ASX ANNOUNCEMENT ASX: NVA, OTC: NVAAF, FSE: QM3

9 September 2021

Gold Discovery Confirmed at RPM

Significant intercepts at RPM prospect validates Nova's strategy to unlock the Greater Estelle Gold District

- > Maiden drill program at RPM returned impressive results including:
 - RPM-002
- 128m @ 1.0 g/t Au
 42m @ 1.5 g/t Au
 12m @ 2.0 g/t Au
 6m @ 2.7 g/t Au
 3m @ 3.0 g/t Au
 3m @ 4.1 g/t Au

(*RPM-002 returned an overall average grade of* **0.6 g/t Au over 274m** from surface within the *RPM North mineralized zone*)

RPM-001

37m @ 1.0 g/t Au
6m @ 4.2 g/t Au
3m @ 7.0 g/t Au

(*RPM-001 returned an overall average grade of* **0.3** *g/t* **Au over 326m** from surface within the RPM North mineralized zone)

- > 6 holes drilled to date, with results from a further 4 holes to follow shortly.
- Historical (2012) diamond drill hole SE12-008 re-sampled returned results of (ASX:17 September 2019):
 - 177m @ 0.8g/t
 - o incl.120m @ 1.0g/t
 - \circ and 50m @ 1.8g/t at RPM
- High-grade reconnaissance rock chip samples define an expanded footprint of high priority North and South zone targets within the RPM Prospect (ASX: 22 October 2020)
 - Rock samples included high-grade gold results: 291 g/t, 103 g/t, 13.1 g/t, 9.3 g/t, 9.0 g/t, 8.8 g/t and 5 g/t
- RPM North zone drilling completed with the goal of delineating a Maiden Resource by late 2021 and advancing the prospect through the development pipeline
- Additional diamond drill rig expected on site in coming weeks to ramp up Korbel infill drilling to expand and prove-up resource to Indicated status with Resource update due in Q4.

Nova Minerals Ltd is a dynamic Australian explorer and developer of its expanding flagship 4.7Moz Estelle Gold project situated in Alaska Nova Minerals Limited ACN: 006 690 348 ASX: NVA OTC: NVAAF Office: Suite 602, 566 St Kilda Road Melbourne, VIC, 3004 Australia Contact:

P: +61 3 9537 1238
E: info@novaminerals.com.au
W: www.novaminerals.com.au

- > All rigs now moved to Korbel Main to ramp up infill and extensional drilling for resource expansion and upgrade to Indicated status:
 - Aggressive Infill and Extension drilling is ongoing at Korbel Main, currently focused on the higher-grade SE zone with the goal of substantially increasing the 4.7Moz Resource (ASX: 7 April 2021) and upgrading the resource in size and confidence to expedite Project Feasibility Studies.
- Nova's Geological reconnaissance crew have completed field programs and have unlocked further targets within the Estelle Gold District. News to follow as results and findings become available
- > Assay results pending for over 10,000m of drilling from both Korbel Main and RPM
- > Snow Lake Resources update due shortly (Nova's majority owned lithium company)

NVA CEO, Mr. Christopher Gerteisen commented: "This marks a major milestone for Nova Minerals. RPM is now confirmed as the next discovery within the Estelle Gold Project. Unlocking the district is no longer merely a plan- we HAVE unlocked it. This news adds serious depth to the Estelle Gold Project, which has an already world-class resource development project at Korbel, and now has a second at RPM, being advanced towards production. The impressive gold intersections we saw from historical hole SE12-008 have now been confirmed in terms of continuity and grade in these new drilling intersections in holes RPM-001 and 002. The gravity of this is huge for the company as well as the greater resource sector as positively demonstrates we have another gold deposit that will add significant ounces to the global resource inventory at the Estelle Gold Project. RPM is ideally situated on a ridge top, which points to a potentially ideal cost effective future mining scenario.

It is important to remember that Korbel and RPM are only 2 of 15 known prospects with the wider Estelle Gold Project claims. In addition to these, there are numerous unnamed colour anomalies across our 324km2 claim block. The reconnaissance exploration teams have now completed their 2021 field programs and the early indications are very encouraging. Assay results from a number of these new prospects will be announced in the coming weeks as we continue to unlock the district.

