

18 December 2020

Exceptional Phase 1 Ore Sorting Results from Korbel Main

Exceptional preliminary bulk and particle ore sorting test work undertaken on geological samples from the 3.3Moz Korbel Main gold deposit, Estelle Gold Project, Alaska.

- Bulk ore sorting alone demonstrated a 25% upgrade of 0.25g/t feed grade with a sorter reject waste grade of 0.06g/t.
- Bulk and Particle ore sorting systems combined created a high-grade stream of feed taken from mined material and upgraded to 6g/t. This high-grade stream would be directed to a conventional CIL or CIP plant with the remaining lower grade material directed to the heap leach for gold extraction.
- The application of ore sorting at Korbel Main has potential to have a significant impact on project economics and increase gold production through:
 - Rejection of barren material ahead of CIL and heap leaching leading to lower processing costs
 - Higher overall site gold recovery through milling and tank leaching (CIL) the most valuable material
 - o Higher grade ore feed to all gold extraction circuits
 - Reduction in ore transport costs
- Additional test work will be carried out on a wider range of samples to further assess the grade distribution, crushing parameters for further economic analysis of ore sorting as part of the PEA
- Established 3.3Moz gold resource at Korbel Blocks A and B from 16 additional holes (one of fifteen known occurrences) (ASX: 5 October 2020)
 - Further upgrade planned from 46 additional holes in 2021 on the Korbel Main deposit

NVA CEO, Mr. Christopher Gerteisen commented:

"The Korbel Main deposit continues to amaze us. It is shaping up to be world-class in terms of the resource endowment, but also in other key technical aspects such as being at surface, its exceptional metallurgical properties, including gold recovery. Further, these results have now confirmed that ore sorting presents a real and future prospect to gain higher operational efficiencies as we progress through our economic assessment work.

Minimising mine dilution and mineral loss is key as we continue through our economic assessment. Now, with ore sorting, we have the potential to add further value as material processing through bulk and particle ore sorting can be diverted into streams of high grade through a CIL circuit and the remaining material diverted to the heap leach, with minimal material lost to waste.

Nova Minerals Ltd is a dynamic Australian explorer and developer of its expanding flagship 3.3Moz Estelle Gold project situated in Alaska Nova Minerals Limited ACN: 006 690 348 ASX: NVA OTC: NVAAF Office: Suite 602, 566 St Kilda Road Melbourne, VIC, 3004 Australia Contact:

P: +61 3 9537 1238E: info@novaminerals.com.auW: www.novaminerals.com.au

Nova is an ideal position to achieve our goal of progressing Korbel Main to production whilst concurrently unlocking the Estelle gold district. By implementing our dual exploration and development strategy, we will seek to maximise our ability to create value for shareholders through both resource growth and project development."

Nova Minerals Limited (**Nova** or **Company**) (**ASX: NVA, OTC: NVAAF, FSE: QM3**) is pleased to provide an update on ore sorting test results at the Company's flagship Estelle Gold Project located in the prolific Tintina Gold Belt. Nova cautions this test work is on only one relatively small volume sample (~10kg) and further test work is planned to provide additional confidence in the ore sorting technique.

Brent Hilscher, one of the world's leading experts in ore sorting technology and gold extraction, stated:

"The Estelle project has excellent gold heterogeneity. There is a substantial portion of the deposit's gold contained in surprisingly high-grade rock. Even better news is that Nova and ABH Engineering have developed for Estelle, methods for bulk sorting by PGNAA and particle sorting by dual energy XRT. By combining bulk and particle sorting technologies we have shown we can take mined material and produce a separate ore stream grading 6g/t and it can be done for a reasonable CAPEX and OPEX."

Ore Sorting Background

Various forms of ore sorting are increasingly used in many commercial mines throughout the world and in operation on large scale (Figure 3), including manganese, iron ore, nickel, phosphate, uranium, coal and gold mines. Australian companies either carrying out test work or using ore sorting in their mines includes: Newcrest, Evolution, Northern Star, St Barbara, KCGM, Saracen, Westgold and Resolute.

