L12223	HS22RC004	24	25	0.01	L12274	HS22RC004	72	73	0.06
L12173	HS22RC003	37	38	1.87	L12224	HS22RC004	25	26	0.02	L12275	HS22RC004	73	74	0.13
L12174	HS22RC003	38	39	0.15	L12225	HS22RC004	26	27	0.01	L12276	HS22RC004	74	75	0.02
L12175	HS22RC003	39	40	0.05	L12226	HS22RC004	27	28	-0.01	L12277	HS22RC004	75	76	0.08
L12176	HS22RC003	40	41	0.03	L12227	HS22RC004	28	29	0.01	L12278	HS22RC004	76	77	0.02
L12177	HS22RC003	41	42	0.01	L12228	HS22RC004	29	30	-0.01	L12279	HS22RC004	77	78	0.03
L12178	HS22RC003	42	43	0.56	L12229	HS22RC004	30	31	0.03	L12281	HS22RC004	78	79	0.17
L12179	HS22RC003	43	44	0.02	L12230	HS22RC004	31	32	-0.01	L12282	HS22RC004	79	80	0.07
L12181	HS22RC003	44	45	0.02	L12231	HS22RC004	32	33	-0.01	L12283	HS22RC004	80	81	0.09
L12182	HS22RC003	45	46	0.05	L12232	HS22RC004	33	34	0.01	L12284	HS22RC004	81	82	0.03
L12183	HS22RC003	46	47	0.01	L12233	HS22RC004	34	35	-0.01	L12285	HS22RC004	82	83	-0.01
L12184	HS22RC003	47	48	0.01	L12234	HS22RC004	35	36	-0.01	L12286	HS22RC004	83	84	0.08
L12185	HS22RC003	48	49	0.01	L12235	HS22RC004	36	37	-0.01	L12287	HS22RC004	84	85	0.07
L12186	HS22RC003	49	50	0.01	L12236	HS22RC004	37	38	-0.01	L12288	HS22RC004	85	86	0.04

MBK

METAL BANK LIMITED

L12289	HS22RC004	86	87	0.02	L12339	HS22RC005	34	35	0.03	L12391	HS22RC005	82	83	-0.01
112290	HS22RC004	87	88	0.69	12341	HS22RC005	35	36	-0.01	L12392	HS22RC005	83	84	-0.01
L12291	HS22RC004	88	89	0.83	L12342	HS22RC005	36	37	-0.01	L12393	HS22RC005	84	85	-0.01
L12292	HS22RCOO4	89	90	0.13	L12343	HS22RC005	37	38	0.01	L12394	HS22RCO05	85	86	-0.01
L12293	HS22RCOO4	90	91	0.15	L12344	HS22RC005	38	39	-0.01	L12395	HS22RCOO5	86	87	-0.01
L12294	HS22RC004	91	92	0.06	L12345	HS22RC005	39	40	-0.01	L12396	HS22RC005	87	88	-0.01
L12295	HS22RC004	92	93	0.07	L12346	HS22RC005	40	41	-0.01	L12397	HS22RC005	88	89	-0.01
L12296	HS22RC004	93	94	0.05	12347	HS22RC005	41	42	-0.01	L12398	HS22RC005	89	90	-0.01
L12297	HS22RC004	94	95	0.02	L12348	HS22RC005	42	43	-0.01	L12399	HS22RC005	90	91	-0.01
L12298	HS22RC004	95	96	0.17	L12349	HS22RC005	43	44	-0.01	L12401	HS22RC005	91	92	-0.01
L12299	HS22RC004	96	97	0.03	L12351	HS22RC005	44	45	-0.01	L12402	HS22RC005	92	93	-0.01
L12301	HS22RC004	97	98	0.01	L12352	HS22RC005	45	46	0.01	L12403	HS22RCO05	93	94	-0.01
L12302	HS22RC004	98	99	-0.01	L12353	HS22RC005	46	47	0.01	L12404	HS22RC005	94	95	0.01
L12303	HS22RC004	99	100	-0.01	L12354	HS22RC005	47	48	-0.01	L12405	HS22RC005	95	96	-0.01
L12304	HS22RC005	0	1	0.02	L12355	HS22RC005	48	49	0.01	L12406	HS22RC005	96	97	-0.01
L12305	HS22RC005	1	2	0.02	L12356	HS22RC005	49	50	0.01	L12407	HS22RCO05	97	98	-0.01
L12306	HS22RC005	2	3	0.01	L12357	HS22RC005	50	51	-0.01	L12408	HS22RC005	98	99	-0.01
L12307	HS22RC005	3	4	0.01	L12358	HS22RC005	51	52	-0.01	L12409	HS22RC005	99	100	-0.01
L12308	HS22RC005	4	5	0.04	L12359	HS22RC005	52	53	-0.01	L12410	HS22RC005	100	101	-0.01
L12309	HS22RC005	5	6	0.01	L12361	HS22RC005	53	54	-0.01	L12411	HS22RC005	101	102	-0.01
L12310	HS22RC005	6	7	-0.01	L12362	HS22RC005	54	55	0.01	L12412	HS22RC005	102	103	0.01
L12311	HS22RC005	7	8	-0.01	L12363	HS22RC005	55	56	-0.01	L12413	HS22RC005	103	104	-0.01
L12312	HS22RC005	8	9	0.01	L12364	HS22RC005	56	57	0.01	L12414	HS22RC005	104	105	0.01
L12313	HS22RC005	9	10	0.05	L12365	HS22RC005	57	58	0.01	L12415	HS22RC005	105	106	-0.01
L12314	HS22RC005	10	11	0.01	L12366	HS22RC005	58	59	-0.01	L12416	HS22RC005	106	107	-0.01
L12315	HS22RC005	11	12	0.02	L12367	HS22RC005	59	60	-0.01	L12417	HS22RC005	107	108	0.01
L12316	HS22RC005	12	13	0.02	L12368	HS22RC005	60	61	-0.01	L12418	HS22RC005	108	109	-0.01
L12317	HS22RC005	13	14	0.01	L12369	HS22RC005	61	62	-0.01	L12419	HS22RC005	109	110	0.07
L12318	HS22RC005	14	15	0.02	L12370	HS22RC005	62	63	0.01	L12421	HS22RC005	110	111	-0.01
L12319	HS22RC005	15	16	0.01	L12371	HS22RC005	63	64	0.01	L12422	HS22RC005	111	112	1.03
L12321	HS22RC005	16	17	0.01	L12372	HS22RC005	64	65	-0.01	L12423	HS22RC005	112	113	0.19
L12322	HS22RC005	17	18	0.01	L12373	HS22RC005	65	66	-0.01	L12424	HS22RC005	113	114	-0.01
L12323	HS22RC005	18	19	-0.01	L12374	HS22RC005	66	67	-0.01	L12425	HS22RC005	114	115	-0.01
L12324	HS22RC005	19	20	-0.01	L12375	HS22RC005	67	68	-0.01	L12426	HS22RC005	115	116	0.01
L12325	HS22RC005	20	21	-0.01	L12376	HS22RC005	68	69	-0.01	L12427	HS22RC005	116	117	0.01
L12326	HS22RC005	21	22	0.01	L12377	HS22RC005	69	70	-0.01	L12428	HS22RC005	117	118	0.01
L12327	HS22RC005	22	23	0.01	L12378	HS22RC005	70	71	-0.01	L12429	HS22RC005	118	119	-0.01
L12328	HS22RC005	23	24	-0.01	L12379	HS22RC005	71	72	-0.01	L12430	HS22RCO05	119	120	-0.01
L12329	HS22RC005	24	25	-0.01	L12381	HS22RC005	72	73	-0.01	L12431	HS22RC005	120	121	0.02
L12330	HS22RC005	25	26	0.01	L12382	HS22RC005	73	74	-0.01	L12432	HS22RC005	121	122	0.01
L12331	HS22RC005	26	27	-0.01	L12383	HS22RC005	74	75	-0.01	L12433	HS22RC005	122	123	0.02
L12332	HS22RC005	27	28	-0.01	L12384	HS22RC005	75	76	-0.01	L12434	HS22RC005	123	124	0.03
L12333	HS22RC005	28	29	-0.01	L12385	HS22RC005	76	77	-0.01	L12435	HS22RC005	124	125	0.02
L12334	HS22RC005	29	30	-0.01	L12386	HS22RC005	77	78	-0.01	L12436	HS22RC005	125	126	0.01
L12335	HS22RC005	30	31	-0.01	L12387	HS22RC005	78	79	-0.01	L12437	HS22RC005	126	127	0.01
L12336	HS22RC005	31	32	-0.01	L12388	HS22RC005	79	80	-0.01	L12438	HS22RC005	127	128	0.03
L12337	HS22RC005	32	33	-0.01	L12389	HS22RC005	80	81	-0.01	L12439	HS22RC005	128	129	0.01
L12338	HS22RC005	33	34	0.01	L12390	HS22RC005	81	82	-0.01	L12441	HS22RC005	129	130	-0.01

