

ASX Announcement

14 June 2023

Positive Geochemistry at Munga Creek, Windfall Antimony Project

HIGHLIGHTS

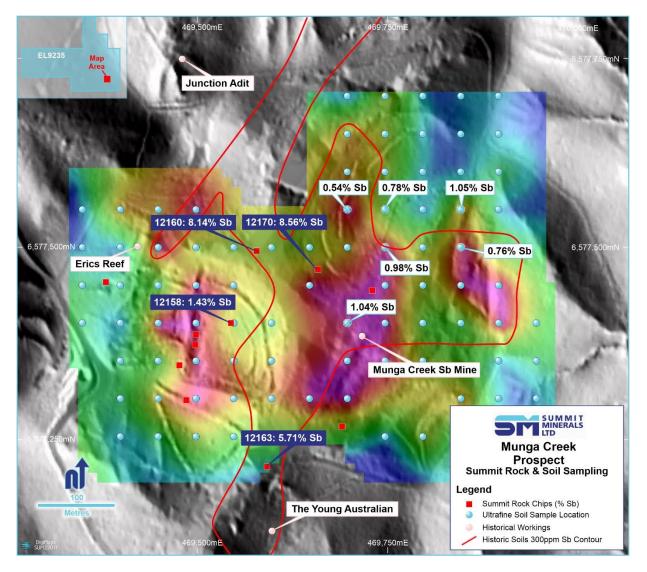
- Maiden field program, including rock and soil geochemistry, confirms and extends antimony mineralisation at the historic Munga Creek Prospect, Windfall Project.
- Antimony up to 8.56% in rocks and 1.05% in soils returned in the survey.
- The most significant anomaly corresponds with the historical Munga Creek Mine, where the mineralisation remains open south of the workings.
- Strong multielement signals promote future exploration and improve drill targeting.
- Good potential to locate additional resources by exploring the extensions of known structures and veins and by locating new vein structures in the hinge areas to identified folds.
- A reconnaissance drill programme will be organised as soon as practicable and subject to access.

Summit Minerals Limited (**ASX: SUM**, "**Summit**" or the "**Company**") is pleased to report on three significant soil and rock geochemistry anomalies, including Munga Creek, at the Company's 100% owned Windfall Antimony Project near Kempsey in NSW. Each north-south trending multi-element anomaly lies within an inferred east-west corridor and corresponds with a topographic high (Figure 1). The interpreted corridor extends west through the Pinnacle and Tooroka Camps.

Rock chips up to 8.56% Sb and 1.05% Sb in ultrafine soils were returned from first-pass exploration across the historical workings. The central and most significant anomaly corresponds with the historical Munga Creek Mine, where the mineralisation remains open south of the workings.

The positive results across Munga Creek reinforce the prospectivity and pave the way for follow-up exploration activities, including drilling (subject to access).

Summit's Exploration Manager, Jonathan King, commented:


"These are the first rock and soil geochemistry results for the Munga Creek area since the late 1990s. The results confirm that the area is prospective for antimony mineralisation beyond the Munga Creek Mine. The tenor of the results is consistent with those delivered previously".

Directors: Peretz Schapiro – Non-Executive Director Stephen Ross – Non-Executive Director Jonathan King – Executive Director

"Three distinctive multielement anomalies, which include antimony, arsenic, gold, mercury, and lead, lie within a distinctive east-west band, and are confined to adjacent hill crests. Field checking will commence later this month to confirm the controls on the mineralisation, as the results support other possibilities in part to those adopted by the early explorers, who concentrated mainly on north-south trends".

Figure 1 – Soil and Rock Chip Sample locations draped over imaged multielement geochemistry (including antimony, gold, arsenic, mercury, and lead, as an additive index) and LiDAR DTM.

Munga Work Program

Rock chips and conventional soils were collected during general prospecting of the historical workings and neighbouring environments. Summit moved to standardise the exploration by utilising ultrafine soils on a 50m x 50m regular grid under the pretext of designing a drilling campaign beneath the historical Munga Creek workings. Twelve (12) rock chips and 93 ultrafine soils were assayed. Ultrafine soils replicated the conventional soils, which are not being reported.

Directors: Peretz Schapiro – Non-Executive Director Stephen Ross – Non-Executive Director Jonathan King – Executive Director

Results And Discussion

Tables 1 and 2 present the summary results for the rock chips and ultrafine soils. The individual antimony results and a simple additive index that combines elements associated with the mineralisation into a single multi-element variable were imaged and reviewed. The additive index includes antimony, arsenic, gold, mercury, and lead.