Ore sorting is typically the separation of a target mineralogy, ore or element from waste. These technologies can be separated into two categories: particle sorters and bulk sorters. Ore sorting can be:

- Accurate with high recovery
- High tonnage
- mature and proven technology
- Key to removing variability in plant feed

Ore sorting can create additional value in the mining and processing functions, potentially including:

- increase in deposit exploitation and life of mine
- decrease in mining costs
- efficient preconditioning of ore providing reliable ore availability
- decrease in haul costs
- increases in production
- reduced energy costs and water consumption
- reduced tailings requirements

• saleable coarse waste product

Ore sorting aims to reject the baren portion of the mined mass prior to the haulage, crushing and processing stages.

Sensor-based ore particle sorting can be used to significantly upgrade run-of-mine ores prior to feeding to the concentrator. Numerous benefits can be achieved including lower plant capital costs, lower plant operating cost, lower unit mining costs and potential extension to the mine life. Benefits in the plant can include a significant reduction in energy, water and reagent consumption, as well as higher gold production.

Bulk PGNAA is shown in figure 1 and a laser process is shown in the figure 2.

Figure 1: Schematic of bulk ore sorting

Figure 2: Schematic of particle ore sorting

Figure 3: PGNAA Apex Cross Belt Analyser

ABH Engineering Evaluation

In scoping studies, utilizing data obtained from the 2019 R/C drilling, bulk sorting has been shown to upgrade Estelle's 0.25g/t material to 0.31g/t with a reject grade of 0.06g/t. Mass rejection in this scenario was 25%

Initial particle sorting test work showed a potential to create an upgraded material stream of 6g/t using dual energy Xray transmission and samples from Estelle.

Potential Impacts

The rejection of waste allows barren or near barren waste material to be rejected from the system without incurring additional processing costs. At the same time, rejected material can be replaced with higher grade material.

Our proven ability to create high and low grade material streams allow us to maximize recovery for high value material, while maintaining low cost heap extraction for low-medium value material.

Path Forward

Initial particle sorting work is ongoing with completion scheduled for early January 2021. Particle sorting work on a larger representative sample is being planned for Q1 2021 with results expected in early Q2 2021

An advanced stage of bulk sorting test work is beginning, with results expected early Q2 2021

Ore sorting – R/C hole location information

Figure 4 and Table 1

Figure 4: Plan view map showing the locations of the R/C drilling

HOLE-ID	LOCATIONX	LOCATIONY	LOCATIONZ	Az	Dip	LENGTH
OX-RC-01	505209	6874823	987	0	-90	36.58
OX-RC-02	504904	6875711	1121	245	-70	89.92
OX-RC-03	505116	6875655	1092	270	-50	74.69
OX-RC-04	504936	6875626	1102	270	-50	71.64
OX-RC-05	504934	6875625	1102	90	-50	65.54
OX-RC-06	504800	6875681	1126	90	-50	118.88
OX-RC-07	504803	6875682	1126	270	-50	53.34
OX-RC-08	504648	6875700	1135	90	-50	74.68
OX-RC-09	504645	6875700	1135	270	-50	67.06
OX-RC-10	504747	6875775	1144	90	-50	102.11
OX-RC-11	504745	6875776	1145	270	-50	91.44
OX-RC-12	505123	6874854	989	90	-50	102.11
OX-RC-13	505120	6874853	987	270	-50	64.01
OX-RC-14	505282	6874838	977	90	-50	102.11
OX-RC-15	505282	6874838	977	270	-50	57.91
OX-RC-16	505400	6875013	938	270	-50	80.77
OX-RC-17	505242	6875031	955	90	-60	70.10
OX-RC-18	505240	6875032	955	270	-75	86.87
OX-RC-19	504013	6874995	1057	90	-45	25.30
OX-RC-20	503949	6875298	1073	270	-45	50.29
OX-RC-21	503950	6875299	1073	90	-45	50.29
OX-RC-22	504047	6875319	1062	270	-45	27.43
OX-RC-23	504050	6875320	1061	90	-45	76.20
OX-RC-24	504173	6875311	1042	270	-45	76.20
OX-RC-25	504178	6875311	1042	90	-45	68.58
SE11-001	505001	6875350	985	50	-75	462.38
SE12-002	505025	6875647	1102	235	-45	188.06
SE12-004	505404	6875115	931	235	-52	181.97

Table 1: R/C Hole Details (UTM NAD83 Zone 5)

Mineral Resource Estimate

Cut-off	Inferred Mineral Resource		
	Tonnes (t)	Au (g/t)	Ounces (oz)
0.1	411,911,003	0.29	3,829,560
0.15	342,234,581	0.32	3,548,166
0.18	290,589,965	0.35	3,275,001
0.2	263,542,236	0.37	3,110,118
0.3	148,128,223	0.46	2,207,515

To learn more please visit: https://novaminerals.com.au/estelle-gold/.

