

ASX ANNOUNCEMENT

14 May 2024

Stavely Copper-Gold Project, Victoria – Exploration Update

Compelling New Shallow Copper Drill Target Identified at the Junction Prospect for Imminent Drilling

New interpretation shows that the east-west orientation of lode-style copper-gold-silver mineralisation at Junction provides an immediate discovery opportunity, drilling to commence as soon as a rig can be mobilised

Key Points:

- Re-interpretation of historic and more recent Stavely Minerals drilling at the Junction Prospect has identified an immediate shallow discovery opportunity.
- Copper-gold-silver lode-style mineralisation intersected previously at Junction includes chalcopyrite, bornite and covellite and is very similar to the mineralisation at the Cayley Lode (9.3Mt at 1.23% Cu, 0.23g/t Au, 7g/t Ag).
- > Historic intercepts at the Junction Prospect include:
 - o **35m at 3.44% Cu and 26g/t Ag** from 24m drill depth to end-of-hole (EoH) in TGAC078
 - o 11m at 1.72% Cu and 26g/t Ag from 33m in TGRC087
 - 6m at 2.15% Cu and 8g/t Ag from 2m and 6m at 3.90% Cu and 26g/t Ag from 28m to EoH in PENP004
 - 6m at 1.52% Cu and 19g/t Ag from 42m, 5m at 1.12% Cu and 10g/t Ag from 62m; and 6m at 1.77% Cu and 21g/t Ag from 72m to EoH in TGRC110
 - 6m at 1.65% Cu and 16g/t Ag from 37m in TGRC109
- > The new structural interpretation of copper-gold-silver mineralised drill intercepts has an approximately east-west strike and dips steeply to the north.
- None of the previous drilling at Junction was oriented to drill from north to south and, consequently, this new interpreted east-west orientation has never been tested by drilling oriented perpendicular to the lode.
- The new interpreted orientation strongly implies copper-gold-silver mineralised drill intercepts over a strike length of more than 500m, with no drilling throughout this potential strike extent and the mineralisation potentially remaining open further along strike in both directions.
- > Drilling will commence at Junction as soon as a drill rig can be mobilised, with Titeline Drilling to accept one-third equity equivalent of the cost of drilling the first two holes.

Stavely Minerals Limited (ASX Code: **SVY** – "Stavely Minerals") is pleased to advise that a reinterpretation of historic and more recent Stavely Minerals drilling at the Junction Prospect has

ASX Code: SVY

Shares on issue: 382M Market capitalisation: \$9.6M Cash: \$0.96M (at 31 March 2024) ABN 33 119 826 907

Head Office

168 Stirling Hwy Nedlands, Western Australia 6009 T: +61 8 9287 7630 E: info@stavely.com.au W: stavely.com.au

identified a significant new discovery opportunity at the Company's 100%-owned **Stavely Copper-Gold Project** in Western Victoria (Figures 1 and 2).

The Junction prospect is located approximately 2 kilometres south of the Cayley Lode Deposit, which hosts a Mineral Resource Estimate of **9.3Mt at 1.23% copper, 0.23g/t gold and 7g/t silver**¹ (see Table 1 for Resource category classifications).

Figure 1. Stavely Project and prospect location map.

¹ Reported in compliance with the JORC Code 2012, see ASX announcement 14 June 2022. Stavely Minerals confirms that there is no new information or data that materially affects the Mineral Resource estimate and that all material assumptions and technical parameters underpinning the estimate in the cited market announcement continue to apply and have not materially changed.

While historic drilling at the Junction Prospect had returned impressive intercepts, follow-up drilling failed to confirm a consistent structural orientation for the high-grade copper-gold-silver lode-style mineralisation.

Significant historical intercepts at Junction include:

- **35m at 3.44% Cu and 26g/t Ag** from 24m drill depth to end of hole (EoH) in TGAC078 (Photos 1 and 2)
- 11m at 1.72% Cu and 26g/t Ag from 33m in TGRC087
- 6m at 2.15% Cu and 8g/t Ag from 2m and 6m at 3.90% Cu and 26g/t Ag from 28m to EoH in PENP004
- 6m at 1.52% Cu and 19g/t Ag from 42m, 5m at 1.12% Cu and 10g/t Ag from 62m and 6m at 1.77% Cu and 21g/t Ag from 72m to EoH in TGRC110
- 6m at 1.65% Cu and 16g/t Ag from 37m in TGRC109

Given the spatial distribution of the historical drill intercepts and the presence of multiple intercepts in a number of these drill holes, it appears that there may be a number of mineralised structures within the interpreted east-west striking mineralised zone (Figures 3 and 4).

Photo 1. Massive sulphide from drill hole TGAC078 with pyrite, chalcopyrite and covellite.

Further support for the east-west orientation of the copper-gold-silver mineralised zone is provided by diamond drill-hole SMD002, located more than 500m east of TGAC078, which returned an intercept of **5m at 1.38% Cu, 0.25g/t Au and 12g/t Ag** from 332m down-hole.

