

NEW GOLD DISCOVERY AT GOLDEN GATE SOUTH

SIGNIFICANT STRIKE LENGTH ENDING IN MINERALISATION

BROAD, NEAR-SURFACE GOLD MINERALISATION EXTENDS GOLDEN GATE SYSTEM BEYOND 1.5KM STRIKE-LENGTH.


HIGHLIGHTS

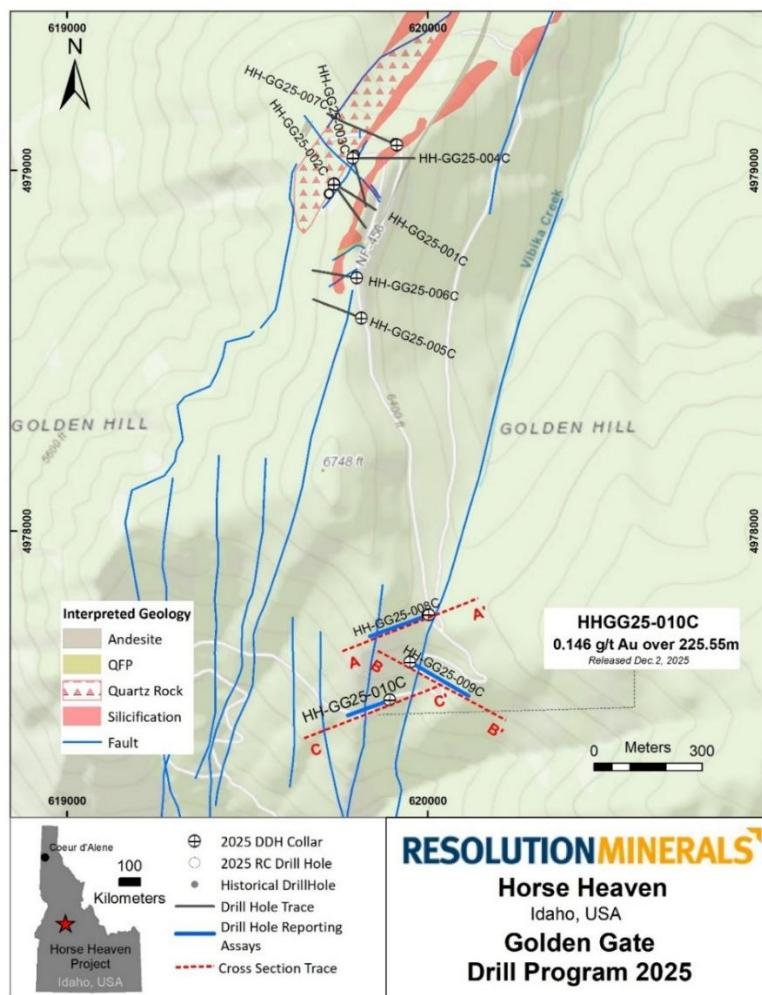
- ▼ New gold discovery at Golden Gate South confirms a second mineralised shear zone, expanding the Golden Gate system beyond the established Golden Gate North deposit.
- ▼ Discovery hole HH-GG25-009C, intersected a downhole interval of **172.2m @ 0.463 g/t Au**, including **27.6m @ 0.89 g/t Au with a high of 3.3 g/t over 1.5m**, and ended in mineralisation.
- ▼ Diamond hole HH-GG25-010C intersected a top to bottom downhole interval of **225.5m @ 0.14 g/t Au**, from surface to end of hole, confirming broad, near-surface mineralisation.
- ▼ **All reported holes ended in mineralisation**, highlighting potential for extensions at depth.
- ▼ **Near-surface tungsten mineralisation intersected** in multiple shallow veins, reinforcing multi-commodity upside.
- ▼ The first significant near surface discovery at Golden Gate North included drill hole intervals of **189.2m @ 1.3 g/t gold** (Hole HH-GG25-001C) and **253m @ 1.5 g/t gold** (Hole HH-GG25-003C), also with mineralisation **open at depth**.
- ▼ **Golden Gate North and Golden Gate South mineralisation now extends over 1.5km strike length.**
- ▼ The 100%-owned Horse Heaven Gold-Antimony-Tungsten-Silver Project is located in Idaho, USA, a tier-one mining jurisdiction, immediately adjacent to Perpetua Resources Corp's Stibnite Gold Project.

RML's CEO of US Operations, Craig Lindsay, commented on the discovery:

"The discovery at Golden Gate South materially expands the Golden Gate gold system and confirms the presence of multiple mineralised shear zones over a substantial strike length. With mineralisation open in all directions and drilling returning broad, near-surface intercepts, Golden Gate is rapidly emerging as a highly significant gold discovery. The interval lengths and grades on holes assayed to date, and the fact that mineralisation continues over such a long strike length, make us very excited to continue drilling here and target establishment of a maiden JORC compliant mineral resource."

Resolution Minerals Ltd (ASX: RML; OTCQB: RLMLF) ("Resolution" or "Company") is pleased to announce that two of the three holes drilled at the southern end of the Golden Gate Fault Zone on its 100%-owned Horse Heaven Gold-Antimony-Tungsten-Silver Project ("Horse Heaven" or the "Project"), Idaho, USA (Figure 1) have encountered broad intervals of near-surface gold mineralisation ending in mineralisation. **This result heralds a gold discovery at the Golden Gate South Prospect, south of the first gold discovery at Golden Gate North.**

Figure 1: Horse Heaven Project location map, highlighting the location of the two current major antimony-gold-silver-tungsten targets, the Golden Gate Target (where the Phase 1 Core Drilling Program was conducted) and the Antimony Ridge Target. Also highlighted is the fully-permitted Stibnite Gold Project, which is only 16km east of Horse Heaven. Note: Coordinates are UTM metres north and east metric system, not latitude/longitude.


As part of its maiden 2025 Horse Heaven drill program Resolution drilled a total of three diamond core holes at Golden Gate South, totalling 887m (Table 1, Figure 2). Holes HH-GG25-008C and HH-GG25-010C targeted gold anomalies identified from surface rock samples in a vein system collected along the Golden Gate access road and are associated with a CSAMT geophysical anomaly that follows the northern projection of a vein system. Hole HH-GG25-009C followed up on intercepts identified in historic holes 87-GGR-4, 87-GGR-10, and 87-GGR-45 associated with a low resistivity CSAMT anomaly.

Significant drilling intersections in HH-GG25-009C and HH-GG25-010C include:

- ▼ HH-GG25-009C: 172.2m @ 0.464 g/t Au, including 27.6m @ 0.89 g/t Au; and
- ▼ HH-GG25-010C: 225.5m @ 0.14 g/t Au.

Hole HH-GG25-008C: Intervals of anomalous mineralisation throughout its length, ended in mineralisation grading 0.91 g/t Au.

The complete set of drill hole assay data (gold, silver, antimony and tungsten) for all three holes is provided in assay tables as Appendix A.

Figure 2: Drill hole location plan of HH-GG25-008C, HH-GG25-009C and HH-GG25-010C; Also showing the location of the drill hole cross sections A-A', B-B' and C-C'. Golden Gate South is located 600m south of Golden Gate North. The NE-SE orientation of the gold mineralisation at Golden Gate closely parallels the many faults that traverse the greater prospect area.

Hole ID	ASX Announcement Date	Drill Type	Diameter	Drill Hole Location							Dip	Az	EOH (ft)	EOH (m)
				Grid	Datum	Zone	Easting	Northing	Elevation (m)					
HH-GG25-001C	28/10/2025 & 2/12/2025	Core	HQ3	UTM	NAD83	11T	619741	4978962	1963	-55	120	760	232	
HH-GG25-002C	3/11/2025	Core	HQ3	UTM	NAD83	11T	619740	4978961	1963	-55	145	870	265	
HH-GG25-003C	3/11/2025	Core	HQ3	UTM	NAD83	11T	619792	4979034	1992	-55	158	830	253	
HH-GG25-004C	2/12/2025	Core	HQ3	UTM	NAD83	11T	619792	4979034	1992	-45	90	790	241	
HH-GG25-005C	2/12/2025	Core	HQ3	UTM	NAD83	11T	619816	4978590	1980	-55	290	930	283	
HH-GG25-007C	2/12/2025	Core	HQ3	UTM	NAD83	11T	619914	4979070	1967	-50	290	1185	361	
HH-GG25-008C	Current Announcement	Core	HQ3	UTM	NAD83	11T	620003	4977768	2038	-60	250	1140	347	
HH-GG25-009C	Current Announcement	Core	HQ3	UTM	NAD83	11T	619951	4977637	1872	-50	120	950	290	
HH-GG25-010C	Current Announcement	Core	HQ3	UTM	NAD83	11T	619895	4977532	1820	-60	250	820	250	

Table 1: Drill hole parameters of holes subject of this announcement, HH-GG25-008C, HH-GG25-008C, HH-GG25-008C (highlighted), and of drillholes already released to the market.

HH-GG25-009C

HH-GG25-009C was collared approximately 200m south of historical shallow drilling, which intercepted anomalous gold in pre-RML drill holes 87-GGR-43 to 45 (Results previously released in ASX Announcement 11 June 2025 titled “Agreement to Acquire Major US Antimony Project and Placement”).

Gold mineralisation is intermittent throughout the entire length of HH-GG25-009C, including the bottom of the hole (Figure 2 and Appendix A). Mineralisation is considered open-ended at depth.

Gold in HH-GG25-009C is associated with disseminated pyrite, quartz vein hosted pyrite and arsenopyrite occurring in sericite to chloritic altered monzonite and volcanic rocks, similar to that at Golden Gate North.

Mineralisation in HH-GG25-009C is believed to be associated with a steep east-dipping sulphide-bearing shear zone approximately 500m east of the primary Golden Gate gold-bearing shear zone, on which Golden Gate North is located. This suggests a second, parallel, northeast-southwest orientated gold-bearing shear zone at Golden Gate, the Vibika Shear Zone (named after the creek with the same name – Figure 2). Mineralisation in the secondary Vibika shear zone may extend over a strike length of 3km based on anomalous gold in rock chip sampling from the Vibika adits and southern Golden Gate hill.

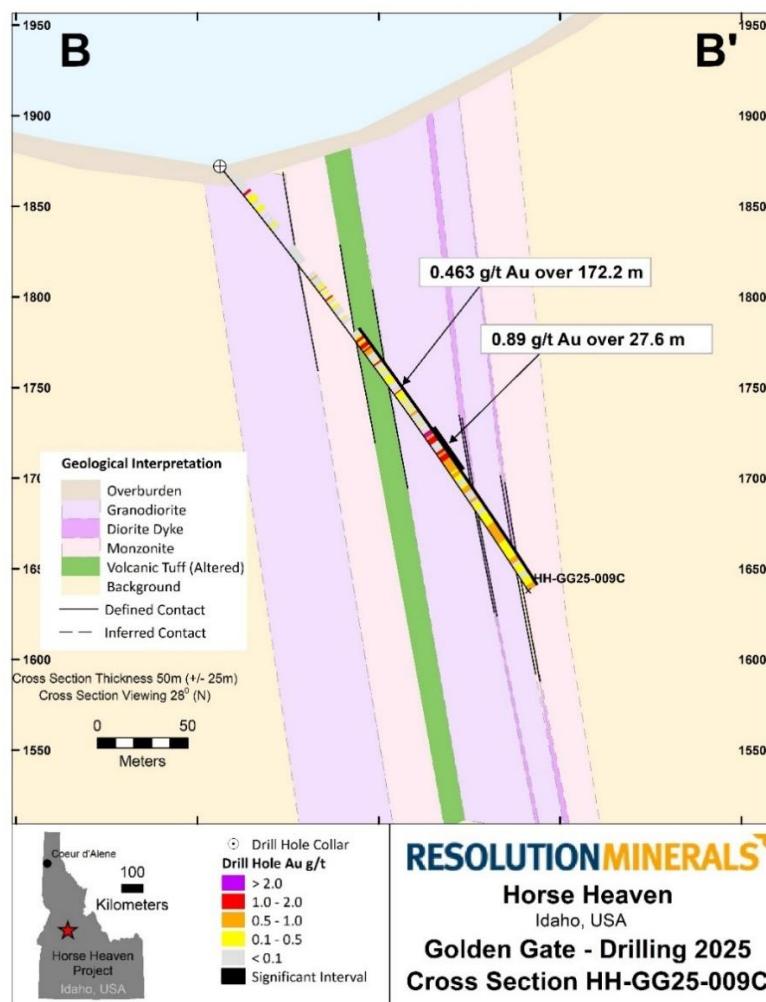


Figure 3: Cross section of drill hole HH-GG25-009C.

HH-GG25-010C

Drillhole HH-GG25-010C targeted a zone of north-striking quartz veining and silicification along strike with the historical “Copper Cliff” prospect. Gold mineralisation occurs through the entire length of the hole, with intermittent silver mineralisation and pervasive low-level tungsten mineralisation. Importantly, like HH-GG25-009C, HH-GG25-010C ended in mineralisation, so mineralisation is open-ended.

The hole intersected three narrow veins of strong tungsten mineralisation in three separate locations at shallow depths. This tungsten mineralisation is associated with Au, Ag, Sb mineralisation (Appendix A) though regional evidence suggests that it occurs as a discrete, separate phase.

