

16th December 2025

SNX awarded advanced Saudi Arabia copper-gold project

Highlights

- Sierra Nevada Gold (ASX: SNX) notified as successful bidder for the 375km **As Safra Copper-Gold Project** in Saudi Arabia — proceeding to securing an exploration licence.
- **As Safra is a large-scale Cu-Au skarn system**, with extensive high-grade rock chips up to **244 g/t Au** and **11% Cu** (BRGM, 2000)¹ (see figure 3).
- It has a central **5.5km × 0.6km Cu-Au core** as defined by extensive historic workings and slag deposits, with mineralisation **open along strike under thin sand cover**.
- Ancient workings and dumps have been extensively rock chip sampled historically returning high grade Cu-Au along its exposed 5.5km of strike.
- **Limited historic drilling** (seven holes along the 5.5km strike extent for 2,060m) returned strong sulphide copper intercepts, including **5.0m @ 4.07% Cu** from 122m and **24.55m @ 1.69% Cu** from 146.45m (BRGM, 1969)².
- Intermittent exploration over the past 60 years has outlined multiple Cu, Au, Ag and Pb-Zn prospects across the larger As Safra project area (375km²), highlighting its broad polymetallic potential, (see figure 2).
- SNX has been granted a KSA Investment Licence and is advancing discussions with potential KSA partners: high level government engagement well received.
- SNX will participate as an exhibitor at the Future Mining Forum (FMF) in Riyadh in January 2026, a globally significant mining investment conference.

Sierra Nevada Gold (ASX: SNX) is pleased to announce it has received a *"Letter of Award"* from Kingdom of Saudi Arabia's (KSA) Ministry of Industry and Mineral Resources (MIMR) for the highly prospective **As Safra Copper-Gold Project** in KSA (see figure 1).

SNX's receipt of a Letter of Award follows the Company's successful participation in the recent competitive tender process and represents the first formal step toward securing the full exploration licence.

The As Safra Project hosts a **large-scale Cu-Au skarn system** with significant demonstrated high-grade potential and numerous untested targets across a district-scale mineralised footprint.

¹ *Geology and exploration of the As Safra copper-gold prospect, Technical Report, BRGM-TR-2000-8.*

² *Results of Exploratory Drilling at the As Safra Copper Prospect, Second Annual Report, chapter 1-2, BRGM 1970 JED 1.*

SNX Executive Director Peter Moore commented: "We are delighted to have been awarded the As Safra Project, which represents a major step forward in Sierra Nevada Gold's strategy to secure high-impact exploration assets in Tier-1 jurisdictions. As Safra is an exceptional opportunity, combining large-scale copper and gold potential, extensive mineralised strike, and multiple high-grade targets that have seen only limited historic drilling."

Receiving a Letter of Award places SNX in a strong position to participate in the rapid growth of Saudi Arabia's mining sector under Vision 2030. We look forward to completing the final licensing steps and commencing systematic exploration to unlock the full value of this highly prospective project."

Figure 1. Plan of the Arabian/Nubian Shield showing craton outline and notable mineral deposits and the location of the centrally located As Safra Project.

The award of As Safra represents a strategically significant expansion of SNX's footprint into one of the world's most underexplored but highly prospective mineral provinces. The Project strengthens the Company's exposure to Saudi Arabia's rapidly growing mining sector and aligns with the Kingdom's commitment to developing its domestic mineral endowment under Vision 2030.

As Safra adds a district-scale Cu-Au opportunity to SNX's portfolio, complementing its Nevadan assets and provides a potential second discovery pipeline. The Project's combination of high-grade copper and gold, extensive mineralised strike, and multiple untested geophysical and structural targets, positions As Safra as a cornerstone asset with the capacity to deliver transformational value through systematic exploration.

The As Safra Project exhibits a district-scale mineralised footprint characterised by well-developed metal zonation, transitioning from a central Cu-Au core into broader Ag-Cu-Pb and Pb-Zn-Ag distal systems (see figure 2). Despite numerous mineral occurrences across the project area, historical exploration has been limited and focused almost exclusively on the central corridor of ancient copper-gold workings, which

extends for **5.5km x 0.6km** (see figure 3). The abundance of ancient mine sites and slag deposits, combined with widespread mineralisation at surface, underscores the project's inherent prospectivity.

Mineralisation is associated with shearing and skarn alteration formed along reactive carbonate horizons adjacent to intrusive contacts. Historic drilling by the BRGM (*French Geological and Mining Research Bureau*) demonstrates the strength of the system, with sulphide-rich intercepts such as **24.55m @ 1.69% Cu and 5.0m @ 4.07% Cu**. Rock-chip assays returning up to **244g/t Au** and **11% Cu** highlight exceptional fertility within the central Cu-Au system. Historic IP surveys reveal multiple, largely untested chargeability anomalies interpreted as potential sulphide bodies at depth (see Figure 4). Thin cover across large parts of the project allows for additional blind discoveries.

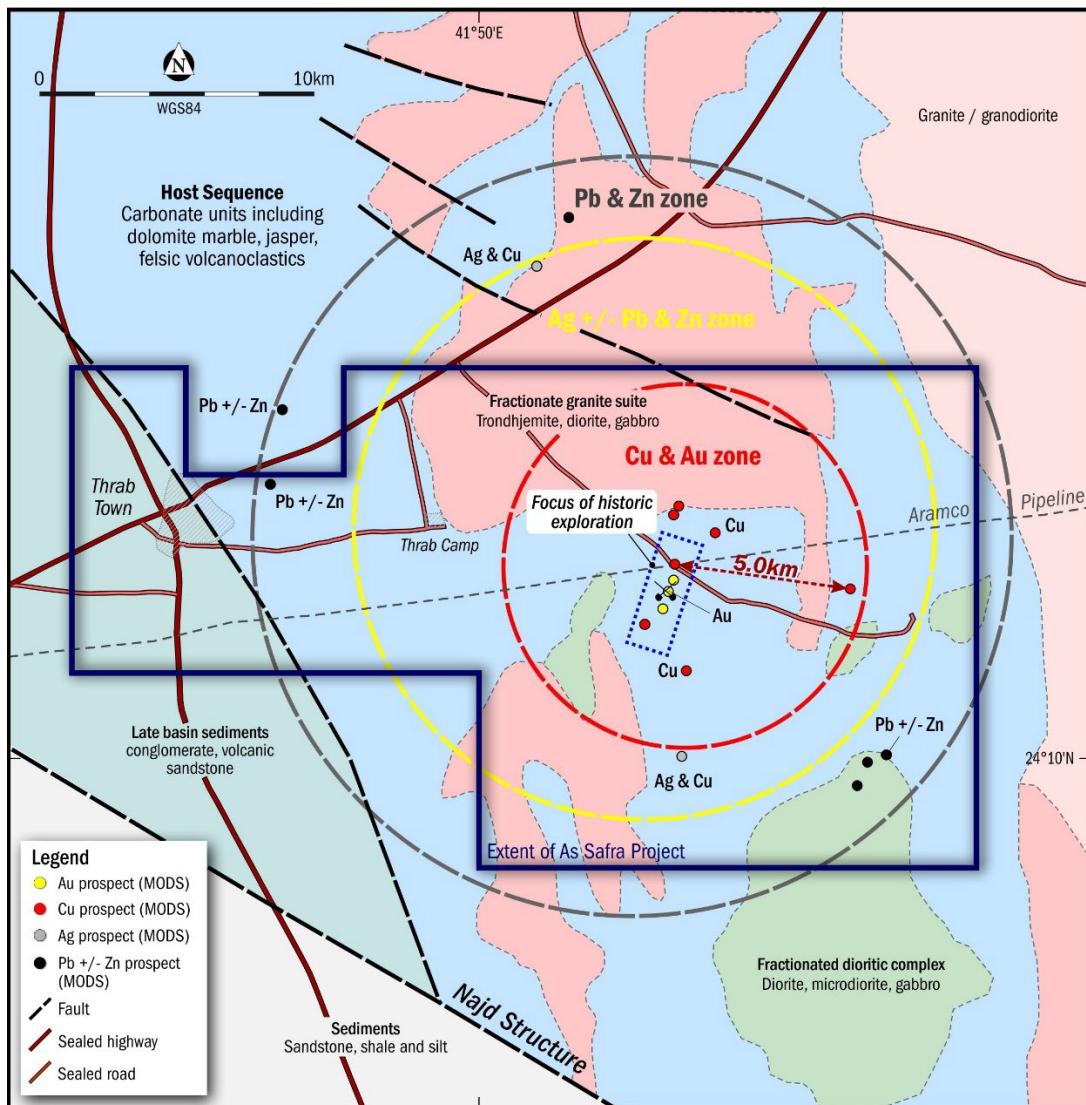


Figure 2. Geological setting of the 375km² As Safra Cu-Au project showing extent of metal zonation, paved roads and infrastructure.

SNX has commenced several exploration programs to refine and prioritise targets ahead of drilling. With full exploration licences expected next year, the Company will be positioned to undertake systematic drill testing designed to evaluate and advance high-priority targets.

As Safra – Exploration Potential Summary

Drilling at As Safra to date has been limited but highly encouraging, with high-grade copper sulphide mineralisation intersected over 3.5km of strike and rock-chip sampling defining more than 5.5km of continuous copper mineralisation, open in both directions and returning grades up to **11% Cu**.