Photo 2. Percussion chip trays for aircore drill hole TGAC078. Note the green copper oxide minerals transition to fresh sulphide minerals pyrite, chalcopyrite and bornite from around 36m drill depth.

Figure 2. Soil auger copper geochemistry over RTP magnetics showing the location of the Cayley Lode and the newly interpreted Junction Lode.

Figure 3. Junction Lode interpretation with historic drill collars, traces and intercepts as well as the planned initial drill hole to test the new interpretation. Note the lack of historic drilling oriented north to south. The apparent slightly northwest of east-west strike of the mineralised zone is a function of the intercepts in the west being deeper in the drill hole (especially TGRC110) and consistent with the northerly dip of the structure, compared with the shallower intercepts on the eastern side. The true strike is approximately east-west.

A high-confidence structural orientation measurement from the top contact of this mineralised zone in SMD002 gives a strike azimuth of 255 degrees (west) and a steep dip of 83 degrees north. This measurement aligns very closely to the strike and dip of the interpreted Junction Lode.

Additional intercepts at depth in SMD077 returned a base-metals intercept of **3m at 0.58% Pb** from 275m drill depth, which is characteristic of results previously observed at the Cayley Lode where drilling has intersected the lode below the plunge of the high-grade copper-gold-silver mineralisation.

Likewise, drill-hole SMD005, which was collared approximately 140m further east of SMD002, returned a low-grade copper intercept of **3m at 0.21% Cu**, with both of these intercepts being consistent with the plane of the new interpretation of the Junction Lode mineralisation (Figure 5), providing additional confidence in the new interpretation.

The new interpretation opens up a significant new search space for the Junction Lode with no drilling having tested this structural orientation over the 500m strike extent between historic high-grade copper-gold-silver intercepts in drill-holes TGAC078 and SMD002 (Figure 6). In addition, the strike extents remain open.

Stavely Minerals initial plan is to mobilise a diamond drill rig to test the shallow Junction Lode between the intercepts in TGAC078 and TGRC109 and TGRC110 (Figure 3). If the strike and dip of the Junction Lode is confirmed, drilling will then test down-dip of the initial drill hole.

Further confirmation from this second drill hole would lead to substantial further drilling to test the strike extents of the Junction Lode. On-going discussions continue seeking access to the property to the east of Stavely Road while access has previously been granted to paddocks to the west and north of Stavely Road (Figure 3).

The implications of a potential lode-style discovery at the Junction Prospect could be material to the recently announced Commercial Viability Study for the development of the Cayley Lode², given the potential to add a second source of high-grade copper-gold-silver mineralised material into a future production scenario.

Clearly, this would have implications for the volume of material that could potentially be accessed via underground mining operations on both the Cayley Lode and the Junction Lode (if confirmed by drilling).

Given that there is a high degree of uncertainty in this scenario, the first step is to confirm the new interpretation of the Junction Lode with these first proposed drill holes, then undertake the next steps of drill definition and Mineral Resource estimation with mining studies to follow if successful.

Figure 4. Long section of historic drill intercepts in the Junction Lode.

² See ASX announcement on 9 May 2024

Figure 5. Broader location map of the Junction prospect showing the location of drill holes SMD002 and SMD005.

Figure 6. Surpac[™] screen capture looking north showing the plane of the interpreted Junction Lode and the lack of drilling testing the 500m strike distance between TGAC078 (35m at 3.44% Cu and 26g/t Ag) in the west to SMD002 (5m at 1.38% Cu, 0.25g/t Au and 12g/t Ag) to the east. In-hole copper mineralisation is shown by scaled discs with intervals +0.5% Cu as red and intercept +1.0% Cu in magenta. Grid squares are 100m.

Drilling contractor and shareholder, Titeline Drilling, will take equity in-lieu of one-third of the cost of drilling the first two holes to test the new Junction Lode interpretation with details of the drilling for equity agreement to be provided in a separate announcement.

Subsequent drilling, if required, will be undertaken on normal commercial terms.

Stavely Minerals Chair, Mr Chris Cairns said: *"We are very excited about the potential for a new copper discovery at the Junction prospect, especially given the significant copper-gold-silver grades and untested strike extent presented by this interpretation.*

"It also appears that there may be multiple mineralised horizons, which we are very keen to evaluate in our upcoming drilling.

"Our drilling contractor Titeline Drilling has been a strong commercial partner and shareholder, and their support in taking up a portion of equity for the first confirmation drill-holes represents a strong endorsement of this opportunity.

"Our objective this calendar year is to make two new mineral discoveries – a new copper-gold discovery at the Junction Lode in Western Victoria and a new nickel-copper sulphide discovery in the West Kimberley district at our Hawkstone Project.

"We are grateful for the significant financial support received from the WA State Government through a total of up to \$620,000 of EIS grants for geophysics and drilling that allows us to leverage a modest expenditure into substantial work programmes at the Hawkstone Nickel-Copper Project.

"While I acknowledge that the market is currently irrationally negative on nickel, the magmatic nickelsulphide style demonstrates the most attractive economics of all nickel production and we can progress this programme with modest investment.

