

Copper Recoveries Advance In-Situ Recovery Assessment Alford East Copper-REE Project, South Australia

The directors of Thor Energy Plc ("Thor" or the "Company") (AIM, ASX: THR, OTCQB: THORF) are pleased to announce positive metallurgical copper recovery results, advancing Thor's In-Situ recovery ("ISR") assessment of the Alford East Copper-REE Project, South Australia.

Highlights:

- Copper recoveries of up to 72.2% using a benign environmentally friendly glycine lixiviant -GlyLeach[™]. This is an excellent result for ISR-style copper recovery.
- Four mini-column leach tests ("MCLT's") were conducted to give an accurate determination of the leaching performance and the recovery of copper from drill core samples from 21AEDD005, Alford East (Figure 1) with actual copper recovered shown in Photo 1.
- Alford East's saline groundwater was used in column testing to replicate potential ISR conditions and provide a more accurate leaching performance. The groundwater had no significant impact on recoveries.

Photo 1: Week 3 - Pregnant Liquor Solution ("PLS") containers and copper-loaded Ion Exchange Resin

Thor Energy Plc Registered Numbers: United Kingdom 05276 414 Australia 121 117 673

www.thorenergyplc.com

🍯 @thorenergyplc

in Thor Energy Plc

Registered Office: 6 The Parade Norwood, SA, 5067 Australia

Ph: +61 8 7324 1935

Email: corporate@thorenergyplc.com Enquiries: Nicole Galloway Warland Managing Director Thor Energy Plc +61 8 7324 1935

Nominated Advisor Antonio Bossi WH Ireland Ltd +44 (0) 20 7220 1666 AIM & ASX Listings Shares: THR

OTCQB Listing Shares: THORF

Directors: Nicole Galloway Warland Alastair Clayton Mark McGeough

Key Projects: USA

Uranium / Vanadium Wedding Bell, Colorado Radium Mountain, Colorado Vanadium King, Utah Australia Gold Ragged Range, Pilbara, WA Copper Alford East, SA

Nicole Galloway Warland, Managing Director of Thor Energy, commented:

"The successful completion of the hydrometallurgical mini-column tests; returning favourable copper recoveries of up to 72.2% are above the standard range of 60-70% for an ISR operation. These results are highly encouraging, as Thor advances the ISR assessment of the Alford East Copper-REE-Gold Project.

"As part of Thor's commitment to sustainable exploration activities, we are pleased to be using Glyleach $^{\text{TM}}$ as a lixiviant during the ISR process. Compared to the conventional sulphuric acid that is often used, Glyleach $^{\text{TM}}$ is an economical and environmentally friendly alternative, helping Thor to develop a low-cost, low-environmental footprint ISR copper operation.

"Thor continues to work with Fleet Space Technologies to merge the Ambient Noise Tomography ("ANT") 3D model with Thor's 3D geological model. The resultant 3D model highlights low-velocity drill targets, which potentially represent higher grade copper-REE-Gold targets, associated with deep structurally controlled troughs. As part of a future drilling program, Thor will be including additional water bores for pump testing, and push/pull test work as it continues to advance ISR assessment at Alford East towards in-ground lixiviant trials (Site Environmental Lixiviant Trials). These are currently underway at EnviroCopper's Kapunda Project, in which Thor holds 30% equity. We look forward to updating the market with further developments."

Photo 2: Mini Columns setup

ASX: THR

765000E 137°40'E 137°50'E 7625008 ALFORD EAST TENURE AND EL6254 AE-8 MINERAL RESOURCE ESTIMATE oughton LOCATION MAP 6257500N Whyalia Pt Pirie ALFORD 33°40'5 OPEN Metallurgical sample 21AED05 \otimes AE-5 EL5777 OPEN ALFORD EAST EL6529 MINERAL RESOURCE ESTIMATE DOMAINS IN PLAN VIEW Alford East 255000N ALFORD EAST 33°50'S AE-3 **OINT VENTURE** EL6105 AREA Bute Bruce Larwood AE-1 C Wombat ALFORD COPPER BELT EL5984 ALFORD WEST Wallaroo AE-2 JOINT VENTURE 0 O Resource AE-4 Kadina O Prospect 6252500 OPEN

Figure 1: Alford East Location Map showing the lateral extent of the Alford Copper Belt (left), and the Alford East Mineral Resource Domains showing the area for initial ANT Surveys (right)

Next Steps:

- 1. Modelling of ANT results incorporating Thor's 3D model and using artificial intelligence to extrapolate controlling structures along the Alford Copper Belt in progress
- 2. Target generation from the final 3D Model
- 3. Drill preparations and drilling
- 4. REE samples to be submitted to ANSTO for recovery potential from kaolin clays.
- 5. Pump testing and preparations for push/pull connectivity testing, followed by Site Environmental Lixiviant Trial

Mini Column Leach Testing (MCLT's)

Thor engaged Draslovka to undertake a *program of work* to evaluate Draslovka's GlyLeach[™] process, focusing on copper extraction from a 7.3m intersection selected from drillhole 21AED005 (Figure 1). This sample was selected as representative of copper oxide mineralisation within Mineral Resource Estimate Domain Area 5 (MRE 5) from Thor's 2021 drill program (ASX/AIM: 26 April 2023):.