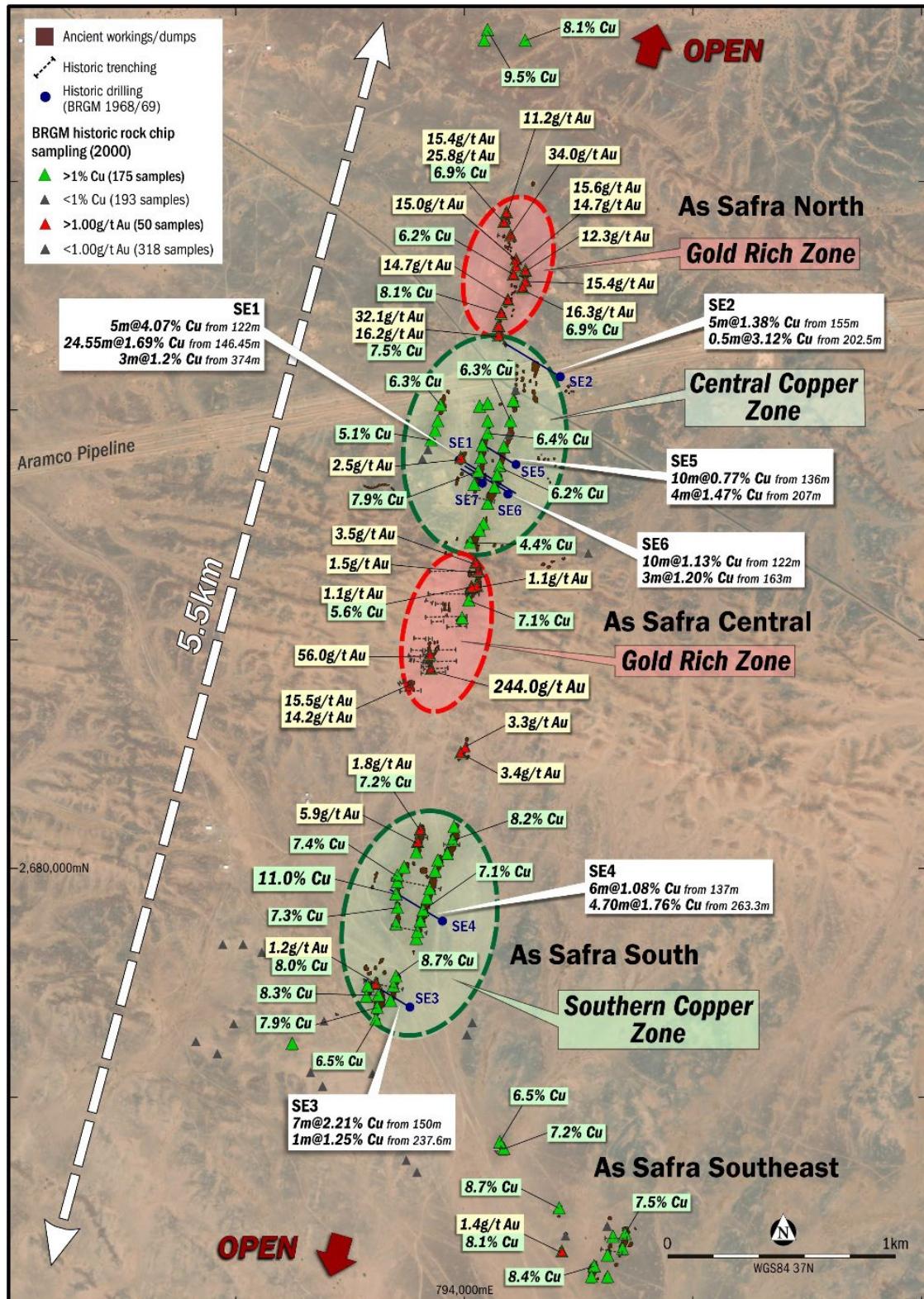


Figure 3. Plan view of the central As Safra Cu-Au zone defined by extensive ancient workings and slag dumps. Shown is Cu-Au rock chip sampling conducted by the BRGM in 2000 of the mining dumps and where exposed outcrop along mineralised trend. See tables 1 and 2 for full details on drilling and rock chip sampling. (Ref: Geology and exploration of the As Safra copper-gold prospect, Technical Report, BRGM-TR-2000-8).

Historic IP surveys show a strong correlation between chargeability anomalies and drilled high-grade copper, with many anomalies untested and interpreted as targets for new discoveries (see Figure 4). Sand cover likely conceals near-surface oxide and sulphide copper, creating a strong opportunity for blind discoveries.

Gold potential is underexplored, with BRGM rock-chips returning up to **244 g/t Au** with multiple undrilled high-grade gold targets across the Cu-Au core. Several gold occurrences sit near intrusive contacts within reactive carbonates, a favourable setting for high-grade gold skarn mineralisation.

SNX has commenced multiple exploration activities to generate drill targets, with full exploration licences expected next year enabling systematic drill testing across this highly prospective district.

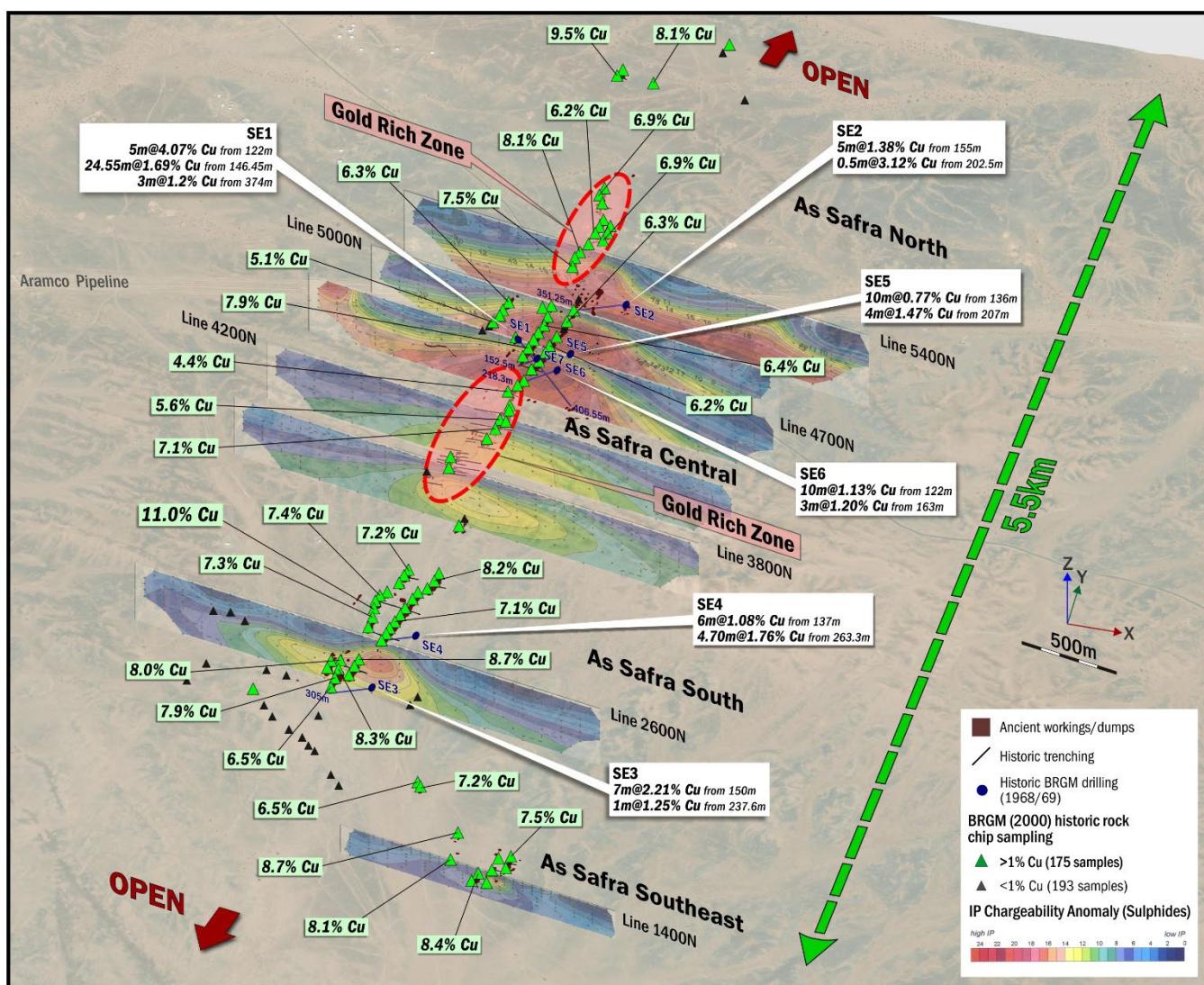


Figure 4. Oblique view looking NW showing historic DPDP IP geophysics (chargeability), Cu rock chip geochemistry (BRGM 2000) and significant intercepts from historic core drilling (BRGM 1969). (IP chargeability pseudo-sections taken from Ref: Geology and exploration of the As Safra copper-gold prospect, Technical Report, BRGM-TR-2000-8).

KSA Company and Investment Licence

Under KSA's Vision 2030 initiative, with mining as the Third Pillar, the Ministry of Industry and Mineral Resources (MIMR) is actively supporting foreign mining investment and expertise through making attractive priority ground available through a tender process. Only pre-approved qualified bidders who meet competitive technical and financial capabilities and who have stated a commitment to exploration and mining in KSA are permitted to take part in the bidding tender process.