This announcement has been authorised for release by the Board.

- Ends -

Further information:

Christopher Gerteisen CEO and Executive Director E: <u>info@novaminerals.com.au</u> P: +61 3 9537 1238 Ian Pamensky Company Secretary E: <u>info@novaminerals.com.au</u> P: +61 414 864 746

Competent Person Statements

Mr Dale Schultz P.Geo., Principle of DjS Consulting, who is Nova groups Chief Geologist and COO of Nova Minerals subsidiary Snow Lake Resources Ltd., compiled and evaluated the technical information in this release and is a member of the Association of Professional Engineers and Geoscientists of Saskatchewan (APEGS), which is ROPO, accepted for the purpose of reporting in accordance with ASX listing rules. Mr Schultz has sufficient experience relevant to the style of mineralization and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Schultz consents to the inclusion in the report of the matters based on information in the form and context in which it appears.

Mr Brent Hilscher P.Eng., Vice President of ABH Engineering Inc., who conducted studies and test work on behalf of Nova Minerals subsidiary Snow Lake Resources Ltd., compiled and evaluated the technical information in this release and is a member of the Association of Engineers and Geoscientists of British Columbia (EGBC), which is ROPO, accepted for the purpose of reporting in accordance with ASX listing rules. Mr Hilscher has sufficient experience relevant to sorting technology and gold processing to qualify as a Competent Person as defined in the 2012 edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Hilscher consents to the inclusion in the report of the matters based on information in the form and context in which it appears.

Cautionary Note Regarding Forward-Looking Statements

This news release contains "forward-looking information" within the meaning of applicable securities laws. Generally, any statements that are not historical facts may contain forward-looking information, and forward looking information can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget" "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or indicates that certain actions, events or results "may", "could",

"would", "might" or "will be" taken, "occur" or "be achieved." Forward-looking information is based on certain factors and assumptions management believes to be reasonable at the time such statements are made, including but not limited to, continued exploration activities, Gold and other metal prices, the estimation of initial and sustaining capital requirements, the estimation of labour costs, the estimation of mineral reserves and resources, assumptions with respect to currency fluctuations, the timing and amount of future exploration and development expenditures, receipt of required regulatory approvals, the availability of necessary financing for the Project, permitting and such other assumptions and factors as set out herein.

Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of the Company to be materially different from those expressed or implied by such forward-looking information, including but not limited to: risks related to changes in Gold prices; sources and cost of power and water for the Project; the estimation of initial capital requirements; the lack of historical operations; the estimation of labour costs; general global markets and economic conditions; risks associated with exploration of mineral deposits; the estimation of initial targeted mineral resource tonnage and grade for the Project; risks associated with uninsurable risks arising during the course of exploration; risks associated with currency fluctuations; environmental risks; competition faced in securing experienced personnel; access to adequate infrastructure to support exploration activities; risks associated with changes in the mining regulatory regime governing the Company and the Project; completion of the environmental assessment process; risks related to regulatory and permitting delays; risks related to potential conflicts of interest; the reliance on key personnel; financing, capitalisation and liquidity risks including the risk that the financing necessary to fund continued exploration and development activities at the Project may not be available on satisfactory terms, or at all; the risk of potential dilution through the issuance of additional common shares of the Company; the risk of litigation.

Although the Company has attempted to identify important factors that cause results not to be as anticipated, estimated or intended, there can be no assurance that such forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. Accordingly, readers should not place undue reliance on forward-looking information. Forward looking information is made as of the date of this announcement and the Company does not undertake to update or resvise any forward-looking information this is included herein, except in accordance with applicable securities laws.