Table 1	_	Rock	Chip	Descriptive	Statistics
---------	---	------	------	-------------	------------

Variable	Sb	Ag	As	Au	Hg	к	Мо	Pb	s	Se	Sr
Count	12	12	12	12	12	12	12	12	12	12	12
Minimum (ppm)	22.9	0.02	6	2.3	0.16	394	0.2	1.2	-1	1.38	1.2
Maximum (ppm)	85600	1.56	297	126	6.83	7260	1.4	75.2	36600	85.3	53.3
First Quartile	577.75	0.0525	26.275	7.025	0.5125	1200	0.3	12.025	224	2.0675	10.15
Median	1535	0.16	33.75	8.7	1.055	1850	0.5	17.6	502.5	6.195	12.85
Third Quartile	30325	0.7725	57.7	16.95	2.8625	3157.5	0.925	44.95	6147.5	14.85	19.35
Mean	22073	0.473	60.14	20.88	2.070	2702.1	0.642	28.59	6798.7	16.74	16.93
Standard Deviation	33078	0.545	77.61	34.01	2.150	2418.1	0.410	24.18	12098	25.65	13.55

Table 2 - Ultrafine Soils Descriptive Statistics:

Variable	Sb	Ag	As	Au	Hg	к	Мо	Pb	S	Se	Sr
Count	90	90	90	90	90	90	90	90	90	90	90
Minimum (ppm)	8.370	0.049	6.000	-0.050	0.040	4480.00	0.470	13.000	104.000	0.760	8.100
Maximum (ppm)	10500.00	0.942	370.000	76.300	1.700	12200.00	3.440	1310.000	3980.000	4.980	83.900
1st Quartile	33.125	0.116	12.400	1.800	0.108	5897.50	0.905	21.050	213.750	1.035	14.300
Median	132.00	0.153	17.900	2.750	0.166	7110.00	1.060	25.050	271.000	1.270	16.800
3rd Quartile	390.250	0.210	28.350	7.400	0.268	8765.00	1.338	32.450	354.750	1.525	21.375
Mean	853.26	0.173	37.823	8.399	0.284	7427.89	1.227	63.117	445.833	1.430	21.240
Standard deviation	2199.09	0.110	62.422	12.786	0.326	1870.64	0.544	192.049	640.877	0.737	13.495

Three north-south trending multi-element anomalies lie within an inferred east-west corridor and correspond with adjacent topographic highs (Figure 1). Their distribution must be understood because their extent could be an artefact of the local regolith development or en echelon veining associated with axial faulting within east-west anticlines. Recognition of the latter promotes the opportunity for vein stacking within mineralised positions. Further opportunities are hitherto unrecognised because regolith development has impacted surface geochemistry, obscuring any underlying mineralisation, and/or the inferred east-west control has been overlooked in preference for the more apparent north-south control and mineralised repetitions potentially lie between all three historic mining camps (Munga Creek, Pinnacles and Tooroka) and west of the Tooroka Camp.

The central and most significant anomaly extends over 300m and corresponds with the historical Munga Creek Mine. The mineralisation remains open south of the workings. The mineralised trend

Directors: Peretz Schapiro – Non-Executive Director Stephen Ross – Non-Executive Director Jonathan King – Executive Director

will subjectively extend from The Young Australian, 300 m south of Munga Creek, to beyond Victoria Adit, some 500m north of Munga Creek: a length of 800m.

The eastern anomaly possibly reflects the extensions to a subparallel trend extending from Walford's Claim and Bolt's Reef (East) north: a length of some 750m. The western anomaly corresponds with a further subparallel mineralised trend potentially extending from Junction Adit in the north, through a costean east of Eric's Reef: a length of 400m.

Two facies' associations are recognised with conglomerate and gravelly sandstone with minor sandstone, overlain by intervals of sandstone and mudstone. The higher-grade mineralisation is preferentially hosted by mixed sandstone and mudstone, which lies over the conglomerate and gravelly sandstone, host to lower-grade stockwork-styled mineralisation. The Company will use this understanding to locate hinge zones with high prospectivity (and similar geology) west and east of the known mineralisation to explore further opportunities.

Munga Creek Mine

The Munga Creek Mine is a historical antimony mine in New South Wales, Australia. It is situated near Hillgrove, approximately 60 kilometres east of Armidale.

The Munga Creek Mine operated intermittently from the late 1800s until the mid-1970s. It primarily produced antimony, a metal used in various industrial applications. Antimony was extracted from underground mining operations at the site.

The mine's production history includes periods of significant activity, especially during World War I and II, when antimony was highly demanded for military purposes. However, due to fluctuations in global markets and changing economic conditions, the mine eventually closed in the early 1970s.