Since it was granted qualified bidder status in the bidding process in August 2025³, SNX has been working to complete the KSA's necessary corporate compliance requirements and has been active in bidding round 9, as well as engaging in broad geological due diligence on potential projects to be offered in upcoming auction rounds. Significant government stakeholder discussions have taken place and have been well received, with strong relationships developed.

SNX is in the process of incorporating a KSA subsidiary named Arabian American Minerals, and the new company has been issued a KSA Investment Licence. This is an important step in the incorporation process that is expected to be completed in the near term.

Arabian American Minerals will be the vehicle to hold any exploration and mining licences issued by the MIMR. It is not a requirement that SNX have a Saudi partner as was required previously, although many KSA investors have indicated interest in participating in future SNX projects in KSA.

Future Mining Forum – Riyadh, January 2026

SNX will attend the Future Mining Forum (FMF) in Riyadh in January 2026 as an exhibitor and will present its KSA and Nevada opportunities to Middle Eastern and overseas investors.

The FMF is the fourth largest mining conference in the world being hosted in a supportive frontier exploration jurisdiction. SNX is working to further develop relationships with potential investors and partners for its project portfolio going forward.

Supportive Government Framework Aligned with KSA's Vision 2030

The Arabian Shield represents an early-stage, low-maturity exploration environment with strong geological indicators for large-scale gold and base-metal discoveries. As part of Saudi Arabia's ambitious Vision 2030 strategy to diversify and grow the economy, the Saudi Geological Survey (SGS) is undertaking a Shield-wide generative exploration program, including airborne magnetic surveys, surface geochemical sampling, and full digitisation of historical geological and exploration datasets. These high-quality datasets are made available free of charge to exploration companies and will form an important component of SNX's ongoing target-generation activities.

In parallel, the Kingdom has introduced several initiatives to accelerate discovery and project development.

The Exploration Enablement Program (EEP) provides reimbursement of up to US\$2 million per exploration licence for eligible exploration expenditure, including drilling, geochemical analyses and skilled labour. Additional government incentives support mine development, including infrastructure assistance. The EEP continues to run on a quarterly basis, with multiple foreign companies already qualified.

Saudi Arabia's modern Mining Investment Law provides a transparent regulatory framework and a secure, supportive operating environment for exploration and mining companies. SNX looks forward to leveraging these government programs and incentives as it advances its exploration portfolio and pursues new opportunities across the Arabian Shield.

³ See ASX Announcement 21 August 2025 – SNX qualifies to bid – exploration licences in Saudi Arabia

About Sierra Nevada Gold (SNX)

Sierra Nevada Gold (SNX) is a listed ASX company actively engaged in the exploration and acquisition of precious and base metal projects in the highly prospective mineral trends. The Company is exploring five 100%-controlled projects in Nevada, comprising four gold and silver projects and a large copper/gold porphyry project, all representing significant discovery opportunities for the company. As Safra is complementary to SNX's Nevada projects as it allows field work to occur in KSA when seasonal factors limit field work in Nevada.

This announcement was authorised for release by Mr Peter Moore, Executive Director of the Company.

For more information, please contact:

Peter Moore

Executive Director

Email: peter@sngold.com.au

Investors/Media:

Nathan Ryan

NWR Communications

Email: nathan.ryan@nwrc.com.au

Ph: +61 420 582 887

Competent Persons Statement

Information in this document that relates to Exploration Results is based on information compiled or reviewed by Mr. Brett Butlin, a Competent Person who is a Fellow of the Australian Institute of Geoscientists (FAIG). Mr. Butlin is a full-time employee of the Company in the role of Chief Geologist and Executive Director and is a shareholder in the Company. Mr. Butlin has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Butlin consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1 – Results

Table 1 – Core drilling information at As Safra. BRGM, 1968-1969

Core was sampled by half core generally at 1-meter intervals through visually mineralised zones (copper).

Drill Hole No.	Drill Type	Easting (WGS84 UTM 37N)	Northing (WGS84 UTM 37N)	RL (m)	Hole Depth (m)	Azimuth (deg)	Dip (deg)	Mineralised Sections			Cu (%)	Zn (%)	Ag (g/t)	Comments
								Depth From (m)	Depth To (m)	Interval (m)				
SE 1	Core	793992	2681779	991	406.55	110	45	122	127	5.00	4.07	-	-	Hole located by Garmin 65s GPS
								146.45	171	24.55	1.69	0.13	3.50	
								210.30	212.30	2.00	0.90	0.12	12.00	
								280	281	1.00	0.75	0.15	5.00	
								287	288	1.00	1.30	0.35	10.00	
								350	356	6.00	0.75	0.10	4.00	
								374	377	3.00	1.20	-	15.00	
SE 2	Core	794425	2682145	989	351.25	290	35	145	146	1.00	1.25	-	15.00	Hole location not found, calculated coordinates from rectified historic maps (BRGM)
								149	150	1.00	0.75	-	15.00	
								155	160	5.00	1.38	-	13.00	
								164	165	1.00	1.00	-	5.00	
								168	170	2.00	1.05	-	10.00	
								202.5	203	0.50	3.12	1.75	15.00	
SE 3	Core	793800	2679395	975	300.05	290	35	150	157	7.00	2.21	0.78	6.00	Hole located by Garmin 65s GPS
								173	175	2.00	0.82	0.20	10.00	
								237.65	238.65	1.00	1.25	0.30	15.00	
SE 4	Core	793932	2679776	978	321.65	290	35	137	143	6.00	1.08	0.22	-	Hole located by Garmin 65s GPS
								155	158	3.00	0.30	0.50	-	
								242	248	6.00	0.32	-	5.00	
								263.3	268	4.70	1.76	0.10	11.00	
								303	304	1.00	0.40	0.20	7.00	
SE 5	Core	794246	2681752	991	309.00	290	45	33	51	18.00	0.20	-	-	Hole located by Garmin 65s GPS
								136	146	10.00	0.77	0.26	-	

Drill Hole No.	Drill Type	Easting (WGS84 UTM 37N)	Northing (WGS84 UTM 37N)	RL (m)	Hole Depth (m)	Azimuth (deg)	Dip (deg)	Mineralised Sections			Cu (%)	Zn (%)	Ag (g/t)	Comments
								Depth From (m)	Depth To (m)	Interval (m)				
								148	150	2.00	0.45	0.14	-	
								207	211	4.00	1.47	0.34	7.00	
								219	221	2.00	0.75	0.14	-	
SE 6	Core	794204	2681640	990	218.30	290	45	88	91	3.00	0.15	0.00	15.00	Hole located by Garmin 65s GPS
								97	100	3.00	0.10	0.25	10.00	
								106	115	7.00	0.30	0.19	-	
								122	132	10.00	0.50	0.11	-	
								163	166	3.00	1.20	0.26	8.00	
								197	207	10.00	1.13	0.44	-	
SE 7	Core	794093	2681684	994	152.5	290	45	30	36	6.00	0.16	-	-	Hole located by Garmin 65s GPS
								45	54	9.00	0.00	-	10.00	

Table 2 – Rock Chip Sampling at As Safra. BRGM, 2000

3 – 5kg field sample assayed by AA and ICP at SGS Jeddah, KSA. 368 samples taken.

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D001	Gossan to gossanous rocks	794191.29	2682088.70	0.17	8170	0.82
ASA D002	Quartz (dumps)	794191.29	2682088.70	0.05	8764	0.88
ASA D003	Cu-rich fine grained foliated volcanic rock	794191.29	2682088.70	0.14	7546	0.75
ASA D004	Fine-grained foliated volcanic rock	794191.29	2682088.70	0.09	1901	0.19
ASA D005	Gossan to gossanous rocks	794185.49	2682034.85	0.14	8920	0.89
ASA D006	Cu-rich fine grained foliated volcanic rock	794185.49	2682034.85	0.18	47800	4.78
ASA D007	Quartz (dumps)	794185.49	2682034.85	0.04	3462	0.35

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D008	Fine-grained foliated volcanic rock	794185.49	2682034.85	0.03	1886	0.19
ASA D009	Gossan to gossanous rocks	794171.36	2681950.44	0.21	14590	1.46
ASA D010	Quartz (dumps)	794171.36	2681950.44	0.18	703	0.07
ASA D011	Cu-rich fine grained foliated volcanic rock	794171.36	2681950.44	0.12	62600	6.26
ASA D012	Fine-grained foliated volcanic rock	794171.36	2681950.44	0.02	9054	0.91
ASA D013	Gossan to gossanous rocks	794164.74	2681891.94	0.11	7404	0.74
ASA D014	Quartz (dumps)	794164.74	2681891.94	<0.02	78	0.01
ASA D015	Quartz (dumps)	794164.74	2681891.94	0.02	4441	0.44
ASA D016	Fine-grained foliated volcanic rock	794164.74	2681891.94	0.09	5389	0.54
ASA D017	Fine-grained foliated mafic volcanic rock	794164.74	2681891.94	0.03	1488	0.15
ASA D018	Gossan to gossanous rocks	794145.15	2681835.43	0.16	11169	1.12
ASA D019	Quartz (dumps)	794145.15	2681835.43	0.03	3171	0.32
ASA D020	Fine-grained foliated volcanic rock	794145.15	2681835.43	<0.02	5908	0.59
ASA D021	Cu-rich fine grained foliated volcanic rock	794145.15	2681835.43	0.13	39400	3.94
ASA D022	Gossan to gossanous rocks	794123.70	2681756.88	0.03	4909	0.49
ASA D023	Fine-grained foliated volcanic rock	794123.70	2681756.88	0.03	4320	0.43
ASA D024	Cu-rich fine grained foliated volcanic rock	794123.70	2681756.88	0.16	61500	6.15
ASA D025	Carbonate rock	794123.70	2681756.88	0.09	61	0.01
ASA D026	Gossan to gossanous rocks	794114.59	2681715.90	0.06	6530	0.65