"In any event, a copper-gold-silver discovery in Victoria that we can drill in the summer and a nickelcopper discovery in the West Kimberley that we can drill in the winter is the ideal outcome for Stavely shareholders."

Yours sincerely,

Chris Cairns Executive Chair and Managing Director

Authorised for lodgement by Chris Cairns, Executive Chair and Managing Director.

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Chris Cairns, a Competent Person who is a Fellow of the Australian Institute of Geoscientists and a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Cairns is a full-time employee of the Company. Mr Cairns is Executive Chair and Managing Director of Stavely Minerals Limited and is a shareholder and option holder of the Company. Mr Cairns has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Cairns consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Previously Reported Information: The information in this report that references previously reported exploration results is extracted from the Company's ASX market announcements released on the date noted in the body of the text where that reference appears. The previous market announcements are available to view on the Company's website or on the ASX website (www.asx.com.au). The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

For Further Information, please contact:

Stavely Minerals Limited Phone: 08 9287 7630 Email: <u>info@stavely.com.au</u> Media Inquiries: Nicholas Read – Read Corporate Phone: 08 9388 1474

Table 1. Cayley Lode Initial Mineral Resource estimate									
Resource Material	Resource Category	Cut-off	Tonnes (Mt)	Grade	Cont.	Grade	Cont.	Grade	Cont.
		(Cu %)		(Cu %)	Cu (Mlbs)	(Au g/t)	Au (oz)	(Ag g/t)	Ag (oz)
Primary Mineralisation (OP)	Indicated	0.2	5.87	1.04	134.4	0.23	43,407	7	1,321,074
	Inferred	0.2	1.7	1.3	49	0.2	10,931	9	491,907
Sub-Total Primary OP	-		7.6	1.1	183	0.2	54,338	7.4	1,808,158
Primary Mineralisation (UG)	Indicated	1.0	-	-	-	-		-	
	Inferred	1.0	1.7	1.8	69	0.2	10,931	6	327,938
Sub-Total Primary UG		1.7	1.8	69	0.2	10,931	6	327,938	
Total Cayley Lode			9.3	1.23	252	0.23	65,000	7.1	2,100,000

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals	The Junction Prospect has predominately been evaluated by shallow aircore and reverse circulation drilling to date. For diamond holes drilled by Stavely Minerals, SMD075 and SMD077 and holes drilled along strike from the Junction Prospect, SMD002 and SMD005 the entire hole has been sampled. PQ quarter core and HQ half core is
	as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	submitted for analysis. In general 1m samples were sent for analysis. For the historical diamond drill holes drilled by Pennzoil, PEND2J and PEND3J samples were only selected where mineralisation was observed, it is unknown whether these were half or full core intervals. PEND4J and PEND5J were not sampled.
		For the North Limited aircore holes 3m composite samples were taken.
		For BCD reverse circulation holes TGRC082-88, TGRC108 – 111 and TGRC139-143, 1 or 2m composite samples were collected . 1m samples were collected from the bulk sample using a riffle splitter to collect a representative sample (of unknown proportion).
		For BCD aircore drilling, 2m composite samples were collected for holes TGAC074, TGAC075, TGAC077, TGAC078, TGAC079 and TGAC107. The sample collection method is unknown.
		BCD aircore holes TGAC076, TGAC080 and TGAC081 were not sampled.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	For Stavely drilling sample representivity was ensured by a combination of Company Procedures regarding quality control (QC) and quality assurance/ testing (QA). Certified standards and blanks were inserted into the assay batches.
Aspects determ mineral Materia Report 'industr has bee be relat 'reverse was us	Aspects of the determination of mineralisation that are Material to the Public Report - In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m	 Diamond Drilling Stavely Minerals drill sampling techniques are considered industry standard for the Stavely work program. For Stavely Minerals diamond, sonic and reverse circulation drill samples were crush to 70% < 2mm, riffle/rotary split off 1kg, pulverize to >85% passing 75 microns to produce a 30g charge for gold analysis and 0.25g charge for multi-element analysis.

Criteria	JORC Code explanation	Commentary				
Drilling	samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. Drill type (e.g. core, reverse	A summary of	drilling at the	e Junction Pro	ospect by C	Company
techniques	circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc)	is given below	l.			
	auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard	Company	Drill bolo	Number of	Total	
	diameter, triple or standard tube, depth of diamond	Company	type	holes	metres	
	tube, depth of diamond tails, face-sampling bit or other type, whether core is	Stavely Minerals	DD	4	1876.5	
		BCD	RC	20	1068	-
oriented and if so, by what		AC	9	299		
	method, etc).	North Limited	AC	3	99.5	_
	Pennzoil	DD	4	207	_	
		Diamond core Minerals (SMI wireline drilling drilling to prod were routinely diameter is n diamond tails SMD002 was depth of 530.9 SMD075 was depth of 696.4 SMD075 was depth of 244.4 SMD077 was depth of 404.8 Historic North 1993 by contr Rig". Historical airc Beaconsfield Wallis Drilling. Historical reve drilled by BCI Exploration Dr	e drilled by T D prefix hole g mostly usir duce oriente v used to ma nostly PQ (to RC drilling orientated a m. orientated a 4m. orientated a 4m. orientated a 4m. orientated a 5m. Limited ain ractor Luhrs ore holes w Gold Mines erse circulati D in 2009. I rilling P/L us	iteline Drilling es) was drille ng PQ bits but d core. Triple aximise drill o 85mm) or H g, HQ diamete t -50° toward t -50° toward at -50° toward at -50° toward at -50° toward t -50° toward t -50° toward at -50° toward t -50° toward at -50° toward	Pty Ltd for d utilising s also with s tube core core recove Q3 (63.5m er core is pr s azimuth 2 s azimuth 2 ds azimuth 2 ds azimuth 2 ds azimuth 4 ds azimuth 4 d	Stavely standard ome HQ barrels ry. Core im). For roduced. 239° to a 208° to a 60° to a 60° to a ucted in on 3000 rilled by 2009 by RC were by Budd