Appendix 2. The following tables are provided to ensure compliance with the JORC Code (2012) requirements for the reporting of the exploration results for the Estelle Gold Project – Alaska

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling technique s	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	For recent (2018 and 2019) RC drilling each 1.52 m interval was riffle split to obtain a 4-6 kg sample, which were sent to ALS laboratory in Fairbanks for pulverization to produce a 250 g sub- sample for analysis. Remaining half (DD) cores from historical drill holes (2011 to 2012) were sampled at 3.05 m intervals. Samples were sent to ALS laboratory in Fairbanks for pulverization to produce a 250 g sub-sample for analysis Sampling and sample preparation protocols for recent RC drilling and historical diamond drill core DD followed industry best practices and are appropriate for the mineralisation type being evaluated.
Drilling technique s	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method)	Drill types used included recent RC (NQ size) and historic DD (NQ size).
Drill sample recovery	• Method of recording and assessing core and chip sample recoveries and results assessed.	Recovery data is typically not recorded for RC drilling.

Criteria	JORC Code explanation	Commentary
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No recovery data was available for the historic DD.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	No historical (2011 to 2012) DD logs were available. Photographs of each core box were taken during the sampling process. Sample intervals were recorded on a logging template form. RC chip sample intervals were recorded in the field on a logging template form. 100% of the chip samples were sent to ALS Fairbanks and off-cut chips were submitted to Pacific Rim Geological Consulting for detailed geological logging. These data have been compiled digitally.
Sub- sampling technique s and sample preparatio n	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Each 1.52 m RC interval was riffle split (dry) to obtain a 4-6 kg sample, which was sent to the ALS laboratory for pulverization. Field duplicates (RC) for recent data were collected every 1 in 20 samples at the same time using the same method (riffle split) as the parent sample. Historic DD duplicates were sampled and collected after crushing, by the laboratory, at a rate of 1 in 20. Blank material was inserted 1 in 40 samples for both RC and historic DD. Standard Reference Material (SRM) was inserted 1 in 20 samples. Three different SRMs at three different grades levels were used.
Quality of assay data	• The nature, quality and appropriateness of the assaying and	The historic DD core was composited into 3.05 m intervals, the interval data

Criteria	JORC Code explanation	Commentary
and laboratory tests	 laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers handheld XRF 	was recorded on a logging sheet, and each core box was photographed. The entire half-cut core was placed into sample bag and sealed using zip ties.
	 instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	The RC samples were collected in a 5 gallon bucket and then riffle split by a Gilson Co. splitter twice to bring sample weights down to between 4 to 6 Kg. The split material was then place into sample bags and sealed by zip ties.
Verificatio n of sampling and	• The verification of significant intersections by either independent or alternative company personnel.	The verification of significant intersections has been completed by company personnel and the competent persons.
assaying	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No drill holes within the resource were twinned. For RC drilling each 1.52 m sample was sent to ALS Fairbanks and an off cut of chips were generated form each 1.52 metre and provided to Pacific Rim Geological Consulting for detailed chip logging. RC data was logged digitally into Excel templates and validated. Historic DD sample intervals were logged onto paper and subsequently entered into excel spreadsheets. Photos were taken of each core box. Recent Assay files are received from the laboratory in CSV format and these files were made available to the Deposit Modeler. No historic DD logs or assay data was available.

Criteria	JORC Code explanation	Commentary
		All the available data was made available to the deposit modeler.
		There were no adjustments to assay data.
Location of data points	• Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar coordinates for all RC drill holes were located in the field by the Project Manager using a Garman 650 handheld GPS.
	• Specification of the grid system	Grid system was NAD 83 Zone 5
	useu.	No down hole survey instrument was use on the RC drill holes.
	• Quality and adequacy of topographic control.	All historic DD locations were located in the field by the Project Manager using Garman 650 handheld GPS.
		No down hole survey data was available for historic DD.
Data spacing and	• Data spacing for reporting of Exploration Results.	The drill hole spacing is sufficient to demonstrate geological and grade continuity appropriate for the Mineral
aistributio n	 Whether the data-spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Resource The drill spacing applied to each deposit is considered suitable for the style of mineralisation and mineral resource estimation requirements.
Orientatio n of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if 	Drill holes were drilled predominantly perpendicular to mineralised domains where possible. No orientation based sampling bias has been identified in the data.
	material.	