MBK

METAL BANK LIMITED

L12442	HS22RC005	130	131	0.02	L12493	HS22RC006	18	19	0.13	L12544	HS22RC006	66	67	0.25
L12443	HS22RC005	131	132	0.01	L12494	HS22RC006	19	20	0.29	L12545	HS22RC006	67	68	0.22
L12444	HS22RC005	132	133	0.01	L12495	HS22RC006	20	21	0.15	L12546	HS22RC006	68	69	0.98
L12445	HS22RC005	133	134	-0.01	L12496	HS22RC006	21	22	0.17	L12547	HS22RC006	69	70	0.17
L12446	HS22RC005	134	135	-0.01	L12497	HS22RC006	22	23	0.6	L12548	HS22RC006	70	71	0.02
L12447	HS22RCOO5	135	136	-0.01	L12498	HS22RC006	23	24	0.3	L12549	HS22RC006	71	72	0.1
L12448	HS22RC005	136	137	-0.01	L12499	HS22RC006	24	25	0.38	L12551	HS22RC006	72	73	0.01
L12449	HS22RC005	137	138	0.01	L12501	HS22RC006	25	26	0.18	L12552	HS22RC006	73	74	0.04
L12451	HS22RC005	138	139	-0.01	L12502	HS22RC006	26	27	0.08	L12553	HS22RC006	74	75	0.05
L12452	HS22RC005	139	140	-0.01	L12503	HS22RC006	27	28	0.02	L12554	HS22RC006	75	76	0.01
L12453	HS22RC005	140	141	0.01	L12504	HS22RC006	28	29	0.03	L12555	HS22RC006	76	77	1.34
L12454	HS22RC005	141	142	0.01	L12505	HS22RC006	29	30	0.05	L12556	HS22RC006	77	78	0.66
L12455	HS22RC005	142	143	0.03	L12506	HS22RC006	30	31	0.08	L12557	HS22RC006	78	79	0.23
L12456	HS22RC005	143	144	0.02	L12507	HS22RC006	31	32	0.41	L12558	HS22RC006	79	80	0.14
L12457	HS22RC005	144	145	0.01	L12508	HS22RC006	32	33	0.61	L12559	HS22RC006	80	81	0.02
L12458	HS22RC005	145	146	-0.01	L12509	HS22RC006	33	34	0.71	L12561	HS22RC006	81	82	0.01
L12459	HS22RC005	146	147	0.01	L12510	HS22RC006	34	35	1.62	L12562	HS22RC006	82	83	-0.01
L12461	HS22RC005	147	148	0.06	L12511	HS22RC006	35	36	0.13	L12563	HS22RC006	83	84	0.13
L12462	HS22RC005	148	149	-0.01	L12512	HS22RC006	36	37	1.1	L12564	HS22RC006	84	85	0.16
L12463	HS22RC005	149	150	-0.01	L12513	HS22RC006	37	38	0.86	L12565	HS22RC006	85	86	0.12
L12464	HS22RC005	150	151	-0.01	L12514	HS22RC006	38	39	0.08	L12566	HS22RC006	86	87	0.19
L12465	HS22RC005	151	152	-0.01	L12515	HS22RC006	39	40	0.24	L12567	HS22RC006	87	88	0.15
L12466	HS22RC005	152	153	-0.01	L12516	HS22RC006	40	41	0.39	L12568	HS22RC006	88	89	-0.01
L12467	HS22RC005	153	154	-0.01	L12517	HS22RC006	41	42	0.9	L12569	HS22RC006	89	90	-0.01
L12468	HS22RC005	154	155	-0.01	L12518	HS22RC006	42	43	1.32	L12570	HS22RC006	90	91	0.01
L12469	HS22RC005	155	156	-0.01	L12519	HS22RC006	43	44	0.92	L12571	HS22RC006	91	92	-0.01
L12470	HS22RC005	156	157	-0.01	L12521	HS22RC006	44	45	0.12	L12572	HS22RC006	92	93	-0.01
L12471	HS22RC005	157	158	0.01	L12522	HS22RC006	45	46	0.06	L12573	HS22RC006	93	94	-0.01
L12472	HS22RC005	158	159	0.01	L12523	HS22RC006	46	47	0.03	L12574	HS22RC006	94	95	-0.01
112473	HS22RC005	159	160	-0.01	L12524	HS22RC006	47	48	0.04	L12575	HS22RC006	95	96	-0.01
L12474	HS22RCOO6	0	1	0.04	L12525	HS22RC006	48	49	-0.01	L12576	HS22RC006	96	97	-0.01
L12475	HS22RC006	1	2	0.01	L12526	HS22RC006	49	50	0.01	L12577	HS22RC006	97	98	-0.01
L12476	HS22RC006	2	3	0.01	L12527	HS22RC006	50	51	0.01	L12578	HS22RC006	98	99	0.01
112477	HS22RC006	3	4	0.01	L12528	HS22RCO06	51	52	-0.01	L12579	HS22RC006	99	100	-0.01
L12478	HS22RC006	4	5	1.2	L12529	HS22RC006	52	53	0.01	L12581	HS22RC006	100	101	-0.01
L12479	HS22RCOO6	5	6	-0.01	L12530	HS22RC006	53	54	0.01	L12582	HS22RC006	101	102	-0.01
L12481	HS22RC006	6	7	0.14	L12531	HS22RC006	54	55	0.01	L12583	HS22RC006	102	103	-0.01
L12482	HS22RC006	7	8	0.96	L12532	HS22RC006	55	56	-0.01	L12584	HS22RC006	103	104	-0.01
L12483	HS22RC006	8	9	1.72	L12533	HS22RC006	56	57	0.01	L12585	HS22RC006	104	105	-0.01
L12484	HS22RC006	9	10	0.64	L12534	HS22RC006	57	58	-0.01	L12586	HS22RC006	105	106	-0.01
L12485	HS22RCOO6	10	11	1.5	L12535	HS22RC006	58	59	0.94	L12587	HS22RC006	106	107	-0.01
L12486	HS22RC006	11	12	1.32	L12536	HS22RC006	59	60	0.28	L12588	HS22RC006	107	108	-0.01
L12487	HS22RC006	12	13	0.36	L12537	HS22RC006	60	61	0.18	L12589	HS22RC006	108	109	-0.01
L12488	HS22RC006	13	14	0.07	L12538	HS22RC006	61	62	0.11	L12590	HS22RC006	109	110	-0.01
L12489	HS22RCOO6	14	15	0.03	L12539	HS22RC006	62	63	0.74	L12591	HS22RC006	110	111	-0.01
L12490	HS22RC006	15	16	0.01	L12541	HS22RC006	63	64	0.03	L12592	HS22RC006	111	112	-0.01
L12491	HS22RC006	16	17	0.01	L12542	HS22RC006	64	65	0.16	L12593	HS22RC006	112	113	-0.01
L12492	HS22RCOO6	17	18	0.02	L12543	HS22RC006	65	66	2.48	L12594	HS22RC006	113	114	0.02