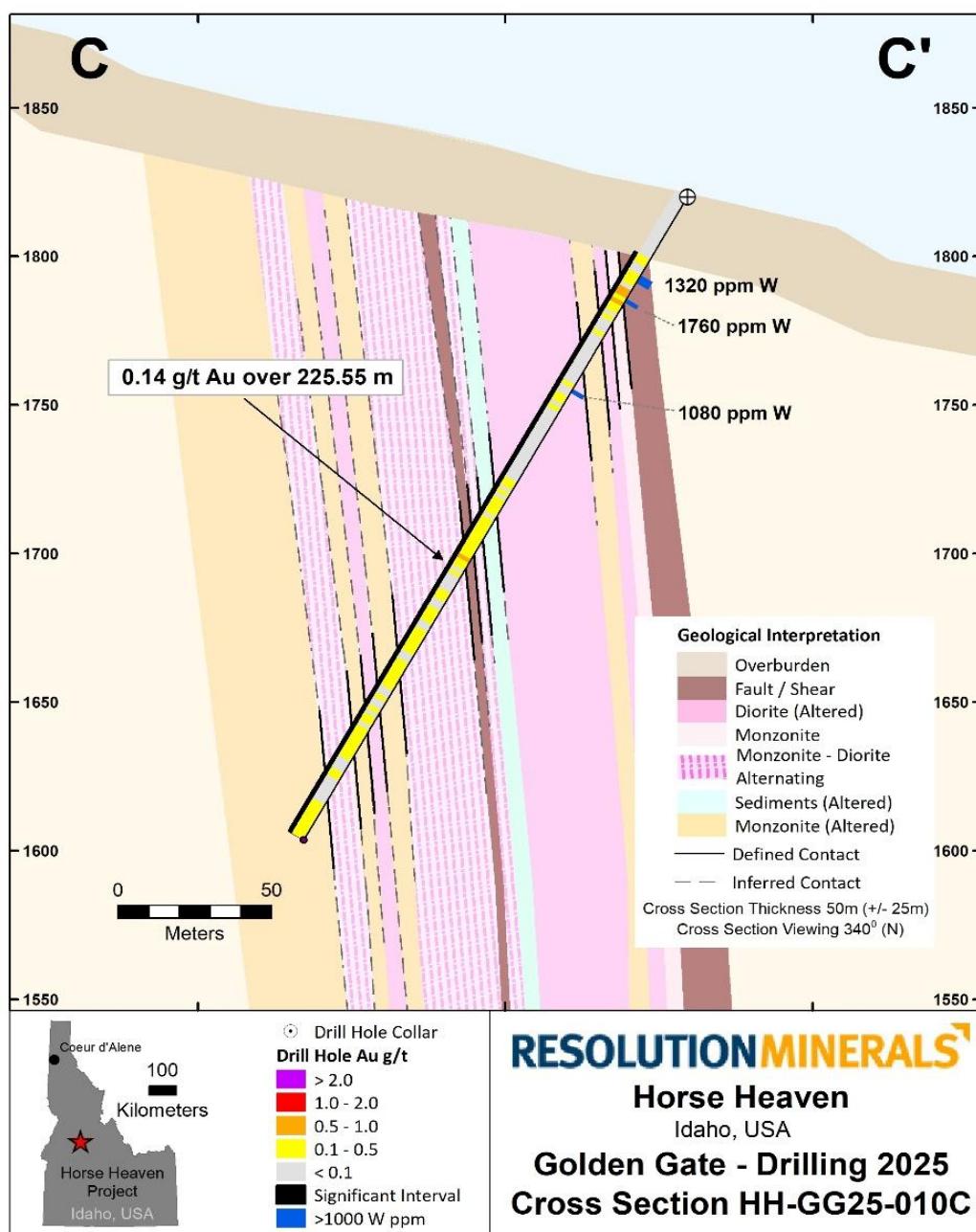
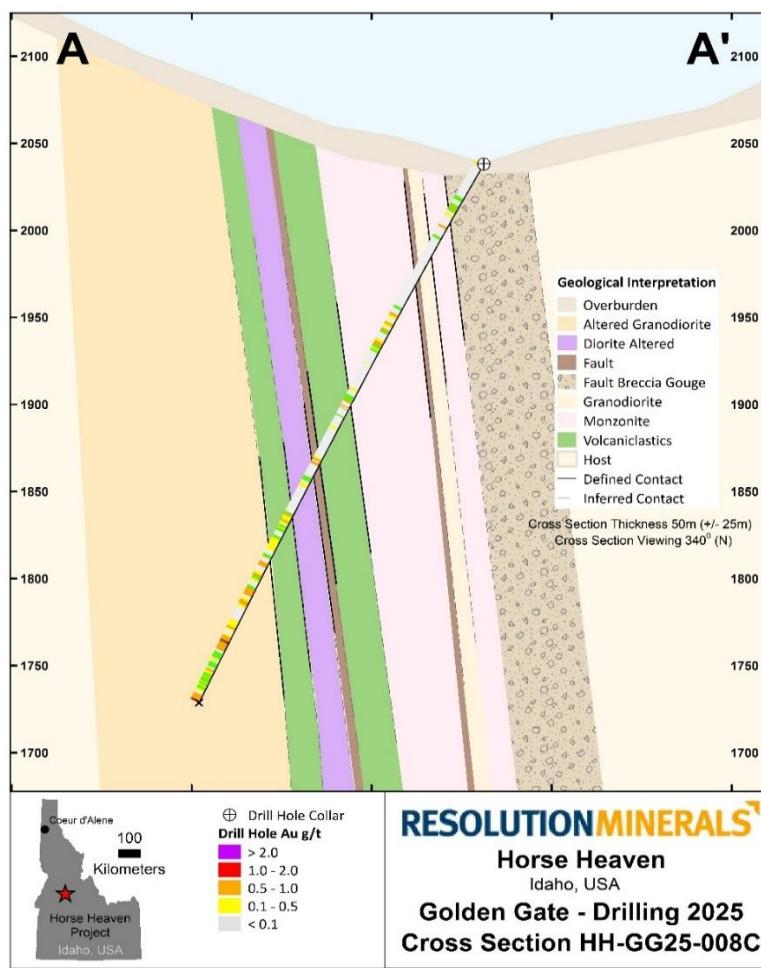



Figure 4: Cross section of drill hole HH-GG25-010C.

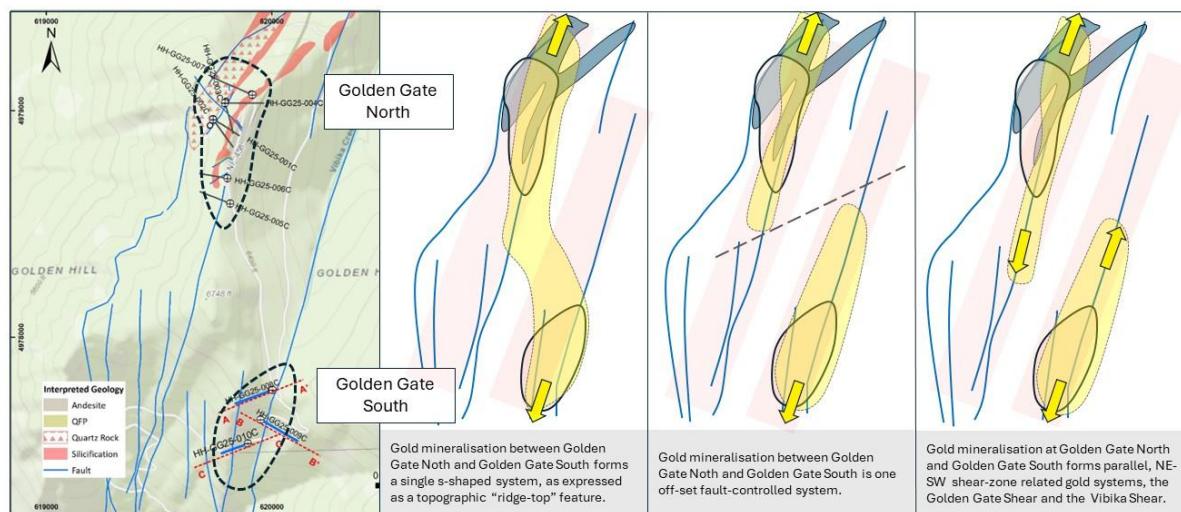
HH-GG25-008C

Drillhole HH-GG25-008C was oriented to the west to target the eastern extension of the principal “Golden Gate Shear Zone”. Note Golden Gate Shear Zone is all capitalised as it's the name of the shear zone. The hole intersected broad intervals of anomalous gold mineralisation throughout its length with gold mineralisation and arsenic content increasing with depth. Importantly, the gold mineralisation, albeit intermittent, appears to increase with depth, with grades consistently stronger below 1,000ft (down hole depth). Indeed, the hole ended in mineralization grading 0.91 g/t Au, the highest value in the hole. Like HH-GG25-009C and HH-GG25-010C, HH-GG25-008C ended in mineralisation, mineralisation is open-ended.

This hole was drilled from a permitted drill pad located on the existing road; follow up drilling from new spur roads farther to the west is planned to better intersect the principal Golden Gate shear zone mineralised corridor.

Figure 5: Cross section of drill hole HH-GG25-008C.

Importance of Results


The identification of gold mineralisation in first-pass core-drilling at the Golden Gate South Prospect is very significant. All reported holes host broad intervals of gold (in places with silver and tungsten) which in all holes is open ended at depth.

Seen in the context of the Golden Gate North gold deposit discovery (ASX announcements 28 October 2025; 3 November 2025, 10 November 2025 and 2 December 2025) 600m to the north, there is question as to whether Golden Gate North and Golden Gate South constitute a single very large deposit or two separate deposits (Figure 6).

The total strike-length of Golden Gate North and Golden Gate South is approximately 1,500m. With no drilling between the southern-most hole of Golden Gate North (HH-GG25-005C) and the northern-most hole of Golden Gate South (HH-GG25-008C) there is limited surface evidence that the two form one deposit, nevertheless, important observations can be made germane to mineralisation:

- ▼ The strong gold-sulphide association with pyrite, arsenian pyrite and arsenopyrite supports a shear-zone hosted style of mineralisation within an intrusive rock setting. Shear zone-related mineralisation commonly comprises multiple parallel gold deposits;
- ▼ Both Golden Gate North and Golden Gate South are topographic high “ridge-top” features. The two prospects are connected by a prominent ridge (Figure 2). The topographic evidence suggests that the Golden Gate North and Golden Gate South prospects form a s-shaped single deposit (Figure 6), irrespective of the fact that they are both shear-related.

At a prospect-scale, there is a very close spatial association between the gold mineralisation at Golden Gate North and Golden Gate South and the northeast-southwest faults (Figure 2). The faults also appear to control local geology and alteration. Further drilling is required to determine whether the mineralisation at Golden Gate North and Golden Gate South is continuous or forms two parallel gold systems or structurally offset by right lateral faulting along the Johnson Creek – Golden Gate Shear Zone (Figure 6).

Figure 6: Schematic representations of the possible gold distribution models at Golden Gate. The gold mineralisation at Golden Gate North and Golden Gate South may be either: continuous between prospects, two discrete bodies, potentially fault-set, or are two separate but parallel systems. There is insufficient evidence to determine which model is most appropriate. The models are important in planning follow-up exploration to test the shape of the gold mineralisation at Golden Gate North and Golden Gate South. This follow-up exploration is planned in the up-coming field season.

Next Steps at Golden Gate

The Golden Gate Prospect, now hosting the Golden Gate North Gold deposit and the emerging Golden Gate South Prospect, is fast becoming a very significant, near surface gold discovery.

The northeast-southwest strike-length of the combined Golden Gate North and Golden Gate South gold prospects is approximately 1.5km. Mineralisation remains open long strike and at depth. In addition, across-strike, or lateral repeats of the mineralisation is possible, as indicated by the juxtaposition of Golden Gate North and Golden Gate South with repeating northeast-southwest faults.

Results for HH-GG25-006C and the three reverse circulation drill holes that were drilled late in the 2025 field season at Golden Gate North will be released to the market as soon as they are available.

As a result of tremendously successful maiden drill program at Golden Gate, Resolution is planning a significant up-scaled drill program at Golden Gate beginning as early as May, with drilling to focus on expansion of the gold discoveries at both Golden Gate North and Golden Gate South.

The Company expects to be in a position to commission a maiden JORC mineral resource estimate at Golden Gate North following the conclusion of the planned 2026 drill program.

Additionally, drilling will test for tungsten mineralisation in an area adjacent to the historic Golden Gate Tungsten Mine (which last operated in 1980) as well as to the south along the Golden Gate Fault, where a tungsten anomaly has been identified via an extensive soil sampling program.

All drilling planned in 2026 will be under an existing drill permit. However, Resolution is planning to significantly broaden its exploration footprint at Golden Gate via a new exploration permit that will allow for drilling over a significantly expanded area, utilising both new roads and the re-opening of closed roads.

Additionally, the Company has submitted samples from the 2026 Golden Gate drill program for initial metallurgical testing.

Authorised for release by the board of Resolution Minerals Ltd.

For further information, please contact:

Aharon Zaetz
Executive Director
Resolution Minerals Ltd
M: +61 424 743 098
ari@resolutionminerals.com

Jane Morgan
Investor Relations
Jane Morgan Management
M: +61 405 555 618
jm@janemorganmanagement.com.au

Competent Person's Statement

The information in this report that relates to exploration results, is based on and fairly represents information reviewed and compiled by Mr Ross Brown BSc (Hons), M AusIMM, Principal Geologist/director of exploration consulting firm, Riviere Minerals Pty. Ltd, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Brown has sufficient experience, which is relevant to the exploration activities, style of mineralisation and types of deposits under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Riviere Minerals is consulting to Resolutions Minerals Limited and consents to the inclusion in this announcement of the matters based on their information in the form and context in which it appears.