The drill program at Korbel will continue at full pace into the foreseeable future, and we look forward to bringing shareholders results as they become available. In time, we expect to define multiple new shallow gold resources that will further support our goal of aggressively growing the resource inventory as we continue to move towards gold production at the Estelle Gold Project. Remember, we are on the fast-track towards production, that is our goal. We currently have 4.7Moz at the Korbel Main deposit, which represents just the beginning of our Estelle journey with the global resource base set to increase significantly in Q4 this year."

Nova Minerals Limited (**ASX: NVA, OTC: NVAAF, FSE: QM3**) announces that a Large Scale Gold Discovery is confirmed at RPM, within the Company's flagship Estelle Gold Project located in the prolific Tintina Gold Belt.

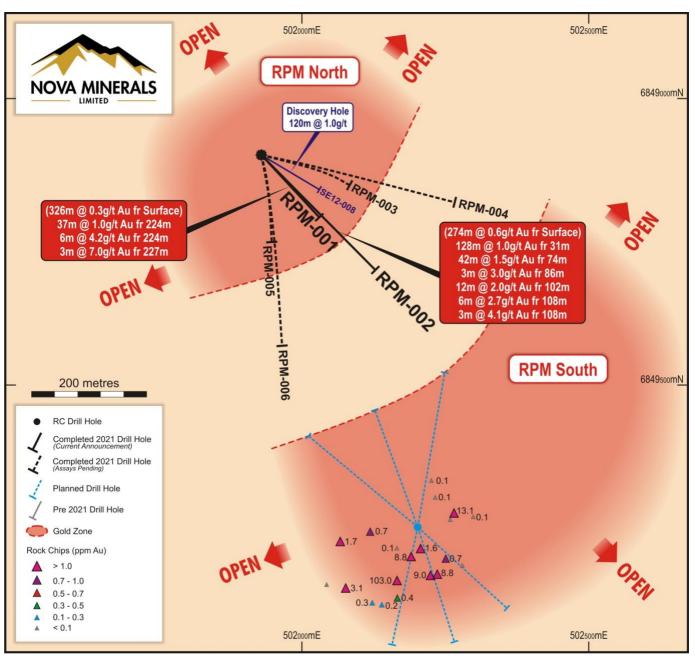


Figure 1. Plan View

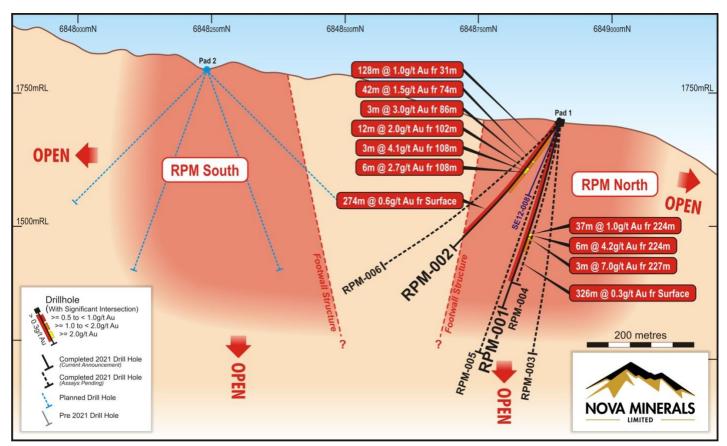


Figure 2. Cross section of RPM-002, RPM-001 and SE12-008

Crushing Facility

The lab is equipped to process up to 7,500 samples per month taking samples from ~10kg to 250kg (Figures 3 and 4). This is expected to reduce costs significantly and equally as important improve assay turnaround times. As the drill season is now in full swing with the drilling programs ramping up accordingly, the lab will be able to continue to concentrate on fast tracking samples as they come through the core logging facility.

Figure 3. Current Sample dispatch (2 holes in figure 4)