MBK

METAL BANK LIMITED

L12595	HS22RC006	114	115	-0.01	L12646	HS22RC007	42	43	0.02	L12697	HS22RC007	90	91	-0.01
L12596	HS22RCOO6	115	116	0.03	L12647	HS22RC007	43	44	0.8	L12698	HS22RC007	91	92	-0.01
L12597	HS22RC006	116	117	0.05	L12648	HS22RC007	44	45	0.11	L12699	HS22RC007	92	93	-0.01
L12598	HS22RC006	117	118	0.01	L12649	HS22RC007	45	46	0.39	L12701	HS22RC007	93	94	-0.01
L12599	HS22RC006	118	119	0.02	L12651	HS22RC007	46	47	0.05	L12702	HS22RC007	94	95	-0.01
L12601	HS22RC006	119	120	0.03	L12652	HS22RC007	47	48	0.03	L12703	HS22RC007	95	96	-0.01
L12602	HS22RC007	0	1	0.03	L12653	HS22RC007	48	49	-0.01	L12704	HS22RC007	96	97	-0.01
L12603	HS22RC007	1	2	0.01	L12654	HS22RC007	49	50	-0.01	L12705	HS22RC007	97	98	-0.01
L12604	HS22RC007	2	3	-0.01	L12655	HS22RC007	50	51	0.01	L12706	HS22RC007	98	99	-0.01
L12605	HS22RC007	3	4	0.01	L12656	HS22RC007	51	52	0.01	L12707	HS22RC007	99	100	-0.01
L12606	HS22RC007	4	5	-0.01	L12657	HS22RC007	52	53	-0.01	L12708	HS22RC007	100	101	-0.01
L12607	HS22RC007	5	6	0.08	L12658	HS22RC007	53	54	0.01	L12709	HS22RC007	101	102	-0.01
L12608	HS22RC007	6	7	0.04	L12659	HS22RC007	54	55	0.51	L12710	HS22RC007	102	103	-0.01
L12609	HS22RC007	7	8	0.15	L12661	HS22RC007	55	56	0.02	L12711	HS22RC007	103	104	-0.01
L12610	HS22RC007	8	9	0.05	L12662	HS22RC007	56	57	0.01	L12712	HS22RC007	104	105	0.01
L12611	HS22RC007	9	10	-0.01	L12663	HS22RC007	57	58	-0.01	L12713	HS22RC007	105	106	-0.01
L12612	HS22RC007	10	11	0.02	L12664	HS22RC007	58	59	-0.01	L12714	HS22RC007	106	107	-0.01
L12613	HS22RC007	11	12	0.02	L12665	HS22RC007	59	60	0.03	L12715	HS22RC007	107	108	-0.01
L12614	HS22RC007	12	13	0.09	L12666	HS22RC007	60	61	0.01	L12716	HS22RC007	108	109	-0.01
L12615	HS22RC007	13	14	0.06	L12667	HS22RC007	61	62	0.23	L12717	HS22RC007	109	110	-0.01
L12616	HS22RC007	14	15	0.01	L12668	HS22RC007	62	63	0.14	L12718	HS22RC008	0	1	0.02
L12617	HS22RC007	15	16	0.02	L12669	HS22RC007	63	64	0.13	L12719	HS22RC008	1	2	0.02
L12618	HS22RC007	16	17	0.12	L12670	HS22RC007	64	65	0.04	L12721	HS22RC008	2	3	0.08
L12619	HS22RC007	17	18	0.08	L12671	HS22RC007	65	66	0.01	L12722	HS22RC008	3	4	0.04
L12621	HS22RC007	18	19	0.3	L12672	HS22RC007	66	67	0.09	L12723	HS22RC008	4	5	0.02
L12622	HS22RC007	19	20	0.62	L12673	HS22RC007	67	68	0.01	L12724	HS22RC008	5	6	0.01
L12623	HS22RC007	20	21	0.66	L12674	HS22RC007	68	69	0.01	L12725	HS22RC008	6	7	0.01
L12624	HS22RC007	21	22	0.61	L12675	HS22RC007	69	70	0.21	L12726	HS22RC008	7	8	0.02
L12625	HS22RC007	22	23	0.07	L12676	HS22RC007	70	71	0.04	L12727	HS22RC008	8	9	0.01
L12626	HS22RC007	23	24	0.54	112677	HS22RC007	71	72	0.05	L12728	HS22RC008	9	10	0.01
L12627	HS22RC007	24	25	0.12	L12678	HS22RC007	72	73	0.02	L12729	HS22RC008	10	11	0.01
L12628	HS22RC007	25	26	0.01	L12679	HS22RC007	73	74	1.04	L12730	HS22RC008	11	12	0.01
L12629	HS22RC007	26	27	0.01	L12681	HS22RC007	74	75	0.41	L12731	HS22RC008	12	13	0.01
L12630	HS22RC007	27	28	0.04	L12682	HS22RC007	75	76	2.65	L12732	HS22RC008	13	14	0.01
L12631	HS22RC007	28	29	0.12	L12683	HS22RC007	76	77	0.68	L12733	HS22RC008	14	15	-0.01
L12632	HS22RC007	29	30	0.09	L12684	HS22RC007	77	78	0.32	L12734	HS22RC008	15	16	-0.01
L12633	HS22RC007	30	31	-0.01	L12685	HS22RC007	78	79	0.21	L12735	HS22RC008	16	17	-0.01
L12634	HS22RC007	31	32	-0.01	L12686	HS22RC007	79	80	0.08	L12736	HS22RC008	17	18	-0.01
L12635	HS22RC007	32	33	0.03	L12687	HS22RC007	80	81	0.02	L12737	HS22RC008	18	19	-0.01
L12636	HS22RC007	33	34	0.09	L12688	HS22RC007	81	82	0.01	L12738	HS22RC008	19	20	-0.01
L12637	HS22RC007	34	35	0.05	L12689	HS22RC007	82	83	0.21	L12739	HS22RC008	20	21	-0.01
L12638	HS22RC007	35	36	0.01	L12690	HS22RC007	83	84	0.01	L12741	HS22RC008	21	22	-0.01
L12639	HS22RC007	36	37	0.04	L12691	HS22RC007	84	85	0.01	L12742	HS22RC008	22	23	-0.01
L12641	HS22RC007	37	38	0.28	L12692	HS22RC007	85	86	-0.01	L12743	HS22RC008	23	24	-0.01
L12642	HS22RC007	38	39	0.06	L12693	HS22RC007	86	87	-0.01	L12744	HS22RC008	24	25	-0.01
L12643	HS22RC007	39	40	0.05	L12694	HS22RC007	87	88	-0.01	L12745	HS22RC008	25	26	-0.01
L12644	HS22RC007	40	41	0.07	L12695	HS22RC007	88	89	-0.01	L12746	HS22RC008	26	27	-0.01
L12645	HS22RC007	41	42	0.02	L12696	HS22RC007	89	90	-0.01	L12747	HS22RC008	27	28	-0.01

MBK

METAL BANK LIMITED

L12748	HS22RC008	28	29	-0.01	L12799	HS22RC008	76	77	0.01	L12851	HS22RC008	124	125	-0.01
112749	HS22RC008	29	30	0.01	L12801	HS22RC008	77	78	0.02	L12852	HS22RC008	125	126	0.01
L12751	HS22RC008	30	31	0.02	L12802	HS22RC008	78	79	0.01	L12853	HS22RC008	126	127	-0.01
L12752	HS22RC008	31	32	0.03	L12803	HS22RC008	79	80	0.01	L12854	HS22RC008	127	128	-0.01
L12753	HS22RCOO8	32	33	0.02	L12804	HS22RC008	80	81	0.01	L12855	HS22RCOO8	128	129	0.01
L12754	HS22RC008	33	34	0.03	L12805	HS22RC008	81	82	-0.01	L12856	HS22RC008	129	130	0.01
L12755	HS22RC008	34	35	0.05	L12806	HS22RC008	82	83	-0.01	L12857	HS22RC008	130	131	-0.01
L12756	HS22RC008	35	36	0.03	L12807	HS22RC008	83	84	-0.01	L12858	HS22RC008	131	132	-0.01
L12757	HS22RC008	36	37	0.02	L12808	HS22RC008	84	85	-0.01	L12859	HS22RC008	132	133	-0.01
L12758	HS22RC008	37	38	0.01	L12809	HS22RC008	85	86	-0.01	L12861	HS22RC008	133	134	-0.01
L12759	HS22RC008	38	39	-0.01	L12810	HS22RC008	86	87	-0.01	L12862	HS22RC008	134	135	0.01
L12761	HS22RC008	39	40	-0.01	L12811	HS22RC008	87	88	-0.01	L12863	HS22RCOO8	135	136	-0.01
L12762	HS22RC008	40	41	-0.01	L12812	HS22RC008	88	89	-0.01	L12864	HS22RC008	136	137	-0.01
L12763	HS22RC008	41	42	-0.01	L12813	HS22RC008	89	90	0.01	L12865	HS22RC008	137	138	-0.01
L12764	HS22RC008	42	43	-0.01	L12814	HS22RC008	90	91	-0.01	L12866	HS22RC008	138	139	-0.01
L12765	HS22RCO08	43	44	-0.01	L12815	HS22RC008	91	92	-0.01	L12867	HS22RCOO8	139	140	0.01
L12766	HS22RC008	44	45	-0.01	L12816	HS22RC008	92	93	-0.01	L12868	HS22RC008	140	141	-0.01
L12767	HS22RC008	45	46	-0.01	L12817	HS22RC008	93	94	-0.01	L12869	HS22RC008	141	142	-0.01
L12768	HS22RC008	46	47	-0.01	L12818	HS22RC008	94	95	-0.01	L12870	HS22RC008	142	143	-0.01
L12769	HS22RC008	47	48	-0.01	L12819	HS22RC008	95	96	-0.01	L12871	HS22RC008	143	144	-0.01
L12770	HS22RC008	48	49	-0.01	L12821	HS22RC008	96	97	-0.01	L12872	HS22RC008	144	145	-0.01
L12771	HS22RCOO8	49	50	-0.01	L12822	HS22RC008	97	98	-0.01	L12873	HS22RC008	145	146	-0.01
L12772	HS22RC008	50	51	0.01	L12823	HS22RC008	98	99	-0.01	L12874	HS22RC008	146	147	-0.01
L12773	HS22RC008	51	52	-0.01	L12824	HS22RC008	99	100	-0.01	L12875	HS22RC008	147	148	-0.01
L12774	HS22RC008	52	53	0.01	L12825	HS22RC008	100	101	-0.01	L12876	HS22RC008	148	149	-0.01
L12775	HS22RC008	53	54	-0.01	L12826	HS22RC008	101	102	-0.01	L12877	HS22RC008	149	150	-0.01
L12776	HS22RC008	54	55	-0.01	L12827	HS22RC008	102	103	-0.01	L12878	HS22RC008	150	151	-0.01
L12777	HS22RC008	55	56	-0.01	L12828	HS22RC008	103	104	-0.01	L12879	HS22RC008	151	152	-0.01
L12778	HS22RC008	56	57	-0.01	L12829	HS22RC008	104	105	-0.01	L12881	HS22RC008	152	153	-0.01
L12779	HS22RC008	57	58	-0.01	L12830	HS22RC008	105	106	-0.01	L12882	HS22RC008	153	154	-0.01
L12781	HS22RC008	58	59	-0.01	L12831	HS22RC008	106	107	0.01	L12883	HS22RC008	154	155	-0.01
L12782	HS22RC008	59	60	-0.01	L12832	HS22RC008	107	108	0.01	L12884	HS22RC008	155	156	-0.01
L12783	HS22RC008	60	61	-0.01	L12833	HS22RC008	108	109	0.01	L12885	HS22RC008	156	157	-0.01
L12784	HS22RC008	61	62	-0.01	L12834	HS22RC008	109	110	-0.01	L12886	HS22RC008	157	158	-0.01
L12785	HS22RC008	62	63	-0.01	L12835	HS22RC008	110	111	-0.01	L12887	HS22RC008	158	159	-0.01
L12786	HS22RC008	63	64	0.02	L12836	HS22RC008	111	112	0.01	L12888	HS22RC008	159	160	-0.01
L12787	HS22RC008	64	65	-0.01	L12837	HS22RC008	112	113	0.08	L12889	HS22RC008	160	161	-0.01
L12788	HS22RC008	65	66	-0.01	L12838	HS22RC008	113	114	0.01	L12890	HS22RC008	161	162	-0.01
L12789	HS22RC008	66	67	-0.01	L12839	HS22RC008	114	115	-0.01	L12891	HS22RC008	162	163	-0.01
L12790	HS22RC008	67	68	-0.01	L12841	HS22RC008	115	116	-0.01	L12892	HS22RC008	163	164	-0.01
L12791	HS22RC008	68	69	-0.01	L12842	HS22RC008	116	117	-0.01	L12893	HS22RC008	164	165	-0.01
L12792	HS22RC008	69	70	-0.01	L12843	HS22RC008	117	118	-0.01	L12894	HS22RC008	165	166	-0.01
L12793	HS22RC008	70	71	-0.01	L12844	HS22RC008	118	119	0.01	L12895	HS22RC008	166	167	-0.01
L12794	HS22RC008	71	72	0.01	L12845	HS22RC008	119	120	-0.01	L12896	HS22RC008	167	168	-0.01
L12795	HS22RC008	72	73	0.01	L12846	HS22RC008	120	121	-0.01	L12897	HS22RC008	168	169	-0.01
L12796	HS22RC008	73	74	0.01	L12847	HS22RC008	121	122	-0.01	L12898	HS22RC008	169	170	-0.01
L12797	HS22RC008	74	75	0.01	L12848	HS22RC008	122	123	0.01	L12899	HS22RC008	170	171	-0.01
L12798	HS22RC008	75	76	0.01	L12849	HS22RC008	123	124	0.01	L12901	HS22RC008	171	172	-0.01