Board Changes

The Company wishes to advise that recent progress made in respect to its exploration assets in Australia and Morocco has led to an increase in its exploration activity. As such, the Company advises that its current Managing Director, Mr Jonathan King will be transitioning to the role of full time Exploration Manager for the Company effective immediately. Stepping off the board will alleviate Mr King of certain corporate responsibilities and allow him to direct his full focus and time to the Company's exploration assets.

Mr Bishoy Habib will join the Company's board as a Non-Executive Director. Mr Habib has been involved with the Company for the last 10 months as a Business Development Consultant. Over that time Mr Habib has developed excellent relationships with the Company's shareholders and is very familiar with the Company's projects and overall strategy.

Mr Habib holds a bachelor's in applied science (Software Eng) and has been a global investor for more than a decade, with a particular focus in the resources sector. A qualified and experienced leader, with over 15 years' project delivery and management experience in large multinational organisations

Directors: Peretz Schapiro – Non-Executive Director Stephen Ross – Non-Executive Director Jonathan King – Executive Director

Mr Habib has a strong understanding of the African resources sector, with access to a wide-reaching network and project delivery expertise across Africa and the Middle East.

Additionally, the Company's Chairman, Mr Peretz Schapiro will be taking on a more active role for the Company, with specific focus on strategy and corporate development. Mr Schapiro is an experienced corporate executive in the sector with a strong track record of successful corporate development transactions and value accretive acquisitions for numerous ASX listed exploration companies.

Approved for release by the Board of Summit Minerals Limited.

- ENDS -

For More Information: Jonathan King Exploration Manager jonathan@summitminerals.com.au T: +61 8 9426 0666

Chloe Hayes Media & Investor Relations chloe@janemorganmanagement.com.au T: +61 4 5861 9317

Additional information is available at <u>www.summitminerals.com.au</u>.

Directors: Peretz Schapiro – Non-Executive Director Stephen Ross – Non-Executive Director Jonathan King – Executive Director

Summit Minerals' Australian Project Locations

About Summit Minerals Limited

Summit Minerals Limited is an Australian-focused ASX-listed battery mineral exploration Company with a portfolio of projects in demand-driven commodities. It is focused on systematically exploring and developing its projects to delineate multiple JORC-compliant resources.

Summit's projects include the Windfall and Magwood Antimony Projects in the antimony-gold province of the southern New England Fold Belt region in NSW, the Stallion REE Project in Ponton River WA, the Phillips River Lithium Project in Ravensthorpe WA, and the Bridgetown Lithium Project in Bridgetown WA, strategically located along strike of Talison's Greenbushes Mine. Through focus, diligence and execution, the board of Summit Minerals is determined to unlock previously unrealised value in our projects.

Competent Person Statement

The information related to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on data compiled by Jonathan King, a Competent Person and Member of The Australian Institute of Geoscientists. Jonathan King is a director of Collective Prosperity Pty Ltd. Jonathan King has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to gualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Jonathan King consents to the inclusion in the presentation of the matters based on his information in the form and context in which it appears.

Directors: Peretz Schapiro – Non-Executive Director Stephen Ross – Non-Executive Director Jonathan King – Executive Director

Forward-Looking Statements

This announcement contains 'forward-looking information based on the Company's expectations, estimates and projections as of the date the statements were made. This forward-looking information includes, among other things, statements concerning the Company's business strategy, plans, development, objectives, performance, outlook, growth, cashflow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by using forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions and that the Company's results or performance may differ materially. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance, or achievements to materially differ from those expressed or implied by such forward-looking information.

Directors: Peretz Schapiro – Non-Executive Director Stephen Ross – Non-Executive Director Jonathan King – Executive Director

Appendix 1: JORC Code, 2012 Edition- Section 1 – Windfall Antimony Project

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Comment
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of	Material from outcropping quartz veins was chipped with a mallet for investigation. Several subsamples within a metre of the parent sample were combined to form a lab sample. Soil samples were point samples. All samples were sent to LabWest Mineral
	sampling.	Analysis (LabWest) for four-acid ICP-MS (MAR- 04) for rocks and UltraFines Plus for soils.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	Each of the 12 rock samples is a composite of the initial sample location and several adjacent subsample locations (generally within 1m of the parent location).
		Ninety-three (93) soil samples were collected from holes dug to around 20cm depth, where a salt horizon was commonly observed. One hundred grams of -1mm material was collected at this level.
	Aspects of the determination of mineralisation that are Material to the Public Report.In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Industry-standard practices were applied to the collection of both chip and soil samples
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	No drilling
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Subsampling attempts to remove bias by accessing results across a slightly larger area
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	The rock chips were taken where mineralisation or other features of interest were identified. Rock chips are inherently biased towards the presence of mineralisation. No economic implication is made or implied until the target geology is tested via drilling and laboratory assay

