2 FEBRUARY 2023 Cross Release:MM8

NICKEL SULPHIDES INTERSECTED AT REGIONAL SEXTON PROSPECT

KEY HIGHLIGHTS:

- 1,357m RC drilled, testing high priority regional prospects Sexton, Javelin and RAV8 South.
- Massive/matrix/stringer pyrrhotite-pyrite logged in several Sexton and Javelin holes.
- Holes at Sexton aimed to confirm and extend known mineralisation, based on the historic intercept of 2m @ 1.2% Ni and 0.17% Cu from 98m in RVD0015.
- Of the four holes targeting the Sexton area, three intersected Ni-bearing sulphides at the target horizon, including 6m of massive and matrix sulphides from 149m in 23NRC012 assays pending.
- Down-hole electromagnetic (DHEM) surveys completed on all targets with aim to define, refine and prioritise targets for follow up drilling planned for next quarter DHEM processing underway with results due imminently.
- Drill approvals for greenfield prospects Wadley and Lipple expected shortly, with a detailed targeting review underway in anticipation of maiden drill testing.
- These results validate NickelSearch's greenfield exploration strategy, which aims to grow the current 171kt Ni resource base through systematic exploration and testing of over 30 targets with limited to no exploration identified to date at the Carlingup Project.

NickelSearch Limited (ASX: NIS) (NIS or **Company)** is pleased to advise that a Reverse Circulation (**RC**) drill program has been successfully completed at the Company's Carlingup Nickel Sulphide Project near Ravensthorpe, Western Australia.

Drilling focussed on geochemical and geophysical anomalies at three high priority target areas at Javelin, Sexton and RAV8 South.

NickelSearch's Managing Director, Nicole Duncan, commented:

"We are excited to build upon the known mineralisation at Sexton. We are eagerly awaiting assay results. Visual logging has confirmed mineralisation in three holes at Sexton, with a six-meter interval in 23NRC012 showing similarities to historic hole RVD01015, which achieved 2.2 m @ 1.2 % Ni and 0.17% Cu from 98.1 m (see NIS announcement 16 May 2022).

Further drilling will be dependent upon assay results, but we will definitely be back at Sexton to continue to test along strike. We will continue to target RAV8, which produced 16.1kt of nickel at 3.45% Ni (including 9.6kt of nickel @ 5.83% Ni). We know the geology can hold exceptional high-grade nickel massive sulphides."

PROGRAM OVERVIEW

NickelSearch, advised by Newexco and with Strike Drilling as the drilling contractor, has successfully completed its tenhole RC program, testing targets at Sexton, Javelin and RAV8 South.

Ten holes were completed for 1,357m, with each 1m composite being sent for assay at Intertek. Results are expected in 4-6 weeks.

Selected holes were also lined to enable DHEM surveys. These surveys are complete and data is being analysed.

Figure 1: Drill target locations along Carlingup Range

Figure 2: Plan view of Javelin and Sexton Prospects showing locations of current program collars, relative to the October program

SEXTON

The Sexton prospect is of interest due to a single historic intersection in hole RVD01015, which recorded 2.2m @ 1.2 % Ni and 0.17% Cu from 98.1m (see collar location in Figure 2, and NIS announcement 16 May 2022), as well as anomalism from soil assays and magnetic surveys. Of the four holes targeting the Sexton area, three intersected Ni-bearing (pyrrhotite dominant) sulphides at the target horizon, including 6m of massive and matrix sulphides from 149m in 23NRC012 (assay results pending). The logging of this hole shows it is similar to RVD01015. The results of the DHEM and assays are eagerly awaited to plan drilling to follow the thickening nickel sulphide intervals.

The photos below (Figures 4-6) show these mineralised intercepts. Overall, the strike length of Ni-bearing mineralisation at Sexton now extends to 150m and is interpreted to be open. It appears that the mineralisation plunges shallowly to the east- southeast, which is common along the Carlingup South trend. This is consistent with the relative position of the drill intersection and the soil anomalies identified.

NIS | NickelSearch

Figure 3: Plan view of Sexton collars in relation to recent mapping (A) and Total Magnetic Intensity (TMI) geophysics (B)

The drilling was planned based upon this apparent plunge and the previous hole RVD01015. Hole 23NRC009 intersected fresh massive nickel sulphides at a shallow depth of 39m, indicating that the mineralisation may outcrop further to the west. Hole 23NRC010 likely passed above the plunge, although it also intersected very different geology at the target depth to the other holes; a more layered-looking ultramafic body. Holes 23NRC011 and 23NRC012 both intersected the Ni-bearing mineralisation at the approximate target depth.