MBK

METAL BANK LIMITED

L12902	HS22RC008	172	173	-0.01	L12953	HS22RC009	40	41	-0.01	L13004	HS22RC009	88	89	0.01
L12903	HS22RC008	173	174	-0.01	L12954	HS22RC009	41	42	-0.01	L13005	HS22RC009	89	90	0.04
L12904	HS22RC008	174	175	-0.01	112955	HS22RC009	42	43	-0.01	L13006	HS22RC009	90	91	0.32
L12905	HS22RC008	175	176	-0.01	L12956	HS22RC009	43	44	-0.01	L13007	HS22RC009	91	92	1.31
L12906	HS22RC008	176	177	-0.01	L12957	HS22RC009	44	45	-0.01	L13008	HS22RC009	92	93	0.16
L12907	HS22RC008	177	178	-0.01	L12958	HS22RC009	45	46	-0.01	L13009	HS22RC009	93	94	1.28
L12908	HS22RC008	178	179	0.01	L12959	HS22RC009	46	47	-0.01	L13010	HS22RC009	94	95	0.68
L12909	HS22RC008	179	180	-0.01	L12961	HS22RC009	47	48	-0.01	L13011	HS22RC009	95	96	0.65
L12910	HS22RC009	0	1	0.07	L12962	HS22RC009	48	49	-0.01	L13012	HS22RC009	96	97	0.38
L12911	HS22RC009	1	2	0.02	L12963	HS22RC009	49	50	-0.01	L13013	HS22RC009	97	98	0.13
L12912	HS22RC009	2	3	0.02	L12964	HS22RC009	50	51	-0.01	L13014	HS22RC009	98	99	0.09
L12913	HS22RC009	3	4	0.02	L12965	HS22RC009	51	52	-0.01	L13015	HS22RC009	99	100	0.05
L12914	HS22RC009	4	5	0.02	112966	HS22RC009	52	53	0.01	L13016	HS22RC009	100	101	0.16
L12915	HS22RC009	5	6	0.02	112967	HS22RC009	53	54	-0.01	113017	HS22RC009	101	102	0.04
L12916	HS22RC009	6	7	0.03	L12968	HS22RC009	54	55	0.06	L13018	HS22RC009	102	103	0.03
L12917	HS22RC009	7	8	0.02	L12969	HS22RCOO9	55	56	0.02	L13019	HS22RC009	103	104	0.05
L12918	HS22RC009	8	9	0.24	112970	HS22RC009	56	57	0.01	L13021	HS22RC009	104	105	0.06
L12919	HS22RC009	9	10	0.02	L12971	HS22RC009	57	58	0.01	L13022	HS22RC009	105	106	0.07
L12921	HS22RC009	10	11	0.01	L12972	HS22RC009	58	59	0.01	L13023	HS22RC009	106	107	0.04
L12922	HS22RC009	11	12	0.01	L12973	HS22RC009	59	60	-0.01	L13024	HS22RC009	107	108	0.02
L12923	HS22RC009	12	13	0.01	L12974	HS22RC009	60	61	0.02	L13025	HS22RC009	108	109	0.01
L12924	HS22RC009	13	14	0.01	112975	HS22RC009	61	62	-0.01	L13026	HS22RC009	109	110	0.01
L12925	HS22RC009	14	15	-0.01	112976	HS22RC009	62	63	-0.01	L13027	HS22RC009	110	111	0.01
L12926	HS22RC009	15	16	-0.01	L12977	HS22RC009	63	64	-0.01	L13028	HS22RC009	111	112	0.01
L12927	HS22RC009	16	17	-0.01	112978	HS22RC009	64	65	0.01	L13029	HS22RC009	112	113	0.01
L12928	HS22RC009	17	18	0.01	L12979	HS22RC009	65	66	-0.01	L13030	HS22RC009	113	114	0.01
L12929	HS22RC009	18	19	-0.01	L12981	HS22RC009	66	67	-0.01	L13031	HS22RC009	114	115	0.01
L12930	HS22RC009	19	20	-0.01	L12982	HS22RCOO9	67	68	0.03	L13032	HS22RC009	115	116	0.01
L12931	HS22RC009	20	21	-0.01	L12983	HS22RC009	68	69	0.01	L13033	HS22RC009	116	117	0.01
L12932	HS22RC009	21	22	-0.01	L12984	HS22RC009	69	70	0.03	L13034	HS22RC009	117	118	0.01
L12933	HS22RC009	22	23	-0.01	L12985	HS22RC009	70	71	0.07	L13035	HS22RC009	118	119	0.01
L12934	HS22RC009	23	24	-0.01	L12986	HS22RC009	71	72	0.09	L13036	HS22RC009	119	120	0.01
L12935	HS22RC009	24	25	0.01	L12987	HS22RC009	72	73	0.1	L13037	HS22RC009	120	121	0.01
L12936	HS22RC009	25	26	0.01	L12988	HS22RC009	73	74	0.05	L13038	HS22RC009	121	122	-0.01
L12937	HS22RC009	26	27	0.01	L12989	HS22RC009	74	75	0.01	L13039	HS22RC009	122	123	0.01
L12938	HS22RC009	27	28	-0.01	129990	HS22RC009	75	76	-0.01	L13041	HS22RC009	123	124	-0.01
L12939	HS22RC009	28	29	-0.01	112991	HS22RC009	76	77	0.01	L13042	HS22RC009	124	125	0.01
L12941	HS22RC009	29	30	-0.01	L12992	HS22RC009	77	78	0.01	L13043	HS22RC009	125	126	0.01
L12942	HS22RC009	30	31	-0.01	L12993	HS22RC009	78	79	0.01	L13044	HS22RC009	126	127	0.01
L12943	HS22RC009	31	32	-0.01	L12994	HS22RC009	79	80	-0.01	L13045	HS22RC009	127	128	0.01
L12944	HS22RC009	32	33	-0.01	L12995	HS22RCOO9	80	81	0.01	L13046	HS22RC009	128	129	0.01
L12945	HS22RC009	33	34	-0.01	L12996	HS22RC009	81	82	-0.01	L13047	HS22RC009	129	130	0.01
L12946	HS22RC009	34	35	-0.01	L12997	HS22RC009	82	83	-0.01	L13048	HS22RC009	130	131	0.01
L12947	HS22RC009	35	36	-0.01	L12998	HS22RC009	83	84	0.02	L13049	HS22RC009	131	132	0.01
L12948	HS22RC009	36	37	-0.01	L12999	HS22RC009	84	85	0.01	L13051	HS22RC009	132	133	0.01
L12949	HS22RC009	37	38	-0.01	L13001	HS22RC009	85	86	-0.01	L13052	HS22RC009	133	134	0.01
L12951	HS22RC009	38	39	-0.01	L13002	HS22RC009	86	87	0.04	L13053	HS22RC009	134	135	0.01
L12952	HS22RC009	39	40	-0.01	L13003	HS22RCOO9	87	88	0.01	L13054	HS22RC009	135	136	0.01