Directors: Peretz Schapiro – Non-Executive Director Stephen Ross – Non-Executive Director Jonathan King – Executive Director

Criteria	JORC Code explanation	Comment
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Chip samples were logged at the time of collection.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	All chip samples were geologically logged and photographed
	 The total length and percentage of the relevant intersections logged. 	No drilling
NSub- sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	No drilling
and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	No drilling
preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	Appropriate, laboratory-controlled sample preparation techniques were applied to the chip and soil samples
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	Other than lab QA/QC, no other QAQC procedures were adopted in the first pass
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	Each sample is a composite of the initial sample location and several adjacent subsample locations (generally within 1m of the parent location) to limit bias
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes 2 to 3 kg were considered appropriate for the grain size of the sampled material.
		One hundred grams (100g) of soil at -1 mm were collected for soil samples. The weight mostly provided sufficient ultrafine material for analysis via the technique. Five (5) samples lacked sufficient material for analysis.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	A certified laboratory, LabWest, was used for all sample analyses. The laboratory techniques below are for all samples submitted to LabWest and are considered appropriate for the style of mineralisation
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No handheld instruments were used.
	 Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	Laboratory standards and blank samples were inserted regularly for QC checks by the laboratory.
Verification of sampling and	 The verification of significant intersections by either independent or alternative company personnel. 	No verification was undertaken
assaying	The use of twinned holes.	No drilling

Criteria	JORC Code explanation	Comment
	Discuss any adjustment to assay data.	No adjustment was made to any data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	A handheld GPS surveyed sample locations with 5m accuracy.
	Specification of the grid system used.	MGA94 Zone 56
	 Quality and adequacy of topographic control. 	LiDAR data was used to provide topographic control
Data spacing and	 Data spacing for reporting of Exploration Results. 	Variable as determined by field mapping and outcropping veins for rock chips.
distribution		Soils were taken on a regular 50m x 50m grid across areas where access permissions had been obtained. The grid covered the likely mineralised extension to the Munga Creek Mine and any subparallel systems.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	First pass exploration to promote drilling.
	 Whether sample compositing has been applied. 	As described above, each rock chip sample is a composite sample from the local environment to move towards a more representative sample for that immediate area.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The brecciated vein-hosted mineralisation is vertical to steeply dipping. Several veins were traced over several hundred metres. The sampling represents a point somewhere along the length of the vein.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No drilling
Sample security	The measures taken to ensure sample security.	A courier delivered the samples to Summit Resources in Perth, who then delivered the samples to LabWest.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits were conducted

Appendix 1: JORC Code, 2012 Edition- Section 2 – Windfall Antimony Project

Section 2 Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Windfall Antimony Project comprises one granted Exploration License 9235 for an area of 240sqkm. The tenement is in good standing, with land access agreements or approval for non-ground disturbing activity received across the area being investigated. Drilling permissions are yet to be obtained.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The northern end of the tenement is surrounded and partly overlaps state forest and conservation reserves. Work is permitted on application and with Native Title permissions being received, should the title or a claim exist. Bow Island Resources Pty Ltd, a wholly-owned subsidiary of Summit Minerals Ltd, holds the tenement. Land access negotiations with several landholders are progressing
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	Over the past century, various companies and privateers have held parts of the Windfall Project. More recently, Anchor Resources, via their subsidiary, Scorpio Resources Pty Ltd held the southern half of the project. Scorpio withdrew after the collapse in the antimony price in 2012 without achieving much. The Munga Creek area was last actively mined in the early 1970s, ceasing production in 1973.
Geology	 Deposit type, geological setting and style of mineralisation. 	The Windfall Project area is located within the Nambucca Block within the New England Fold Belt (NEFB). The Nambucca Block sediments are of Late Carboniferous to Early Permian age and consist of clastic sediments with minor mafic and felsic volcanic horizons and rare calcareous rocks. The Windfall Project is located within an area well-endowed with antimony mineralisation, and occurrences are generally hosted in vein quartz. The structurally controlled deposits contain variable amounts of stibnite, gold, arsenopyrite, pyrite, pyrrhotite, quartz, carbonate and some scheelite.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	No drilling undertaken.
	o easting and northing of the drill hole collar	MGA94 Zone 56 co-ordinates were used
	o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	LiDAR data was used for elevation control

Directors: Peretz Schapiro – Non-Executive Director Stephen Ross – Non-Executive Director Jonathan King – Executive Director