Most holes were collared in basalt, with some having some siliciclastic sediment as well. A series of thin layers of komatiite and komatiitic basalt followed with a thin interval, typically only 1m, of disseminated to massive Ni-bearing sulphides at the base of these ultramafics immediately above a thick magnetite banded iron formation (**BIF**) unit.

The main targets were immediately below the BIF, with 0 - 2m of ultramafic before 1 - 6m of massive and matrix nickelbearing sulphides. The mineralisation was generally followed by another chert /BIF unit; meaning the nickel sulphides are sandwiched between two sediments. With the vein and quartz material, this possibly means some remobilisation has squeezed the sulphides into this location.

Further ultramafics are present below this sediment. The "footwall" is variable with a variety of lithologies in the different holes including a detrital sandstone, felsic volcanics and further ultramafics, and further massive pyrite, chert, quartz veining.

NIS | NickelSearch

Figure 4: Visually logged chips 149-157m in 23NRC012 showing massive and matrix sulphides associated with quartz veining *

Figure 5: Visually logged chips from 23NRC011 showing massive pyrrhotite with minor chalcopyrite from 72-74m with some of same mineralisation extending into the next metre *

* Certain information in this announcement contains references to visual results. The Company draws attention to the inherent uncertainty in reporting visual results.

NIS | NickelSearch

Figure 6: Visually logged chips from 23NRC009 showing massive pyrrhotite and pyrite from 39-42m *

JAVELIN

Mineralisation in the Carlingup area appears to form in distinct and relatively narrow channels, presumably eroded into the underlying sediment as the magma flowed over it. The nickel sulphide mineralisation is therefore in the same plane as weakly to moderately conductive sulphidic sediments. The presence of a strong conductor within a broader weakly conductive horizon is what would be predicted by using this model of nickel-sulphide deposit formation.

Five holes were drilled at Javelin to follow up on the DHEM conductors (plates) from the October drilling, and the broader geochemical anomalism in the area. Two holes were planned to intersect a high conductance plate of ~18,000 S, which is consistent with the expected response of a massive sulphide body within a channel, while three holes tested areas of elevated soil geochemistry.

The drilling showed either a number of layers, or one relatively thick layer, of pyrrhotite and pyrite with very little nickel detected. It appears that the high conductance plate was generated by the pyrrhotite.

RAV8 SOUTH

The planned hole (23NRC014) targeted an overlap of Xcite airborne EM and ground moving loop EM (**MLEM**) plates, which were interpreted as an apparent fold hinge that might host nickel sulphides associated with the nearby RAV8 pit. There is also a weak anomalous geochemical signature in the area.

The hole intersected significant ultramafic rock, including some weak sulphide mineralisation at about 145m that may achieve low grade mineralisation. The hole passed into komatiitic basalt at 156m, and massive and matrix pyrite dominated sulphide associated with chert (sediments) was intersected from 181 - 188m. Assay results are pending.

NickelSearch is currently planning a larger drill program for RAV8, to follow up on historical soil sampling done prior to mining.

Figure 7: Location of 23NRC014 relative to geophysical plates and the RAV 8 pit

NEXT STEPS

NickelSearch is currently analysing the DHEM survey results and will update the market when complete. Assays have been submitted to the lab and results are expected to be received in early March.

At Sexton, targets arising from these drilling results, along with the historical ultrafine soil surveys that correlate with TMI targets, remain a high priority.

The Company also eagerly anticipates that approval for drilling will shortly be granted over the greenfield Wadley and Lipple prospects, which are currently undergoing a detailed review in anticipation of drill testing in the next quarter.