METAL BANK LIMITED

L13055	HS22RC009	136	137	0.04	L13106	HS22RCO10	34	35	-0.01	L13157	HS22RCO10	82	83	-0.01
113056	HS22RC009	137	138	0.01	L13107	HS22RCO10	35	36	-0.01	L13158	HS22RCO10	83	84	-0.01
L13057	HS22RC009	138	139	0.01	L13108	HS22RCO10	36	37	-0.01	L13159	HS22RCO10	84	85	0.01
L13058	HS22RCOO9	139	140	0.01	L13109	HS22RC010	37	38	-0.01	L13161	HS22RCO10	85	86	-0.01
L13059	HS22RCOO9	140	141	0.01	L13110	HS22RCO10	38	39	-0.01	L13162	HS22RCO10	86	87	-0.01
L13061	HS22RC009	141	142	0.01	L13111	HS22RCO10	39	40	-0.01	L13163	HS22RCO10	87	88	-0.01
L13062	HS22RC009	142	143	0.01	L13112	HS22RCO10	40	41	-0.01	L13164	HS22RC010	88	89	-0.01
L13063	HS22RC009	143	144	0.01	L13113	HS22RCO10	41	42	-0.01	L13165	HS22RCO10	89	90	-0.01
L13064	HS22RCOO9	144	145	0.01	L13114	HS22RCO10	42	43	-0.01	L13166	HS22RCO10	90	91	-0.01
L13065	HS22RCOO9	145	146	0.01	L13115	HS22RCO10	43	44	-0.01	L13167	HS22RCO10	91	92	-0.01
L13066	HS22RCOO9	146	147	-0.01	L13116	HS22RCO10	44	45	0.01	L13168	HS22RCO10	92	93	-0.01
L13067	HS22RCOO9	147	148	-0.01	L13117	HS22RCO10	45	46	-0.01	L13169	HS22RCO10	93	94	-0.01
L13068	HS22RC009	148	149	0.01	L13118	HS22RCO10	46	47	-0.01	L13170	HS22RCO10	94	95	-0.01
L13069	HS22RC009	149	150	0.01	L13119	HS22RCO10	47	48	-0.01	L13171	HS22RCO10	95	96	-0.01
L13070	HS22RC010	0	1	0.18	L13121	HS22RCO10	48	49	-0.01	L13172	HS22RCO10	96	97	-0.01
L13071	HS22RCO10	1	2	0.17	L13122	HS22RCO10	49	50	0.01	L13173	HS22RCO10	97	98	-0.01
113072	HS22RC010	2	3	0.22	L13123	HS22RCO10	50	51	-0.01	L13174	HS22RCO10	98	99	-0.01
L13073	HS22RC010	3	4	0.26	L13124	HS22RCO10	51	52	-0.01	L13175	HS22RCO10	99	100	-0.01
L13074	HS22RCO10	4	5	0.2	L13125	HS22RCO10	52	53	-0.01	L13176	HS22RCO10	100	101	-0.01
L13075	HS22RC010	5	6	0.08	L13126	HS22RCO10	53	54	-0.01	L13177	HS22RCO10	101	102	-0.01
L13076	HS22RCO10	6	7	0.04	L13127	HS22RCO10	54	55	0.03	L13178	HS22RCO10	102	103	-0.01
L13077	HS22RCO10	7	8	0.04	L13128	HS22RCO10	55	56	0.01	L13179	HS22RCO10	103	104	-0.01
L13078	HS22RCO10	8	9	0.05	L13129	HS22RCO10	56	57	0.01	L13181	HS22RCO10	104	105	-0.01
L13079	HS22RC010	9	10	0.05	L13130	HS22RCO10	57	58	0.01	L13182	HS22RCO10	105	106	-0.01
L13081	HS22RC010	10	11	0.03	L13131	HS22RCO10	58	59	-0.01	L13183	HS22RC010	106	107	-0.01
L13082	HS22RCO10	11	12	0.01	L13132	HS22RCO10	59	60	-0.01	L13184	HS22RCO10	107	108	-0.01
L13083	HS22RCO10	12	13	-0.01	L13133	HS22RCO10	60	61	0.01	L13185	HS22RCO10	108	109	-0.01
L13084	HS22RC010	13	14	0.01	L13134	HS22RCO10	61	62	-0.01	L13186	HS22RCO10	109	110	-0.01
L13085	HS22RCO10	14	15	-0.01	L13135	HS22RCO10	62	63	-0.01	L13187	HS22RCO10	110	111	-0.01
L13086	HS22RC010	15	16	0.01	L13136	HS22RCO10	63	64	-0.01	L13188	HS22RCO10	111	112	-0.01
L13087	HS22RC010	16	17	-0.01	L13137	HS22RCO10	64	65	-0.01	L13189	HS22RCO10	112	113	-0.01
L13088	HS22RC010	17	18	-0.01	L13138	HS22RCO10	65	66	-0.01	L13190	HS22RCO10	113	114	-0.01
L13089	HS22RCO10	18	19	-0.01	L13139	HS22RCO10	66	67	0.02	L13191	HS22RCO10	114	115	-0.01
L13090	HS22RC010	19	20	-0.01	L13141	HS22RCO10	67	68	0.02	L13192	HS22RCO10	115	116	-0.01
L13091	HS22RC010	20	21	-0.01	L13142	HS22RCO10	68	69	-0.01	L13193	HS22RCO10	116	117	-0.01
L13092	HS22RCO10	21	22	-0.01	L13143	HS22RCO10	69	70	-0.01	L13194	HS22RCO10	117	118	-0.01
113093	HS22RC010	22	23	-0.01	L13144	HS22RCO10	70	71	0.01	L13195	HS22RCO10	118	119	-0.01
L13094	HS22RCO10	23	24	-0.01	L13145	HS22RCO10	71	72	-0.01	L13196	HS22RCO10	119	120	-0.01
L13095	HS22RC010	24	25	-0.01	L13146	HS22RCO10	72	73	-0.01	L13197	HS22RCO10	120	121	-0.01
L13096	HS22RC010	25	26	-0.01	L13147	HS22RCO10	73	74	0.01	L13198	HS22RCO10	121	122	-0.01
L13097	HS22RC010	26	27	-0.01	L13148	HS22RC010	74	75	-0.01	L13199	HS22RCO10	122	123	-0.01
L13098	HS22RCO10	27	28	-0.01	L13149	HS22RCO10	75	76	-0.01	L13201	HS22RCO10	123	124	-0.01
L13099	HS22RCO10	28	29	-0.01	L13151	HS22RCO10	76	77	-0.01	L13202	HS22RCO10	124	125	-0.01
L13101	HS22RC010	29	30	-0.01	L13152	HS22RCO10	77	78	-0.01	L13203	HS22RC010	125	126	-0.01
L13102	HS22RC010	30	31	-0.01	L13153	HS22RC010	78	79	0.01	L13204	HS22RCO10	126	127	-0.01
L13103	HS22RC010	31	32	-0.01	L13154	HS22RCO10	79	80	-0.01	L13205	HS22RCO10	127	128	0.37
L13104	HS22RCO10	32	33	-0.01	L13155	HS22RCO10	80	81	0.01	L13206	HS22RCO10	128	129	0.66
L13105	HS22RCO10	33	34	-0.01	L13156	HS22RC010	81	82	-0.01	L13207	HS22RCO10	129	130	0.74

MBK

METAL BANK LIMITED

L13208	HS22RCO10	130	131	0.59	L13259	HS22RCO10	178	179	-0.01
L13209	HS22RCO10	131	132	0.21	L13261	HS22RCO10	179	180	-0.01
L13210	HS22RC010	132	133	0.11					
L13211	HS22RCO10	133	134	0.03					
L13212	HS22RCO10	134	135	0.06					
L13213	HS22RCO10	135	136	0.01					
L13214	HS22RCO10	136	137	-0.01					
L13215	HS22RCO10	137	138	-0.01					
L13216	HS22RCO10	138	139	-0.01					
L13217	HS22RC010	139	140	-0.01					
L13218	HS22RCO10	140	141	-0.01					
L13219	HS22RCO10	141	142	-0.01					
L13221	HS22RC010	142	143	0.01					
L13222	HS22RCO10	143	144	0.03					
L13223	HS22RCO10	144	145	0.03					
L13224	HS22RCO10	145	146	0.01					
L13225	HS22RCO10	146	147	0.02					
L13226	HS22RCO10	147	148	-0.01					
L13227	HS22RCO10	148	149	-0.01					
L13228	HS22RC010	149	150	0.01					
L13229	HS22RCO10	150	151	0.01					
L13230	HS22RCO10	151	152	0.01					
L13231	HS22RCO10	152	153	-0.01					
L13232	HS22RCO10	153	154	-0.01					
L13233	HS22RCO10	154	155	0.01					
L13234	HS22RC010	155	156	-0.01					
L13235	HS22RCO10	156	157	0.01					
L13236	HS22RCO10	157	158	-0.01					
L13237	HS22RCO10	158	159	0.01					
L13238	HS22RCO10	159	160	-0.01					
L13239	HS22RCO10	160	161	0.01					
L13241	HS22RCO10	161	162	0.01					
L13242	HS22RCO10	162	163	-0.01					
L13243	HS22RCO10	163	164	-0.01					
L13244	HS22RCO10	164	165	0.01					
L13245	HS22RC010	165	166	-0.01					
L13246	HS22RCO10	166	167	-0.01					
L13247	HS22RCO10	167	168	-0.01					
L13248	HS22RCO10	168	169	-0.01					
L13249	HS22RC010	169	170	-0.01					
L13251	HS22RCO10	170	171	-0.01					
L13252	HS22RCO10	171	172	-0.01					
L13253	HS22RC010	172	173	-0.01					
L13254	HS22RCO10	173	174	-0.01					
L13255	HS22RCO10	174	175	0.01					
L13256	HS22RC010	175	176	-0.01					
L13257	HS22RCO10	176	177	-0.01					
L13258	HS22RCO10	177	178	-0.01					

APPENDIX 2 - LIVINGSTONE (HOMESTEAD) JORC 2012 INFERRED/INDICATED RESOURCE - DISCLOSURE STATEMENT

Pursuant to ASX Listing Rule 5.8 and 5.9, MBK discloses the following information regarding the JORC 2012 upgrade for the Homestead deposit, Livingstone Project.