Criteria	JORC Code explanation	Commentary
Sample security	• The measures taken to ensure sample security.	Nova Minerals personnel managed the sample chain of custody. Both RC and historic DD core samples were securely stored on site prior to being dispatched to the ALS Fairbanks laboratory for assay analysis.
		Dispatch sheets were used to document sample numbers through the delivery process.
		ALS maintains a Webtrieve application to confirm and monitor samples and jobs within the laboratory process.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	External review confirms sampling protocols are within industry best practices for RC drilling and for re- sampling of historic DD.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Estelle project is comprised of Three hundred and Sixty eight (368) State of Alaska mining claims consisting of 220km2 for the entire claim group. The mining claims are wholly owned by AKCM (AUST) Pty Ltd. (an incorporated Joint venture (JV Company between Nova Minerals Ltd and AK Minerals Pty Ltd) via 100% ownership of Alaskan incorporate company AK Custom Mining LLC. AKCM (AUST) Pty Ltd is owned 85% by Nova Minerals Ltd, 15% by AK
		holds a 2% NSR (ASX Announcement: 20 November 2017)
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Nova owns 85% of the project through the joint venture agreement.
		There are no native title interests in or over any of the claims and they are not located within any environmentally

		sensitive areas including National Parks, Conservation Reserves or Wilderness areas. The Company is not aware of any other impediments that would prevent an exploration or mining activity.
Exploratio n done by other parties	• Acknowledgment and appraisal of exploration by other parties.	The Estelle prospect has undergone both surface and sub-surface exploration intermittently since the 1970's. The latest exploration was conducted between 2011 and 2014 which was previously reported by Nova Minerals Limited (formally Quantum Resources).
Geology	 Deposit type, geological setting and style of mineralisation. 	The deposit is classified as a Reduced Intrusion-Related Gold Deposit (RIRG) type. RIRG deposits typically occur associated with moderately reduced intrusions in reduced siliciclastic Sequences. Key characteristics of these deposits include low sulfide content with associated with reduced mineral and metal assemblages of Au>Ag, Bi, As, W, and Mo. The mineralisation occurs in multiphase granitic stocks and plutons. Gold is hosted in sheeted veins, which are coeval with their causative intrusions. Although these deposits do not have a significant hydrothermal alteration footprint, there are often peripheral mineralisation occurrences and proximal thermal alteration, which have a predictable distribution pattern, including secondary aluminosilicates, biotite, and tourmaline, skarns and polymetallic veins.
Drill hole Informatio n	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Drilling information used used for the estimation of mineral resources included the following: Location data including Easting,
	 easting and northing of the drill 	Northing and RL of drill hole collars

	hole collar	recorded in NAD 83 Zone 5.
	 elevation of RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Drill Hole Azimuth is the 360° bearing of the hole orientation.
		Drill Hole Dip is the inclination of the drill hole from horizontal.
		Down Hole Length is the distance down the inclination of the hole and is measured as the distance from the collar to the end of hole.
		Intercept Depth is the distance from the start of the hole down the inclination of the hole to the depth of the zone of interest.
		The listing of the entire drill hole database used to estimate the mineral resource was not considered relevant for this release.
Data aggregatio n methods	• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (or outting of high grades)	Reported intercepts quoted in the report are length weighted. No top cuts were applied.
	 and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade 	Lower cut-off grade applied was 0.4 g/t. Maximum consecutive 4m of internal dilution within a reported interval was used. Minimum intercept length of 3m down hole.
	aggregation should be stated and some typical examples of such aggregations should be shown in detail. • The assumptions used for any reporting of metal equivalent values should be clearly stated.	Accuracy of the survey measurements is considered to meet acceptable industry standards. Metal equivalent values are not used in reporting.
Relationsh	These relationships are	Reporting of mineralisation width and
ip between mineralisa tion	particularly important in the reporting of Exploration Results.	intercepts are deemed acceptable by the Competent Persons. Zones of mineralisation are based on interpreted
widths and	• If the geometry of the	geology recorded in drilling logs.
intercept	mineralisation with respect to the drill	
lengths	hole angle is known, its nature should be reported.	Drill holes were orientated to intersect mineralisation at a perpendicular angle.

	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate figures are provided in the ASX release and depict the key results from the Resource Study.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	As above
Other substantiv e exploratio n data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Geological consultants completed geological mapping within the prospect area in the past. Rock chip and channel samples collected during reconnaissance are reported and tabularised in full and locations plotted on generated maps in this report. Major geological observations have been reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Nova is in the process of planning future exploration and drilling activities. Additional areas require have follow-up work in future drill program.