Criteria	JORC Code explanation	Commentary
	o dip and azimuth of the hole	
	o down hole length and interception depth	No drilling
	o hole length.	No drilling
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Not relevant
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Not relevant
	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Not relevant
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not relevant
Relationship between mineralisation widths and intercept lengths	• These relationships are particularly important in the reporting of Exploration Results.	Not relevant
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	No drilling
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	No drilling

Criteria	JORC Code explanation	Commentary
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps are provided, and sample locations are tabulated. Appropriate diagrams with sample locations and results to provide context when the assay results are received.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The included photo exhibiting sulphide mineralisation does not constitute the presence of an economic deposit or economic mineralisation. Sulphide mineralisation was recognised, and the company is encouraged by its recognition. It is important geologically, and no other inference is made.
Further work	• The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling).	Further drilling will be required to ascertain the total REO values given Manhattan only included Ce, La and Y in previous assay analysis
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	

Samp_Id	MGA56E	MGA56N	Lith1	Lith2	Ag	As	Au	Bi	Cu	Fe	Hg	Мо	Pb	s	Sb	Se	w	Zn
					ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
12151	469478	6577344	Sc		0.09	61	12.1	0.28	27.5	43200	0.34	0.4	14.2	185	584	3.87	0.12	24.5
12152	469499	6577371	St	QV	1.25	56.6	126	0.25	78.6	23100	3.47	1.2	45.4	398	1740	10.7	0.58	19.3
12153	469500	6577385	St		0.02	83.9	19.5	0.07	30.1	18700	0.27	0.3	4.3	51	1330	2.45	-1	13.5
12155	469487	6577298	St		0.03	33.1	7.2	0.06	5.5	10500	0.16	1.4	5.5	-1	22.9	1.38	0.38	5.5
12158	469546	6577400	St	Hbx	1.56	24.1	5.2	0.2	201	12200	6.83	0.2	38.1	607	14300	13.5	0.03	87.5
12160	469580	6577495	Hbx	QV	1.02	297	31.1	0.08	32	29400	2.45	0.2	62.6	36600	81400	85.3	0.13	6.7
12162	469381	6577454	St		0.03	15.1	2.3	0.36	34.5	34300	0.57	0.9	17.9	306	57.7	1.94	0.34	98.1
12163	469594	6577210	Bx	Sb	0.11	33.8	6.5	0.05	18.4	11000	0.77	0.6	75.2	21600	57100	50.6	1.97	32.3
12170	469661	6577471	Bx	St	0.69	50.4	9.3	0.04	97.9	5790	5.21	0.3	1.2	18800	85600	8.52	0.02	151
12171	469693	6577263	?		0.06	27	16.1	0.37	36.7	37300	1.1	1	16.6	237	559	2.11	0.12	56.2
12172	469733	6577443	Bx	St	0.21	33.7	7.2	0.38	30.9	31500	1.01	0.8	17.3	871	778	1.55	0.25	79.9
12176	469736	6578349	Bx	St	0.61	6	8.1	0.11	48.2	10500	2.66	0.4	44.8	1930	21400	18.9	0.16	59.9

Appendix 2: Selected Rock Chip Assays – Windfall Antimony Project

Directors: Peretz Schapiro – Non-Executive Director Stephen Ross – Non-Executive Director Jonathan King – Executive Director