Homestead Mineral Resource Estimation - Material information

Mineral Resources at Homestead (previously "Boundary deposit") were estimated in accordance with the JORC Code (2004) of Inferred Resource classification totalling 989Kt @ 1.6g/t Au for 49.9koz Au in 2006 by Talisman Mining Ltd ${ }^{7}$

This updated Homestead MRE was prepared by Cube Consulting of Perth using geological and mineralisation interpretation by MBK geologists. The project now reports a JORC 2012 Mineral Resource Estimate ("MRE") of 880Kt at $1.42 \mathrm{~g} / \mathrm{t}$ Au for $40,300 \mathrm{oz} \mathrm{Au} \mathrm{(} 0.5 \mathrm{~g} / \mathrm{t}$ Au cut-off), with over 80% of the Resource within Indicated classification.

Indicated and Inferred Mineral Resources are reported under the JORC 2012 Code - refer to Section 3 in Table 1 (Appendix 1) for further details, with additional supporting information in Section 1-2 of JORC Table 1 and drill hole details in Appendix 1 - Table 1.

Drilling

In summary, the Homestead Mineral Resource Estimate was completed using a local dataset comprising data from a total of 192 RC holes, 11 Aircore holes, 26 RAB holes and 1 Diamond hole. The dataset included 10 RC drillholes, for 1,195m, completed by Kennedy Drilling in 2022.

Sampling

RC drilling used high pressure air and levelled cone splitter or rotary splitter to collect samples.
Samples were collected at one-meter intervals and placed in individually numbered calico bags.
Duplicate standards and blanks were included and sent for analysis with samples. Sampling was guided by Metal Bank sampling protocols and QA/QC procedures.

Sample analysis

Samples were sent to ALS Laboratory in Perth for assay via fire assay (method Au-AA26).

RC drilling samples of 1 to 3 kg weight were shipped to the laboratory in polyweave bags; samples were pulverised and milled for assay.

[^5]METAL BANK LIMITED
All samples were pulverised to better than 85% passing $75 \mu \mathrm{~m}$ with a 50 g aliquot taken for assay.

QAQC

For RC samples, standards and field duplicates were inserted at a rate of 1 in every 50 samples collected.

Certified Reference Materials (CRMs) are sourced through Geostats Pty Ltd

Estimation

The indicated resource has nominal drill spacing of $25 \mathrm{~m} \times 20 \mathrm{~m}$ considered appropriate for the style of mineralisation and Resource classification. The inferred mineral resource has a nominal drill spacing of $40 \mathrm{~m} \times 40 \mathrm{~m}$. Aircore drilling was used as an additional guide to the interpretation. Modelling was based on drilling intercepts, with 1 m minimum sample widths and $0.5 \mathrm{~g} / \mathrm{t}$ Au cut-off grade demonstrating 650 m of system strike continuity and extension to depth of at least 150 m below surface. The deposit is linear in shape, striking towards the WNW ($\sim 280^{\circ}$), with sub-vertical to steeply north dips. The mineralised shoots range from 2 m to 15 m thick (averaging ~ 3 to 5 m) within a number of steeply dipping and generally planar mineralised quartz veins generally trending 110° within a mafic to ultramafic schist or 'talcose' schist. High grade intervals are typically associated with several 'shoots' and/or structural intersections and flexures, and top caps were applied (maximum $15 \mathrm{~g} / \mathrm{t} \mathrm{Au}$) to minimise 'nugget' influence.

The base of complete oxidation (BOCO) is generally about 30 to 40 m below surface, although is much deeper in the central part of the mineralised zone, extending to over 100 m depth. The base of partial oxidation (BOPO) rock is about 70 to 80 m below surface, but also extending to depth in the mineralised zone to well beyond 150 m depth.

The Mineral Resource was estimated using Ordinary Kriging ('OK') via Datamine software for each of the veins/shoots in $12.5 \mathrm{mE} \times 10 \mathrm{mN} \times 5 \mathrm{mRL}$ parent blocks (half drill hole spacing) and 1.5625 mE $\times 1.25 \mathrm{mN} \times 1.25 \mathrm{mRL}$ sub-blocks for accuracy. Au grade estimates were validated against composited drill hole data via extensive visual checking of models, global (per shoot) comparisons and statistical methods with satisfactory results. Variogram nugget/spherical models were consistent with shoot geometry.

Cut-off grades

Modelling was based on drilling intercepts, with 1 m minimum sample widths and $0.5 \mathrm{~g} / \mathrm{t}$ Au cut-off grade demonstrating 650 m of system strike continuity and extension to depth of at least 150 m below surface.

A cut-off grade of 1.5 ppm Au for the potential underground portion of the deposit was established from the use of a simple economic model and similar operations nearby.

Bulk Density

Bulk density (ISBD) was derived through assignment of 0.9 multiplication factor to 35 pycnometer measurements of recent RC drill samples, thus providing values of $2.43 \mathrm{t} / \mathrm{m}^{3}$ (oxidised), $2.67 \mathrm{t} / \mathrm{m}^{3}$ (transitional) and $2.80 \mathrm{t} / \mathrm{m}^{3}$ (fresh rock), noting the majority of drilling and subsequent Resource is contained within oxidised to transitional zones.

Resource Classification

The mineralised shoots are classified as Indicated where the drilling pattern is 20 m along strike and 25 m down dip, and not more than 20 m beyond drilling.

The Inferred Mineral Resource has a nominal drill spacing of $40 \mathrm{mE} \times 40 \mathrm{mN}$, is not more than 20 m laterally beyond drilling, using search pass one or two

This classification considers the confidence of the geological interpretation and estimation, and the quality of the data and reflects the view of the Competent Person.

Table 1 - Homestead November 2022 Mineral Resource Estimate.

Classification	kTonnes	Au_g/t	Au_k_ounces
Indicated	707	1.47	33.3
Inferred	173	1.25	7.0
Total	$\mathbf{8 8 0}$	$\mathbf{1 . 4 2}$	$\mathbf{4 0 . 3}$

Notes:

- Some numerical differences may occur due to rounding.
- Open cut resources above 380 mRL reported above a cut-off grade of 0.5 ppm Au.
- Underground resources below 380 mRL reported above a cut-off grade of 1.5 ppm Au .
- Includes holes drilled up to and including 29 May 2022.

Metallurgy

Au recoveries assumed to be 98% in oxide and 90% in transitional/fresh rock. Mineralisation styles observed show very low levels of deleterious elements.

Mining Factors

Pit optimisation work for Reasonable Prospects for Eventual Economic Extraction ('RPEEE') justification was undertaken on a regularised version of the block model with block dimensions of $5 \mathrm{mE} \times 2.5 \mathrm{mN} \times 5 \mathrm{mRL}$, with the lowest RL of the resulting pit shell ($380 \mathrm{~m} R \mathrm{RL}$, approximately 90 m maximum depth below surface) used to vertically constrain the Open-cut Resource. The resultant Au grades and geometry of mineralisation is amenable to open cut mining. Pit slope angles are appropriate for the oxidised, transitional and fresh rock. Overall slope angles inclusive of berms and ramps vary from 38° in oxide up to 45° in fresh rock.

The majority of the Homestead deposit would be mined by conventional open pit extraction. The recent pit optimisation work used a gold price of AUD\$3,000/oz., with mining costs varying with depth, but averaging $\$ 3.10 / \mathrm{t}$ ore and $\$ 3.20 / \mathrm{t}$ for waste (to a depth of 100 m). Overall processing

METAL BANK LIMITED

recovery was assumed to be 98% in oxide and 90% in transitional and fresh rock. Average processing plus G\&A cost for all material was assumed to be $\$ 30$ per tonne.

There are no known environmental issues, and a number of operational gold mines exist within 80 km of Homestead in similar mineralisation and physical geographical settings that are capable of treating mineralisation.

No Reserves were estimated at the time (Resource only).

Grade-Tonnage Curves

METAL BANK LIMITED

APPENDIX 3: JORC CODE, 2012 EDITION - TABLE 1 REPORT

Section 1 Sampling Techniques and Data
(Criteria in this section apply to all succeeding sections.)

Criteria
Sampling technique

techniques

JORC Code explanation

- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.
- Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.
- Aspects of the determination of mineralisation that are Material to the Public Report.
- In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information

Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc)

Commentary

Reverse Circulation (RC

- RC drilling used high pressure air and levelled cone splitter or rotary splitter to collect samples.
- Samples were collected at one-meter intervals and or via $4 m$ composites and place in individually numbered calico bags.
- Duplicate standards and blanks were included and sent for analysis with samples. Sampling was guided by Metal Bank sampling protocols and QA/QC procedures.
- Samples sent to the ALS Laboratory in Perth for assay via fire assay (method Au-AA26).
- All samples were pulverised to better than 85% passing $75 \mu \mathrm{~m}$ with a 50 g aliquot taken for assay.
- RC drilling samples of 1 to 3 kg weight were shipped to the laboratory in polyweave bags; samples were pulverised and milled for assay.