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D027	Fine-grained foliated volcanic rock	794114.59	2681715.90	<0.02	782	0.08
ASA D028	Quartz (dumps)	794114.59	2681715.90	0.1	21200	2.12
ASA D029	Cu-rich fine grained foliated volcanic rock	794114.59	2681715.90	0.06	35700	3.57
ASA D030	Gossan to gossanous rocks	794101.48	2681660.16	0.11	10619	1.06
ASA D031	Cu-rich fine grained foliated volcanic rock	794101.48	2681660.16	0.03	42500	4.25
ASA D032	Fine-grained foliated volcanic rock	794101.48	2681660.16	0.03	5599	0.56
ASA D033	Gossan to gossanous rocks	794074.73	2681592.32	0.18	15000	1.50
ASA D034	Cu-rich fine grained foliated volcanic rock	794074.73	2681592.32	<0.02	27000	2.70
ASA D035	Fine-grained foliated volcanic rock	794074.73	2681592.32	0.04	7419	0.74
ASA D036	Quartz (dumps)	794074.73	2681592.32	0.13	14588	1.46
ASA D037	Gossan to gossanous rocks	794053.81	2681505.30	0.27	3932	0.39
ASA D038	Fine-grained foliated volcanic rock	794053.81	2681505.30	0.2	5474	0.55
ASA D039	No details	794053.81	2681505.30	0.02	241	0.02
ASA D040	No details	794053.81	2681505.30	<0.02	826	0.08
ASA D041	Cu-rich fine grained foliated volcanic rock	794053.81	2681505.30	0.56	29300	2.93
ASA D042	Gossan to gossanous rocks	794036.86	2681474.83	0.56	9514	0.95
ASA D043	Fine-grained foliated volcanic rock	794036.86	2681474.83	0.36	560	0.06
ASA D044	Cu-rich fine grained foliated volcanic rock	794036.86	2681474.83	0.25	25600	2.56
ASA D045	Gossan to gossanous rocks	794036.86	2681474.83	<0.02	280	0.03

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D046	Gossan to gossanous rocks	793996.00	2681418.41	0.39	6732	0.67
ASA D047	Cu-rich fine grained foliated volcanic rock	793996.00	2681418.41	0.36	43900	4.39
ASA D048	Fine-grained foliated volcanic rock	793996.00	2681418.41	0.11	4828	0.48
ASA D049	Fine-grained foliated mafic volcanic rock	793996.00	2681418.41	0.08	3606	0.36
ASA D050	Gossan to gossanous rocks	794021.34	2681330.99	3.5	11423	1.14
ASA D051	Fine-grained foliated volcanic rock	794021.34	2681330.99	0.11	3568	0.36
ASA D052	Cu-rich fine grained foliated volcanic rock	794021.34	2681330.99	0.2	40200	4.02
ASA D053	Quartz (dumps)	794021.34	2681330.99	0.1	5170	0.52
ASA D054	Gossan to gossanous rocks	794028.30	2681298.22	1.54	25800	2.58
ASA D055	Quartz (dumps)	794028.30	2681298.22	0.57	9660	0.97
ASA D056	Fine-grained foliated volcanic rock	794028.30	2681298.22	0.32	8560	0.86
ASA D057	Cu-rich fine grained foliated volcanic rock	794028.30	2681298.22	1.3	42100	4.21
ASA D058	Gossan to gossanous rocks	794025.89	2681229.57	1.08	16000	1.60
ASA D059	Fine-grained foliated volcanic rock	794025.89	2681229.57	0.17	4930	0.49
ASA D060	Cu-rich fine grained foliated volcanic rock	794025.89	2681229.57	0.16	29300	2.93
ASA D061	Gossan to gossanous rocks	794000.35	2681227.49	0.66	22600	2.26
ASA D062	Quartz (dumps)	794000.35	2681227.49	0.58	5734	0.57
ASA D063	Fine-grained foliated volcanic rock	794000.35	2681227.49	0.18	6929	0.69
ASA D064	Cu-rich fine grained foliated volcanic rock	794000.35	2681227.49	1.07	56600	5.66

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D065	Gossan to gossanous rocks	793987.48	2681165.61	0.4	12017	1.20
ASA D066	Cu-rich fine grained foliated volcanic rock	793987.48	2681165.61	0.69	72100	7.21
ASA D067	Fine-grained foliated volcanic rock	793987.48	2681165.61	0.06	16000	1.60
ASA D068	Gossan to gossanous rocks	793961.38	2681088.24	0.91	4813	0.48
ASA D069	Cu-rich fine grained foliated volcanic rock	793961.38	2681088.24	0.19	52000	5.20
ASA D070	Fine-grained foliated volcanic rock	793961.38	2681088.24	0.27	9878	0.99
ASA D071	Gossan to gossanous rocks	793821.04	2680932.64	12.5	17000	1.70
ASA D072	Carbonate rock	793821.04	2680932.64	56	22700	2.27
ASA D073	Carbonate rock	793821.04	2680932.64	9.2	8648	0.86
ASA D074	Gossan to gossanous rocks	793827.84	2680866.92	244	10278	1.03
ASA D075	Carbonate rock	793827.84	2680866.92	6.18	44800	4.48
ASA D076	Carbonate rock	793827.84	2680866.92	1.62	3552	0.36
ASA D077	Carbonate rock	793734.08	2680809.04	15.5	2430	0.24
ASA D078	Carbonate rock	793734.08	2680809.04	14.19	1000	0.10
ASA D079	Gossan to gossanous rocks	794073.81	2682026.03	0.77	13500	1.35
ASA D080	Quartz (dumps)	794073.81	2682026.03	0.18	8537	0.85
ASA D081	Fine-grained foliated volcanic rock	794073.81	2682026.03	<0.02	3049	0.30
ASA D082	Cu-rich fine grained foliated volcanic rock	794073.81	2682026.03	0.37	41200	4.12
ASA D083	Gossan to gossanous rocks	794037.88	2682014.98	0.14	5140	0.51

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D084	Quartz (dumps)	794037.88	2682014.98	0.22	34200	3.42
ASA D085	Fine-grained foliated volcanic rock	794037.88	2682014.98	<0.02	4060	0.41
ASA D086	Cu-rich fine grained foliated volcanic rock	794037.88	2682014.98	0.56	45900	4.59
ASA D087	Gossan to gossanous rocks	794071.93	2681947.96	0.14	11000	1.10
ASA D088	Quartz (dumps)	794071.93	2681947.96	0.11	7457	0.75
ASA D089	Cu-rich fine grained foliated volcanic rock	794071.93	2681947.96	0.05	34200	3.42
ASA D090	Fine-grained foliated volcanic rock	794071.93	2681947.96	0.02	3290	0.33
ASA D091	Gossan to gossanous rocks	794069.28	2681895.03	0.2	9456	0.95
ASA D092	Cu-rich fine grained foliated volcanic rock	794069.28	2681895.03	<0.02	64400	6.44
ASA D093	Fine-grained foliated volcanic rock	794069.28	2681895.03	<0.02	3735	0.37
ASA D094	Quartz (dumps)	794069.28	2681895.03	0.03	5289	0.53
ASA D095	Gossan to gossanous rocks	794050.20	2681843.98	0.25	24900	2.49
ASA D096	Quartz (dumps)	794050.20	2681843.98	0.15	24300	2.43
ASA D097	Fine-grained foliated volcanic rock	794050.20	2681843.98	0.09	13000	1.30
ASA D098	Cu-rich fine grained foliated volcanic rock	794050.20	2681843.98	0.09	51900	5.19
ASA D099	Gossan to gossanous rocks	794044.23	2681790.72	0.21	18504	1.85
ASA D100	Fine-grained foliated volcanic rock	794044.23	2681790.72	0.05	15000	1.50
ASA D101	Cu-rich fine grained foliated volcanic rock	794044.23	2681790.72	0.08	78600	7.86
ASA D102	Quartz (dumps)	794044.23	2681790.72	0.07	10749	1.07

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D103	Gossan to gossanous rocks	794029.95	2681734.65	0.18	11896	1.19
ASA D104	Fine-grained foliated volcanic rock	794029.95	2681734.65	0.14	51000	5.10
ASA D105	Cu-rich fine grained foliated volcanic rock	794029.95	2681734.65	<0.02	3187	0.32
ASA D106	Quartz (dumps)	794029.95	2681734.65	<0.02	2200	0.22
ASA D107	Gossan to gossanous rocks	794015.26	2681676.43	0.14	6597	0.66
ASA D108	Fine-grained foliated volcanic rock	794015.26	2681676.43	0.04	6205	0.62
ASA D109	Cu-rich fine grained foliated volcanic rock	794015.26	2681676.43	0.06	53600	5.36
ASA D110	Quartz (dumps)	793868.10	2682018.29	<0.02	3815	0.38
ASA D111	Fine-grained foliated volcanic rock	793868.10	2682018.29	<0.02	2385	0.24
ASA D112	Cu-rich fine grained foliated volcanic rock	793868.10	2682018.29	<0.02	62900	6.29
ASA D113	Gossan to gossanous rocks	793868.10	2682018.29	0.03	28700	2.87
ASA D114	Gossan to gossanous rocks	793852.59	2681948.45	0.92	11216	1.12
ASA D115	Quartz (dumps)	793852.59	2681948.45	0.24	3364	0.34
ASA D116	Fine-grained foliated volcanic rock	793852.59	2681948.45	0.03	3814	0.38
ASA D117	Cu-rich fine grained foliated volcanic rock	793852.59	2681948.45	0.18	38900	3.89
ASA D118	Gossan to gossanous rocks	793843.73	2681907.06	0.09	2249	0.22
ASA D119	Quartz (dumps)	793843.73	2681907.06	0.13	2487	0.25
ASA D120	Fine-grained foliated volcanic rock	793843.73	2681907.06	0.16	6390	0.64
ASA D121	Cu-rich fine grained foliated volcanic rock	793843.73	2681907.06	0.66	36400	3.64