About Rivere Minerals

Riviere Minerals Pty Ltd ("Riviere") is a resource consultancy specialising in project evaluation and portfolio management. Its principal geologist and sole director, Mr Ross Brown, has nearly 40 years of experience in mineral exploration worldwide. Through Riviere, Mr Brown also provides assistance in exploration planning, execution and ASX reporting.

Forward Looking Statements

This announcement may contain forward-looking statements. These statements relate to the Company's expectations, beliefs, intentions or strategies regarding the future. These statements can be identified by the use of words like "anticipate", "believe", "intend", "estimate", "expect", "may", "plan", "project", "will", "should", "seek" and similar words or expressions containing same. These forward-looking statements reflect the Company's views and assumptions with respect to future events as of the date of this release and are subject to a variety of unpredictable risks, uncertainties, and other unknowns. Actual and future results and trends could differ materially from those set forth in such statements due to various factors, many of which are beyond our ability to control or predict. These include, but are not limited to, risks or uncertainties associated with the acquisition and divestment of projects, joint venture and other contractual risks, metal prices, exploration, development and operating risks, competition, production risks, sovereign risks, regulatory risks including environmental regulation and liability and potential title disputes, availability and terms of capital and general economic and business conditions.

Given these uncertainties, no one should place undue reliance on any forward-looking statements attributable to the Company, or any of its affiliates or persons acting on its behalf. Subject to any continuing obligations under applicable law, the Company disclaims any obligation or undertaking to disseminate any updates or revisions to any forward-looking statements in this announcement to reflect any change in expectations in relation to any forward-looking statements or any change in events, conditions or circumstances on which any such statement is based.

The Company confirms it is not aware of any new information or data that materially affects the information cross referenced in this announcement and further to "Agreement to Acquire Major US Antimony Project and Placement" on 11 June 2025. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcements.

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23	ME-ICP61	ME-ICP61	ME-ICP61
							ppm	ppm	ppm	ppm
Golden Gate South	HH-GG-008C	Core	191680	0.0	8.0	8.0	0.104	0.5	54	20
Golden Gate South	HH-GG-008C	Core	191681	8.0	20.0	12.0	0.031	0.6	20	20
Golden Gate South	HH-GG-008C	Core	191682	20.0	30.0	10.0	<0.005	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	191683	30.0	41.9	11.9	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191684	41.9	54.0	12.1	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191685	54.0	61.8	7.8	0.037	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	191686	61.8	75.0	13.2	0.021	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	191687	75.0	82.9	7.9	0.094	<0.5	52	40
Golden Gate South	HH-GG-008C	Core	191688	82.9	87.0	4.1	0.017	<0.5	35	210
Golden Gate South	HH-GG-008C	Core	191689	87.0	92.0	5.0	0.019	<0.5	32	90
Golden Gate South	HH-GG-008C	Core	191690	92.0	97.0	5.0	0.061	<0.5	39	260
Golden Gate South	HH-GG-008C	Core	191691	97.0	102.0	5.0	0.255	<0.5	42	430
Golden Gate South	HH-GG-008C	Core	191692	102.0	107.0	5.0	0.053	<0.5	37	80
Golden Gate South	HH-GG-008C	Core	191694	107.0	112.0	5.0	0.037	<0.5	26	30
Golden Gate South	HH-GG-008C	Core	191695	112.0	117.0	5.0	0.163	0.8	50	380
Golden Gate South	HH-GG-008C	Core	191696	117.0	121.0	4.0	<0.005	<0.5	17	10
Golden Gate South	HH-GG-008C	Core	191697	121.0	124.5	3.5	<0.005	<0.5	5	10
Golden Gate South	HH-GG-008C	Core	191698	124.5	126.1	1.6	<0.005	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	191699	126.1	132.2	6.1	<0.005	<0.5	15	10
Golden Gate South	HH-GG-008C	Core	191700	132.2	137.0	4.8	0.036	<0.5	7	<10
Golden Gate South	HH-GG-008C	Core	191701	137.0	141.5	4.5	0.36	<0.5	21	10
Golden Gate South	HH-GG-008C	Core	191702	141.5	145.3	3.8	0.01	<0.5	12	10
Golden Gate South	HH-GG-008C	Core	191703	145.3	149.7	4.4	<0.005	<0.5	9	10
Golden Gate South	HH-GG-008C	Core	191704	149.7	154.5	4.8	<0.005	<0.5	8	10
Golden Gate South	HH-GG-008C	Core	191705	154.5	159.0	4.5	<0.005	<0.5	18	10
Golden Gate South	HH-GG-008C	Core	191706	159.0	163.9	4.9	0.089	<0.5	33	10
Golden Gate South	HH-GG-008C	Core	191708	163.9	168.7	4.8	0.005	<0.5	13	10
Golden Gate South	HH-GG-008C	Core	191709	168.7	173.2	4.5	<0.005	<0.5	9	10
Golden Gate South	HH-GG-008C	Core	191710	173.2	178.0	4.8	<0.005	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	191711	178.0	183.7	5.7	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191712	183.7	188.3	4.6	<0.005	<0.5	6	<10
Golden Gate South	HH-GG-008C	Core	191713	188.3	193.1	4.8	<0.005	<0.5	13	10
Golden Gate South	HH-GG-008C	Core	191715	193.1	197.8	4.7	0.018	<0.5	21	10
Golden Gate South	HH-GG-008C	Core	191716	197.8	202.5	4.7	<0.005	<0.5	14	10
Golden Gate South	HH-GG-008C	Core	191717	202.5	206.8	4.3	<0.005	<0.5	11	10
Golden Gate South	HH-GG-008C	Core	191718	206.8	212.0	5.2	0.013	<0.5	12	10
Golden Gate South	HH-GG-008C	Core	191719	212.0	217.0	5.0	0.008	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	191720	217.0	220.8	3.8	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191721	220.8	225.5	4.7	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191722	225.5	230.0	4.5	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191723	230.0	235.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191724	235.0	240.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191725	240.0	245.0	5.0	<0.005	<0.5	9	10
Golden Gate South	HH-GG-008C	Core	191726	245.0	250.0	5.0	0.009	<0.5	25	10

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23	ME-ICP61	ME-ICP61	ME-ICP61
							ppm	ppm	ppm	ppm
Golden Gate South	HH-GG-008C	Core	191727	250.0	255.0	5.0	<0.005	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	191728	255.0	260.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191729	260.0	265.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191730	265.0	270.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191731	270.0	275.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191732	275.0	280.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191733	280.0	285.0	5.0	<0.005	<0.5	13	10
Golden Gate South	HH-GG-008C	Core	191734	285.0	290.0	5.0	<0.005	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	191735	290.0	295.0	5.0	<0.005	<0.5	15	<10
Golden Gate South	HH-GG-008C	Core	191736	295.0	300.0	5.0	0.039	<0.5	13	10
Golden Gate South	HH-GG-008C	Core	191738	300.0	305.0	5.0	0.031	<0.5	11	10
Golden Gate South	HH-GG-008C	Core	191739	305.0	310.0	5.0	0.049	<0.5	8	10
Golden Gate South	HH-GG-008C	Core	191740	310.0	315.0	5.0	0.089	<0.5	13	30
Golden Gate South	HH-GG-008C	Core	191741	315.0	320.0	5.0	0.047	<0.5	5	<10
Golden Gate South	HH-GG-008C	Core	191742	320.0	325.0	5.0	0.028	<0.5	7	<10
Golden Gate South	HH-GG-008C	Core	191743	325.0	330.0	5.0	0.298	<0.5	17	10
Golden Gate South	HH-GG-008C	Core	191744	330.0	335.0	5.0	0.132	<0.5	12	10
Golden Gate South	HH-GG-008C	Core	191745	335.0	339.8	4.8	<0.005	<0.5	9	10
Golden Gate South	HH-GG-008C	Core	191746	339.8	343.7	3.9	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191747	343.7	345.3	1.6	0.189	1.3	13	10
Golden Gate South	HH-GG-008C	Core	191748	345.3	349.0	3.7	0.34	0.8	21	40
Golden Gate South	HH-GG-008C	Core	191749	349.0	353.2	4.2	0.118	<0.5	8	10
Golden Gate South	HH-GG-008C	Core	191750	353.2	358.0	4.8	0.013	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191751	358.0	362.8	4.8	0.397	0.7	21	10
Golden Gate South	HH-GG-008C	Core	191752	362.8	367.0	4.2	0.057	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191753	367.0	371.7	4.7	0.014	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191754	371.7	376.0	4.3	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191755	376.0	379.9	3.9	0.026	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191756	379.9	385.0	5.1	0.158	<0.5	11	10
Golden Gate South	HH-GG-008C	Core	191757	385.0	389.2	4.2	0.324	0.9	15	10
Golden Gate South	HH-GG-008C	Core	191759	389.2	392.6	3.4	0.314	1	23	10
Golden Gate South	HH-GG-008C	Core	191760	392.6	397.5	4.9	0.094	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	191761	397.5	402.0	4.5	0.175	<0.5	16	20
Golden Gate South	HH-GG-008C	Core	191762	402.0	405.8	3.8	0.08	<0.5	5	10
Golden Gate South	HH-GG-008C	Core	191763	405.8	410.0	4.2	0.008	<0.5	5	<10
Golden Gate South	HH-GG-008C	Core	191764	410.0	415.0	5.0	0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191765	415.0	420.0	5.0	0.009	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	191766	420.0	425.0	5.0	0.023	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	191767	425.0	428.0	3.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191768	428.0	431.3	3.3	0.027	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191769	431.3	433.0	1.7	0.11	0.7	8	<10
Golden Gate South	HH-GG-008C	Core	191771	433.0	437.0	4.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191772	437.0	440.0	3.0	0.039	<0.5	7	<10
Golden Gate South	HH-GG-008C	Core	191773	440.0	445.0	5.0	0.018	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191774	445.0	450.0	5.0	<0.005	<0.5	<5	<10

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23	ME-ICP61	ME-ICP61	ME-ICP61
							ppm	ppm	ppm	ppm
Golden Gate South	HH-GG-008C	Core	191775	450.0	455.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191776	455.0	459.6	4.6	0.006	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191777	459.6	462.8	3.2	0.02	<0.5	10	20
Golden Gate South	HH-GG-008C	Core	191778	462.8	465.0	2.2	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191779	465.0	470.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191780	470.0	475.0	5.0	0.018	<0.5	6	<10
Golden Gate South	HH-GG-008C	Core	191781	475.0	479.3	4.3	0.023	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191782	479.3	483.7	4.4	0.006	<0.5	20	10
Golden Gate South	HH-GG-008C	Core	191783	483.7	488.7	5.0	0.11	0.6	28	20
Golden Gate South	HH-GG-008C	Core	191784	488.7	493.0	4.3	0.007	<0.5	12	20
Golden Gate South	HH-GG-008C	Core	191785	493.0	495.6	2.6	<0.005	<0.5	11	20
Golden Gate South	HH-GG-008C	Core	191786	495.6	498.9	3.3	<0.005	<0.5	5	10
Golden Gate South	HH-GG-008C	Core	191787	498.9	502.2	3.3	0.052	<0.5	13	20
Golden Gate South	HH-GG-008C	Core	191788	502.2	505.5	3.3	0.058	<0.5	5	10
Golden Gate South	HH-GG-008C	Core	191789	505.5	509.0	3.5	0.066	0.7	12	20
Golden Gate South	HH-GG-008C	Core	191790	509.0	513.3	4.3	0.322	0.6	14	20
Golden Gate South	HH-GG-008C	Core	191791	513.3	516.3	3.0	0.021	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191792	516.3	521.0	4.7	0.044	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191793	521.0	523.0	2.0	0.426	0.6	16	20
Golden Gate South	HH-GG-008C	Core	191794	523.0	525.4	2.4	0.025	<0.5	5	10
Golden Gate South	HH-GG-008C	Core	191795	525.4	527.0	1.6	0.37	<0.5	17	20
Golden Gate South	HH-GG-008C	Core	191796	527.0	530.0	3.0	0.005	<0.5	6	<10
Golden Gate South	HH-GG-008C	Core	191797	530.0	535.0	5.0	0.015	<0.5	9	10
Golden Gate South	HH-GG-008C	Core	191799	535.0	537.2	2.2	0.014	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	191800	537.2	540.6	3.4	0.029	<0.5	8	<10
Golden Gate South	HH-GG-008C	Core	192801	540.6	542.7	2.1	0.065	<0.5	11	20
Golden Gate South	HH-GG-008C	Core	192802	542.7	546.1	3.4	<0.005	<0.5	5	10
Golden Gate South	HH-GG-008C	Core	192803	546.1	550.0	3.9	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192804	550.0	555.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192805	555.0	560.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192806	560.0	564.0	4.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192807	564.0	568.4	4.4	0.126	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	192808	568.4	571.3	2.9	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192809	571.3	574.0	2.7	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192810	574.0	579.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192812	579.0	584.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192813	584.0	588.7	4.7	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192814	588.7	591.8	3.1	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192815	591.8	596.0	4.2	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192816	596.0	600.4	4.4	0.029	<0.5	5	10
Golden Gate South	HH-GG-008C	Core	192818	600.4	605.4	5.0	0.011	<0.5	5	10
Golden Gate South	HH-GG-008C	Core	192819	605.4	610.0	4.6	0.018	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	192820	610.0	614.5	4.5	<0.005	<0.5	6	10
Golden Gate South	HH-GG-008C	Core	192821	614.5	619.0	4.5	<0.005	<0.5	12	10
Golden Gate South	HH-GG-008C	Core	192822	619.0	624.0	5.0	<0.005	<0.5	<5	10