LOGGING RESULTS

Table 1: Significant visual logging results from recent drilling

Hole ID	Prospect	From	То	Comments
22NRC005	Javelin	77	82	Semi massive upper interval, pyrrhotite dominant upper and lower interval, pyrite rich core, coarse pyrite dissemination within pyrrhotite
		122	124	Sulphide vein and stringer pyrite - pyrrhotite.
23NRC006	Javelin	93	96	Sulphidic Banded Iron Formation (BIF)/chert with abundant pyrite and fine pyrrhotite
		123	124	Matrix Sulphide (50%) with cumulate komatiite. Pyrrhotite and Pyrite
23NRC007	Javelin	109	110	About 25% sulphides in ultramafic. Pyrite>pyrrhotite. Breccia with thin sediment
23NRC008	Javelin	54	55	Pyritic black shale
23NRC009	Sexton	39	42	Massive (80%) sulphide. Pyrrhotite>pyrite. Within cumulate ultramafics immediately above and below.
23NRC010	Sexton	22	24	Foliated ultramafic with heavily disseminated - matrix sulphides. Pyrrhotite>pyrite
23NRC011	Sexton	44	45	Massive sulphides. Pyrite>pyrrhotite
		45	46	Milky quartz vein hosted massive sulphides. Pyrrhotite>pyrite>chalcopyrite
		46	47	Massive sulphide, pyrrhotite > pyrite > chalcopyrite.
		72	74	Massive pyrrhotite with minor chalcopyrite
		74	75	30% of interval is massive pyrrhotite, overlying a pyritic ultramafic and magnetite rich BIF
23NRC012	Sexton	121	127	Massive sulphides. Pyrrhotite>pyrite>chalcopyrite. BIF Fragments
		139	140	Vein hosted sulphides (35%). Pyrrhotite>pyrite
		149	151	massive sulphide pyrite>pyrrhotite.
		151	157	matrix sulphides with qz veining. Pyrite>pyrrhotite. Structural remobilisation EOH due to water ingress
23NRC013	Javelin	84	85	Massive sulphide (pyrite?) in felsic volcanics, directly below cumulate ultramafics
23NRC014	RAV 8 South	145	156	Serpentinised cumulate ultramafics with minor disseminated pyrrhotite

This announcement has been approved for release by the Board of NickelSearch Limited.

Enquiries: Nicole Duncan Managing Director NickelSearch Limited information@nickelsearch.com

COMPETENT PERSON STATEMENT:

The information contained within this announcement on the historic massive sulphide intersection at Sexton is extracted from the announcement titled "Multiple Exploration Targets Prioritised" released 16 May 2022, which is available to view on www.nickelsearch.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original announcement. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

The information in this announcement that relates to exploration targeting and results is based on, and fairly represents, information compiled and reviewed by Mr Andrew Pearce, who is an employee of NickelSearch, and is a Member of The Australian Institute of Geoscientists. Mr Pearce has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code 2012). Mr Pearce consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Mr Pearce is a holder of securities in the Company.

FORWARD LOOKING STATEMENTS:

This announcement contains certain forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward-looking words such as "may", "will", "except", "intend", "plan", "estimate", "anticipate"," continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management. Indications of, and guidance on future earnings, cash flows, costs, financial position and performance are also forward-looking statements. Forward looking statements, opinions and estimates included in this announcement are based on assumptions and contingencies which are subject to change, without notice, as are statements about market and industry trends, which are based on interpretation of current market conditions. Forward looking statements are provided as a general guide only and should not be relied on as a guarantee of future performance. Forward looking statements may be affected by a range of variables that could cause actual results or trends to differ materially. These variations, if materially adverse, may affect the timing or the feasibility and potential development of NickelSearch's exploration activities.

CAUTIONARY STATEMENT:

Certain information in this announcement may contain references to visual results. The Company draws attention to the inherent uncertainty in reporting visual results.

NIS | NickelSearch

About NickelSearch

NickelSearch Limited (ASX code: NIS) is a dedicated WA nickel sulphide explorer focused on advancing its flagship Carlingup Nickel Project. The asset has an existing resource base of 171kt contained nickel.

Directors & Management

Nicole Duncan Managing Director

David Royle Non-Executive Chairman

Norman Taylor Non-Executive Director

Paul Bennett Non-Executive Director

Donald James Non-Executive Director NickelSearch ACN 110 599 650

Projects Carlingup Nickel Project (100%)

Shares on Issue

104,264,018

Options 13,250,817

ASX Code

APPENDIX 1

Table 2: Carlingup Program Drill collar Details

Collar ID	North	East	RL	Azimuth	Dip	End Depth (m)
Javelin						
22NRC005	6278767.000	245014.000	155.000	358.41	-65.90	160.0
23NRC006	6278722.000	245136.000	155.000	359.41	-64.74	160.0
23NRC007	6278865.000	244750.000	147.000	4.20	-84.67	124.0
23NRC008	6278764.000	245254.000	157.000	0.91	-60.57	58.0
23NRC013	6278766.000	245017.000	155.000	30.75	-65.33	154.0
Sexton						
23NRC009	6278661.000	245957.000	164.000	358.64	-70.14	76.0
23NRC010	6278661.000	246000.000	165.000	353.25	-70.09	136.0
23NRC011	6278641.000	246026.000	159.000	20.35	-84.77	118.0
23NRC012	6278635.000	246069.000	162.000	178.61	-70.11	157.0
RAV 8 South						
23NRC014	6277881.000	249574.000	160.000	340.32	-64.55	214.0