Criteria	JORC Code explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Diamond core recoveries for Stavely Minerals holes were logged and recorded in the database. Core recovery for SMD002 averaged 98%, SMD005 averaged 99%, SMD075 averaged 97% and SMD077 averaged 99%.
		Recoveries were not documented for Pennzoil or North Limited holes.
		For BCD percussion drilling, wet drilling and sampling conditions is often mentioned and is likely to have affected all drill holes. However, data and information is not available.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Stavely Minerals diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checked against the depth given on the core blocks and rod counts are routinely carried out by the driller. Triple tube core barrels were routinely used to maximise drill core recovery.
	M/hathar a valationahin	No details are available for the historical drill holes.
	exists between sample	sample recovery at the Junction Prospect.
	recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material	For BCD drilling, wet drilling and sampling conditions is often mentioned and is likely to have affected all drill holes. However, data and information is not available for assessing the effect these conditions have on grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	For Stavely Minerals drilling geological logging of samples followed Company and industry common practice. Qualitative logging of samples including, but not limited to, lithology, mineralogy, alteration, veining and weathering. Diamond core logging included additional fields such as structure and geotechnical parameters. Magnetic Susceptibility measurements were taken for each 1m diamond core interval. All historical drill holes were geologically logged.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	For all diamond drilling by Stavely Minerals, logging is quantitative, based on visual field estimates. Systematic photography of the core in the wet and dry form was completed.
		visual field estimates.
	The total length and percentage of the relevant intersections logged.	For Stavely Minerals diamond Drilling, detailed core logging, with digital capture, was conducted for 100% of the core by Stavely Minerals' on-site geologist at the Company's core shed near Glenthompson.
		Historical holes have been logged in their entirety.
Sub-sampling techniques and sample	It core, whether cut or sawn and whether quarter, half or all core taken.	For Stavely Minerals diamond drilling quarter core for the PQ diameter diamond core and half core for the HQ diameter core was sampled on site using a core saw.
preparation		For historical holes, sub-sampling is not well documented. Holes drilled by BCD and North Limited the majority of the hole was sampled in 1-2m intervals. For Pennzoil diamond holes, samples were only selected where mineralisation was observed, it is unknown whether these were half or full

Criteria	JORC Code explanation	Commentary
		core intervals. For Pennzoil reverse circulation holes 2m composite samples were collected.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	For BCD holes reverse circulation drill holes, 1-2m composite samples were collected from the bulk sample using a riffle splitter to collect a representative sample (of unknown proportion).
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	For the Stavely Minerals drilling the Company procedures were followed to ensure sub-sampling adequacy and consistency. These included, but were not limited to, daily work place inspections of sampling equipment and practices. No details of sample preparation are given for the historical drilling.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	For diamond drilling by Stavely Minerals, blanks and certified reference materials are submitted with the samples to the laboratory as part of the quality control procedures. Blanks were inserted – 1 per 40 samples outside the strongly mineralised zone and 1 in 10 samples within the strongly mineralised zone. Standards were inserted – 1 per 20 samples outside the strongly mineralised zone and 1 in 10 samples within the strongly mineralised zone. Standards were inserted – 1 per 20 samples outside the strongly mineralised zone and 1 in 10 samples within the strongly mineralised zone.
		recorded.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	For diamond drilling by Stavely Minerals at the Junction Prospect no second – half core sampling was conducted.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	For the Stavely Minerals drilling the sample sizes are considered to be appropriate to correctly represent the sought mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Stavely Minerals core samples were analysed by multielement ICPAES Analysis - Method ME-ICP61. A 0.25g sample is pre-digested for 10-15 minutes in a mixture of nitric and perchloric acids, then hydrofluoric acid is added and the mixture is evaporated to dense fumes of perchloric (incipient dryness). The residue is leached in a mixture of nitric and hydrochloric acids, the solution is then cooled and diluted to a final volume of 12.5mls. Elemental concentrations are measured simultaneously by ICP Atomic Emission Spectrometry. This technique approaches total dissolution of most minerals and is considered an appropriate assay method for porphyry copper-gold systems. This technique is a four- acid digest with ICP-AES or AAS finish. The drill core was also analysed for gold using Method Au- AA23. Up to a 30g sample is fused at approximately 1,100°C with alkaline fluxes including lead oxide. During