GlyLeach[™] is an environmentally benign, hydrometallurgical process that can leach copper, nickel, cobalt and zinc from oxide, mixed oxide and supergene ores, and even primary sulphide ores. In the right conditions, it can also leach gold.

Glycine is the simplest amino acid and is available in bulk quantities. Its unique properties can offer substantial advantages over conventional lixiviants:

- Environment/safety: Glycine is non-toxic to humans as well as wildlife
- Selectivity: Glycine will solubilise copper, nickel, cobalt, and zinc, while iron, manganese, silicates, and carbonates remain in the solid phase
- Alkalinity: Leach conditions are at high pH, allowing simple and inexpensive materials for construction
- Mild conditions: Leaching is typically at ambient temperature, with no heating cost or pressure vessels
- Low consumption: Glycine is non-volatile (unlike cyanide, ammonia, and hydrochloric acid) and stable under process conditions
- **Recycle:** Glycine is not chemically consumed in the overall process. It is easily recovered and recycled, and process losses can be minimised by good design

The metallurgical test work included a copper sequential analysis, diagnostic Leach Tests (DLTs) (ASX/AIM: 22 February 2022) and Mini Column Leach Tests (MCLT's) on the sample provided (**Table 1**). This testwork determines which copper species can be leached by different solutions. For instance, sulphuric acid (used in copper leaching projects) will easily leach most of the green and blue copper species; however, it will take time to leach native copper, chalcocite, and covellite. Copper sulphide species will eventually be taken into solution by sulphuric acid, but the time frame is considered too long for ISR-type operations.

Based on the copper sequential analysis by Australian Laboratory Services (**Table 2**), Drasloka anticipated the $GlyLeach^{TM}$ process is likely to leach all the cyanide soluble copper, a portion (20-80%) of the acid soluble copper and minor amount (<10%) of silicate locked copper, depending on the mineralogy where **22% to 67%** would be expected to be leach from the supplied sample (**Table 2**).

Figure 2: Draslovka Testwork Flowheel

 Table 1: Head Grade - Gold (fire assay) and Copper (4 acid digest)- 21AED005 20-27.3m

Sample	Au (ppm)	Cu (%)
THOM-02-001	0.34	2.81

Table 2: Copper Sequential Analysis

Sample	Acid Soluble (%)	Cyanide Soluble Locked (%)	Silicate Locked (%)	Total (%)
Minerals	Malachite; A≱urite; Tenorite; Cuprite; Neotocite; Dioptase; Atacamite; Brochantite; Chalcanthite; CuCl₂; Goethite; Chrysocolla (silicates)	Chalcocite; Native Cu; Covellite; Digenite; Djurleite	Chalcopyrite; Bornite; Silicates; Goethite	
THOM-02	2.28	0.127	0.393	2.8
THOM-02	81.4%	4.5%	14.1%	100%

Mini Column Leach Tests were undertaken by Drasloka, designed to give a preliminary indication of extractions for typical heap or ISR conditions at Alford East. Small acrylic columns (ID: 45mm) were used to allow visual observation of the sample charge as the leach solution percolates. Each column is around 1m high and held 1.3kg per column of agglomerated sample percolated at 10 L/m²/hr in close circuit, where the PLS was sampled and then put through resin before returning to feed tank.

Four MCLT's were carried out with conditions given below:

- **Test 1**: Agglomerated with 10.0 kg/t of Normal Portland Cement ("NPC") and leached with *GlyLeachTM* using 36.78 g/L of glycine in total, column was started with Gly:Cu molar ratio of 2:1
- **Test 2:** Agglomerated with 10.0 kg/t of NPC and leached with *GlyLeachTM* using 55.15 g/L of glycine in total, column was started with Gly:Cu molar ratio of 3:1
- Test 3: Agglomerated with 10.0 kg/t of NPC and leached with *GlyLeachTM* using 55.15 g/L of glycine in total, column was started with Gly:Cu molar ratio of 3:1, column was also heated to 40°C using heating strips
- Test 4: Agglomerated with 10.0 kg/t of NPC and leached with *GlyLeachTM* using 55.15 g/L of glycine in total, column was started with Gly:Cu molar ratio of 3:1 and converted to *GlyCatTM* after two weeks by adding 1.92 g/L of cyanide

Overall, the highest copper extraction was observed in column 2 at **72.2% copper recovery (Figure 3**). Column 1 achieved 69.3%, column 3 achieved 71.7% and column 4 achieved 66.8% based on the residue analysis.