Appendix 3: Selected UltraFines Plus Soil Assays – Windfall Antimony Project

SampleID	MGA56E	MGA56N	Ag	As	Au	Bi	Cu	Fe	Hg	Мо	Pb	S	Sb	Se	w	Zn
Sampleib	MGAJUL	MOAJON	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
SUMA0287	469350	6577550	0.127	16	1.4	0.382	37.2	35800	0.134	1.3	21	179	18.6	1.12	0.154	108
SUMA0288	469350	6577500	0.092	9.5	2.3	0.353	29.6	29100	0.04	0.92	21	199	16.8	0.86	0.134	82.6
SUMA0289	469350	6577500	0.095	9.7	1.3	0.346	29.9	30600	0.042	0.98	20.9	211	16.6	0.78	0.196	83.5
SUMA0200	469350	6577450	0.096	9.9	2.9	0.438	34.6	38400	0.042	0.82	20.3	202	12.8	1.15	0.208	97.3
SUMA0290	469350	6577400	0.102	10.3	1.8	0.42	33	39900	0.207	1.21	23.6	305	12.0	1.13	0.199	110
SUMA0291 SUMA0315	469400	6577550	0.102	23.1	2.4	0.42	34.2	42000	0.185	1.33	32.8	289	659	1.27	0.133	122
SUMA0315	469400	6577500	0.120	16	2.4	0.354	29.1	34800	0.099	1.06	21.4	287	53.4	1.18	0.267	80.7
SUMA0310	469400	6577450	0.134	10.1	2	0.334	35	35300	0.138	0.79	21.4	306	24	1.10	0.207	202
SUMA0317 SUMA0318	469400	6577400	0.130	7.8	1.7	0.352	33.8	27500	0.130	0.75	21.3	197	13.5	0.96	0.23	118
SUMA0319	469400	6577350	0.101	9.1	2.3	0.393	37	31500	0.161	1.12	26.1	223	11.6	1.13	0.112	131
SUMA0319	469400	6577300	0.166	10.2	2.3	0.393	16.1	19100	0.236	1.04	20.1	208	40.8	0.98	0.24	51.4
SUMA0320	469400	6577250	0.100	6.1	0.7	0.272	25.3	27000	0.230	1.04	16.8	384	8.37	1.06	0.05	123
SUMA0321 SUMA0356			0.10	26.3	4.8	0.242	40.6	39500	0.110	1.04	30	356	140	1.61	0.328	119
SUMA0356 SUMA0357	469450	6577550			4.0 6	0.446			1.19		30.9					
SUMA0357 SUMA0358	469450 469450	6577500 6577450	0.093	30.4 20	ь 4.6	0.404	37.4 35.5	36900 34700	0.136	0.9	30.9 20.7	509 243	388 97.4	1.06 1.42	0.299	117 97.1
		6577450		20					0.136	1.04	20.7					
SUMA0359	469450	6577400 6577350	0.106		14.9 5.4	0.461	26.6	26000			28.5	186 189	151	1.59	0.417	48.9
SUMA0361 SUMA0362	469450 469450	6577300	0.118	11.4 9.8	5.4 3.3	0.384	32.6 19.9	30500 19300	0.888	1.31 0.92	24.4	189	33.1 133	1.57 1.33	0.242	103 29.2
SUMA0363	469450	6577250	0.153	7.7	2.7	0.264	22.6	18500	0.188	0.86	17.3	172	14.9	1.23	0.099	67.1
SUMA0398	469500	6577550	0.216	32.9	5.3	0.516	24	33200	0.211	1.42	31.4	320	556	1.36	0.134	72.6
SUMA0399	469500	6577500	0.173	20.8	4.2	0.388	39.8	25700	0.109	1.01	21.4	218	202	1.64	0.231	91.5
SUMA0400	469500	6577450	0.12	27.6	13.6	0.596	41.2	44000	0.423	1.63	30.9	225	208	2.33	0.238	64.3
SUMA0401	469500	6577400	0.211	32.8	76.3	0.606	41.7	22300	0.909	1.19	37.7	150	1090	2.93	0.143	21
SUMA0402	469500	6577350	0.133	27	22.3	0.55	26.2	25000	0.292	1.02	28.7	133	392	1.57	0.122	25.5
SUMA0403	469500	6577300	0.085	47.8	28.9	0.614	18.3	25100	0.262	1.24	35.3	143	140	1.76	0.093	14.7