Criteria	JORC Code explanation	Commentary			
		which acts as a collector for gold. When the fused mass is cooled the lead separates from the impurities (slag) and is placed in a cupel in a furnace at approximately 900°C. The lead oxidizes to lead oxide, being absorbed by the cupel, leaving a bead (prill) of gold, silver (which is added as a collector) and other precious metals. The prill is dissolved in aqua regia with a reduced final volume. Gold content is determined by flame AAS using matrix matched standards. For samples which are difficult to fuse a reduced charge may be used to yield full recovery of gold. This technique approaches total dissolution of most minerals and is considered an appropriate assay method for detecting gold mineralisation.			
		Information on assaying details for historic holes are not well documented, the following information was gathered from previous annual technical reports:			
		 Pennzoil: A base metal suite was assayed via AAS (digestion not specified) including Ag, Cu, Pb and Zn. Au was assayed via fire assay. North Limited: A base metal suite (Cu, Ni, Pb & Zn) was assayed via Mixed Acid digest, AAS detection (ICP-OES for CRAE) and Au was assayed via fire assay. BCD: A base metal suite (Ag, As, Co, Cu, Cr, Fe, Mn, Ni, Pb, S & Zn)by aqua regia digest ICP-OES methods and repeated assays for samples returning greater than 5000ppm Cu by Mixed Acid Digest ICP-OES detection. Au was assayed via fire assay. 			
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable to this report.			
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external	Laboratory QAQC for Stavely Minerals drilling involved insertion of CRM (Certified Reference Materials), duplicates and blanks. The analytical laboratory provides their own routine quality controls within their own practices. The results from their			
	whether acceptable levels	own validations were provided to Stavely Minerals.			
of accuracy (i.e. lack of bias) and precision have been established.		Results from the CRM standards and the blanks gives confidence in the accuracy and precision of the assay data returned from ALS.			
		For historical holes no QAQC procedures have been recorded.			
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Stavely Minerals Managing Director, the Technical Director or the Geology Manager – Victoria have visually verified significant intersections in the diamond core for holes drilled by Stavely Minerals.			

Criteria	JORC Code explanation	Commentary			
		The chip trays with samples from the BCD AC and RC drilling have also been inspected and the mineralised intervals verified.			
	The use of twinned holes.	No twinned holes have been drilled.			
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	For Stavely Minerals drilling primary data was collected for drill holes using the OCRIS logging template on Panasonic Toughbook laptop computers using lookup codes. The information was sent to a database consultant for validation and compilation into a SQL database. All primary assay data is received from the laboratory as electronic data files that are imported into the sampling database.			
		Digital copies of Certificates of Analysis are stored on the server which is backed up daily. Data is also verified on import into mining related software. No details are available for historical drilling.			
	Discuss any adjustment to assay data.	No adjustments or calibrations were made to any assay data used in this report.			
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	For the Stavely Minerals diamond drilling, the drill collar location was pegged before drilling and surveyed using Garmin handheld GPS to accuracy of +/- 3m. Collar surveying was performed by Stavely Minerals' personnel. There is no location metadata for historic Pennzoil, North Limited or BCD holes.			
	Specification of the grid system used.	The grid system used is GDA94, zone 54.			
	Quality and adequacy of topographic control.	For Stavely Minerals exploration, the RL was recorded for each drill hole location from the DGPS. Accuracy of the DGPS is considered to be within 1m.			
Data spacing and	Data spacing for reporting of Exploration Results.	The drill holes are variably spaced. A collar plan with the drill hole locations is presented in the body of the report.			
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The Junction Prospect has not been sufficiently drilled to produce a Mineral Resource.			
	Whether sample compositing has been applied.	For Stavely Minerals diamond core for the entire hole is sampled. For diamond core PQ quarter core and HQ half core was submitted for analysis. Sample intervals were in general 1m.			
		Historical Pennzoil diamond holes were selectively sampled with composite samples varying from 1 to 16m. Historical RC drill holes with the prefix PENP were drilled by Pennzoil of Australia and two metre composite samples were assayed for Au, Ag, Cu, Pb and Zn.			