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23 ppm	ME-ICP61 ppm	ME-ICP61 ppm	ME-ICP61 ppm
Golden Gate South	HH-GG-008C	Core	192823	624.0	629.0	5.0	<0.005	<0.5	6	10
Golden Gate South	HH-GG-008C	Core	192824	629.0	632.7	3.7	0.127	<0.5	10	10
Golden Gate South	HH-GG-008C	Core	192825	632.7	636.5	3.8	0.243	<0.5	15	10
Golden Gate South	HH-GG-008C	Core	192827	636.5	639.5	3.0	0.044	<0.5	15	10
Golden Gate South	HH-GG-008C	Core	192828	639.5	644.5	5.0	0.22	0.5	19	10
Golden Gate South	HH-GG-008C	Core	192829	644.5	649.0	4.5	0.025	<0.5	22	20
Golden Gate South	HH-GG-008C	Core	192830	649.0	654.0	5.0	0.035	0.5	9	20
Golden Gate South	HH-GG-008C	Core	192831	654.0	658.6	4.6	0.016	<0.5	18	10
Golden Gate South	HH-GG-008C	Core	192832	658.6	660.8	2.2	0.011	<0.5	30	20
Golden Gate South	HH-GG-008C	Core	192833	660.8	664.9	4.1	0.036	<0.5	8	10
Golden Gate South	HH-GG-008C	Core	192834	664.9	670.0	5.1	<0.005	<0.5	10	10
Golden Gate South	HH-GG-008C	Core	192835	670.0	675.0	5.0	0.051	<0.5	5	10
Golden Gate South	HH-GG-008C	Core	192836	675.0	679.0	4.0	0.051	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192837	679.0	684.0	5.0	0.015	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	192838	684.0	687.5	3.5	0.123	<0.5	11	10
Golden Gate South	HH-GG-008C	Core	192839	687.5	691.4	3.9	0.107	<0.5	10	10
Golden Gate South	HH-GG-008C	Core	192840	691.4	696.0	4.6	0.015	0.5	9	20
Golden Gate South	HH-GG-008C	Core	192841	696.0	700.2	4.2	0.024	<0.5	5	10
Golden Gate South	HH-GG-008C	Core	192842	700.2	705.0	4.8	0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192843	705.0	710.0	5.0	0.027	<0.5	6	<10
Golden Gate South	HH-GG-008C	Core	192844	710.0	713.0	3.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192845	713.0	716.0	3.0	<0.005	<0.5	5	<10
Golden Gate South	HH-GG-008C	Core	192846	716.0	720.5	4.5	0.031	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	192847	720.5	725.3	4.8	0.033	<0.5	8	10
Golden Gate South	HH-GG-008C	Core	192848	725.3	728.4	3.1	0.03	<0.5	11	20
Golden Gate South	HH-GG-008C	Core	192849	728.4	732.5	4.1	0.014	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192850	732.5	735.4	2.9	0.006	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192851	735.4	738.3	2.9	0.008	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	192852	738.3	741.4	3.1	0.039	<0.5	12	10
Golden Gate South	HH-GG-008C	Core	192853	741.4	745.7	4.3	0.027	<0.5	6	10
Golden Gate South	HH-GG-008C	Core	192854	745.7	749.3	3.6	0.072	<0.5	7	<10
Golden Gate South	HH-GG-008C	Core	192855	749.3	753.0	3.7	0.392	1.7	27	90
Golden Gate South	HH-GG-008C	Core	192856	753.0	758.0	5.0	0.118	<0.5	16	30
Golden Gate South	HH-GG-008C	Core	192857	758.0	762.0	4.0	0.117	<0.5	20	10
Golden Gate South	HH-GG-008C	Core	192858	762.0	765.3	3.3	0.24	0.8	24	10
Golden Gate South	HH-GG-008C	Core	192860	765.3	770.0	4.7	0.151	<0.5	14	10
Golden Gate South	HH-GG-008C	Core	192861	770.0	772.6	2.6	0.025	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	192862	772.6	776.7	4.1	0.086	<0.5	14	10
Golden Gate South	HH-GG-008C	Core	192863	776.7	780.0	3.3	0.137	<0.5	14	210
Golden Gate South	HH-GG-008C	Core	192864	780.0	785.0	5.0	0.093	<0.5	14	10
Golden Gate South	HH-GG-008C	Core	192865	785.0	790.0	5.0	<0.005	<0.5	9	10
Golden Gate South	HH-GG-008C	Core	192867	790.0	795.0	5.0	0.019	<0.5	8	10
Golden Gate South	HH-GG-008C	Core	192868	795.0	800.0	5.0	0.097	<0.5	10	10
Golden Gate South	HH-GG-008C	Core	192869	800.0	805.0	5.0	0.168	<0.5	19	<10
Golden Gate South	HH-GG-008C	Core	192870	805.0	810.0	5.0	0.198	<0.5	18	10

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23	ME-ICP61	ME-ICP61	ME-ICP61
							ppm	ppm	ppm	ppm
Golden Gate South	HH-GG-008C	Core	192871	810.0	815.0	5.0	0.118	<0.5	17	10
Golden Gate South	HH-GG-008C	Core	192872	815.0	820.0	5.0	0.144	<0.5	11	10
Golden Gate South	HH-GG-008C	Core	192873	820.0	824.7	4.7	0.168	<0.5	15	10
Golden Gate South	HH-GG-008C	Core	192874	824.7	829.2	4.5	0.025	<0.5	5	<10
Golden Gate South	HH-GG-008C	Core	192875	829.2	834.1	4.9	0.046	<0.5	5	10
Golden Gate South	HH-GG-008C	Core	192876	834.1	839.0	4.9	0.073	<0.5	14	10
Golden Gate South	HH-GG-008C	Core	192877	839.0	840.8	1.8	0.206	0.5	15	10
Golden Gate South	HH-GG-008C	Core	192878	840.8	845.0	4.2	0.047	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192879	845.0	849.6	4.6	0.039	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192880	849.6	855.0	5.4	0.213	0.6	8	10
Golden Gate South	HH-GG-008C	Core	192881	855.0	859.3	4.3	0.206	<0.5	16	10
Golden Gate South	HH-GG-008C	Core	192882	859.3	861.7	2.4	0.011	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	192883	861.7	865.9	4.2	0.017	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	192884	865.9	870.0	4.1	0.016	<0.5	8	20
Golden Gate South	HH-GG-008C	Core	192885	870.0	875.0	5.0	0.106	<0.5	13	20
Golden Gate South	HH-GG-008C	Core	192886	875.0	880.0	5.0	0.274	<0.5	20	10
Golden Gate South	HH-GG-008C	Core	192887	880.0	885.0	5.0	0.074	<0.5	15	10
Golden Gate South	HH-GG-008C	Core	192888	885.0	890.0	5.0	0.104	<0.5	9	10
Golden Gate South	HH-GG-008C	Core	192889	890.0	895.0	5.0	<0.005	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	192890	895.0	900.0	5.0	0.008	<0.5	8	10
Golden Gate South	HH-GG-008C	Core	192891	900.0	905.0	5.0	0.078	<0.5	9	10
Golden Gate South	HH-GG-008C	Core	192892	905.0	910.0	5.0	0.321	<0.5	14	10
Golden Gate South	HH-GG-008C	Core	192893	910.0	915.0	5.0	0.358	0.5	14	10
Golden Gate South	HH-GG-008C	Core	192895	915.0	920.0	5.0	0.416	0.6	25	10
Golden Gate South	HH-GG-008C	Core	192896	920.0	925.0	5.0	0.035	<0.5	15	10
Golden Gate South	HH-GG-008C	Core	192897	925.0	929.0	4.0	0.109	<0.5	16	10
Golden Gate South	HH-GG-008C	Core	192898	929.0	930.5	1.5	0.135	0.6	17	430
Golden Gate South	HH-GG-008C	Core	192899	930.5	935.0	4.5	0.245	<0.5	15	20
Golden Gate South	HH-GG-008C	Core	192900	935.0	939.2	4.2	0.332	0.6	11	10
Golden Gate South	HH-GG-008C	Core	192901	939.2	943.9	4.7	0.129	2.4	72	10
Golden Gate South	HH-GG-008C	Core	192902	943.9	948.1	4.2	<0.005	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	192903	948.1	953.1	5.0	0.009	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	192904	953.1	958.0	4.9	0.021	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	192905	958.0	961.4	3.4	0.019	<0.5	5	10
Golden Gate South	HH-GG-008C	Core	192906	961.4	966.0	4.6	0.01	<0.5	6	10
Golden Gate South	HH-GG-008C	Core	192907	966.0	968.4	2.4	0.03	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	192908	968.4	971.4	3.0	0.016	<0.5	<5	10
Golden Gate South	HH-GG-008C	Core	192909	971.4	975.4	4.0	0.173	<0.5	13	10
Golden Gate South	HH-GG-008C	Core	192910	975.4	980.1	4.7	0.163	<0.5	14	10
Golden Gate South	HH-GG-008C	Core	192912	980.1	985.0	4.9	0.146	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	192913	985.0	989.0	4.0	0.326	1.8	20	<10
Golden Gate South	HH-GG-008C	Core	192914	989.0	992.0	3.0	0.127	<0.5	14	10
Golden Gate South	HH-GG-008C	Core	192915	992.0	995.0	3.0	<0.005	<0.5	6	<10
Golden Gate South	HH-GG-008C	Core	192916	995.0	997.5	2.5	0.045	<0.5	5	<10
Golden Gate South	HH-GG-008C	Core	192917	997.5	1001.2	3.7	0.038	<0.5	12	<10

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23	ME-ICP61	ME-ICP61	ME-ICP61
							ppm	ppm	ppm	ppm
Golden Gate South	HH-GG-008C	Core	192918	1001.2	1005.0	3.8	0.183	<0.5	15	<10
Golden Gate South	HH-GG-008C	Core	192919	1005.0	1009.1	4.1	0.203	<0.5	13	10
Golden Gate South	HH-GG-008C	Core	192920	1009.1	1013.9	4.8	0.38	<0.5	16	<10
Golden Gate South	HH-GG-008C	Core	192921	1013.9	1017.7	3.8	0.515	<0.5	22	10
Golden Gate South	HH-GG-008C	Core	192922	1017.7	1020.0	2.3	0.068	<0.5	13	10
Golden Gate South	HH-GG-008C	Core	192923	1020.0	1023.1	3.1	0.405	<0.5	15	<10
Golden Gate South	HH-GG-008C	Core	192925	1023.1	1027.1	4.0	0.257	<0.5	12	<10
Golden Gate South	HH-GG-008C	Core	192926	1027.1	1031.4	4.3	0.416	<0.5	16	10
Golden Gate South	HH-GG-008C	Core	192927	1031.4	1034.4	3.0	0.365	1.4	25	<10
Golden Gate South	HH-GG-008C	Core	192928	1034.4	1039.0	4.6	0.023	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192929	1039.0	1044.0	5.0	0.091	<0.5	5	<10
Golden Gate South	HH-GG-008C	Core	192930	1044.0	1048.0	4.0	0.059	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192931	1048.0	1050.6	2.6	0.099	0.7	7	10
Golden Gate South	HH-GG-008C	Core	192932	1050.6	1052.0	1.4	0.032	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192933	1052.0	1054.2	2.2	0.137	<0.5	10	10
Golden Gate South	HH-GG-008C	Core	192934	1054.2	1056.4	2.2	0.116	<0.5	11	10
Golden Gate South	HH-GG-008C	Core	192935	1056.4	1060.0	3.6	0.031	<0.5	5	<10
Golden Gate South	HH-GG-008C	Core	192936	1060.0	1065.0	5.0	0.058	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192937	1065.0	1070.0	5.0	0.081	<0.5	5	<10
Golden Gate South	HH-GG-008C	Core	192938	1070.0	1073.9	3.9	0.029	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192939	1073.9	1078.0	4.1	0.32	2.6	20	10
Golden Gate South	HH-GG-008C	Core	192940	1078.0	1083.1	5.1	0.13	<0.5	8	<10
Golden Gate South	HH-GG-008C	Core	192942	1083.1	1085.0	1.9	0.076	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	192943	1085.0	1090.0	5.0	0.056	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192944	1090.0	1091.0	1.0	0.107	<0.5	6	10
Golden Gate South	HH-GG-008C	Core	192945	1091.0	1093.4	2.4	0.214	<0.5	12	<10
Golden Gate South	HH-GG-008C	Core	192946	1093.4	1097.0	3.6	0.097	<0.5	<5	<10
Golden Gate South	HH-GG-008C	Core	192947	1097.0	1100.5	3.5	0.085	<0.5	7	10
Golden Gate South	HH-GG-008C	Core	192948	1100.5	1102.9	2.4	0.197	<0.5	12	<10
Golden Gate South	HH-GG-008C	Core	192949	1102.9	1106.6	3.7	0.06	<0.5	7	<10
Golden Gate South	HH-GG-008C	Core	192950	1106.6	1110.0	3.4	0.102	<0.5	8	10
Golden Gate South	HH-GG-008C	Core	192951	1110.0	1115.0	5.0	0.06	<0.5	5	10
Golden Gate South	HH-GG-008C	Core	192952	1115.0	1120.0	5.0	0.122	<0.5	7	<10
Golden Gate South	HH-GG-008C	Core	192953	1120.0	1124.7	4.7	0.033	<0.5	6	<10
Golden Gate South	HH-GG-008C	Core	192954	1124.7	1129.0	4.3	0.363	0.5	10	10
Golden Gate South	HH-GG-008C	Core	192955	1129.0	1134.0	5.0	0.298	<0.5	12	10
Golden Gate South	HH-GG-008C	Core	192957	1134.0	1137.1	3.1	0.292	<0.5	11	<10
Golden Gate South	HH-GG-008C	Core	192958	1137.1	1140.0	2.9	0.919	<0.5	25	10