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D122	Fine-grained foliated volcanic rock	793823.69	2681869.87	0.24	4772	0.48
ASA D123	Cu-rich fine grained foliated volcanic rock	793823.69	2681869.87	0.23	50900	5.09
ASA D124	Quartz (dumps)	793823.69	2681869.87	0.08	1611	0.16
ASA D125	Late quartz veins	793810.63	2681828.56	0.19	916	0.09
ASA D126	Late quartz veins	793786.30	2681788.43	0.22	415	0.04
ASA D127	Gossan to gossanous rocks	793954.45	2681791.59	0.32	6880	0.69
ASA D128	Quartz (dumps)	793954.45	2681791.59	2.48	11199	1.12
ASA D129	Fine-grained foliated volcanic rock	793954.45	2681791.59	0.08	2833	0.28
ASA D130	Cu-rich fine grained foliated volcanic rock	793954.45	2681791.59	0.92	36500	3.65
ASA D131	Late quartz veins	794507.09	2681380.71	0.1	120	0.01
ASA D132	Gossan to gossanous rocks	793973.55	2680539.23	3.33	5270	0.53
ASA D133	Gossan to gossanous rocks	793957.53	2680505.44	3.41	12161	1.22
ASA D134	No details	793957.53	2680505.44	0.22	583	0.06
ASA D135	Gossan to gossanous rocks	793927.17	2680178.80	0.26	22800	2.28
ASA D136	Fine-grained foliated volcanic rock	793927.17	2680178.80	0.06	5244	0.52
ASA D137	Cu-rich fine grained foliated volcanic rock	793927.17	2680178.80	0.02	24800	2.48
ASA D138	Gossan to gossanous rocks	793917.26	2680122.19	0.38	13000	1.30
ASA D139	Quartz (dumps)	793917.26	2680122.19	0.02	3860	0.39
ASA D140	Fine-grained foliated volcanic rock	793917.26	2680122.19	<0.02	5416	0.54

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D141	Cu-rich fine grained foliated volcanic rock	793917.26	2680122.19	0.08	48800	4.88
ASA D142	Gossan to gossanous rocks	793897.71	2680066.32	0.7	12500	1.25
ASA D143	Quartz (dumps)	793897.71	2680066.32	0.03	1440	0.14
ASA D144	Fine-grained foliated volcanic rock	793897.71	2680066.32	<0.02	3365	0.34
ASA D145	Cu-rich fine grained foliated volcanic rock	793897.71	2680066.32	0.39	82500	8.25
ASA D146	Gossan to gossanous rocks	793856.13	2680034.38	0.55	15000	1.50
ASA D147	Quartz (dumps)	793856.13	2680034.38	0.16	2094	0.21
ASA D148	Fine-grained foliated mafic volcanic rock	793856.13	2680034.38	<0.02	2169	0.22
ASA D149	Cu-rich fine grained foliated volcanic rock	793856.13	2680034.38	0.15	70000	7.00
ASA D150	Gossan to gossanous rocks	793842.28	2679987.61	0.83	12035	1.20
ASA D151	Quartz (dumps)	793842.28	2679987.61	0.37	10351	1.04
ASA D152	Fine-grained foliated mafic volcanic rock	793842.28	2679987.61	0.06	3898	0.39
ASA D153	Fine-grained foliated volcanic rock	793842.28	2679987.61	0.07	7792	0.78
ASA D154	Cu-rich fine grained foliated volcanic rock	793842.28	2679987.61	0.14	41000	4.10
ASA D155	Gossan to gossanous rocks	793818.18	2679913.50	0.24	11000	1.10
ASA D156	Quartz (dumps)	793818.18	2679913.50	0.25	8441	0.84
ASA D157	Fine-grained foliated mafic volcanic rock	793818.18	2679913.50	<0.02	2902	0.29
ASA D158	Fine-grained foliated volcanic rock	793818.18	2679913.50	0.06	11473	1.15
ASA D159	Cu-rich fine grained foliated volcanic rock	793818.18	2679913.50	0.07	70500	7.05

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D160	Gossan to gossanous rocks	793810.84	2679869.07	0.5	9797	0.98
ASA D161	Fine-grained foliated mafic volcanic rock	793810.84	2679869.07	<0.02	1762	0.18
ASA D162	Fine-grained foliated volcanic rock	793810.84	2679869.07	0.06	28000	2.80
ASA D163	Quartz (dumps)	793810.84	2679869.07	<0.02	1255	0.13
ASA D164	Gossan to gossanous rocks	793791.26	2679820.01	0.5	13000	1.30
ASA D165	Fine-grained foliated mafic volcanic rock	793791.26	2679820.01	<0.02	1206	0.12
ASA D166	Cu-rich fine grained foliated volcanic rock	793791.26	2679820.01	0.27	71000	7.10
ASA D167	Gossan to gossanous rocks	793776.19	2679769.60	0.16	16000	1.60
ASA D168	Quartz (dumps)	793776.19	2679769.60	0.08	3975	0.40
ASA D169	Cu-rich fine grained foliated volcanic rock	793776.19	2679769.60	<0.02	8392	0.84
ASA D170	Fine-grained foliated volcanic rock	793776.19	2679769.60	0.06	29400	2.94
ASA D171	Gossan to gossanous rocks	793767.95	2679724.57	0.25	16000	1.60
ASA D172	Fine-grained foliated volcanic rock	793767.95	2679724.57	<0.02	2760	0.28
ASA D173	Cu-rich fine grained foliated volcanic rock	793767.95	2679724.57	0.12	38600	3.86
ASA D174	Gossan to gossanous rocks	793759.13	2679690.47	0.52	17500	1.75
ASA D175	Fine-grained foliated volcanic rock	793759.13	2679690.47	0.07	33000	3.30
ASA D176	Late quartz veins	794004.33	2679335.93	<0.02	205	0.02
ASA D177	Late quartz veins	793979.88	2679281.29	<0.02	384	0.04
ASA D178	Gossan to gossanous rocks	793777.66	2680167.51	1.8	10335	1.03

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D179	Quartz (dumps)	793777.66	2680167.51	0.32	625	0.06
ASA D180	Fine-grained foliated volcanic rock	793777.66	2680167.51	<0.02	6184	0.62
ASA D181	Cu-rich fine grained foliated volcanic rock	793777.66	2680167.51	0.69	72500	7.25
ASA D182	Gossan to gossanous rocks	793768.53	2680116.67	5.88	11000	1.10
ASA D183	Fine-grained foliated volcanic rock	793768.53	2680116.67	0.07	5361	0.54
ASA D184	Cu-rich fine grained foliated volcanic rock	793768.53	2680116.67	0.61	67500	6.75
ASA D185	Quartz (dumps)	793768.53	2680116.67	0.49	9347	0.93
ASA D186	Gossan to gossanous rocks	793759.81	2680072.04	0.94	10098	1.01
ASA D187	Quartz (dumps)	793759.81	2680072.04	0.3	5250	0.53
ASA D188	Cu-rich fine grained foliated volcanic rock	793759.81	2680072.04	0.63	70500	7.05
ASA D189	Fine-grained foliated volcanic rock	793759.81	2680072.04	0.04	5371	0.54
ASA D190	Gossan to gossanous rocks	793707.51	2680005.28	0.69	13000	1.30
ASA D191	Fine-grained foliated volcanic rock	793707.51	2680005.28	0.04	4880	0.49
ASA D192	Cu-rich fine grained foliated volcanic rock	793707.51	2680005.28	0.24	56000	5.60
ASA D193	Quartz (dumps)	793707.51	2680005.28	0.68	11593	1.16
ASA D194	Gossan to gossanous rocks	793680.16	2679969.78	0.65	15000	1.50
ASA D195	Fine-grained foliated volcanic rock	793680.16	2679969.78	0.03	6574	0.66
ASA D196	Cu-rich fine grained foliated volcanic rock	793680.16	2679969.78	0.03	74000	7.40
ASA D197	Quartz (dumps)	793680.16	2679969.78	0.77	3506	0.35