Criteria	JORC Code explanation	Commentary
		Historical aircore drill holes with the prefix STAVRA were drilled by North Limited and three metre composite samples were assayed for Au, Cu, Pb and Zn.
		For historical aircore holes TGAC002 to TGAC125 approximately the top 15 to 16 metres was not sampled, after that one metre intervals samples were taken for the remainder of the holes.
		For BCD aircore holes two metre composite samples were collected and for the RC holes one meter samples were collected. The aircore and RC was assayed for Au, Ag, As, Co, Cu, Fe, Ni, Pb, S and Zn.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The Junction Prospect is still at a reconnaissance drilling stage.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	There is insufficient drilling data to date at the Junction Prospect to demonstrate continuity of mineralised domains and determine if any orientation sampling bias can be identified in the data.
Sample security	The measures taken to ensure sample security.	For Stavely Minerals drill samples in closed poly-weave bags are delivered by Stavely personnel to Ararat or Ballarat from where the samples were couriered by a reputable transport company to ALS Laboratory in either Orange, NSW or Adelaide, SA. At the laboratory, samples are stored in a locked yard before being processed and tracked through sample preparation and analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No review of the sampling technique or data has been conducted for drilling at the Junction Prospect.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference	Stavely Project
tenement and land tenure status	name/number, location and ownership including agreements or material	The Stavely Project comprises RL2017, EL6870, EL7347, EL7921, EL7922, EL7923 and EL7924. Stavely Minerals hold 100% ownership of the Stavely Project tenements.
	issues with third parties such as joint ventures, partnerships_overriding	The mineralisation at Thursday's Gossan is situated within retention licence RL2017.
	royaities, native title interests, historical sites, wilderness or national park and environmental settings.	EL4556, which was largely replaced by RL2017 was purchased by Stavely Minerals (formerly Northern Platinum) from BCD Resources Limited in May 2013. RL2017 was granted on the 8 th May 2020 and expires on the 7 th May 2030. A Section 31 Deed and a Project Consent Deed has been signed between Stavely Minerals Limited and the Eastern Maar Native Title Claim Group for RL2017. EL6870 was granted on the 30 August 2021 and expires on the 29 August 2026. A Section 31 Deed and a Project Consent Deed has been signed between Stavely Minerals Limited and the Eastern Maar Native Title Claim Group for EL6870.
		EL7347 was granted on the 17 th June 2022 for a period of 5 years. EL7921 was granted on the 15 th September 2022 for a period of 5 years. EL7922, EL7923 and EL7924 were granted on the 29 th September 2022 for a period of 5 years. These 5 tenements do not cover crown land and are not subject to Native Title.
		Black Range Joint Venture
		The Black Range Joint Venture comprises exploration licence 5425 and is an earn-in and joint venture agreement with Navarre Minerals Limited. Stavely Minerals earned 83% equity in EL5425 in December 2022. EL5425 was granted on 18 December 2021 and expires on the 17 December 2027.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All the exploration licences and the retention licence are in good standing and no known impediments exist.
Exploration	Acknowledgment and	Stavely Project & Black Range Joint Venture
done by other parties	appraisal of exploration by other parties.	The Mt Stavely belt has been explored since the late 1960's, including programmes undertaken by mineral exploration companies including WMC, Duval, CRA Exploration, BHP, and North Limited. Exploration activity became focused on Thursday's Gossan and the Junction prospects following their discovery by Pennzoil of Australia Ltd in the late 1970s. North Limited continued to focus on Thursday's Gossan in the 1990s. North's best drill result at Thursday's Gossan came from VICT1D1 which gave 161m of 0.26% Cu from 43m

Criteria	JORC Code explanation	Commentary
		including 10m of 0.74% Cu from 43m from a supergene- enriched zone containing chalcocite.
		The tenement was optioned to CRA Exploration between 1995 and 1997. CRAE drilled several deep diamond drill holes into Thursday's Gossan, including DD96WL10, which intersected 186m from 41m of 0.15% Cu and DD96WL11, which intersected 261.7m from 38.3m of 0.13% Cu. EL4556 was further explored by Newcrest Operations Limited under option from New Challenge Resources Ltd between 2002 and 2004. Their main focus was Thursday's Gossan in order to assess its potential as a porphyry copper deposit. One of their better intersections came from drill hole VSTD01 on the northern edge of the deposit which gave 32m at 0.41 g/t Au and 0.73% Cu from 22m in supergene-enriched material.
		The Stavely Project was optioned to Beaconsfield Gold Mines Pty Ltd in 2006 who flew an airborne survey and undertook an extensive drilling programme focused on several prospects including Thursday's Gossan. One of their diamond drill holes at Thursday's Gossan, SNDD001, encountered zones with quartz-sulphide veins assaying 7.7m at 1.08 g/t Au and 4.14% Cu from 95.3m and 9.5m at 0.44 g/t Au and 2.93% Cu from 154.6m along silicified and sheared contacts between serpentinite and porphyritic intrusive rocks.
		Once Beaconsfield Gold Mines Pty Ltd had fulfilled their option requirements, title of EL4556 passed to their subsidiary company, BCD Metals Pty Ltd, who undertook a gravity survey and extensive drilling at prospects including Thursday's Gossan. They also commissioned a maiden Mineral Resource estimate for Thursday's Gossan. All work conducted by previous operators at Thursday's Gossan is considered to be of a reasonably high quality.
		The Junction Prospect forms the largest (1,200m x 500m) and highest tenor soil auger copper anomaly identified in the Stavely Project area. The anomaly is located 3.5km SSE of the Cayley Lode along a sub-cropping portion of the Stavely Volcanic Belt. Pennzoil drilled 5 diamond holes and 4 RC holes in the late 1970's and early 1980's. PENP004 returned 2m @ 5.10% Cu & 6g/t Ag from 2m and 6m @3.90% Cu & 25g/t Ag from 28m to EoH. In 1993 North Limited drilled 3 aircore holes at the vicinity of the Junction Prospect. These holes did not return any anomalous intercepts.
		In 2008 and 2009 BCD drilled 9 AC holes and 16 RC holes At the Junction Prospect. RC drilling methods were required where the ground conditions were too hard for AC methods. Drilling targeted a sub-circular copper soil anomaly and the previously drilled intersection in PENP004. Drill spacing was on a nominal spacing of 30x60m. Best results include 35m @ 3.69% Cu (TGAC078) and 12m @ 1.61% Cu (TGRC087). Peak results are listed