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23 ppm	ME-ICP61 ppm	ME-ICP61 ppm	ME-ICP61 ppm
Golden Gate South	HH-GG-009C	Core	192959	0.0	10.0	10.0	<0.005	2.4	5	30
Golden Gate South	HH-GG-009C	Core	192960	10.0	15.0	5.0	0.017	3.2	11	80
Golden Gate South	HH-GG-009C	Core	192961	15.0	20.0	5.0	0.011	0.7	11	50
Golden Gate South	HH-GG-009C	Core	192962	20.0	25.0	5.0	<0.005	<0.5	10	70
Golden Gate South	HH-GG-009C	Core	192963	25.0	30.0	5.0	0.006	<0.5	9	510
Golden Gate South	HH-GG-009C	Core	192964	30.0	35.0	5.0	0.019	0.6	10	30
Golden Gate South	HH-GG-009C	Core	192965	35.0	38.6	3.6	0.025	0.6	16	30
Golden Gate South	HH-GG-009C	Core	192966	38.6	42.0	3.4	0.022	0.5	9	20
Golden Gate South	HH-GG-009C	Core	192967	42.0	50.0	8.0	0.037	<0.5	9	10
Golden Gate South	HH-GG-009C	Core	192968	50.0	60.0	10.0	0.169	<0.5	17	10
Golden Gate South	HH-GG-009C	Core	192969	60.0	65.0	5.0	<0.005	<0.5	8	<10
Golden Gate South	HH-GG-009C	Core	192970	65.0	70.0	5.0	1.12	<0.5	23	10
Golden Gate South	HH-GG-009C	Core	192971	70.0	72.0	2.0	<0.005	<0.5	9	<10
Golden Gate South	HH-GG-009C	Core	192972	72.0	75.6	3.6	0.011	<0.5	16	10
Golden Gate South	HH-GG-009C	Core	192973	75.6	80.0	4.4	0.272	0.5	34	10
Golden Gate South	HH-GG-009C	Core	192975	80.0	85.0	5.0	0.231	0.9	29	10
Golden Gate South	HH-GG-009C	Core	192976	85.0	90.0	5.0	0.359	0.5	21	10
Golden Gate South	HH-GG-009C	Core	192977	90.0	95.0	5.0	0.074	<0.5	8	<10
Golden Gate South	HH-GG-009C	Core	192978	95.0	100.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	192979	100.0	105.0	5.0	0.46	<0.5	17	<10
Golden Gate South	HH-GG-009C	Core	192980	105.0	110.0	5.0	0.267	<0.5	11	<10
Golden Gate South	HH-GG-009C	Core	192981	110.0	115.0	5.0	0.008	<0.5	5	<10
Golden Gate South	HH-GG-009C	Core	192982	115.0	119.0	4.0	<0.005	<0.5	5	<10
Golden Gate South	HH-GG-009C	Core	192983	119.0	122.3	3.3	0.124	<0.5	8	<10
Golden Gate South	HH-GG-009C	Core	192984	122.3	125.0	2.7	0.063	<0.5	6	<10
Golden Gate South	HH-GG-009C	Core	192985	125.0	130.0	5.0	<0.005	<0.5	5	<10
Golden Gate South	HH-GG-009C	Core	192986	130.0	135.0	5.0	0.028	<0.5	7	<10
Golden Gate South	HH-GG-009C	Core	192987	135.0	140.0	5.0	0.015	<0.5	6	<10
Golden Gate South	HH-GG-009C	Core	192988	140.0	145.0	5.0	0.377	<0.5	15	10
Golden Gate South	HH-GG-009C	Core	192990	145.0	150.0	5.0	0.022	<0.5	7	<10
Golden Gate South	HH-GG-009C	Core	192991	150.0	155.0	5.0	0.023	<0.5	9	<10
Golden Gate South	HH-GG-009C	Core	192992	155.0	160.0	5.0	0.007	<0.5	6	<10
Golden Gate South	HH-GG-009C	Core	192993	160.0	165.0	5.0	<0.005	<0.5	7	<10
Golden Gate South	HH-GG-009C	Core	192994	165.0	167.0	2.0	0.005	<0.5	10	10
Golden Gate South	HH-GG-009C	Core	192995	167.0	170.7	3.7	<0.005	<0.5	11	<10
Golden Gate South	HH-GG-009C	Core	192996	170.7	175.0	4.3	0.011	1.4	28	<10
Golden Gate South	HH-GG-009C	Core	192997	175.0	180.0	5.0	<0.005	<0.5	6	<10
Golden Gate South	HH-GG-009C	Core	192998	180.0	185.0	5.0	0.006	<0.5	8	<10
Golden Gate South	HH-GG-009C	Core	192999	185.0	190.0	5.0	0.008	<0.5	12	10
Golden Gate South	HH-GG-009C	Core	193000	190.0	192.5	2.5	0.008	<0.5	9	10
Golden Gate South	HH-GG-009C	Core	191801	192.5	200.0	7.5	0.071	0.6	19	10
Golden Gate South	HH-GG-009C	Core	191802	200.0	205.0	5.0	0.043	<0.5	17	10
Golden Gate South	HH-GG-009C	Core	191803	205.0	210.0	5.0	0.076	<0.5	16	10
Golden Gate South	HH-GG-009C	Core	191804	210.0	215.0	5.0	0.078	<0.5	11	10

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23 ppm	ME-ICP61 ppm	ME-ICP61 ppm	ME-ICP61 ppm
Golden Gate South	HH-GG-009C	Core	191805	215.0	220.0	5.0	0.033	<0.5	18	10
Golden Gate South	HH-GG-009C	Core	191806	220.0	225.0	5.0	0.117	0.6	19	10
Golden Gate South	HH-GG-009C	Core	191807	225.0	228.6	3.6	0.097	<0.5	16	10
Golden Gate South	HH-GG-009C	Core	191808	228.6	230.5	1.9	<0.005	<0.5	7	20
Golden Gate South	HH-GG-009C	Core	191809	230.5	235.0	4.5	0.008	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191810	235.0	240.0	5.0	<0.005	<0.5	10	10
Golden Gate South	HH-GG-009C	Core	191811	240.0	245.0	5.0	<0.005	<0.5	9	10
Golden Gate South	HH-GG-009C	Core	191812	245.0	250.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191813	250.0	253.5	3.5	0.008	<0.5	9	<10
Golden Gate South	HH-GG-009C	Core	191814	253.5	257.5	4.0	0.048	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191815	257.5	262.5	5.0	0.046	<0.5	<5	10
Golden Gate South	HH-GG-009C	Core	191816	262.5	265.0	2.5	0.502	<0.5	13	10
Golden Gate South	HH-GG-009C	Core	191817	265.0	270.0	5.0	0.191	<0.5	16	10
Golden Gate South	HH-GG-009C	Core	191818	270.0	275.0	5.0	0.145	<0.5	12	10
Golden Gate South	HH-GG-009C	Core	191819	275.0	280.0	5.0	0.014	<0.5	6	<10
Golden Gate South	HH-GG-009C	Core	191820	280.0	285.0	5.0	0.27	<0.5	11	10
Golden Gate South	HH-GG-009C	Core	191821	285.0	289.0	4.0	0.063	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191822	289.0	291.5	2.5	0.693	<0.5	45	10
Golden Gate South	HH-GG-009C	Core	191823	291.5	296.2	4.7	0.008	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191824	296.2	300.0	3.8	0.299	1	18	10
Golden Gate South	HH-GG-009C	Core	191825	300.0	305.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191826	305.0	308.0	3.0	0.15	<0.5	7	<10
Golden Gate South	HH-GG-009C	Core	191827	308.0	310.7	2.7	1.055	<0.5	17	10
Golden Gate South	HH-GG-009C	Core	191828	310.7	315.0	4.3	0.41	<0.5	9	<10
Golden Gate South	HH-GG-009C	Core	191829	315.0	320.0	5.0	0.034	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191830	320.0	325.0	5.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191831	325.0	330.0	5.0	0.244	0.5	14	<10
Golden Gate South	HH-GG-009C	Core	191832	330.0	335.0	5.0	0.085	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191833	335.0	340.0	5.0	0.054	<0.5	<5	10
Golden Gate South	HH-GG-009C	Core	191835	340.0	345.0	5.0	0.07	0.6	10	10
Golden Gate South	HH-GG-009C	Core	191836	345.0	348.0	3.0	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191837	348.0	351.4	3.4	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191838	351.4	353.8	2.4	0.237	<0.5	10	10
Golden Gate South	HH-GG-009C	Core	191839	353.8	356.2	2.4	0.024	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191840	356.2	360.0	3.8	0.066	0.7	62	10
Golden Gate South	HH-GG-009C	Core	191841	360.0	365.0	5.0	0.063	<0.5	20	10
Golden Gate South	HH-GG-009C	Core	191842	365.0	370.0	5.0	<0.005	<0.5	10	<10
Golden Gate South	HH-GG-009C	Core	191843	370.0	373.0	3.0	<0.005	<0.5	9	10
Golden Gate South	HH-GG-009C	Core	191844	373.0	375.4	2.4	0.007	0.8	28	10
Golden Gate South	HH-GG-009C	Core	191846	375.4	380.0	4.6	0.005	<0.5	12	10
Golden Gate South	HH-GG-009C	Core	191848	380.0	382.2	2.2	<0.005	<0.5	6	<10
Golden Gate South	HH-GG-009C	Core	191849	382.2	385.0	2.8	<0.005	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191850	385.0	390.0	5.0	0.115	<0.5	24	10
Golden Gate South	HH-GG-009C	Core	191851	390.0	395.0	5.0	0.152	<0.5	7	<10
Golden Gate South	HH-GG-009C	Core	191852	395.0	400.0	5.0	0.287	<0.5	<5	<10

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23 ppm	ME-ICP61 ppm	ME-ICP61 ppm	ME-ICP61 ppm
Golden Gate South	HH-GG-009C	Core	191853	400.0	405.0	5.0	1.29	<0.5	20	10
Golden Gate South	HH-GG-009C	Core	191854	405.0	410.0	5.0	0.481	<0.5	15	<10
Golden Gate South	HH-GG-009C	Core	191855	410.0	412.4	2.4	0.621	1.2	12	10
Golden Gate South	HH-GG-009C	Core	191856	412.4	415.0	2.6	1.885	2.8	58	10
Golden Gate South	HH-GG-009C	Core	191858	415.0	420.0	5.0	1.265	<0.5	29	<10
Golden Gate South	HH-GG-009C	Core	191859	420.0	422.7	2.7	0.49	<0.5	19	<10
Golden Gate South	HH-GG-009C	Core	191860	422.7	426.0	3.3	1.525	0.5	40	<10
Golden Gate South	HH-GG-009C	Core	191861	426.0	430.0	4.0	0.516	6.8	102	20
Golden Gate South	HH-GG-009C	Core	191862	430.0	435.0	5.0	0.554	0.8	61	10
Golden Gate South	HH-GG-009C	Core	191864	435.0	440.0	5.0	0.175	<0.5	26	10
Golden Gate South	HH-GG-009C	Core	191865	440.0	445.0	5.0	0.021	<0.5	21	10
Golden Gate South	HH-GG-009C	Core	191866	445.0	450.0	5.0	0.105	<0.5	27	10
Golden Gate South	HH-GG-009C	Core	191867	450.0	454.1	4.1	0.428	0.7	42	10
Golden Gate South	HH-GG-009C	Core	191868	454.1	457.5	3.4	3.33	2	85	10
Golden Gate South	HH-GG-009C	Core	191869	457.5	460.5	3.0	0.233	<0.5	35	10
Golden Gate South	HH-GG-009C	Core	191870	460.5	465.0	4.5	0.197	<0.5	33	10
Golden Gate South	HH-GG-009C	Core	191871	465.0	470.0	5.0	0.06	<0.5	25	10
Golden Gate South	HH-GG-009C	Core	191872	470.0	475.0	5.0	0.267	<0.5	29	10
Golden Gate South	HH-GG-009C	Core	191873	475.0	480.0	5.0	0.035	<0.5	12	30
Golden Gate South	HH-GG-009C	Core	191874	480.0	485.0	5.0	0.044	<0.5	30	10
Golden Gate South	HH-GG-009C	Core	191875	485.0	490.0	5.0	0.418	<0.5	36	10
Golden Gate South	HH-GG-009C	Core	191876	490.0	495.0	5.0	0.444	3.4	34	10
Golden Gate South	HH-GG-009C	Core	191877	495.0	500.0	5.0	0.209	<0.5	27	10
Golden Gate South	HH-GG-009C	Core	191878	500.0	505.0	5.0	0.068	<0.5	31	20
Golden Gate South	HH-GG-009C	Core	191879	505.0	508.2	3.2	0.001	<0.5	18	20
Golden Gate South	HH-GG-009C	Core	191880	508.2	512.1	3.9	0.024	<0.5	25	20
Golden Gate South	HH-GG-009C	Core	191881	512.1	515.6	3.5	0.12	<0.5	24	20
Golden Gate South	HH-GG-009C	Core	191882	515.6	518.8	3.2	0.119	<0.5	8	10
Golden Gate South	HH-GG-009C	Core	191883	518.8	520.7	1.9	1.235	0.7	43	10
Golden Gate South	HH-GG-009C	Core	191884	520.7	525.0	4.3	0.496	<0.5	21	10
Golden Gate South	HH-GG-009C	Core	191885	525.0	530.0	5.0	0.252	<0.5	22	10
Golden Gate South	HH-GG-009C	Core	191886	530.0	535.0	5.0	0.324	0.6	27	10
Golden Gate South	HH-GG-009C	Core	191887	535.0	539.6	4.6	0.127	<0.5	10	10
Golden Gate South	HH-GG-009C	Core	191888	539.6	544.0	4.4	0.287	<0.5	17	10
Golden Gate South	HH-GG-009C	Core	191890	544.0	549.0	5.0	0.08	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191891	549.0	554.0	5.0	0.179	<0.5	11	10
Golden Gate South	HH-GG-009C	Core	191892	554.0	558.0	4.0	0.338	<0.5	12	10
Golden Gate South	HH-GG-009C	Core	191893	558.0	561.0	3.0	0.092	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191894	561.0	565.5	4.5	0.119	<0.5	5	<10
Golden Gate South	HH-GG-009C	Core	191895	565.5	570.5	5.0	0.633	<0.5	25	<10
Golden Gate South	HH-GG-009C	Core	191896	570.5	575.0	4.5	0.042	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191897	575.0	580.0	5.0	0.168	<0.5	5	<10
Golden Gate South	HH-GG-009C	Core	191898	580.0	585.0	5.0	0.194	<0.5	8	<10
Golden Gate South	HH-GG-009C	Core	191899	585.0	588.0	3.0	0.081	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191900	588.0	590.7	2.7	0.268	<0.5	16	<10