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D198	Gossan to gossanous rocks	793678.18	2679939.54	0.35	24600	2.46
ASA D199	Fine-grained foliated volcanic rock	793678.18	2679939.54	0.04	5661	0.57
ASA D200	Cu-rich fine grained foliated volcanic rock	793678.18	2679939.54	0.48	62500	6.25
ASA D201	Quartz (dumps)	793678.18	2679939.54	0.24	6873	0.69
ASA D202	Gossan to gossanous rocks	793675.55	2679885.86	0.25	11985	1.20
ASA D203	Fine-grained foliated volcanic rock	793675.55	2679885.86	0.05	4765	0.48
ASA D204	Cu-rich fine grained foliated volcanic rock	793675.55	2679885.86	0.26	110000	11.00
ASA D205	Gossan to gossanous rocks	793678.99	2679826.84	0.15	32400	3.24
ASA D206	Fine-grained foliated volcanic rock	793678.99	2679826.84	0.03	8740	0.87
ASA D207	Cu-rich fine grained foliated volcanic rock	793678.99	2679826.84	0.16	73000	7.30
ASA D208	Gossan to gossanous rocks	793672.23	2679760.47	0.21	17442	1.74
ASA D209	Quartz (dumps)	793672.23	2679760.47	0.07	10961	1.10
ASA D210	Fine-grained foliated volcanic rock	793672.23	2679760.47	0.1	2193	0.22
ASA D211	Cu-rich fine grained foliated volcanic rock	793672.23	2679760.47	0.33	62500	6.25
ASA D212	Gossan to gossanous rocks	793672.79	2679531.30	0.15	13000	1.30
ASA D213	Fine-grained foliated volcanic rock	793672.79	2679531.30	<0.02	3898	0.39
ASA D214	Cu-rich fine grained foliated volcanic rock	793672.79	2679531.30	0.18	87500	8.75
ASA D215	Gossan to gossanous rocks	793660.27	2679485.43	0.09	16500	1.65
ASA D216	Quartz (dumps)	793660.27	2679485.43	0.07	4976	0.50

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D217	Fine-grained foliated volcanic rock	793660.27	2679485.43	<0.02	4306	0.43
ASA D218	Cu-rich fine grained foliated volcanic rock	793660.27	2679485.43	0.04	52500	5.25
ASA D219	Gossan to gossanous rocks	793649.71	2679426.14	0.05	13000	1.30
ASA D220	Quartz (dumps)	793649.71	2679426.14	0.05	14000	1.40
ASA D221	Fine-grained foliated volcanic rock	793649.71	2679426.14	<0.02	5905	0.59
ASA D222	Cu-rich fine grained foliated volcanic rock	793649.71	2679426.14	0.1	52500	5.25
ASA D223	Fine-grained foliated volcanic rock	793584.17	2679341.48	<0.02	3064	0.31
ASA D224	Cu-rich fine grained foliated volcanic rock	793584.17	2679341.48	0.1	65000	6.50
ASA D225	Gossan to gossanous rocks	793589.76	2679392.12	0.17	10835	1.08
ASA D226	Quartz (dumps)	793589.76	2679392.12	0.08	3624	0.36
ASA D227	Fine-grained foliated volcanic rock	793589.76	2679392.12	0.03	3506	0.35
ASA D228	Cu-rich fine grained foliated volcanic rock	793589.76	2679392.12	0.1	79000	7.90
ASA D229	Gossan to gossanous rocks	793596.39	2679446.00	0.02	13000	1.30
ASA D230	Fine-grained foliated volcanic rock	793596.39	2679446.00	<0.02	3582	0.36
ASA D231	Cu-rich fine grained foliated volcanic rock	793596.39	2679446.00	0.15	83000	8.30
ASA D232	Quartz (dumps)	793596.39	2679446.00	0.11	10841	1.08
ASA D233	Gossan to gossanous rocks	793540.72	2679438.90	0.26	13000	1.30
ASA D234	Quartz (dumps)	793540.72	2679438.90	0.69	10850	1.09
ASA D235	Fine-grained foliated volcanic rock	793540.72	2679438.90	0.03	4926	0.49

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D236	Cu-rich fine grained foliated volcanic rock	793540.72	2679438.90	0.08	63500	6.35
ASA D237	Gossan to gossanous rocks	793547.25	2679487.24	0.15	13000	1.30
ASA D238	Quartz (dumps)	793547.25	2679487.24	0.04	6614	0.66
ASA D239	Fine-grained foliated volcanic rock	793547.25	2679487.24	0.03	11323	1.13
ASA D240	Cu-rich fine grained foliated volcanic rock	793547.25	2679487.24	0.21	64000	6.40
ASA D241	Gossan to gossanous rocks	793585.57	2679498.64	1.15	13000	1.30
ASA D242	Quartz (dumps)	793585.57	2679498.64	0.05	11513	1.15
ASA D243	Fine-grained foliated volcanic rock	793585.57	2679498.64	<0.02	2739	0.27
ASA D244	Cu-rich fine grained foliated volcanic rock	793585.57	2679498.64	0.28	80000	8.00
ASA D245	Gossan to gossanous rocks	794126.44	2678807.19	0.15	11506	1.15
ASA D246	Quartz (dumps)	794126.44	2678807.19	0.09	3589	0.36
ASA D247	Cu-rich fine grained foliated volcanic rock	794126.44	2678807.19	0.03	7211	0.72
ASA D248	Fine-grained foliated mafic volcanic rock	794126.44	2678807.19	0.05	65000	6.50
ASA D249	Gossan to gossanous rocks	794140.13	2678775.64	0.16	12494	1.25
ASA D250	Fine-grained foliated volcanic rock	794140.13	2678775.64	<0.02	4932	0.49
ASA D251	Cu-rich fine grained foliated volcanic rock	794140.13	2678775.64	0.08	72000	7.20
ASA D252	Gossan to gossanous rocks	794671.03	2678410.67	0.07	12000	1.20
ASA D253	Fine-grained foliated volcanic rock	794671.03	2678410.67	<0.02	4351	0.44
ASA D254	Cu-rich fine grained foliated volcanic rock	794671.03	2678410.67	0.1	75000	7.50

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D255	Gossan to gossanous rocks	794658.67	2678342.14	0.12	8883	0.89
ASA D256	Fine-grained foliated volcanic rock	794658.67	2678342.14	0.02	4276	0.43
ASA D257	Cu-rich fine grained foliated volcanic rock	794658.67	2678342.14	0.07	48000	4.80
ASA D258	Gossan to gossanous rocks	794593.35	2678219.07	0.09	12031	1.20
ASA D259	Fine-grained foliated volcanic rock	794593.35	2678219.07	<0.02	6082	0.61
ASA D260	Cu-rich fine grained foliated volcanic rock	794593.35	2678219.07	0.05	62000	6.20
ASA D261	Gossan to gossanous rocks	794522.79	2678218.38	0.76	13000	1.30
ASA D262	Quartz (dumps)	794522.79	2678218.38	0.13	8242	0.82
ASA D263	Fine-grained foliated volcanic rock	794522.79	2678218.38	0.19	7672	0.77
ASA D264	Gossan to gossanous rocks	794539.34	2678269.01	0.34	18182	1.82
ASA D265	Quartz (dumps)	794539.34	2678269.01	0.43	69000	6.90
ASA D266	Fine-grained foliated volcanic rock	794539.34	2678269.01	0.04	7092	0.71
ASA D267	Cu-rich fine grained foliated volcanic rock	794539.34	2678269.01	0.36	84000	8.40
ASA D268	Gossan to gossanous rocks	794597.00	2678315.87	0.18	12199	1.22
ASA D269	Quartz (dumps)	794597.00	2678315.87	<0.02	8788	0.88
ASA D270	Fine-grained foliated volcanic rock	794597.00	2678315.87	0.03	9433	0.94
ASA D271	Cu-rich fine grained foliated volcanic rock	794597.00	2678315.87	0.03	40000	4.00
ASA D272	Gossan to gossanous rocks	794615.74	2678397.62	0.13	10669	1.07
ASA D273	Fine-grained foliated volcanic rock	794615.74	2678397.62	<0.02	5719	0.57

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D274	Cu-rich fine grained foliated volcanic rock	794615.74	2678397.62	0.03	65000	6.50
ASA D275	Quartz (dumps)	794592.13	2678444.53	0.03	1734	0.17
ASA D276	Fine-grained foliated volcanic rock	794592.13	2678444.53	<0.02	3766	0.38
ASA D277	Cu-rich fine grained foliated volcanic rock	794592.13	2678444.53	0.11	9793	0.98
ASA D278	Gossan to gossanous rocks	794392.80	2678333.66	0.29	7530	0.75
ASA D279	Quartz (dumps)	794392.80	2678333.66	0.4	2436	0.24
ASA D280	Fine-grained foliated volcanic rock	794392.80	2678333.66	0.04	1783	0.18
ASA D281	Cu-rich fine grained foliated volcanic rock	794392.80	2678333.66	1.36	81000	8.10
ASA D282	Gossan to gossanous rocks	794383.64	2678521.19	0.04	4554	0.46
ASA D283	Quartz (dumps)	794383.64	2678521.19	0.02	1339	0.13
ASA D284	Fine-grained foliated volcanic rock	794383.64	2678521.19	0.06	2018	0.20
ASA D285	Cu-rich fine grained foliated volcanic rock	794383.64	2678521.19	0.02	87000	8.70
ASA D286	Quartz (dumps)	794410.24	2678406.11	0.08	3040	0.30
ASA D287	Gossan to gossanous rocks	794071.08	2683653.10	0.37	10765	1.08
ASA D288	Quartz (dumps)	794071.08	2683653.10	0.47	3771	0.38
ASA D289	Quartz (dumps)	794071.08	2683653.10	<0.02	487	0.05
ASA D290	Cu-rich fine grained foliated volcanic rock	794071.08	2683653.10	0.48	95000	9.50
ASA D291	Gossan to gossanous rocks	794055.72	2683606.62	0.28	12065	1.21
ASA D292	Quartz (dumps)	794055.72	2683606.62	0.08	40000	4.00