Criteria	JORC Code explanation	Commentary							
		in the table below. Mineralisation was predominantly observed in the oxide zone as chalcocite & covellite sulphides with minor malachite. Limited drilling in the fresh zone remained a drill target. Drilling by BCD at the Junction Prospect was terminated early due to landholder access issues.							
		Hole ID	MGA East (m)	MGA N (m)	Depth From (m)	Significant Intersections	Total Depth (m)		
		TGAC078	642927	5833571	2 24	10m @ 2.18% Cu 35m @ 3.69% Cu	59		
		TGRC082	642905	5833552	26	13m @ 1.07% Cu	61		
		TGRC087	642882	5833535	33	12m @ 1.61% Cu	76		
					73	1m @ 1.13% Cu	,0		
		TGRC109	642784	5833563	37	6m @ 1.65% Cu	65		
					42	6m @ 1.52% Cu			
		TGRC110	642788	5833533	60	7m @ 0.93% Cu	78		
		TGRC139	642750	5833600	3	1m @ 1.26% Cu	49		
			012/00	5655666	J				
		In 2014 Stavely Minerals drilled diamond holes SMD and SMD005 approximately 500m along strike from Junction Prospect. SMD002 was designed to test northern end of the magnetic high surrounded by magnetic low annulus and a copper soil/auger geochem anomaly coincident with the magnetic high. SMD intercepted a high-grade zone of 5m @ 1.38% Cu & 0 g/t Au from 332m. SMD005 was designed to target the of of the magnetic high which is coincident with the per auger geochemical anomaly. SMD005 intercepted 3m 0.21% Cu from 161m.							
		In 2020 and SMI drilled at the present holes. S From a r holes dri	Stavely N D077 at th an orienta ence of the MD077 in more recei lled over a	linerals dr e Junction ation of 06 e high-grad tersected 3 nt interpret and under 1	illed dia Prosp 0 degre de cop 3m @ ation it the min	amond holes ect. These ho ees and did no ber in historica 0.58% Pb fro would appea eralised struc	SMD075 bles were bt explain al aircore m 275m. r that the ture.		
Geology	Deposit type, geological	Stavely	Project &	Black Ra	nge Jo	int Venture			
	setting and style of mineralisation.	The Stav Mount S volcanic Complex formation deposits	vely Projec Stavely Vc arc rocks c, by shal n of porp	et and Blac blcanic Cc s, such at llow level bhyry cop	k Rang mplex the M porphy per ±	e JV are locat (MSVC). Intr ount Stavely rries can lea gold ± moly	ted in the rusion of Volcanic d to the ybdenum		

Criteria	JORC Code explanation	Commen	tary					
		EL6870 i structurall Stavely B	s inter y dislo elt and	rpreted ocated a I the Bur	by Cayley and rotated anugal Belt.	et al. (2 segment	2017) to s of both	host the
		Stavely P	Project	:				
		Thursday	's Go	ssan Pr	ospect			
		The Thurs Stavely V arc rocks, shallow le porphyry	sday's ′olcani such a evel p copper	Gossan c Comp at the Mo orphyrie ⁻ ± gold :	i prospect i lex (MSVC ount Stavel es can lea ± molybden	s located). Intrusio y Volcanic d to the um depos	in the M on of volc Comple: formatio sits.	ount canic x, by n of
		The Thursday's Gossan Chalcocite deposit (TGC considered to be a supergene enrichment of pri porphyry-style copper mineralisation. Mineralisation characterised by chalcopyrite, covellite and chalc copper sulphide mineralisation within a sericite, illite kaolin clay alteration assemblage. Copper mineralise is within a flat lying enriched 'blanket' of overall dimen of 4 kilometres north-south by up to 1.5 kilometres west by up to 60 metres thick with an average thickne approximately 20 metres commencing at an average of below surface of approximately 30 metres. The ma (circa 60%) of the Mineral Resources reside with higher-grade zone of approximate dimensions kilometre x 300 metres by 35 metres thick.						c) is mary on is ocite and ation sions east- so of lepth jority in a of 1
		The mineralisation at the Cayley Lode at the Thursday's Gossan prospect is associated with high-grade, structurally controlled copper-gold-silver mineralisation along the ultramafic contact fault.						lay's irally the
		The Thursday's Gossan area hosts a major hydrothermal alteration system with copper-gold mineralisation over a 10 kilometre long corridor.						rmal a 10
		Junction	Prose	ect				
		The Junction Prospect is predominately underlain by a package of sandstone and siltstone with some dacite porphyry. Trace to locally weak quartz+carbonate+sulphide+base metal veining was intersected in SMD077. In the aircore drilling mineralisation was predominantly observed in the oxide zone as chalcocite-covellite sulphides with minor malachite.						by a acite veak was ation e as
Drill hole	A summary of all							
Information	information material to the		Hole					
	exploration results including	Hole ID	Туре	Max Depth	Grid	East	North	_RL
	a tabulation of the following	PEND2J	DD	26	MGA94_54	642861.1	5833657	289.21
	information for all Material	PEND3J	DD	72	MGA94_54	642885.1	5833618	290.48
	drill holes:	PEND4J	DD	60.1	MGA94_54	642924.1	5833658	289.94
	easting and northing of the	PEND5J	DD	42.6	MGA94_54	642841.1	5833624	287.88
	drill hole collar	PENP001	RC	31	MGA94_54	643088.1	5833536	286
	elevation or RL (Reduced Level – elevation above sea	PENP002 PENP003	RC RC	28	MGA94_54 MGA94_54	642890.1 642850.1	5833617 5833581	289.92 288.79