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23	ME-ICP61	ME-ICP61	ME-ICP61
				ppm	ppm	ppm	ppm			
Golden Gate South	HH-GG-009C	Core	191901	590.7	595.0	4.3	0.054	<0.5	8	<10
Golden Gate South	HH-GG-009C	Core	191902	595.0	600.0	5.0	0.001	<0.5	6	<10
Golden Gate South	HH-GG-009C	Core	191903	600.0	605.0	5.0	0.057	<0.5	7	<10
Golden Gate South	HH-GG-009C	Core	191904	605.0	609.0	4.0	0.088	<0.5	8	10
Golden Gate South	HH-GG-009C	Core	191905	609.0	612.0	3.0	1.15	0.5	30	10
Golden Gate South	HH-GG-009C	Core	191907	612.0	617.0	5.0	2.14	<0.5	42	10
Golden Gate South	HH-GG-009C	Core	191908	617.0	622.0	5.0	0.823	0.7	34	10
Golden Gate South	HH-GG-009C	Core	191909	622.0	626.2	4.2	1.635	<0.5	33	10
Golden Gate South	HH-GG-009C	Core	191910	626.2	632.5	6.3	1.135	0.6	42	10
Golden Gate South	HH-GG-009C	Core	191911	632.5	636.8	4.3	0.144	0.6	36	10
Golden Gate South	HH-GG-009C	Core	191912	636.8	641.5	4.7	0.134	<0.5	17	10
Golden Gate South	HH-GG-009C	Core	191913	641.5	645.5	4.0	0.093	<0.5	17	10
Golden Gate South	HH-GG-009C	Core	191914	645.5	650.0	4.5	0.082	<0.5	9	<10
Golden Gate South	HH-GG-009C	Core	191915	650.0	655.0	5.0	1.87	3.1	62	10
Golden Gate South	HH-GG-009C	Core	191916	655.0	660.1	5.1	1	1.8	37	10
Golden Gate South	HH-GG-009C	Core	191917	660.1	665.0	4.9	1.1	0.7	35	10
Golden Gate South	HH-GG-009C	Core	191918	665.0	670.0	5.0	1.005	0.7	31	10
Golden Gate South	HH-GG-009C	Core	191920	670.0	675.0	5.0	0.957	1	38	10
Golden Gate South	HH-GG-009C	Core	191921	675.0	680.0	5.0	0.732	<0.5	29	10
Golden Gate South	HH-GG-009C	Core	191922	680.0	685.0	5.0	0.921	<0.5	28	10
Golden Gate South	HH-GG-009C	Core	191923	685.0	689.3	4.3	0.533	0.5	24	<10
Golden Gate South	HH-GG-009C	Core	191924	689.3	694.3	5.0	0.667	0.6	31	10
Golden Gate South	HH-GG-009C	Core	191925	694.3	698.5	4.2	0.495	<0.5	25	10
Golden Gate South	HH-GG-009C	Core	191926	698.5	702.5	4.0	0.892	1.1	39	10
Golden Gate South	HH-GG-009C	Core	191927	702.5	705.5	3.0	0.602	2.4	28	10
Golden Gate South	HH-GG-009C	Core	191928	705.5	710.0	4.5	0.474	1.4	30	10
Golden Gate South	HH-GG-009C	Core	191929	710.0	715.0	5.0	0.481	<0.5	26	10
Golden Gate South	HH-GG-009C	Core	191930	715.0	720.0	5.0	0.146	<0.5	18	10
Golden Gate South	HH-GG-009C	Core	191931	720.0	725.0	5.0	0.164	<0.5	22	10
Golden Gate South	HH-GG-009C	Core	191932	725.0	730.0	5.0	0.21	2.2	37	10
Golden Gate South	HH-GG-009C	Core	191933	730.0	735.0	5.0	0.671	<0.5	25	10
Golden Gate South	HH-GG-009C	Core	191934	735.0	740.0	5.0	0.698	<0.5	39	10
Golden Gate South	HH-GG-009C	Core	191935	740.0	745.0	5.0	0.091	<0.5	41	10
Golden Gate South	HH-GG-009C	Core	191936	745.0	750.0	5.0	0.055	<0.5	21	10
Golden Gate South	HH-GG-009C	Core	191937	750.0	755.0	5.0	0.197	<0.5	25	10
Golden Gate South	HH-GG-009C	Core	191938	755.0	760.0	5.0	0.872	<0.5	38	10
Golden Gate South	HH-GG-009C	Core	191939	760.0	765.0	5.0	0.158	<0.5	32	10
Golden Gate South	HH-GG-009C	Core	191940	765.0	770.0	5.0	0.226	<0.5	29	10
Golden Gate South	HH-GG-009C	Core	191941	770.0	775.0	5.0	0.285	<0.5	24	10
Golden Gate South	HH-GG-009C	Core	191942	775.0	777.9	2.9	0.253	<0.5	24	10
Golden Gate South	HH-GG-009C	Core	191943	777.9	782.0	4.1	0.152	<0.5	10	<10
Golden Gate South	HH-GG-009C	Core	191944	782.0	787.0	5.0	0.034	<0.5	6	<10
Golden Gate South	HH-GG-009C	Core	191945	787.0	790.0	3.0	0.225	0.8	33	10
Golden Gate South	HH-GG-009C	Core	191946	790.0	794.0	4.0	0.315	2.9	41	<10
Golden Gate South	HH-GG-009C	Core	191948	794.0	797.0	3.0	0.221	0.7	27	<10

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23	ME-ICP61	ME-ICP61	ME-ICP61
				ppm	ppm	ppm	ppm			
Golden Gate South	HH-GG-009C	Core	191949	797.0	801.9	4.9	0.36	<0.5	24	<10
Golden Gate South	HH-GG-009C	Core	191950	801.9	806.5	4.6	0.398	0.9	31	<10
Golden Gate South	HH-GG-009C	Core	191951	806.5	811.2	4.7	0.483	<0.5	21	10
Golden Gate South	HH-GG-009C	Core	191952	811.2	816.0	4.8	0.983	<0.5	30	10
Golden Gate South	HH-GG-009C	Core	191953	816.0	821.0	5.0	0.594	<0.5	29	<10
Golden Gate South	HH-GG-009C	Core	191954	821.0	826.0	5.0	0.701	1.2	24	<10
Golden Gate South	HH-GG-009C	Core	191955	826.0	830.5	4.5	0.601	1.1	31	<10
Golden Gate South	HH-GG-009C	Core	191956	830.5	835.0	4.5	0.762	<0.5	24	<10
Golden Gate South	HH-GG-009C	Core	191957	835.0	839.6	4.6	0.618	<0.5	31	10
Golden Gate South	HH-GG-009C	Core	191958	839.6	844.4	4.8	0.593	<0.5	23	10
Golden Gate South	HH-GG-009C	Core	191960	844.4	849.1	4.7	0.539	0.5	31	<10
Golden Gate South	HH-GG-009C	Core	191961	849.1	854.2	5.1	0.49	<0.5	25	10
Golden Gate South	HH-GG-009C	Core	191962	854.2	859.3	5.1	0.388	<0.5	30	10
Golden Gate South	HH-GG-009C	Core	191963	859.3	864.0	4.7	0.449	<0.5	31	10
Golden Gate South	HH-GG-009C	Core	191964	864.0	869.0	5.0	0.321	<0.5	34	10
Golden Gate South	HH-GG-009C	Core	191965	869.0	873.8	4.8	0.265	<0.5	33	10
Golden Gate South	HH-GG-009C	Core	191966	873.8	878.8	5.0	0.271	<0.5	26	10
Golden Gate South	HH-GG-009C	Core	191967	878.8	883.8	5.0	0.394	<0.5	28	10
Golden Gate South	HH-GG-009C	Core	191968	883.8	888.5	4.7	0.874	0.6	53	10
Golden Gate South	HH-GG-009C	Core	191969	888.5	893.5	5.0	0.695	0.5	38	10
Golden Gate South	HH-GG-009C	Core	191970	893.5	900.0	6.5	0.175	<0.5	11	10
Golden Gate South	HH-GG-009C	Core	191972	900.0	905.0	5.0	0.366	<0.5	12	10
Golden Gate South	HH-GG-009C	Core	191973	905.0	910.0	5.0	0.35	<0.5	13	10
Golden Gate South	HH-GG-009C	Core	191974	910.0	915.0	5.0	0.373	<0.5	14	<10
Golden Gate South	HH-GG-009C	Core	191975	915.0	920.0	5.0	0.015	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191976	920.0	925.0	5.0	0.018	<0.5	<5	<10
Golden Gate South	HH-GG-009C	Core	191977	925.0	930.0	5.0	0.309	<0.5	13	10
Golden Gate South	HH-GG-009C	Core	191978	930.0	935.0	5.0	0.279	<0.5	28	10
Golden Gate South	HH-GG-009C	Core	191979	935.0	940.0	5.0	0.277	<0.5	25	10
Golden Gate South	HH-GG-009C	Core	191980	940.0	945.0	5.0	0.631	4.8	57	10
Golden Gate South	HH-GG-009C	Core	191981	945.0	950.0	5.0	0.552	<0.5	31	10