Figure 4. Previous Sample dispatch

 Table 1a. Details of 2021 Program Holes Drilled to Date – Korbel

Hole_ID	UTM_E	UTM_N	ELEV_M	AZI	DIP	EOH_M	Assay Status	Notes
KBDH-065	505650	6874836	911	0	-45	227	Received	FW Sterilization
KBDH-066	505111	6875093	959	50	-45	422	Received	ASX:8 June 2021
KBDH-067	505649	6874835	909	0	-70	243	Received	FW Sterilization
KBDH-068	505470	6874810	947	230	-45	251	Received	ASX:8 June 2021
KBDH-069	505109	6875091	959	50	-70	479	Received	Table 2
KBDH-070	505471	6874811	945	230	-70	374	Received	Table 2
KBDH-071	505115	6875097	957	230	-70	356	Received	Table 2
KBDH-072	505469	6874810	946	50	-70	310	Received	ASX:19 July 2021
KBDH-073	505243	6875141	939	50	-45	276	Received	ASX:03 Sept 2021
KBDH-074	505471	6874812	947	50	-45	307	Pending	
KBDH-075	505368	6874862	950	50	-45	301	Received	ASX:01 Sept 2021
KBDH-076	505241	6875139	939	50	-70	350	Received	ASX:03 Sept 2021
KBDH-077	505277	6875042	936	50	-45	283	Received	ASX:01 Sept 2021
KBDH-078	505368	6874861	949	50	-70	247	Pending	
KBDH-079	504555	6875747	1125	70	-45	480	Pending	
KBDH-080	505276	6875041	936	50	-70	335	Received	ASX:19 July 2021
KBDH-081	505170	6875082	952	50	-70	369	Pending	
KBDH-082	505452	6875055	907	230	-45	326	Received	ASX:03 Sept 2021
KBDH-083	504554	6875747	1127	70	-70	459	Pending	
KBDH-084	505453	6875055	907	230	-70	387	Pending	
KBDH-085	504554	6875748	1127	50	-45	393	Pending	
KBDH-086	505448	6874918	929	50	-45	308	Pending	
KBDH-087	505535	6874629	989	230	-45	300	Pending	
KBDH-088	504553	6875747	1128	50	-70	514	Pending	
KBDH-089	505536	6874632	990	230	-70	300	Pending	
KBDH-090	505537	6874631	989	50	-45	329	Pending	

KBDH-091	504555	6875747	1128	30	-45	501	Pending	
KBDH-092	505535	6874628	989	50	-70	401	Pending	
KBDH-093	504554	6875746	1127	30	-70	517	Pending	
KBDH-094	505503	6874693	970	50	-45	291	Pending	
KBDH-095	505503	6874693	970	50	-70	426	Pending	
KBDH-096	505503	6874693	970	230	-45	315	Pending	
KBDH-097	505707	6874161	1090	30	-45	559	Pending	
KBDH-098	505503	6874693	970	230	-70	307	Pending	
KBDH-099	504375	6876022	1191	70	-45	349	Pending	
KBDH-100	504375	6876022	1191	70	-70	420	Pending	
KBDH-101	505707	6874161	1090	30	-70	536	Pending	
KBDH-102	504375	6876022	1191	50	-45	438	Pending	
KBDH-103	504375	6876022	1191	50	-70	411	Pending	
KBDH-104	505776	6874491	1028	50	-45	297	Pending	
KBDH-105	504375	6876022	1191	30	-45	430	Pending	
KBDH-106	505776	6874491	1028	50	-70	276	Pending	

Table 1b. Details of 2021 Program Holes Drilled to Date – RPM

Hole_ID	UTM_E	UTM_N	ELEV_M	AZI	DIP	EOH_M	Assay Status	Notes
RPM-001	501929	6848902	1729	135	-70	379	Received	ASX:9 Sep 2021
RPM-002	501929	6848902	1729	135	-45	369	Received	ASX:9 Sep 2021
RPM-003	501929	6848902	1729	100	-70	465	Pending	RPM-1 zone
RPM-004	501929	6848902	1729	100	-45	463	Pending	RPM-1 zone
RPM-005	501929	6848902	1729	170	-70	459	Pending	RPM-1 zone
RPM-006	501929	6848902	1729	170	-45	431	Pending	RPM-1 zone
SE12-008	501929	6848902	1731	181	140	-50	Received	Historical

Note all holes are drilled from the same pad locations UTM = NAD83 Zone 5

Competent Person Statements

Mr Dale Schultz P.Geo., Principle of DjS Consulting, who is Nova groups Chief Geologist and COO of Nova Minerals subsidiary Snow Lake Resources Ltd., compiled and evaluated the technical information in this release and is a member of the Association of Professional Engineers and Geoscientists of Saskatchewan (APEGS), which is ROPO, accepted for the purpose of reporting in accordance with ASX listing rules. Mr Schultz has sufficient experience relevant to the style of mineralization and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Schultz consents to the inclusion in the report of the matters based on information in the form and context

in which it appears.