SUMA0404	469500	6577250	0.322	79.2	17.4	0.305	17.7	33700	0.421	1.44	16.9	208	95.4	1.42	0.34	30.2
SUMA0440	469550	6577500	0.089	16.1	2	0.415	34.6	29700	0.2	1.1	27.4	196	226	1.51	0.174	66.5
SUMA0441	469550	6577450	0.15	16.6	5.8	0.439	45.7	39100	0.197	1.11	26	227	146	1.5	0.174	96.4
SUMA0442	469550	6577400	0.237	21	2.6	0.452	41.6	32300	0.208	0.94	23.8	213	282	1.13	0.13	99.7
SUMA0443	469550	6577350	0.161	25.8	4.9	0.268	34.3	43200	0.16	1.34	28.2	257	534	1.61	0.161	109
SUMA0444	469550	6577300	0.162	32.2 22.9	7.4 3.1	0.394	32.1	28200	0.318	1.28	23.5 21.2	229 273	137	1.44	0.29	66.8
SUMA0445	469550	6577250			2.5		20.3 22	28900	0.158	1.19	21.2	381	101	1.18 1.31	0.298	43.1
SUMA0482	469600	6577500	0.181	21.6 28.6		0.364	37.3	21000 38700	0.099	0.88	20.4		391		0.212	81.9
SUMA0484	469600	6577400			3.6 7.2				0.117	1.11	24.4	354	304	1.33	0.246	117
SUMA0485 SUMA0486	469600	6577350 6577300	0.145 0.257	29.6 31.9	3.7	0.508 0.448	37.4 43.9	32500 35800	0.268	2.92 1.62	24.3 26.5	205 221	343 583	1.5 1.68	0.12 0.315	65.7 65.3
	469600									0.89		317				49.4
SUMA0523 SUMA0524	469650 469650	6577500 6577450	0.111 0.15	35.7 39.3	1.9 2.9	0.336	13.1 35.5	22800 36400	0.117 0.271	1.47	27.8 30.5	374	670 479	0.99 1.59	0.25	49.4
SUMA0524 SUMA0527				69.3		0.363		34500	0.271	2.44	30.5 119	264	2310	1.59	0.224	
SUMA0527 SUMA0560	469650 469700	6577300 6577700	0.259	17.8	10.2 2	0.363	33.6 20	23100	0.57	0.99	21.3	264	114	0.87	0.285	106 30.4
SUMA0560	469700	6577650	0.116	21.9	<u> </u>	0.505	31.6	30300	0.082	1.34	65.1	211	359	1.41	0.233	60.4
SUMA0561 SUMA0562	469700	6577600	0.096	21.9	<u> </u>	0.528	32.7	23000	0.062	1.09	38.1	142	43.8	1.62	0.165	35.4
SUMA0562	469700	6577550	0.090	370	28.3	0.320	42.5	24500	0.258	1.84	33	651	43.8 5390	1.71	0.24	73.3
SUMA0505 SUMA0564	469700	6577500	0.233	210	7.4	0.30	42.5	24000	0.186	0.63	25	297	1880	1.19	0.112	39.1
SUMA0566	469700	6577400	0.096	132	20.8	0.29	29.6	48700	0.241	1.47	33.9	2090	10400	2.27	0.328	93.6
SUMA05667	469700	6577350	0.090	24.1	20.8	0.607	37.4	35700	0.241	0.99	39.3	2090	268	1.39	0.320	80.5
SUMA0567	469700	6577300	0.097	24.1	21.3	0.572	54.8	33200	0.89	1.33	<u> </u>	297	200 519	1.67	1.7	283
SUMA0508	469700	6577700	0.243	26.4	24.9 8.8	0.367	41	28000	0.227	1.33	19.4	291	36.2	1.07	0.249	52.8
SUMA0602 SUMA0603	469750	6577650	0.228	20.4	2.7	0.367	53.9	30900	0.227	1.29	26.2	260	106	1.27	0.249	52.8 104
SUMA0603																
SUMA0604	469750	6577600 6577550	0.116	26.2	5.4	0.333	21.7	26600	0.101	0.88	19.4 13	207	198 265	1.02	0.179	54.8 35
SUMAUDUS	469750	6577550	0.108	27.1	1.7	0.209	10.1	19800	0.062	0.47	13	216	200	0.76	0.15	35