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D293	Fine-grained foliated volcanic rock	794055.72	2683606.62	0.04	5631	0.56
ASA D294	Cu-rich fine grained foliated volcanic rock	794055.72	2683606.62	0.1	34800	3.48
ASA D295	Quartz (dumps)	794235.64	2683602.90	0.04	4793	0.48
ASA D296	Cu-rich fine grained foliated volcanic rock	794235.64	2683602.90	0.13	81000	8.10
ASA D297	Gossan to gossanous rocks	794537.24	2683934.37	0.06	11000	1.10
ASA D298	Late quartz veins	794537.24	2683934.37	0.05	4089	0.41
ASA D299	No details	794537.24	2683934.37	0.03	16598	1.66
ASA D300	No details	794537.24	2683934.37	0.12	40800	4.08
ASA D301	Late quartz veins	794514.12	2683863.14	<0.02	122	0.01
ASA D302	Late quartz veins	794687.32	2683582.21	0.02	545	0.05
ASA D303	Gossan to gossanous rocks	794157.09	2682858.77	11.25	6211	0.62
ASA D304	Quartz (dumps)	794157.09	2682858.77	0.57	1285	0.13
ASA D305	Quartz (dumps)	794157.09	2682858.77	0.8	552	0.06
ASA D306	Carbonate rock	794157.09	2682858.77	0.91	16669	1.67
ASA D307	Gossan to gossanous rocks	794146.05	2682815.66	25.8	9408	0.94
ASA D308	Quartz (dumps)	794146.05	2682815.66	3.88	15494	1.55
ASA D309	Fine-grained foliated volcanic rock	794146.05	2682815.66	1.66	2195	0.22
ASA D310	Cu-rich fine grained foliated volcanic rock	794146.05	2682815.66	15.4	69500	6.95
ASA D311	Gossan to gossanous rocks	794168.90	2682762.34	3.81	12000	1.20

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D312	Fine-grained foliated volcanic rock	794168.90	2682762.34	0.08	2594	0.26
ASA D313	Cu-rich fine grained foliated volcanic rock	794168.90	2682762.34	2.09	54900	5.49
ASA D314	Fine-grained foliated volcanic rock	794196.79	2682654.95	0.22	952	0.10
ASA D315	Cu-rich fine grained foliated volcanic rock	794196.79	2682654.95	15	40700	4.07
ASA D316	Gossan to gossanous rocks	794193.79	2682625.09	15.6	6858	0.69
ASA D317	Quartz (dumps)	794193.79	2682625.09	0.11	215	0.02
ASA D318	Fine-grained foliated volcanic rock	794193.79	2682625.09	0.04	333	0.03
ASA D319	Cu-rich fine grained foliated volcanic rock	794193.79	2682625.09	14.75	42100	4.21
ASA D320	Gossan to gossanous rocks	794183.50	2682590.92	34	9555	0.96
ASA D321	Quartz (dumps)	794183.50	2682590.92	0.71	354	0.04
ASA D322	Cu-rich fine grained foliated volcanic rock	794183.50	2682590.92	11.2	62100	6.21
ASA D323	Gossan to gossanous rocks	794233.26	2682606.05	12.3	12000	1.20
ASA D324	Fine-grained foliated volcanic rock	794233.26	2682606.05	0.3	1100	0.11
ASA D325	Fine-grained foliated mafic volcanic rock	794233.26	2682606.05	4.77	57100	5.71
ASA D326	Fine-grained foliated mafic volcanic rock	794237.41	2682562.06	15.4	68800	6.88
ASA D327	Gossan to gossanous rocks	794237.41	2682562.06	2.51	15261	1.53
ASA D328	Fine-grained foliated volcanic rock	794237.41	2682562.06	0.08	3470	0.35
ASA D329	Gossan to gossanous rocks	794222.68	2682531.02	4.56	9663	0.97
ASA D330	Fine-grained foliated volcanic rock	794222.68	2682531.02	3.07	3006	0.30

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D331	Fine-grained foliated mafic volcanic rock	794222.68	2682531.02	0.46	4084	0.41
ASA D332	Fine-grained foliated mafic volcanic rock	794222.68	2682531.02	16.3	31700	3.17
ASA D333	Gossan to gossanous rocks	794159.70	2682479.53	10.1	8538	0.85
ASA D334	Quartz (dumps)	794159.70	2682479.53	2.64	10394	1.04
ASA D335	Fine-grained foliated volcanic rock	794159.70	2682479.53	2.5	5466	0.55
ASA D336	Cu-rich fine grained foliated volcanic rock	794159.70	2682479.53	14.7	43500	4.35
ASA D337	Gossan to gossanous rocks	794131.90	2682420.53	9.04	11955	1.20
ASA D338	Quartz (dumps)	794131.90	2682420.53	0.95	2068	0.21
ASA D339	Cu-rich fine grained foliated volcanic rock	794131.90	2682420.53	1.66	81400	8.14
ASA D340	Gossan to gossanous rocks	794119.60	2682368.41	6.88	13000	1.30
ASA D341	Quartz (dumps)	794119.60	2682368.41	0.13	16269	1.63
ASA D342	Fine-grained foliated volcanic rock	794119.60	2682368.41	0.06	2151	0.22
ASA D343	Cu-rich fine grained foliated volcanic rock	794119.60	2682368.41	4.25	59400	5.94
ASA D344	Gossan to gossanous rocks	794117.90	2682323.44	32.1	9571	0.96
ASA D345	Carbonate rock	794117.90	2682323.44	16.2	722	0.07
ASA D346	Fine-grained foliated volcanic rock	794117.90	2682323.44	1.29	6603	0.66
ASA D347	Cu-rich fine grained foliated volcanic rock	794117.90	2682323.44	2.94	75600	7.56
ASA D348	Late quartz veins	793766.19	2678680.35	<0.02	154	0.02
ASA D349	Late quartz veins	793714.08	2678736.06	<0.02	38	0.00

Sample ID	Rock Type	Easting (WGS84 UTM37N)	Northing (WGS84 UTM37N)	Au (ppm)	Cu (ppm)	Cu (%)
ASA D350	Late quartz veins	793597.20	2678875.72	0.03	47	0.00
ASA D351	Late quartz veins	793564.62	2678907.40	0.04	152	0.02
ASA D352	Late quartz veins	793522.75	2678951.12	<0.02	43	0.00
ASA D353	Late quartz veins	793446.57	2678986.54	<0.02	56	0.01
ASA D354	Late quartz veins	793351.31	2679054.92	0.04	103	0.01
ASA D355	Late quartz veins	793299.02	2679113.67	0.12	164	0.02
ASA D356	No details	793219.16	2679235.29	0.04	37100	3.71
ASA D357	Gossan to gossanous rocks	793219.16	2679235.29	0.24	10605	1.06
ASA D358	Late quartz veins	793219.16	2679235.29	<0.02	42	0.00
ASA D359	Gossan to gossanous rocks	793357.00	2679339.98	<0.02	677	0.07
ASA D360	Late quartz veins	793357.00	2679339.98	<0.02	235	0.02
ASA D361	Late quartz veins	793252.16	2679349.57	0.18	25	0.00
ASA D362	Late quartz veins	793085.39	2679637.12	<0.02	19	0.00
ASA D363	Late quartz veins	793004.94	2679676.32	<0.02	18	0.00
ASA D364	Late quartz veins	792918.83	2679671.59	0.05	14	0.00
ASA D365	Late quartz veins	792799.41	2679250.52	<0.02	31	0.00
ASA D366	Late quartz veins	792894.82	2679197.62	<0.02	24	0.00
ASA D367	Late quartz veins	792961.68	2679329.44	<0.02	29	0.00
ASA D368	Late quartz veins	793568.25	2679109.19	<0.02	19	0.00

Appendix 2 – JORC Code, 2021 Edition Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none">Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	<p>All sampling reported in this report are considered historic in nature. Prior to 2025 numerous Government agencies undertook drilling, trenching, geophysical, soil and rock sampling programs. The entirety of this work is currently being compiled and where possible validated. For this reason, only data presented by the BRGM (<i>French Geological and Mining Research Bureau</i>) in 2000 has been included at this time. This 2000 program is the most recent work undertaken within the area under discussion. A brief exploration history is presented in the body of the report.</p> <p>In this announcement SNX reports BRGM (<i>French Geological and Mining Research Bureau</i>) core drilling conducted in 1968-69. Summary data only has been located and is available for this work with the source being a specific BRGM report specific to the drilling program (Delfour, J., 1970, Results of Exploratory Drilling at the As Safra Copper Prospect, Second Annual Report, chapter 1-2, BRGM 70 JED 1.). 7 inclined core holes were drilled to varying depths along the As Safra workings for a total advance of (2,060m). Core was sampled by half core with a saw and chisel generally at 1-meter intervals through visually copper mineralised zones.</p> <p>In this announcement SNX reports BRGM (<i>French Geological and Mining Research Bureau</i>) in 2000 undertook a collected a total of 368 samples (ASA-0001 to ASA-0368) from 120 stations scattered all along the prospect. Most of the samples were taken from the dumps, with regular intervals (about 50 m between each station). Some other samples were taken from quartz veins exposures. The samples weighed between 3 to 5 kg, and then crushed, ground and assayed for Au by AA, and ICP for multi-elements at the SGS laboratory in Jeddah. All samples achieving the ICP upper detection limit for Cu, Pb, and Zn were reanalysed by AAS. This work has been compiled and validated where possible by SNX. This data should be treated as historic in nature.</p> <p>Geophysics - In this announcement SNX reports BRGM (<i>French Geological and Mining Research Bureau</i>) in 2000 undertook a program of Dipole-Dipole Induced Polarisation (DPDP IP). SNX has reported and presented 7 pseudo sections DPDP IP lines conducted by the BRGM 2000. Dipole-Dipole arrays of D=100 m and 200 m, except IP6 where (D=50 m and 100 m) were employed. All pseudo-sections were interpreted by simultaneous inversion of the apparent resistivity and induced polarization, using the RES2DINV software in a finite-element configuration. This software contains highly perfected</p>