Diamond Drilling (DIA)

- No Diamond drilling was conducted during recent exploration programs.

RC

- In 2022 Kennedy Drilling completed 1,195m RC drilling from 10 holes with a face sampling hammer and collected via cone splitter. Sample recovery was recorded good, moderate or poor the expected sample, sample state recorded (dry, moist, wet)
- 2020 RC Drilling (5 Holes) was completed by PXD Drilling using an Atlas Copco 220 drill rig

RC

- A face sampling hammer was used to reduce contamination.
- 1 m drill chip samples, weighing approximately 2.5 kg were collected throughout the drill program in sequentially uniquely numbered bags.
- The sample size is appropriate to the style of mineralisation

Criteria	JORC Code explanation
	fine/coarse material.
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. - The total length and percentage of the relevant intersections logged.

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

Commentary

- Split samples were recovered from a cyclone and rig-mounted rotary or cone splitter.
- Duplicate samples (field duplicates) collected at drill site 1 in every 50 samples.
- The sample recovery and physical state of the sample was recorded for every sample.
- A separate sample is sieved from the splitter reject material into chip trays and used for geological logging.
- All RC and diamond drilling was logged for geology in the field by qualified geologists. Lithological and mineralogical data was recorded for all drill holes using a coding system developed specifically for the Project. Primary and secondary lithologies are recorded in addition to texture, structure, colour, grain size, alteration type and intensity, estimates of mineral quantities, graphite intensity and sample recovery. The oxidation zone is also recorded.
- Geological logging is qualitative in nature.

RC

- A face sampling hammer was used to reduce contamination
- 1 m drill chip samples, weighing approximately 2.5 kg were collected throughout the drill program in sequentially uniquely numbered bags.
- A number of $4 m$ composite samples were also taken, with $\sim 500 \mathrm{~g}$ spear sample was taken every 1 m (total $\sim 2.5 \mathrm{~kg}$) and placed into uniquely numbered bags.
- The sample size is appropriate to the style of mineralisation.
- Split samples were recovered from a cyclone and rig-mounted rotary or cone splitter.
- Duplicate samples (field duplicates) collected at drill site 1 in every 50 samples
- The sample recovery and physical state of the sample was recorded for every sample.
- A separate sample is sieved from the splitter reject material into chip trays and used for geological logging.

RC Sample preparation

- Samples were analysed at ALS in Perth. Samples were dried at approximately $120^{\circ} \mathrm{C}$ with the sample then crushed using a Boyd crusher which crushes the samples to $-2 m m$. The resulting material is then passed to a series LM5 pulverisers and ground to a nominal 85% passing of $75 \mu \mathrm{~m}$.

Criteria

JORC Code explanation

Commentary

- The milled pulps were weighed out (50 g) and underwent analysis by fire assay (method Au-AA26)

Quality of

assay data and laboratory tests

The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.

- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.
- The verification of significant intersections by either independent or alternative company personnel.
Verifation of sampling and assaying
- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.
- Accuracy and quality of surveys used to locate drill holes (collar and down hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.
- Specification of the grid system used.
- Quality and adequacy of topographic control.
- The assaying and laboratory procedures used are appropriate for the material tested
- Sampling was guided by MBK protocols and QA/QC procedures.
- For RC samples, standards and field duplicates were inserted at an approximate rate of 1 in every 50 samples collected.
- Certified Reference Materials (CRMs) are sourced through Geostats Pty Ltd
- For RC Field duplicates were taken 1 in every 50 samples collected.
- No independent data verification procedures were undertaken other than the QA/QC mentioned above.
- Field data is entered into spreadsheets and copies sent to head office each day and imported into the Metal Bank main externally managed access database.
- One twin hole was drilled, HS22RC002 twinned historical drillhole TRR06.
- Metal Bank drill hole location coordinate information was collected by Metal Bank nominated personal.
- Reconnaissance locations are surveyed using handheld Garmin 64S GPS utilising GDA 94 Zone 50. Positions are accurate to +/- $3 m$ horizontal and +/- 10 m vertical.
- Homestead drill collar locations are surveyed using a using Stonex SA65 GNSS / dual frequency survey antenna with expected accuracies +/20 mm , relative to the Auspos survey control.
- Coordinates are referenced to the Map Grid of Australia (MGA) zone 50 on the Geographic Datum of Australia (GDA94).
- Downhole surveys were completed for all holes where possible using a north seeking gyro.
2002 Drill spacing varied depending on infill requirements. Overall, deposit drill spacing is generally $<25 m \times 20 m$.
- Geological interpretation and mineralisation continuity analysis indicates that data spacing is sufficient for definition of a Mineral Resource.
- Mineralisation is interpreted to be on west-northwest-trending structures steeply dipping to the south, and as such, 2022 RC drilling was orientated 180°.
- Data spacing for reporting of Exploration Results.

Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.

- Whether sample compositing has been applied.
- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type
- If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this

Criteria	JORC Code explanation	Commentary
	should be assessed and reported if material.	
Sample security	- The measures taken to ensure sample security.	- Chain of custody was managed by sub-contractor Integrated Geological Mining Services (IGMS) with sample transport (Lab delivery) conducted by Toll Transportation Services. No issues were reported.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- No audits have been undertaken.

Section 2 Reporting of Exploration Results
(Criteria listed in the preceding section also apply to this section.)

Criteria

Mineral tenement and land tenure status

Exploration done by other parties

JORC Code explanation

- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.
- The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.
- Acknowledgment and appraisal of exploration by other parties. Geology
- Deposit type, geological setting and style of mineralisation.

Drill hole

 Information- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
- easting and northing of the drill hole collar
- elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar

Commentary

- Metal Bank Ltd (MBK) owns 75% interest in the Livingstone Gold Project from Trillbar Resources Pty Ltd. Livingstone (E52/3403) is located northwest of Meekatharra in Western Australia, is an advanced exploration project with an existing JORC 2004 Inferred Au resource of 49,900 ounces and a number of high-grade drilling intersections that indicate excellent potential for additional discoveries.
- The project has been subject to exploration by several companies over the past 30 years. This work has been built upon by successive explorers, culminating most recently in the work done by Talisman Mining Ltd pursuant to the resource estimation at the Boundary prospect. Subsequent exploration drilling (5 RC holes) was undertaken by Kingston Resources in 2020.
- The Livingstone Gold project underlying geology has to date been interpreted as that of the Trillbar Complex which formed member of the Naracoota Formation (Padbury Group). Recent work undertaken by the GSWA has now interpreted the Trillbar Complex to be exotic to the Bryah Sub-basin and be ~40 Ma years older (Olierook, et al., 2018). With the Trillbar Complex essentially being a sliver of oceanic crust wedged between the Yilgarn craton to the south and the Yarlarwheelor Gneiss Complex to the north (Olierook, et al., 2018).
- See Appendix Table 1 to body of announcement for drill hole information
-
- Drilling at Homestead consisted of a total of 1,195m from 10 RC holes

Criteria	JORC Code explanation	Commentary
	- dip and azimuth of the hole down hole length and interception depth hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	- No data aggregation methods have been applied. Sampling was conducted at 1 m intervals. Data from each individual samples are presented in Table. - No metal equivalents are calculated.
Relationship between mineralisation widths and intercept lengths	- These relationships are particularly important in the reporting of Exploration Results. - If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	- Mineralisation is interpreted to be on west-northwest-trending structures steeply dipping to the south, and as such, 2022 RC drilling was orientated 180°. - Only down hole lengths are reported.
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	- See body of announcement.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- All drillhole and assay data from 2022 Homestead drilling is presented within Appendix 1.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	- Refer to Section 3 below
Further work	- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). - Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	- Further drilling may be planned to increase the confidence and size of Homestead Resource and build structural and metallurgical understanding.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	Explanation
Database integrity	- Data was geologically logged electronically into templated Excel spreadsheets and loaded directly into the database; collar and downhole surveys were also loaded electronically. - Laboratory analysis results were also directly loaded electronically. - These electronic files were loaded into an Datashed database that was hosted and managed by an external consultant. - Historical data was compiled from WAMEX reports and cross checked back against original reports. - Data was routinely extracted from Datashed into Access databases for use in mining software packages. - Data extracted from the database were validated visually in Leapfrog and Datamine software. In addition, when loading the data into the software any errors regarding overlaps, missing information and other errors are highlighted - there were no issues with the data provided.
Site visits	- Rhys Davies, the Competent Person for Sections 1 and 2 of Table 1 supervised remotely and made site visit in August 2022. - Michael Job, the Competent Person for Section 3 of Table 1 has not visited site.
Geological interpretation	The Homestead deposit sits within a west-northwest trending, western arm of the Paleoproterozoic Padbury and Bryah Basins, enclosed to the north, west and south by Archaean rocks of the Yilgarn Craton. The local geology of the Homestead deposit consists of poorly outcropping talc-chlorite-carbonate ultramafic rocks/schists and mafic rocks/schists (Narracoota Volcanics), as well as minor phyllites, dolomites and intermediate/felsic rocks covered by a thin veneer of colluvial pisolitic laterite and recent alluvial cover Mineralisation within the oxidised zone is associated with limonite replacement of mainly carbonate minerals and pyrite. The weathering profile is locally depressed over the mineralisation, coincident with the dip of the mineralised lodes. There has been a certain degree of lateritic enrichment/mobilisation of gold, with a small near-surface, near-lode supergene gold blanket developed principally on the hanging-wall of the mineralised lode position. Below the base of oxidation, intercepts of the fresh mineralisation show a composition of quartz-carbonate-chlorite-(pyrite)-(gold), with the suggestion of a moderate to strong quartz-pyrite-carbonate proximal alteration associated with the gold mineralisation, possibly within a (distal) chloritic envelope. The base of complete oxidation is about 30 to 40 m below surface, and the top of fresh rock is about 70 to 80 m below surface. Leapfrog software was used for the interpretation of the mineralised shoots. The 'Economic Compositing' function in Leapfrog was used to create coherent solids at a 0.2 ppm Au cut-off. A minimum mineralised composite length of 2 m was used, with a maximum included waste interval of 1 m . Intrusive modelling was used to create the solids, using a spheroidal interpolant. The solids were snapped to the drill holes, and the solids exported to Datamine for further analysis and estimation. Orientation of the solids was consistent with the deposit geometry described below ('Dimensions').
Dimensions	- The deposit extends over a strike length 650 m and extends to at least 150 m below the surface. The deposit is linear in shape, striking towards the WNW ($\sim 280^{\circ}$), with sub-vertical to steeply northerly dips. - The individual shoots range from 2 m to 15 m thick (averaging ~ 3 to 5 m). There are two major bifurcating shoots, with some minor footwall and hanging wall lodes.
Estimation and modelling techniques	- Estimation of the mineral resource was by Ordinary Kriging using Datamine software. The estimation process was as follows: - Drill hole database and mineralisation/weathering solids and surfaces imported into Datamine. - Wireframe solids and surfaces used to select and code drill hole data. - Drill hole data composited to 1 m downhole intervals within the mineralised shoots, with a minimum allowable composite of 0.5 m at the shoot base.