Cautionary Note Regarding Forward-Looking Statements

This news release contains "forward-looking information" within the meaning of applicable securities laws. Generally, any statements that are not historical facts may contain forward-looking information, and forward looking information can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget" "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or indicates that certain actions, events or results "may", "could", "would", "might" or "will be" taken, "occur" or "be achieved." Forward-looking information is based on certain factors and assumptions management believes to be reasonable at the time such statements are made, including but not limited to, continued exploration activities, Gold and other metal prices, the estimation of initial and sustaining capital requirements, the estimation of labour costs, the estimation of mineral reserves and resources, assumptions with respect to currency fluctuations, the timing and amount of future exploration and development expenditures, receipt of required regulatory approvals, the availability of necessary financing for the Project, permitting and such other assumptions and factors as set out herein.

Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of the Company to be materially different from those expressed or implied by such forward-looking information, including but not limited to: risks related to changes in Gold prices; sources and cost of power and water for the Project; the estimation of initial capital requirements; the lack of historical operations; the estimation of labour costs; general global markets and economic conditions; risks associated with exploration of mineral deposits; the estimation of initial targeted mineral resource tonnage and grade for the Project; risks associated with uninsurable risks arising during the course of exploration; risks associated with currency fluctuations; environmental risks; competition faced in securing experienced personnel; access to adequate infrastructure to support exploration activities; risks associated with changes in the mining regulatory regime governing the Company and the Project: completion of the environmental assessment process: risks related to regulatory and permitting delays; risks related to potential conflicts of interest; the reliance on key personnel; financing, capitalisation and liquidity risks including the risk that the financing necessary to fund continued exploration and development activities at the Project may not be available on satisfactory terms, or at all; the risk of potential dilution through the issuance of additional common shares of the Company; the risk of litigation.

Although the Company has attempted to identify important factors that cause results not to be as anticipated, estimated or intended, there can be no assurance that such forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. Accordingly, readers should not place undue reliance on forward-looking information. Forward looking information is made as of the date of this announcement and the Company does not undertake to update or revise any forward-looking information this is included herein, except in accordance with applicable securities laws.

This announcement has been authorised for release by the Executive Directors.

- Ends -

Further information:

Christopher Gerteisen CEO and Executive Director E: <u>info@novaminerals.com.au</u> P: +61 3 9537 1238

Ian Pamensky Company Secretary E: <u>info@novaminerals.com.au</u> P: +61 414 864 746

Appendix 2. The following tables are provided to ensure compliance with the JORC Code (2012) requirements for the reporting of the exploration results for the Estelle Gold Project – Alaska

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse 	• Core is systematically logged from collar to EOH characterizing rock type, mineralization and alteration. Oriented core measurements are taken where appropriate. Geotechnical measurements such as recoveries and RQDs are taken at 10-foot (3.05 m) intervals. Samples are taken each 10 feet (3.05m) unless there is a change in lithology. In these cases samples are broken to lithologic boundaries. Samples are then half cut with one of the half cuts being sent to the ALS lab in Fairbanks Alaska for processing.

	circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse Au that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	• HQ diamond core triple tube, down hole surveys every 150 feet (~50m), using a Reflex ACT-III tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material 	 Core is processed in the Fairbanks ALS laboratory Core processing room. Recoveries were recorded for all holes, into a logging database to 3cm on a laptop computer by a qualified geologist using the drillers recorded depth against the length of core recovered. No significant core loss was observed. Triple tube HQ to maximise core recovery. No known relationship between sample recovery and grade. As no samples have been taken as yet, no assay results are reported, visual results only.

Logger	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	Core logging is carried out by project partner qualified geologists using a project specific logging procedure. Data recorded includes, but is not limited to, lithology, structure, RQD, recovery, alteration, sulphide mineralogy and presence of visible gold. This is supervised by senior geologists familiar with the mineralisation style and nature. Inspection of the drill core by Nova Minerals Chief Geologist is monitored remotely using photographs and logs. Rock codes have been set up specifically for the project. Logging is to a sufficient level of detail to support appropriate Mineral Resource estimation and mining studies. • Drill logging is both qualitative by geological features and quantitative by geotechnical parameters in nature. Photographs are taken of all cores trays, (wet) of whole core prior to cutting.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is 	• Samples are taken each 10 feet (3.05m) unless there is a change in lithology. In these cases samples are broken to lithologic boundaries. Samples are then half cut with one of the half cuts being sent to the ALS lab in Fairbanks Alaska for processing. Three different types of SRM are inserted each 20 samples. Duplicates of the reject are taken each 20 samples. One blank is inserted each 40 samples. Data is plotted and evaluated to see if the samples plot within accepted tolerance. If any "out of control" samples are note, the laboratory is notified.

	representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	• Samples are tested for gold using ALS Fire Assay Au-ICP21 technique. This technique has a lower detection limit of 0.001 g/t with an upper detection limit of 10 g/t. If samples have grades in excess of 10 g/t then Au-AA25 is used to determine the over detect limit. Au-AA25 has a detection limit of 0.01 g/t and an upper limit of 100 g/t. Three different types of SRM are inserted each 20 samples. Duplicates of the reject are taken each 20 samples. One blank is inserted each 40 samples. Data is plotted and evaluated to see if the samples plot within accepted tolerance. If any "out of control" samples are note, the laboratory is notified.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entryprocedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	• Assay data intercepts are compiled and calculated by the CP and then verified by corporate management prior to the release to the public.

Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	• All maps and locations are in UTM grid (NAD83 Z5N) and have been measured by hand-held GPS with a lateral accuracy of ±4 metres and a vertical accuracy of ±10 metres.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	• Drill holes have been spaced in a radial pattern such that all dimensions of the resource model is tested. Future geo-stats will be run on the data to determine if addition infill drilling will be required to confirm continuity.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• The relationship between the drilling orientation and the orientation of key mineralised structures has not been confirmed.
Sample security	The measures taken to ensure sample security	• A secure chain of custody protocol has been established with the site geologist locking samples in secure shipping container at site until loaded on to aircraft and shipped to the secure restricted access room at Fairbanks ALS Laboratory for core processing by Nova Minerals staff geologists.

Audits or Reviews• The results of any audits or reviews of sampling techniques and data.	• No review has been undertaken at this time.
--	---

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Estelle project is comprised of 324km2 State of Alaska mining claims The mining claims are wholly owned by AKCM (AUST) Pty Ltd. (an incorporated Joint venture (JV Company between Nova Minerals Ltd and AK Minerals Pty Ltd) via 100% ownership of Alaskan incorporate company AK Custom Mining LLC. AKCM (AUST) Pty Ltd is owned 85% by Nova Minerals Ltd, 15% by AK Minerals Pty Ltd. AK Minerals Pty Ltd holds a 2% NSR (ASX Announcement: 20 November 2017) Nova owns 85% of the project through the joint venture agreement. The Company is not aware of any other impediments that would prevent an exploration or mining activity.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Geophysical, Soil testing, and drilling was completed by previous operators in the past. Nova Minerals has no access to this data.
Geology	 Deposit type, geological setting and style of mineralisation. 	Nova Minerals is primarily exploring for Intrusion Related Gold System

		(IRGS) type deposit within the Estelle Project
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Not Applicable
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	• Raw assay information was reported without any aggregation.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Not Applicable

Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• Plan view Map in Figure 1 shows the location of the RPM prospect with respect to other prospects within the Estelle Project.
Balanced Reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• Does not apply. All Nova results have been disclosed to the ASX via news releases.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No other substantive exploration data has been collected
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Diamond drilling is ongoing. Project planned is for over 50,000 metres in 2021 across Korbel Valley and RPM.

 Table 2. 2021 Program Drilling to Date List of Results (Intercepts >0.4g/t Au) – RPM