Criteria	JORC Code explanation	Commentary
		<p>convergence algorithms, takes into account the topography of the profiles, and can correct for the effects of relief (parasite anomalies due to large variations in relief). The software also avoids all the "usual" artifacts associated with dipole-dipole arrays, such as ground surges due to surface structures, and the mode of pseudo-section representation (conical shape, branches inclined at 45°). Interpretation by inversion supplies quantitative information for characterizing the origin of the anomalies: electrical characteristics (actual resistivity and chargeability), geometry, and depth. Nevertheless, even though very powerful convergence algorithms optimize the precision and stability of the inversions, the geometric parameters provided by the inversion of the pseudo-sections can, in theory, vary within a range of 10 to 20%. This data should be treated as historic in nature, raw data not available for reprocessing by SNX at this time.</p> <p>IP chargeability pseudo-sections produced by BRGM presented in Figure 4 in body of report.</p>
	<ul style="list-style-type: none"> Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information 	<p>All sampling prior to 2025 are considered historic in nature.</p> <p>Industry standard sampling protocols of the time (1969 & 2000) and techniques were variably applied as discussed above. The BRGM is a well-respected organisation that is renowned for employing industry best practise.</p> <p>No coarse gold observed or encountered by SNX, no coarse gold is recorded in government technical reports.</p>
Drilling techniques	<ul style="list-style-type: none"> Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	<p>7 conventional core holes drilled for a total advance of 2,060m. It is assumed the core diameter is BQ (36.4mm), this will be confirmed when core is sourced from the Saudi Geological Service (SGS) core depository in Jeddah, KSA.</p>
Drill sample recovery	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. 	<p>Prior to 2025 sampling information does not support making the assessment of this criterion.</p>
	<ul style="list-style-type: none"> Measures taken to maximise sample recovery and ensure representative nature of the samples 	<p>Prior to 2025 sampling information does not support making the assessment of this criterion.</p>
	<ul style="list-style-type: none"> Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<p>No study of sample recovery versus grade has been conducted as these are early-stage drilling programs to outline mineralisation.</p>
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource 	<p>Since 2025 samples have been logged to a level that would support a Mineral Resource Estimation (MRE) with all RC, core and rock chip samples being geologically logged to</p>

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	estimation, mining studies and metallurgical studies.	record weathering, regolith, rock type, alteration, mineralisation, structural deformation and other pertinent geological features specific to the sample. Where required, logging records specific mineral abundance. Prior to 2025 sampling information does not support making the assessment of this criterion to this level of detail. No MRE is being reported.
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Summary drill logs for the 1968-69 (BRGM) core program SNX have access to are both qualitative and quantitative.
	• The total length and percentage of the relevant intersections logged.	The entire length (100%) of each core hole has been logged.
	• If core, whether cut or sawn and whether quarter, half or all core taken.	Core – cut by saw and split by chisel.
	• If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Only reporting historic core drilling results.
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Prior to 2025, available QAQC information does not support making this assessment to the level required under the JORC 2012 Code.
	• Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Prior to 2025, sampling information does not support making the assessment of this criterion.
	• Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Prior to 2025, sampling information does not support making the assessment of this criterion
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	Prior to 2025, sampling information does not support making the assessment of this criterion.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Original assay documents before 2025 are not available, as such all assay data prior to 2025 is historic in nature and is treated as such. BRGM clearly records assay methodology and place of assay however SNX do not have access to original laboratory documents.
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Downhole geophysical tools were not used.
	• Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Insufficient data exists on programs prior to 2025 to make the assessment against this criterion.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Prior to 2025 SNX relies on previous workers and consultant's assessments as to the verification of historical significant intersections.
	• The use of twinned holes.	No twinned holes.
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Prior to 2025 documentation on primary data and data entry procedures, verification and data storage protocols are not recorded to a level to satisfy the JORC 2012 Code. SNX is

Criteria	JORC Code explanation	Commentary
		currently undertaking a program of data validation of the data recorded at the project since the 1930's.
	<ul style="list-style-type: none"> Discuss any adjustment to assay data. 	No adjustments have been made.
Location of data points	<ul style="list-style-type: none"> Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	No mineral resource estimation is being reported. The location of BRGM drill collars (7) have been field verified using a handheld GPS +/-1.8m (Garmin 65s).
Data spacing and distribution		<p>WGS 84 UTM Zone 37N.</p> <p>The topographic data used (drill collar elevation, RL) were obtained from handheld GPS units and are adequate for the reporting of initial exploration results.</p> <p>SRTM (Shuttle Radar Topographic Mission) provides base topographical data where required.</p>
	<ul style="list-style-type: none"> Data spacing for reporting of Exploration Results. 	The data spacing of both drilling, rock chip and geophysical programs are appropriate for the reporting of Exploration Results.
	<ul style="list-style-type: none"> Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	The data spacing and distribution is not sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material 	<p>Geophysical and geological interpretations support the drilling direction and sampling method.</p> <p>No drilling orientation and sampling bias has been recognised at this time.</p>
Sample security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	Prior to 2025 no details of the sample security measures are available.
Audits or reviews	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	No reviews have been undertaken by SNX.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, 	This report is announcing that SNX has received an official "Letter of Award" for 5 contiguous blocks (NS240, NS241, NS242, NS247, NS248 for a total area of 375km ²) that cover the As Safra Project. The 5 contiguous blocks were offered by the KSA government

Criteria	JORC Code explanation	Commentary
	wilderness or national park and environmental settings. • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	under the recently completed Round 9 of the competitive tender process, for which SNX was the successful bidder. SNX is now engaging with government stakeholders to fulfill its statutory requirements to allow for the issuing of the full Exploration Licences. SNX are currently fulfilling its statutory requirements to have the exploration blocks converted into full Exploration Licences. This process is expected to be completed in Q1 2026.
	Exploration done by other parties • Acknowledgment and appraisal of exploration by other parties.	Exploration by other parties since 1936 have been (or in the process of being) reviewed and is used as a guide to SNX's exploration priorities and activities. Previous workers have completed geological mapping and sampling, geochemical sampling, geophysical programs, core drilling. Significant ancient mining has also occurred within the project, and this also informs SNX's exploration priorities.
Geology	• Deposit type, geological setting and style of mineralisation.	The As Safra Project exhibits a district-scale mineralised footprint characterised by well-developed metal zonation, transitioning from a central Cu-Au core into broader Ag-Cu-Pb and Pb-Zn-Ag distal systems. Despite numerous mineral occurrences across the project area, historical exploration has been limited and focused almost exclusively on the central corridor of ancient copper-gold workings, which extends for 5.5km x 0.6km. The abundance of ancient mine sites and slag deposits, combined with widespread mineralisation at surface, underscores the project's inherent prospectivity. Mineralisation is associated with shearing and skarn alteration formed along reactive carbonate horizons adjacent to intrusive contacts.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none">- easting and northing of the drill hole collar- elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar- dip and azimuth of the hole- down hole length and interception depth- hole length. • If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Details of results of historic exploration drilling activities discussed in this announcement are within the body of the text and summarised in Appendix 1, Table 1. No drilling data is excluded. Historic drilling that is discussed is referenced in the body of the report and covered in JORC Table 1 under "Sampling Techniques".

Criteria	JORC Code explanation	Commentary
Data aggregation methods	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	<p>With drilling results weighted averages were calculated over reported intervals according to sample length.</p> <p>No high-grade cuts have been applied to assay results.</p>
	<ul style="list-style-type: none"> Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	<p>The parameters behind historical significant intercepts are unknown and have been taken directly from reports/plans/sections.</p>
	<ul style="list-style-type: none"> The assumptions used for any reporting of metal equivalent values should be clearly stated. 	<p>No metal equivalent values have been used or reported.</p>
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. 	<p>At this reconnaissance/early exploration stage, the geometry of the target mineralisation is not adequately defined. All intersections reported are as downhole lengths.</p>
	<ul style="list-style-type: none"> If the geometry of mineralisation with respect to the drill hole angle is known, its nature should be reported. 	<p>At this reconnaissance/early exploration stage, the geometry of the target mineralisation is not adequately defined. All intersections reported are as downhole lengths.</p>
	<ul style="list-style-type: none"> If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	<p>All intersections reported are as downhole lengths and statement provided in Table 1 to illustrate this.</p>
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<p>Refer to the body of the report for all relevant maps, sections and diagrams.</p>
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<p>All historical data reported in this announcement is presented.</p>
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<p>No substantive exploration data excluded. SNX has discussed and presented the latest data as compiled by the BRGM, a globally recognised government geological agency.</p>
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). 	<p>Covered in the body of the announcement.</p>
	<ul style="list-style-type: none"> Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive 	<p>Covered in the body of the announcement.</p>

SIERRA NEVADA GOLD

SIERRA NEVADA GOLD INC
ASX: SNX, ARBN: 653 575 618
[E info@sngold.com.au](mailto:info@sngold.com.au) [W www.sngold.com.au](http://www.sngold.com.au)

USA 5470 Louie Lane, Suite 101,
Reno, Nevada 89511 | T +1 775 507 7166

Australia | T +61 3 9692 7222