Referring to **Figure 3**, the best gold recovery was achieved in column 4 at 25.0%, column 1 achieved 21.5%, column 2 achieved 20.5%, and column 3 achieved 22.7% gold extraction based on residue analysis. Given the extraction had plateaued after 42 days, an additional 15% more glycine was added into the feed solution of each test to see if this would increase copper recovery, but the results indicated no further change. Column 3, which

was heated, showed no benefit over column 2 as it performed under ambient temperature. It was found that adding cyanide (Test 4) improved the gold extraction by approximately 5%.

The test work demonstrates $GlyLeach^{TM}$ ability to recover copper with excellent recoveries, up to 72.2%. The temperature had negligible impact and whilst the addition of cyanide improved the gold extraction, it was considered a marginal improvement. Under these leach conditions, it was determined that a copper extraction of 72.2% is achievable. It is recommended that a larger sample is tested to validate what extraction can be achieved at a coarser crush or in-situ recovery environment. With further optimisation, recoveries ranging from 70 – 75% might be attainable.

Figure 3: THOM-02 Metal Extraction – Mini Columns Summary (A-1-Residual (R) /Assayed Head(AH))

GlyLeach[™] ability to recover copper with good recoveries, up to 72.2%, supersedes the accepted range of 60-70% for ISR operations (Figure 4). Based on CAPEX and OPEX costs, recovering metal in an ISR operation in comparison to conventional mining (open cut or underground operation) enables lower metal recoveries whilst maintaining equal or similar profit margins.

Figure 4: Comparison of ISR and Conventional Mining after Chris du Plessis, AMIRA presentation 2014

Alford East Project Background

The Alford East Copper-Ree Project is located on EL6529, where Thor is earning up to 80% interest from unlisted Australian explorer Spencer Metals Pty Ltd, covering portions of EL6255 and EL6529 (Figure 2) (ASX/AIM: 20 November 2020).

The Alford East Project covers the northern extension of the Alford Copper Belt, located on the Yorke Peninsula, SA. The Alford Copper Belt is a semi-coherent zone of copper-gold oxide mineralisation, within a structurally controlled, north-south corridor consisting of deeply kaolinised and oxidised troughs within metamorphic units on the edge of the Tickera Granite (**Figure 2**), Gawler Craton, SA.

Thor completed an inferred Mineral Resource Estimate (MRE) by utilising historic drill hole information. Table C - (ASX/AIM: 27 January 2021):

- 125.6Mt @ 0.14% Cu containing 177,000t of contained copper
- 71, 500oz of contained gold

https://thorenergyplc.com/investor-updates/maiden-copper-gold-mineral-resource-estimate-alford-eastcopper-gold-isr-project/

Table C: Alford East Mineral Resource Estimate as of 22 January 2021– Figure 2 ((ASX/AIM: 27 January 2021).

Domain	Tonnes (Mt)	Cu %	Au g/t	Contained Cu (t)	Contained Au (oz)
AE_1	24.6	0.12	0.021	30,000	16,000
AE_2	6.8	0.13	0.004	9,000	1,000
AE_3	34.9	0.09	0.022	33,000	25,000
AE_4	8.0	0.11	0.016	8,000	4,000
AE_5	11.0	0.22	0.030	24,000	11,000
AE-8 (NP)	31.3	0.19	0.008	61,000	8,000
AE-7 (LW_E)	7.7	0.14	0.025	10,000	6,000
AE-6 (LW_W)	1.3	0.13	0.011	2,000	500
Total	125.6	0.14	0.018	177,000	71,500

Note: MRE reported on oxide material only, at a cut-off grade of 0.05% copper which is consistent with the assumed In-Situ Recovery technique.

REE results were reported from the 2021 diamond drilling program, with significant drill intercepts (>500ppm TREO¹) including (ASX/AIM: 26 April 2023):

0	21AED005: including	36.7m @ 1568ppm (0.16%) TREO & 1.2% Cu from 6.3m, 11.8m @ 2095 ppm (0.21%) TREO and 1.2% Cu from 10m, and 11m @ 2088ppm (0.21%) TREO and 0.8% Cu from 47m,
	including	2m @ 5042ppm (0.5%) TREO from 47m
0	21AED002: including	11.6m @ 1699ppm (0.17%) TREO and 0.26% Cu from 30.4m 6.1m @ 2262ppm (0.22%) TREO from 34.0m
0	21AED001:	16.8m @ 1721ppm (0.17%) TREO and 0.5% Cu from 91.4m

The Board of Thor Energy Plc has approved this announcement and authorised its release.