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23 ppm	ME-ICP61 ppm	ME-ICP61 ppm	ME-ICP61 ppm
Golden Gate South	HH-GG-010C	Core	191982	0.0	35.0	35.0	0.01	4.5	8	30
Golden Gate South	HH-GG-010C	Core	191983	35.0	50.0	15.0	0.001	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	191985	50.0	80.0	30.0	0.006	<0.5	6	<10
Golden Gate South	HH-GG-010C	Core	191986	80.0	85.0	5.0	0.222	<0.5	19	20
Golden Gate South	HH-GG-010C	Core	191987	85.0	90.0	5.0	0.16	0.5	17	10
Golden Gate South	HH-GG-010C	Core	191988	90.0	95.0	5.0	0.054	<0.5	15	20
Golden Gate South	HH-GG-010C	Core	191989	95.0	100.0	5.0	0.054	<0.5	22	20
Golden Gate South	HH-GG-010C	Core	191990	100.0	110.0	10.0	0.121	1.1	21	1320
Golden Gate South	HH-GG-010C	Core	191991	110.0	115.0	5.0	0.207	1.6	23	170
Golden Gate South	HH-GG-010C	Core	191992	115.0	120.0	5.0	0.085	<0.5	18	20
Golden Gate South	HH-GG-010C	Core	191993	120.0	125.0	5.0	0.584	0.9	19	10
Golden Gate South	HH-GG-010C	Core	191994	125.0	130.0	5.0	0.523	8.9	33	470
Golden Gate South	HH-GG-010C	Core	191995	130.0	135.0	5.0	0.194	11.2	52	1760
Golden Gate South	HH-GG-010C	Core	191996	135.0	139.8	4.8	0.563	2.6	32	10
Golden Gate South	HH-GG-010C	Core	191997	139.8	144.8	5.0	0.251	<0.5	19	10
Golden Gate South	HH-GG-010C	Core	191998	144.8	150.0	5.2	0.111	<0.5	15	10
Golden Gate South	HH-GG-010C	Core	191999	150.0	155.0	5.0	0.027	<0.5	10	20
Golden Gate South	HH-GG-010C	Core	192000	155.0	160.0	5.0	0.205	1.5	42	10
Golden Gate South	HH-GG-010C	Core	192714	160.0	165.0	5.0	0.019	1.9	36	10
Golden Gate South	HH-GG-010C	Core	192715	165.0	170.0	5.0	0.086	0.6	10	260
Golden Gate South	HH-GG-010C	Core	192716	170.0	175.0	5.0	0.034	<0.5	<5	10
Golden Gate South	HH-GG-010C	Core	192718	175.0	179.9	4.9	0.127	<0.5	11	10
Golden Gate South	HH-GG-010C	Core	192719	179.9	185.0	5.1	0.048	<0.5	6	10
Golden Gate South	HH-GG-010C	Core	192720	185.0	190.0	5.0	0.035	<0.5	13	20
Golden Gate South	HH-GG-010C	Core	192721	190.0	195.0	5.0	0.098	<0.5	8	20
Golden Gate South	HH-GG-010C	Core	192722	195.0	200.0	5.0	0.089	<0.5	14	20
Golden Gate South	HH-GG-010C	Core	192723	200.0	205.0	5.0	0.052	6.5	31	20
Golden Gate South	HH-GG-010C	Core	192724	205.0	210.0	5.0	0.096	<0.5	14	20
Golden Gate South	HH-GG-010C	Core	192725	210.0	215.0	5.0	0.098	<0.5	9	20
Golden Gate South	HH-GG-010C	Core	192726	215.0	220.0	5.0	0.037	<0.5	10	20
Golden Gate South	HH-GG-010C	Core	192728	220.0	225.0	5.0	0.027	0.7	11	20
Golden Gate South	HH-GG-010C	Core	192729	225.0	230.0	5.0	0.022	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	192730	230.0	235.0	5.0	0.053	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	192731	235.0	240.0	5.0	0.041	<0.5	6	10
Golden Gate South	HH-GG-010C	Core	192732	240.0	245.0	5.0	0.122	<0.5	7	10
Golden Gate South	HH-GG-010C	Core	192733	245.0	250.0	5.0	0.059	1.8	6	1080
Golden Gate South	HH-GG-010C	Core	192734	250.0	255.0	5.0	0.069	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	192735	255.0	260.0	5.0	0.129	1.2	5	<10
Golden Gate South	HH-GG-010C	Core	192736	260.0	265.0	5.0	0.115	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	192737	265.0	270.0	5.0	0.035	<0.5	<5	10
Golden Gate South	HH-GG-010C	Core	192738	270.0	275.0	5.0	0.212	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	192739	275.0	279.9	4.9	0.023	<0.5	<5	30
Golden Gate South	HH-GG-010C	Core	192740	279.9	285.0	5.1	0.019	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	192741	285.0	290.0	5.0	0.011	<0.5	<5	<10

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23 ppm	ME-ICP61 ppm	ME-ICP61 ppm	ME-ICP61 ppm
Golden Gate South	HH-GG-010C	Core	192743	290.0	295.0	5.0	0.02	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	192744	295.0	300.0	5.0	0.001	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	192745	300.0	304.9	4.9	0.001	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	192746	304.9	310.0	5.1	0.024	<0.5	9	10
Golden Gate South	HH-GG-010C	Core	192747	310.0	314.8	4.8	0.042	0.6	8	<10
Golden Gate South	HH-GG-010C	Core	192748	314.8	319.6	4.8	0.019	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	192749	319.6	324.4	4.8	0.039	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	192750	324.4	329.6	5.2	0.038	0.7	<5	<10
Golden Gate South	HH-GG-010C	Core	192751	329.6	334.9	5.3	0.064	2.9	59	10
Golden Gate South	HH-GG-010C	Core	192752	334.9	340.0	5.1	0.091	0.5	11	10
Golden Gate South	HH-GG-010C	Core	192753	340.0	245.0	-95.0	0.033	<0.5	10	10
Golden Gate South	HH-GG-010C	Core	192754	245.0	350.0	105.0	0.042	<0.5	14	10
Golden Gate South	HH-GG-010C	Core	192755	350.0	354.3	4.3	0.064	<0.5	9	10
Golden Gate South	HH-GG-010C	Core	192756	354.3	359.3	5.0	0.088	0.5	12	10
Golden Gate South	HH-GG-010C	Core	192758	359.3	364.4	5.1	0.03	<0.5	10	10
Golden Gate South	HH-GG-010C	Core	192759	364.4	369.5	5.1	0.188	0.6	16	10
Golden Gate South	HH-GG-010C	Core	192760	369.5	374.3	4.8	0.176	0.5	17	10
Golden Gate South	HH-GG-010C	Core	192761	374.3	378.7	4.4	0.094	11.7	152	<10
Golden Gate South	HH-GG-010C	Core	192762	378.7	383.2	4.5	0.114	<0.5	13	10
Golden Gate South	HH-GG-010C	Core	192763	383.2	388.4	5.2	0.057	<0.5	12	10
Golden Gate South	HH-GG-010C	Core	192764	388.4	393.4	5.0	0.293	7.9	27	<10
Golden Gate South	HH-GG-010C	Core	192765	393.4	398.0	4.6	0.195	1.6	15	10
Golden Gate South	HH-GG-010C	Core	192766	398.0	403.0	5.0	0.177	<0.5	15	20
Golden Gate South	HH-GG-010C	Core	192767	403.0	408.0	5.0	0.187	1.9	15	10
Golden Gate South	HH-GG-010C	Core	192768	408.0	413.0	5.0	0.089	<0.5	14	10
Golden Gate South	HH-GG-010C	Core	192770	413.0	418.0	5.0	0.188	0.6	18	760
Golden Gate South	HH-GG-010C	Core	192771	418.0	423.0	5.0	0.173	0.8	21	60
Golden Gate South	HH-GG-010C	Core	192772	423.0	428.0	5.0	0.17	0.7	28	10
Golden Gate South	HH-GG-010C	Core	192773	428.0	433.0	5.0	0.296	0.8	21	10
Golden Gate South	HH-GG-010C	Core	192774	433.0	438.1	5.1	0.193	0.8	25	680
Golden Gate South	HH-GG-010C	Core	192775	438.1	443.0	4.9	0.287	<0.5	15	10
Golden Gate South	HH-GG-010C	Core	192776	443.0	448.0	5.0	0.367	0.5	13	10
Golden Gate South	HH-GG-010C	Core	192777	448.0	453.0	5.0	0.11	<0.5	9	10
Golden Gate South	HH-GG-010C	Core	192778	453.0	457.8	4.8	0.209	<0.5	18	10
Golden Gate South	HH-GG-010C	Core	192779	457.8	462.5	4.7	0.152	1.3	33	10
Golden Gate South	HH-GG-010C	Core	192780	462.5	467.0	4.5	0.595	1.6	31	10
Golden Gate South	HH-GG-010C	Core	192781	467.0	472.0	5.0	0.338	0.9	30	10
Golden Gate South	HH-GG-010C	Core	192782	472.0	476.8	4.8	0.284	4.4	36	10
Golden Gate South	HH-GG-010C	Core	192783	476.8	481.7	4.9	0.084	<0.5	9	20
Golden Gate South	HH-GG-010C	Core	192784	481.7	486.0	4.3	0.257	<0.5	13	10
Golden Gate South	HH-GG-010C	Core	192785	486.0	491.0	5.0	0.04	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	192786	491.0	496.1	5.1	0.061	<0.5	<5	10
Golden Gate South	HH-GG-010C	Core	192787	496.1	501.2	5.1	0.095	0.5	5	10
Golden Gate South	HH-GG-010C	Core	192788	501.2	506.0	4.8	0.063	<0.5	<5	10
Golden Gate South	HH-GG-010C	Core	192790	506.0	511.0	5.0	0.123	0.9	13	220

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23 ppm	ME-ICP61 ppm	ME-ICP61 ppm	ME-ICP61 ppm
Golden Gate South	HH-GG-010C	Core	192791	511.0	517.5	6.5	0.17	19.4	94	<10
Golden Gate South	HH-GG-010C	Core	192792	517.5	523.5	6.0	0.085	1	12	10
Golden Gate South	HH-GG-010C	Core	192793	523.5	527.9	4.4	0.065	<0.5	<5	10
Golden Gate South	HH-GG-010C	Core	192794	527.9	532.4	4.5	0.327	<0.5	14	10
Golden Gate South	HH-GG-010C	Core	192795	532.4	536.3	3.9	0.296	1	15	60
Golden Gate South	HH-GG-010C	Core	192796	536.3	541.3	5.0	0.104	<0.5	6	10
Golden Gate South	HH-GG-010C	Core	192797	541.3	546.0	4.7	0.231	0.7	15	10
Golden Gate South	HH-GG-010C	Core	192798	546.0	550.0	4.0	0.093	<0.5	8	10
Golden Gate South	HH-GG-010C	Core	192799	550.0	555.0	5.0	0.099	<0.5	10	10
Golden Gate South	HH-GG-010C	Core	192800	555.0	559.8	4.8	0.128	0.6	11	10
Golden Gate South	HH-GG-010C	Core	2276501	559.8	565.0	5.2	0.115	<0.5	8	<10
Golden Gate South	HH-GG-010C	Core	2276502	565.0	570.1	5.1	0.102	<0.5	9	10
Golden Gate South	HH-GG-010C	Core	2276503	570.1	575.0	4.9	0.162	<0.5	5	<10
Golden Gate South	HH-GG-010C	Core	2276504	575.0	579.9	4.9	0.151	<0.5	9	<10
Golden Gate South	HH-GG-010C	Core	2276505	579.9	585.0	5.1	0.118	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	2276506	585.0	590.0	5.0	0.04	<0.5	9	10
Golden Gate South	HH-GG-010C	Core	2276507	590.0	595.0	5.0	0.058	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	2276509	595.0	599.8	4.8	0.154	<0.5	6	<10
Golden Gate South	HH-GG-010C	Core	2276510	599.8	605.0	5.2	0.224	<0.5	13	10
Golden Gate South	HH-GG-010C	Core	2276511	605.0	609.9	4.9	0.256	8.9	27	<10
Golden Gate South	HH-GG-010C	Core	2276512	609.9	615.0	5.1	0.116	<0.5	5	<10
Golden Gate South	HH-GG-010C	Core	2276513	615.0	620.0	5.0	0.448	1	16	<10
Golden Gate South	HH-GG-010C	Core	2276515	620.0	625.0	5.0	0.418	6.3	32	<10
Golden Gate South	HH-GG-010C	Core	2276516	625.0	630.0	5.0	0.284	<0.5	19	<10
Golden Gate South	HH-GG-010C	Core	2276517	630.0	635.0	5.0	0.064	<0.5	14	10
Golden Gate South	HH-GG-010C	Core	2276518	635.0	640.0	5.0	0.07	<0.5	7	10
Golden Gate South	HH-GG-010C	Core	2276519	640.0	645.0	5.0	0.155	1.9	20	<10
Golden Gate South	HH-GG-010C	Core	2276520	645.0	650.0	5.0	0.096	<0.5	13	10
Golden Gate South	HH-GG-010C	Core	2276521	650.0	655.0	5.0	0.076	1.5	20	<10
Golden Gate South	HH-GG-010C	Core	2276522	655.0	660.0	5.0	0.131	<0.5	6	<10
Golden Gate South	HH-GG-010C	Core	2276523	660.0	665.0	5.0	0.064	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	2276524	665.0	670.0	5.0	0.105	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	2276525	670.0	675.1	5.1	0.13	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	2276526	675.1	680.0	4.9	0.057	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	2276527	680.0	685.0	5.0	0.143	<0.5	<5	<10
Golden Gate South	HH-GG-010C	Core	2276528	685.0	690.0	5.0	0.216	<0.5	8	10
Golden Gate South	HH-GG-010C	Core	2276529	690.0	695.0	5.0	0.171	0.9	13	<10
Golden Gate South	HH-GG-010C	Core	2276530	695.0	700.0	5.0	0.186	9.6	18	<10
Golden Gate South	HH-GG-010C	Core	2276531	700.0	705.0	5.0	0.113	<0.5	13	10
Golden Gate South	HH-GG-010C	Core	2276532	705.0	709.9	4.9	0.299	63.7	119	10
Golden Gate South	HH-GG-010C	Core	2276533	709.9	715.0	5.1	0.294	<0.5	12	10
Golden Gate South	HH-GG-010C	Core	2276534	715.0	720.1	5.1	0.149	<0.5	<5	10
Golden Gate South	HH-GG-010C	Core	2276535	720.1	725.0	4.9	0.077	<0.5	6	10
Golden Gate South	HH-GG-010C	Core	2276536	725.0	730.1	5.1	0.09	<0.5	6	<10
Golden Gate South	HH-GG-010C	Core	2276537	730.1	735.0	4.9	0.085	<0.5	5	10

Appendix A: Drill Hole Assay Tables (Gold, Silver, Antimony, Tungsten)