Directors:

Peretz Schapiro – Non-Executive Director Stephen Ross – Non-Executive Director Jonathan King – Executive Director

SampleID	MGA56E	MGA56N	Ag	As	Au	Bi	Cu	Fe	Hg	Мо	Pb	S	Sb	Se	w	Zn
			ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
SUMA0606	469750	6577500	0.942	196	39.6	0.871	40	74000	1.7	2.77	101	3980	7870	4.98	0.573	61.6
SUMA0607	469750	6577450	0.447	92.9	27.6	0.583	59.4	59000	0.941	1.66	107	1690	9810	3.74	0.541	220
SUMA0608	469750	6577400	0.087	19.3	16.4	0.287	46.5	37200	0.574	1.47	42.3	310	434	1.53	0.326	97
SUMA0609	469750	6577350	0.17	56	39.8	0.662	36.6	44600	0.344	1.25	36.9	566	194	1.35	1.11	126
SUMA0611	469750	6577250	0.243	17.4	0.6	0.414	47.3	30900	0.094	1.09	21.5	371	41.7	1.01	0.223	155
SUMA0643	469800	6577700	0.199	14.7	1.7	0.359	34.9	23800	0.125	1.06	16.3	200	24.9	0.88	0.104	98.8
SUMA0644	469800	6577650	0.131	12.9	1	0.409	31.6	30000	0.072	0.86	20	234	131	0.89	0.171	88.8
SUMA0645	469800	6577600	0.127	11.8	1.9	0.368	41.5	25700	0.077	0.99	20.9	272	46.8	1.35	0.169	76.4
SUMA0646	469800	6577550	0.128	12	2	0.37	42	24700	0.092	0.94	21	218	51.5	1.39	0.153	73.9
SUMA0647	469800	6577500	0.066	14.6	2.5	0.33	14	22100	0.172	0.67	39.8	251	2210	1.36	0.045	93.9
SUMA0648	469800	6577450	0.053	12.3	1.8	0.372	12.1	22000	0.18	0.89	34.3	285	1760	1.32	0.117	82.2
SUMA0649	469800	6577400	0.049	16.1	2.7	0.537	30.7	50000	0.041	2.37	28.3	508	323	1.21	0.149	117
SUMA0650	469800	6577350	0.118	9.2	5.4	0.387	39.2	36600	0.168	0.87	36.7	382	30.4	1.34	0.562	111
SUMA0652	469800	6577250	0.137	36.4	8.9	0.32	26.9	27100	0.193	0.83	22.2	257	57.4	1.05	0.18	49
SUMA0684	469850	6577700	0.157	12.7	1.3	0.369	41.9	29600	0.111	0.87	22.4	251	14.9	0.97	0.165	119
SUMA0685	469850	6577650	0.226	14.7	1.8	0.358	38.5	26700	0.105	1.02	18.6	270	16.1	1.03	0.132	106
SUMA0686	469850	6577600	0.205	13.7	1.6	0.372	46.8	32400	0.141	0.98	23.6	314	16.6	1.12	0.229	117
SUMA0687	469850	6577550	0.097	15	3	0.441	41.4	29200	0.296	2	30.6	212	235	1.42	0.186	58.4
SUMA0688	469850	6577500	0.285	286	31.9	0.636	45.2	67700	1.04	3.44	1310	2400	10500	4.59	1.84	92.4
SUMA0689	469850	6577450	0.36	291	41	0.529	38.8	62600	1.44	3.33	1250	3610	7680	4.03	2.66	69.9
SUMA0691	469850	6577400	0.169	18	0.7	0.494	42.6	48600	0.104	1.9	28.4	625	95.6	1.19	0.182	175
SUMA0693	469850	6577300	0.254	67.3	49.1	0.783	42	55200	0.266	1.4	30.2	480	125	1.17	1.16	154
SUMA0694	469850	6577250	0.122	9.4	1.1	0.377	18.9	23800	0.051	0.76	24.7	275	36.6	0.82	0.118	78.7
SUMA0726	469900	6577700	0.16	12.7	0.8	0.448	41.3	34900	0.069	1.15	20.4	268	113	0.86	0.102	141
SUMA0727	469900	6577650	0.182	11.6	-0.05	0.269	30.1	31400	0.073	1.01	16.8	302	19.6	0.86	0.191	157
SUMA0728	469900	6577600	0.213	10.4	1.2	0.308	44.2	26400	0.225	0.95	20.2	357	15.8	0.98	0.201	121
SUMA0729	469900	6577550	0.118	14.7	0.9	0.309	22.7	30400	0.076	0.89	17.8	412	62.9	1.03	0.167	134
SUMA0730	469900	6577500	0.083	17.1	1.7	0.247	11.6	34100	0.083	0.63	36.7	565	384	0.96	0.207	110
SUMA0731	469900	6577450	0.369	111	19	0.486	34.2	55600	1.1	1.87	504	2130	2950	2.39	0.288	97.1
SUMA0732	469900	6577400	0.1	23.6	6.7	0.47	40.4	43500	0.22	1.37	98.4	621	475	1.63	0.254	149
SUMA0733	469900	6577350	0.117	13.4	2.2	0.425	44.5	36200	0.078	0.86	23.7	310	30.9	0.97	0.197	147
SUMA0734	469900	6577300	0.18	9.9	2	0.402	43.4	28600	0.12	1.06	22.1	257	116	0.87	0.139	141
SUMA0735	469900	6577250	0.153	16	1.9	0.468	40.2	36700	0.124	1.01	20.9	355	22.3	1.26	0.209	143
SUMA0736	469900	6577200	0.19	9.7	1.4	0.404	38	29600	0.213	0.98	23.4	265	18.5	1.13	0.132	110
SUMA0773	469950	6577400	0.133	15.1	1.9	0.358	32.3	30700	0.125	0.98	41.4	254	157	1.05	0.288	103
SUMA0774	469950	6577350	0.166	6	2.8	0.342	35.7	26000	0.109	0.59	24	350	33.2	0.79	0.216	134
SUMA0775	469950	6577300	0.186	13.4	0.8	0.358	39.2	29600	0.11	0.88	24.8	353	35.2	1.05	0.234	132
SUMA0776	469950	6577250	0.135	11.9	1	0.422	48.5	36700	0.147	0.75	25.4	316	16.2	1.26	0.197	125
SUMA0777	469950	6577200	0.222	13.2	-0.05	0.416	39.9	33200	0.101	1.13	18	339	25.9	0.94	0.213	145

Summit Minerals Ltd www.summitminerals.com.au info@summitminerals.com.au L1/389 Oxford Street Mount Hawthorn WA 6016

SUMMIT MINERALS

info@summitminerals.com.au

L1/389 Oxford Street Mount Hawthorn WA 6016

www.summitminerals.com.au