HOLE_ID	FROM_m	TO_m	Au_ppm
RPM-001	10.7	13.7	0.46
RPM-001	38.1	41.1	0.66
RPM-001	41.1	44.2	0.62
RPM-001	68.6	71.6	0.52

RPM-001	224.0	227.1	1.43
RPM-001	227.1	230.1	6.98
RPM-001	230.1	233.2	0.60
RPM-001	248.4	251.5	0.61
RPM-001	251.5	254.5	0.90
RPM-001	254.5	257.6	0.55
RPM-001	278.9	281.9	0.69
RPM-001	294.1	297.2	1.86
RPM-002	25.3	28.3	0.67
RPM-002	28.3	31.4	0.60
RPM-002	34.4	37.5	0.62
RPM-002	37.5	40.5	1.63
RPM-002	40.5	43.6	0.43
RPM-002	46.6	49.7	0.43
RPM-002	49.7	52.7	1.32
RPM-002	59.3	60.9	0.74
RPM-002	60.9	62.5	2.20
RPM-002	71.0	74.1	0.49
RPM-002	74.1	77.1	0.81
RPM-002	77.1	80.5	1.14
RPM-002	80.5	81.6	0.93
RPM-002	81.6	83.2	1.39
RPM-002	83.2	86.3	1.40
RPM-002	86.3	89.3	2.98
RPM-002	89.3	92.4	1.29
RPM-002	92.4	95.4	1.13
RPM-002	95.4	98.5	1.32
RPM-002	98.5	101.5	0.64
RPM-002	101.5	104.5	1.97
RPM-002	104.5	107.6	0.77
RPM-002	107.6	110.6	4.10
RPM-002	110.6	113.7	1.24
RPM-002	113.7	115.7	0.71
RPM-002	115.7	118.6	0.66
RPM-002	118.6	122.2	0.43
RPM-002	124.5	125.9	0.56
RPM-002	132.0	135.0	1.10
RPM-002	135.0	138.1	2.89
RPM-002	138.1	141.1	0.98
RPM-002	144.6	147.2	0.63
RPM-002	156.4	159.4	2.12
RPM-002	177.7	180.3	0.49
RPM-002	202.1	205.1	0.44

SE12-008	26.0	28.3	0.53
SE12-008	44.5	47.1	0.82
SE12-008	49.6	52.1	0.48
SE12-008	52.1	54.8	0.46
SE12-008	57.3	59.8	1.93
SE12-008	59.8	62.2	0.61
SE12-008	64.5	67.0	0.42
SE12-008	67.0	69.4	0.93
SE12-008	69.4	71.6	0.43
SE12-008	71.6	73.5	0.58
SE12-008	75.2	79.6	1.06
SE12-008	79.6	81.8	0.79
SE12-008	81.8	83.9	1.43
SE12-008	83.9	86.9	2.19
SE12-008	86.9	89.6	2.09
SE12-008	89.6	91.9	1.07
SE12-008	91.9	94.9	1.97
SE12-008	94.9	97.4	2.09
SE12-008	97.4	100.2	9.63
SE12-008	100.2	102.7	1.27
SE12-008	102.7	105.4	0.96
SE12-008	105.4	108.2	1.34
SE12-008	111.2	112.0	0.86
SE12-008	112.0	116.7	0.61
SE12-008	116.7	119.7	1.64
SE12-008	119.7	122.3	0.43
SE12-008	122.3	125.4	2.15
SE12-008	133.6	136.3	0.60
SE12-008	136.3	139.2	0.42
SE12-008	141.9	144.4	0.76
SE12-008	144.4	146.4	1.09
SE12-008	152.9	158.3	0.43
SE12-008	164.3	167.0	0.60
SE12-008	167.0	170.0	0.61
SE12-008	170.0	173.3	0.57
SE12-008	173.3	175.4	0.51
SE12-008	178.1	180.8	0.56
SE12-008	26.0	28.3	0.53
SE12-008	44.5	47.1	0.82
SE12-008	49.6	52.1	0.48
SE12-008	52.1	54.8	0.46
SE12-008	57.3	59.8	1.93
SE12-008	59.8	62.2	0.61

SE12-008	64.5	67.0	0.42
SE12-008	67.0	69.4	0.93
SE12-008	69.4	71.6	0.43
SE12-008	71.6	73.5	0.58
SE12-008	75.2	79.6	1.06
SE12-008	79.6	81.8	0.79
SE12-008	81.8	83.9	1.43
SE12-008	83.9	86.9	2.19
SE12-008	86.9	89.6	2.09
SE12-008	89.6	91.9	1.07
SE12-008	91.9	94.9	1.97
SE12-008	94.9	97.4	2.09
SE12-008	97.4	100.2	9.63
SE12-008	100.2	102.7	1.27
SE12-008	102.7	105.4	0.96
SE12-008	105.4	108.2	1.34
SE12-008	111.2	112.0	0.86
SE12-008	112.0	116.7	0.61
SE12-008	116.7	119.7	1.64
SE12-008	119.7	122.3	0.43
SE12-008	122.3	125.4	2.15
SE12-008	133.6	136.3	0.60
SE12-008	136.3	139.2	0.42
SE12-008	141.9	144.4	0.76
SE12-008	144.4	146.4	1.09
SE12-008	152.9	158.3	0.43
SE12-008	164.3	167.0	0.60
SE12-008	167.0	170.0	0.61
SE12-008	170.0	173.3	0.57
SE12-008	173.3	175.4	0.51
SE12-008	178.1	180.8	0.56