Location	Hole ID	Drill Technique	Sample ID	Sample Parameters			Au	Ag	Sb	W
				From (ft)	To (ft)	Smpl Lgth (ft)	Au-AA23 ppm	ME-ICP61 ppm	ME-ICP61 ppm	ME-ICP61 ppm
Golden Gate South	HH-GG-010C	Core	2276538	735.0	740.0	5.0	0.118	0.8	9	10
Golden Gate South	HH-GG-010C	Core	2276539	740.0	745.0	5.0	0.124	<0.5	12	10
Golden Gate South	HH-GG-010C	Core	2276540	745.0	750.0	5.0	0.014	<0.5	<5	10
Golden Gate South	HH-GG-010C	Core	2276541	750.0	755.0	5.0	0.056	<0.5	6	10
Golden Gate South	HH-GG-010C	Core	2276542	755.0	760.0	5.0	0.078	<0.5	7	10
Golden Gate South	HH-GG-010C	Core	2276544	760.0	765.0	5.0	0.04	<0.5	<5	10
Golden Gate South	HH-GG-010C	Core	2276545	765.0	769.9	4.9	0.071	<0.5	10	20
Golden Gate South	HH-GG-010C	Core	2276546	769.9	775.0	5.1	0.047	<0.5	14	20
Golden Gate South	HH-GG-010C	Core	2276547	775.0	780.0	5.0	0.17	<0.5	16	10
Golden Gate South	HH-GG-010C	Core	2276548	780.0	785.1	5.1	0.249	1	26	10
Golden Gate South	HH-GG-010C	Core	2276549	785.1	790.0	4.9	0.298	0.6	18	10
Golden Gate South	HH-GG-010C	Core	2276550	790.0	790.0	0.0	0.159	<0.5	10	10
Golden Gate South	HH-GG-010C	Core	2276551	790.0	799.9	9.9	0.396	0.5	14	10
Golden Gate South	HH-GG-010C	Core	2276552	799.9	805.0	5.1	0.194	0.7	18	10
Golden Gate South	HH-GG-010C	Core	2276553	805.0	810.0	5.0	0.169	0.5	11	10
Golden Gate South	HH-GG-010C	Core	2276554	810.0	815.0	5.0	0.168	0.6	10	10
Golden Gate South	HH-GG-010C	Core	2276555	815.0	820.0	5.0	0.117	0.8	11	10

Appendix B: JORC Code, 2012 Edition

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> This announcement contains exploration results of three drill holes with the ID reference HH-GG25-008C, HH-GG25-009C, and HH-GG25-010C. The data is: drill hole data; sample data; assay data; and geological data. Supporting data includes drill collar locations in UTM metric data, together with dip, azimuth, altitude and end of hole data. Reported assay data is gold, silver, antimony and tungsten. The Company has completed multi-element analysis and has referred to gold and tungsten mineralisation and geochemistry in this announcement. Please note that the primary data of the core samples (start, finish, interval) is in imperial feet. Summarised intervals also include measurements in metric metres. Note that the operating jurisdiction uses imperial measurement system. The assay data is derived independent professional laboratory services company of submitted core samples from HH-GG25-008C, HH-GG25-009C, and HH-GG25-010C. HH-GG25-008C, HH-GG25-009C, and HH-GG25-010C are diamond core holes. Sample intervals are contiguous and range in length individually from 30ft to 4.2ft. Note that samples at the upper

Criteria	JORC Code explanation	Commentary
		<p>parts of each hole have broader intervals due to core recovery (Refer below). Samples at middle and lower parts of each hole have narrower intervals (averaging 4.5ft). The samples are half-cut core prepared by industry standard core cutting saw by qualified personnel.</p> <ul style="list-style-type: none"> Geological data is derived from detailed geological and geotechnical logging by qualified personnel.
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> HH-GG25-008C, HH-GG25-009C, and HH-GG25-010C are diamond core drill holes that was drilled by Evolve Exploration Ltd using a Multipower MP500 modular core rig providing HQ diamond drill core. The drill core is not oriented.
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> Drill hole core recovery for HH-GG25-008C, HH-GG25-009C, and HH-GG25-010C was generally very good (a function of the solid lithologies) not uncommonly 100%. Generally, core recoveries in the fresh unoxidised sections of each hole oxidised were better than for the oxidised and weathered sections of each hole. Core recoveries in weather rocks was as low as 50% over short intervals.
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> 	<ul style="list-style-type: none"> Drill core was logged for lithology, alteration, mineralization, structure (geotechnical) using oriented core to a level which has enabled preliminary interpretations relating to style of mineralisation, host and thickness. At this stage no

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<p>Mineral Resource Estimates, mining studies or metallurgical studies are appropriate.</p> <ul style="list-style-type: none"> Drill core is also logged for RQD and Core recovery. Drill core is then digitized photographed wet and dry while whole after logging. The logging, as described above is both quality and quantitative. 100% of the relevant intersections were logged as per above.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> The HQ core was halved using a diamond core saw and sampled on geological intervals approximating 30 ft to 4.2 ft in length. Drill core was halved using a gasoline powered core saw by RML contract staff who maintain possession of the core at its Antimony Camp facility. Half-cut core samples were bagged and tagged using bar-coded sample tags and were securely stored prior to shipment at the Antimony Camp facility. Half cut core samples were transported by RML contractors under lock and key to ALS prep' lab' facility in Twin Falls, ID. No third-party shippers were involved in the shipping process; chain of custody forms were exchanged at ALS Minerals in Twin Falls and a copy kept on file. The remaining boxed cut core are kept at a secure locked facility in Donnelly, ID.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> ALS Minerals Twin Falls prep' lab' logs in the samples using the sample tag bar codes provided. Samples were then crushed to 70% less than 2mm, rotary split off 250g, pulverise split to better than 85% passing 75 microns. All samples were then shipped to ALS Minerals analytical laboratory in Vancouver, British Columbia.
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> Gold was assayed by analytical method Au-AA23: Au by fire assay and AAS 30g nominal sample weight. Multielement analysis was by analytical method ME-ICP61: 34 elements by HF-HNO₃-HClO₄ acid digestion, HCl leach and ICP-AES. Quantitatively dissolves nearly all elements for the majority of geological materials. Only the most resistive minerals, such as Zircons, are only partially dissolved. No geophysical tools, spectrometers, handheld XRF instruments, etc.. were used in the generation of the assay data. Certified reference materials (CRM) from an ISO certified supplier were inserted randomly into the sample stream at a ratio of 2%. CRMs were obtained for Meg LLC of Reno, Nevada; two separate CRMs were used for gold: a low grade and high-grade standard. Blank material was inserted randomly in the sample stream at a ratio of 2%. Blank material is commercially available pe-

Criteria	JORC Code explanation	Commentary
		<p>gravel that has been previously tested for gold concentrations.</p> <ul style="list-style-type: none"> Duplicates samples were collected by quarter cutting the core at randomly selected intervals. Two quarter-cut portions of core were sent for analysis; the remaining half is kept at a secure facility. Core intervals of poor recovery were not used for duplicate samples. Duplicate core samples were inserted into the sample stream at a ratio of 2%.
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> No verification of the <i>significant intersections by either independent or alternative company personnel</i> has been completed to date. The company acknowledges the material nature of the results and is planning a program of select verification assays. Such were the immediacy of the results; these verifications were not possible prior to the release of the [initial/first] results. The Company is confident that its sample security processes are adequate for the interim period. Sample results, certificates and results were sent via email to RML site contractors in Antimony Camp where results are analysed and interpreted. No assay adjustments have been carried out.
Location of data points	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> 	<ul style="list-style-type: none"> The drill hole location was achieved using handheld GPS programmed into the local coordinate system. The accuracy of the GPS is in line with best practice standards.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	
Data spacing and distribution	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> The assay data spacing of HH-GG25-008C, HH-GG25-009C, and HH-GG25-010C, the length and frequency of each sample and the collective coverage of the drill holes is best practise in terms of hole sample representativeness. All core of these holes were logged. Drill holes GG25-008C, HH-GG25-009C, and HH-GG25-010C are sufficiently close spaced to conclude that such mineralisation is continuous between the three holes within the known mineralising parameters described in each of the discussions of each drill hole, and by extension, representations may extrapolate between these holes. Cautionary Note: Three difference gold distribution models between Golden Gate North and Golden Gate South are provided in Figure 6. Important for exploration planning, there is currently insufficient data to be able to conclude which model is the most applicable. The Company intends testing the area between Golden Gate North and Golden Gate South in the immediate and upcoming field season.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is</i> 	<ul style="list-style-type: none"> The drill hole has a drill direction that is approaching perpendicular to the regional trend (lithologically and structurally) and also approaching

Criteria	JORC Code explanation	Commentary
	<p><i>known, considering the deposit type.</i></p> <ul style="list-style-type: none"> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<p>perpendicular to the known mineralisation of a historical tungsten mine. The purpose of the hole was to test the occurrence of known tungsten mineralisation at surface at depth.</p> <ul style="list-style-type: none"> Cautionary Note: There is insufficient data pertaining to sampling orientation and the local-scale orientation of mineralisation at this time to determine the true width of the gold intervals in this hole. Additional holes in all directions are required to determine whether the gold mineralisation is broadly pervasive or (to various degrees) spatially constrained. If for example, if the gold mineralisation is broadly pervasive, then the gold intervals in this announcement are true widths. If the gold mineralisation is spatially constrained, then the gold intervals in this announcement are not true widths.
Sample security	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> All drill core samples were delivered directly to RML's geologists on site where they remain under direct supervision at a secure site.
Audits or reviews	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> The competent person is unaware of the undertaking of audits or reviews for sampling technique and data, other than its own review.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, past sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> This announcement refers to the one project, Horse Heaven project in Idaho USA, comprising six hundred and ninety-nine (699) U.S. Federal lode mining claims covering 5,644 hectares and includes six hundred and eighty-nine (689) mining claims and ten lode mining claims referred as the Oberbillig Group. The competent person understands that the mining claims are all in good standing.
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> No exploration results reported in this release were performed by other parties.
Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> The project area is dominated by Cretaceous-aged granitic rocks relating to intrusive phases associated with the Atlanta Lobe of the Idaho Batholith. These largely granodiorite rocks have intruded Neoproterozoic-aged metasediments, comprising quartzites (which are dominant) calc-silicates, marble and black shale. The area and broader region are affected by broad regional folding and N-S, NNE-SSW, and NE-SW faults. Gold, antimony, tungsten and silver mineralisation is associated with hydrothermally altered and fractured granodiorites.

Criteria	JORC Code explanation	Commentary
Drillhole Information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drillhole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	<ul style="list-style-type: none"> The drillhole information for recovery HH-GG25-008C, HH-GG25-009C, and HH-GG25-010C are included in in-text tables (Table) with drill collar location data, altitude, dip, azimuth, and end of hole.
Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such</i> 	<ul style="list-style-type: none"> In reporting downhole gold intersections results of recovery HH-GG25-008C, HH-GG25-009C, and HH-GG25-010C, no maximum and minimum truncations were used. In reporting downhole gold intersections/intervals, assay results of HH-GG25-008C to 010C, weighted averages were required due to the fact that sample lengths were variant

Criteria	JORC Code explanation	Commentary
	<p><i>aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i></p> <ul style="list-style-type: none"> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<p>(between 2.2ft and 5.2ft). The sample interval length was multiplied by the sample assay data then divided by the total length of the interval.</p> <ul style="list-style-type: none"> No metal equivalents were used in this announcement.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> With reference to recovery HH-GG25-008C, HH-GG25-009C, and HH-GG25-010C, the holes were drilled close to perpendicular across the prospect-scale orientation of the known mineralisation. There is insufficient data pertaining to the gold mineralisation identified in recovery HH-GG25-008C, HH-GG25-009C, and HH-GG25-010C, to allow conclusive statements concerning the sampling orientation and the local-scale orientation of mineralisation. Therefore, the true width nature of the reported widths of the mineralisation (in rock chip channel and drilling) is not known.
Diagrams	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> A map and a cross section are provided with geolocation information (coordinates, northing and scale bar). Legends are included within each figure (where appropriate) and when additional explanation is required, this is given to the figure caption. Drill holes GG25-008C, HH-GG25-009C, and HH-GG25-010C are sufficiently close spaced to conclude that such

Criteria	JORC Code explanation	Commentary
		<p>mineralisation is continuous between the three holes within the known mineralising parameters described in each of the discussions of each drill hole, and by extension, representations may extrapolate between these holes (in diagrams).</p> <ul style="list-style-type: none"> Cautionary Note: Three difference gold distribution models between Golden Gate North and Golden Gate South are provided in Figure 6. Important for exploration planning, there is currently insufficient data to be able to conclude which model is the most applicable. The Company intends testing the area between Golden Gate North and Golden Gate South in the immediate and upcoming field season.
Balanced reporting	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> This announcement is considered to be fair and balanced with respect to the exploration results and interpretations based on them.
Other substantive exploration data	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock</i> 	<ul style="list-style-type: none"> There is no other material data associated with new exploration results in this announcement.

Criteria	JORC Code explanation	Commentary
	<p><i>characteristics; potential deleterious or contaminating substances.</i></p>	
Further work	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> The drill holes subject of this announcement, recovery HH-GG25-008C, HH-GG25-009C, and HH-GG25-010C, are part of the 10-hole diamond core program, which as the announcement reports, is completed. Drill hole data of HH-GG25-006C will be released to the market upon receipt. Further exploration (including but limited to mapping, surface sampling, and drilling) is required to assess the distribution of gold mineralisation between the Golden Gate North and Golden Gate South prospects. Three gold distribution models for the area between Golden Gate North and Golden Gate South have been generated (and provided to the market [Figure 6]) to assist exploration planning. A plan (Figure 2) and a cross sections (Figure 3, 4 and 5) are included in this announcement to provide a sense of location of the hole in relation to i) other drill holes, and ii) intersected mineralisation. The cross section included a geological interpretation.