Griteria	Explanation
	Composited data imported into Supervisor software for statistical and geostatistical analysis. A top-cap of 15 ppm Au was applied to the mineralised shoots. The cap was based on inflections and discontinuities in the histograms and logprobability plots, and their spatial locations. However, to honour the high grades locally, the capping was applied via a spatial restriction technique. Uncapped values were used for block estimates within 5 m of the values above the capped threshold, but beyond 5 m the capped values were used for estimation. Variography was performed on data transformed to normal scores, and the variogram model was back-transformed to original units. The variography was driven by the major bifurcating shoots. The variogram model had a relatively high nugget effect (63% of total sill), with a range of 30 m along strike (towards 100°). The range across dip was small, generally at 10 m . The ellipsoid search parameters were slightly longer than the variogram ranges, with the search ellipse dimensions of $50 \mathrm{~m} \times 25 \mathrm{~m} \times 10 \mathrm{~m}$. A minimum of 8 and maximum of 20 (1 m composite) samples per block were used, with a maximum of 5 samples per drill hole. Estimates were into parent blocks, not sub-blocks. Although the overall dip and dip direction of the mineralised shoots at Homestead is consistent, there are enough changes in geometry to require locally varying search ellipse and variogram directions. The dynamic anisotropy search function in Datamine allows the search ellipse dip and dip direction to be defined separately for each block (the variogram direction was also rotated to align with the search). If a block was not estimated with these search parameters, then the ellipse was expanded by a factor of two, using the same sample numbers. If a block was not estimated on the second pass, then a third pass was used - this was an expanded search of a factor of 4 compared to the first pass, with a minimum of two and maximum of 20 samples. For the block model, 96% of blocks were estimated on the first pass and 4% on the second. No blocks in the mineralised shoots were left unestimated. These search volumes assisted with later resource classification. The block model itself was a non-rotated model in MGA94 grid, with a parent block size of $12.5 \mathrm{mE} \times 10 \mathrm{mN} \times 5 \mathrm{mRL}$, which is about half of the average drill spacing in the well-mineralised areas. Sub-blocking was to a minimum of $1.5 \mathrm{mE} \times 1.25 \mathrm{mN} \times 1.25 \mathrm{mRL}$ for accurate volume representation, and the blocks and sub-blocks were coded by mineralised shoot, weathering and topography (consistent with the drill hole composites). Estimates of Au grades were validated against the composited drill hole data by extensive visual checking in cross-section, plan and on screen in 3D, by global (per shoot) comparisons of input data and model, and by semi-local statistical methods (swath plots). All methods showed satisfactory results.
Moisture	- Tonnages are estimated on a dry basis.
Cut-off parameters	- The cut-off grade of 0.5 ppm Au for the potential open cut portion of the deposit was established from the use of a simple economic model that was used for pit optimisation work by Cube Consulting. See Mining factors and assumptions below. The cut-off grade of 1.5 ppm Au for the potential underground portion of the deposit was established from the use of a simple economic model and similar operations nearby.
Mining factors or assumptions	- The majority of the Homestead deposit would be mined by conventional open pit extraction. The recent pit optimisation work used a gold price of AUD $\$ 3,000 /$ oz., with mining costs varying with depth, but averaging $\$ 3.10 / t$ ore and $\$ 3.20 / t$ for waste (to a depth of 100 m). - Pit slope angles are appropriate for the oxidised, transitional and fresh rock. Overall slope angles inclusive of berms and ramps vary from 38° in oxide up to 45° in fresh rock. - Overall processing recovery was assumed to be 98% in oxide and 90% in transitional and fresh rock. Average processing plus G\&A cost for all material was assumed to be $\$ 30$ per tonne. - The pit optimisation extended to the 380 mRL (90 m below surface), and the 380 mRL has therefore been used as the base for reporting the open cut classified resource.

METAL BANK LIMITED

Griteria	Explanation
	- The underground resource below the 380 mRL consists of a small, coherent zone of mineralisation.
Metallurgical factors or assumptions	- There has been no metallurgical testwork at Homestead, but Metallurgical testwork was undertaken in 2019 on ten samples from RC drilling for the adjacent (and geologically very similar) Kingsley deposit. The Kingsley results have been used as a guide for Homestead. Cyanide extractable gold recovery was determined using the LeachWELL reagent. The calculated recoveries are: Oxidised 94.9\% Transitional 95.6\% - Fresh Rock 89.5\% - 50% of the resource (both tonnes and ounces) is within oxidised/transitional material, with the remaining 50% fresh rock.
Environmental factors or assumptions	- There are no known environmental issues, with a number of operational gold mines within 80 km of Homestead, in similar physical geographical settings.
Bulk density	- Bulk density test work was on 35 RC samples from different oxidation zones, via pycnometer analysis. Values obtained from pycnometer are different from in-situ bulk density (ISBD), as pore space within the rock is not accounted for. ISBD is required to calculate in-situ reportable tonnages from volumes. - There was a strong relationship between SG and vertical depth, but no particular difference between the waste and mineralised zones. - Average bulk density values were assigned by vertical depth. For the oxidised and transitional zones, the pycnometer values were multiplied by a factor of 0.9 to derive an ISBD, but for the fresh rock, the SG was not factored to derive the ISBD. Bulk densities used were: Oxidised $2.43 \mathrm{t} / \mathrm{m}^{3}$ Transitional $2.67 \mathrm{t} / \mathrm{m}^{3}$ Fresh $2.8 \mathrm{t} / \mathrm{m}^{3}$
Classification	- The mineralised shoots are classified as Indicated where the drilling pattern is 20 m along strike and 25 m down dip, and not more than 20 m beyond drilling. The Inferred Mineral Resource has a nominal drill spacing of $40 \mathrm{mE} \times 40 \mathrm{mN}$, is not more than 20 m laterally beyond drilling, using search pass one or two This classification considers the confidence of the geological interpretation and estimation, and the quality of the data and reflects the view of the Competent Person.
Audits or reviews	- No external audits of the mineral resource have conducted, although the independent consultants used for the resource estimate (Cube Consultants) have conducted internal peer review.
Discussion of relative accuracy/ confidence	- This is addressed in the relevant paragraph on Classification above. The Mineral Resource relates to global tonnage and grade estimates. There has been no mining at Homestead, and therefore no reconciliation data is available.

[^0]: ${ }^{1}$ MBK ASX Release 18 January 2022 "Kingsley Deposit Maiden Mineral Resource Estimate and updated Exploration Target"

[^1]: ${ }^{2}$ 070301_HC_TR_BoundaryResourceEstimate_R2004 - Talisman Mining Ltd and KSN ASX Announcement dated 2 December 2020

[^2]: Page | 7

[^3]: ${ }^{3}$ MBK ASX Release 18 January 2022 "Kingsley Deposit Maiden Mineral Resource Estimate and updated Exploration Target"
 ${ }^{4}$ MBK ASX Release 18 October 2022 "Positive Gold Assays from Livingstone North" and MBK ASX Release 24 November 2022 "Shallow High Grade Gold Results at Livingstone North"

[^4]: ${ }^{5} \mathrm{HMX}$ ASX Announcement dated 6 December 2016 and MBK ASX Release dated 13 December 2021 "MBK signs Earn-in and JV Agreement for the Millennium Project
 ${ }^{6}$ MBK ASX Release 18 January 2022 "Kingsley Deposit Maiden Mineral Resource Estimate and updated Exploration Target"

[^5]: ${ }^{7}$ MBK ASX Release 26 October 2021 "Livingstone Acquisition \& Entitlement Offer to raise \$6.34M"- APPENDIX 3