Criteria	JORC Code explanation	Commen	tary					
	level in metres) of the drill	PENP004	RC	34	MGA94_54	642897.1	5833597	288.41
	noie collar	SMD075	DD	244.4	MGA94_54	642780	5833522	291
	dip and azimuth of the hole	SMD077	DD	404.8	MGA94_54	642762	5833595	288
	down hole length and	STAVRA119	AC	39	MGA94_54	642812.1	5833688	285.8
	holo longth	STAVRA120	AC	33.5	MGA94_54	642822.1	5833478	288.89
	noie iengin.	STAVRA266	AC	27	MGA94_54	642722.1	5833578	284.61
		TGAC074	AC	38	MGA94_54	642878	5833583	288.67
		TGAC075	AC	51	MGA94_54	642912	5833604	288.47
		TGAC076	AC	17	MGA94_54	642944	5833622	288.46
		TGAC077	AC	21	MGA94_54	642986	5833653	285.67
		TGAC078	AC	59	MGA94_54	642927	5833571	289.67
		TGAC079	AC	35	MGA94_54	642890	5833638	290.27
		TGAC080	AC	8	MGA94_54	642996	5833540	287.76
		TGAC081	AC	12	MGA94_54	642893	5833543	288.88
		TGAC107	AC	58	MGA94_54	642790	5833490	288.41
		TGRC082	RC	61	MGA94_54	642905	5833552	289.09
		TGRC083	RC	37	MGA94_54	642965	5833520	288.69
		TGRC084	RC	43	MGA94_54	642932	5833498	288.95
		TGRC085	RC	49	MGA94_54	642894	5833708	288.42
		TGRC086	RC	67	MGA94_54	642849	5833682	288.75
		TGRC087	RC	76	MGA94_54	642882	5833535	289.02
		TGRC088	RC	91	 MGA94 54	642914	5833491	288.84
		TGRC108	RC	60	MGA94 54	642789	5833525	287.45
		TGRC109	RC	65	MGA94 54	642784	5833563	285.34
		TGRC110	RC	78	MGA94 54	642788	5833533	287.06
		TGRC111	RC	72	 MGA94_54	642749	5833552	285.4
		TGRC139	RC	49	MGA94 54	642750	5833600	283.85
		TGRC140	RC	55	MGA94 54	642790	5833600	284.37
		TGRC141	RC	79	 MGA94_54	642750	5833520	287.3
		TGRC142	RC	49	 MGA94 54	642960	5833540	289.57
		TGRC143	RC	6	 MGA94 54	642870	5833525	288.56
		SMD005	DD	696.4	MGA94 54	643681	5833768	292
		SMD002	DD	530.9	MGA94 54	643549	5833804	270
	If the exclusion of this	No materi	al drill	hole info	prmation ha	is been ex	cluded.	270
	information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.							

Criteria	JORC Code explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	High-grade mineralisation exploration all copper/ and or gold intervals considered to be significant have been reported with subjective discretion. No top-cutting of high-grade assay results have been applied, nor was it deemed necessary for the reporting of significant intersections.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	In reporting exploration results, length weighted averages are used for any non-uniform intersection sample lengths. Length weighted average is (sum product of interval x corresponding interval grade %) divided by sum of interval length.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Assumptions used for reporting of metal equivalent values are clearly stated.
RelationshipTrbetweenparticipationmineralisationrewidths andRinterceptIflengthsmtokrreIfthrelifthtokrrelifth<	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	There is insufficient drilling data to date to demonstrate continuity of mineralised domains and determine the relationship between mineralisation widths and intercept lengths.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Refer to the Tables and Figures in the text.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures in the text. A plan view of the drill hole collar locations is included.

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All copper and gold values considered to be significant have been reported. Some subjective judgement has been used.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All relevant exploration data is shown on figures and discussed in the text.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Diamond drilling has been planned to test the new interpretation of the copper mineralised structure at the Junction Prospect.