APPENDIX 2 JORC CODE, 2012 EDITION – TABLE 1 REPORT TEMPLATE

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling	• Nature and quality of sampling (eg cut channels, random chips, or specific specialised	RC Drilling with samples composited by cone splitter for each
techniques	industry standard measurement tools appropriate to the minerals under investigation, such	metre and collected in calico bags. Each 1m was visually logged,
	as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not	plus field elemental analysis was completed by handheld XRF and
	be taken as limiting the broad meaning of sampling.	magsus metres.
	• Include reference to measures taken to ensure sample representivity and the appropriate	Sampling procedures adopted by NickelSearch use a 1m
	calibration of any measurement tools or systems used.	composite 3-5 kg cone split sample collected in calico bags for
	• Aspects of the determination of mineralisation that are Material to the Public Report.	dispatch to the sample laboratory. Sample preparation was in 3-5kg

Criteria	JORC Code explanation	Commentary
	• In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	pulverizing mills, followed by sample splitting to a 200g pulp which will then be further split to 30g samples for analysis by Intertek Perth using methods 4A/MSA48 for sample digest followed and FA25/MS for fire assay where applicable.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC rig contracted from Strike Drilling with additional auxiliary booster and compressor for deeper drilling or when water present. Water produced from outside returns and cone splitter were capture in above ground Enviropod for offsite disposal.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	• Recoveries for all sampling methods are recorded by the geologist during the drill program. No recovery issues were identified during the drill program within mineralised intervals. Sample representation is considered to be adequate for the reporting of Exploration Results.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	• Detailed geological logs were recorded by the geologist for the entire length of all holes. The lithological logs are considered to be adequate for the reporting of Exploration Results.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 1 metre representative composite samples are selected for assay that were sampled with a cone splitter attached to the rig. Samples are collected dry where possible, but wet in fibrous material Each calico weighs between 3 and 5kgs Standards, blanks and duplicates are inserted at 20m intervals
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external 	 4 Acid digest is considered the appropriate assay technique as it allows for the full digest of sulphide and silicate nickel. XRF devices are calibrated daily against the manufacturer provided calibration materials. NickelSearch Ltd uses the Niton XL5 Analyzer

APPENDIX

NIS | NickelSearch

Criteria	JORC Code explanation	Commentary
	laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Verification drilling has not been conducted. Duplicate samples were taken at regular intervals and will be checked for consistency when assays become available
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collar locations were surveyed by handheld GPS with downhole surveys every 30m Grid used is GDA 94/MGA Zone 51
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Not applicable for this announcement
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• Drilling was conducted at an azimuth and dip that gives good intercept angles to surface mapping dip and dip direction
Sample security	The measures taken to ensure sample security.	• NickelSearch ensured that sample security was maintained to ensure the integrity of the sample quality
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	Audits and reviews have not been undertaken at this stage.

SECTION 2 REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement	• Type, reference name/number, location and ownership including agreements or material	• The Carlingup Project, located 20km east of Ravensthorpe
and land tenure	issues with third parties such as joint ventures, partnerships, overriding royalties, native title	comprises 8 MLs, 7 ELs covering 108 sq km (All rights -
status	interests, historical sites, wilderness or national park and environmental settings.	ML74/013, M74/085, M74/107, M74/104, M74/082, M74/084,
	• The security of the tenure held at the time of reporting along with any known impediments to	M74/106, E74/685, E74/657, E74/675; nickel only rights
	obtaining a licence to operate in the area.	M74/083, E74/656, E74/602/ E74/683, E74/638).
		• The project tenements are in good standing and no known

APPENDIX

Criteria	JORC Code explanation	Commentary
		impediments exist
		The tenements are 100% owned by NickelSearch
Exploration done	 Acknowledgment and appraisal of exploration by other parties. 	 Several generations of drilling and exploration have been
by other parties		carried out in the project area. These are detailed in the NiS
		Prospectus published in October 2021
Geology	 Deposit type, geological setting and style of mineralisation. 	Nickel Sulphide occurrences identified to date are associated
		with the Bandalup Ultramatic on the northern limb of the
		sulphides, however parrow lenses of massive to semi-massive
		sulphide have been located near the basal contact of the
		ultramafic, but are poorly exposed.
Drill hole	• A summary of all information material to the understanding of the exploration results	Summary tables of drill hole information are included in the
Information	including a tabulation of the following information for all Material drill holes:	announcement.
	\circ easting and northing of the drill hole collar	
	$\circ~$ elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
	 dip and azimuth of the hole 	
	 down hole length and interception depth bala length 	
	 nole length. If the evolution of this information is justified on the basis that the information is not Material. 	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person	
	should clearly explain why this is the case	
Data agaregation	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum 	All massive sulphide intervals have been included.
methods	grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should	
	be stated.	
	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths	
	of low grade results, the procedure used for such aggregation should be stated and some typical	
	examples of such aggregations should be shown in detail.	
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	