For further information, please contact:

THOR ENERGY PLC

Nicole Galloway Warland,

Managing Director +61 8 7324 1935 nicole@thorenergyplc.com

¹ *TREO* = (*Total Rare Earth Oxides*) = $(La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Lu_2O_3 + Y_2O_3)$

Competent Person's Report

The information in this report that relates to exploration results is based on information compiled by Nicole Galloway Warland, who holds a BSc Applied geology (HONS) and who is a Member of The Australian Institute of Geoscientists. Ms Galloway Warland is an employee of Thor Energy PLC. She has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which she is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Nicole Galloway Warland consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

Updates on the Company's activities are regularly posted on Thor's website <u>https://thorenergyplc.com</u> which includes a facility to register to receive these updates by email, and on the Company's X page @thorenergyplc

About Thor Energy Plc

The Company is focused on uranium and energy metals that are crucial in the shift to a 'green' energy economy. Thor has a number of highly prospective projects that give shareholders exposure to uranium, nickel, copper, lithium and gold. Our projects are located in Australia and the USA.

Thor holds 100% interest in three uranium and vanadium projects (Wedding Bell, Radium Mountain and Vanadium King) in the Uravan Belt Colorado and Utah, USA with historical high-grade uranium and vanadium drilling and production results.

At Alford East in South Australia, Thor holds 80% interest in oxide copper deposits considered amenable to extraction via In Situ Recovery techniques (ISR). In January 2021, Thor announced an Inferred Mineral Resource Estimate¹. Thor also holds a 30% interest in Australian copper development company EnviroCopper Limited, which in turn holds rights to earn up to a 75% interest in the mineral rights and claims over the resource on the portion of the historic Kapunda copper mine and the Alford West copper project, both situated in South Australia, and both considered amenable to recovery by way of ISR.²³

Thor owns 100% of the Ragged Range Project, comprising 92 km² of exploration licences with highly encouraging early-stage gold and nickel results in the Pilbara region of Western Australia.

Thor holds 100% of the advanced Molyhil tungsten project, including measured, indicated and inferred resources⁴, in the Northern Territory of Australia, which was awarded Major Project Status by the Northern Territory government in July 2020. Thor executed a A\$8m Farm-in and Funding Agreement with Investigator Resources Limited (ASX: IVR) to accelerate exploration at the Molyhil Project on 24 November 2022.⁶

Adjacent to Molyhil, at Bonya, Thor holds a 40% interest in deposits of tungsten, copper, and vanadium, including Inferred resource estimates for the Bonya copper deposit, and the White Violet and Samarkand tungsten deposits. ⁵ Thor's interest in the Bonya tenement EL29701 is planned to be divested as part of the Farm-in and Funding agreement with Investigator Resources Limited.⁶

Notes

- ¹ https://thorenergyplc.com/investor-updates/maiden-copper-gold-mineral-resource-estimate-alford-east-copper-gold-isr-project/
- ² www.thorenergyplc.com/sites/thormining/media/pdf/asx-announcements/20172018/20180222clarification-kapunda-copper-resource-estimate.pdf
- ³ www.thorenergyplc.com/sites/thormining/media/aim-report/20190815-initial-copper-resource-estimate--moonta-project---rns---london-stock-exchange.pdf
- ⁴ https://thorenergyplc.com/investor-updates/molyhil-project-mineral-resource-estimate-updated/
- ⁵ www.thorenergyplc.com/sites/thormining/media/pdf/asx-announcements/20200129-mineral-resourceestimates---bonya-tungsten--copper.pdf
- ⁶ <u>https://thorenergyplc.com/wp-content/uploads/2022/11/20221124-8M-Farm-in-Funding-Agreement.pdf</u>

1 JORC Code, 2012 Edition – Table 1 report template

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (eg cut channels,	Diamond drilling program
techniques	random chips, or specific specialised industry	with half core sampled for Au
	standard measurement tools appropriate to the	fire assay FA001 and Aqua
	minerals under investigation, such as down hole	Regia 48 element suite
	gamma sondes, or handheld XRF instruments, etc).	AR001. Samples submitted
	These examples should not be taken as limiting the	to Bureau Veritas (BV), SA.
	broad meaning of sampling.	Standard blank and duplicate
	 Include reference to measures taken to ensure 	inserted every 30 samples
	sample representivity and the appropriate	pXRF readings taken very 0.5m
	calibration of any measurement tools or systems	down the hole.
	used.	Vanta C Series 800427 XRF -
	 Aspects of the determination of mineralisation that 	40sec reading time.
	are Material to the Public Report.	Instrument calibrated
	In cases where 'industry standard' work has been	externally annually and with
	done this would be relatively simple (eg 'reverse	QA/QC at start prior to
	circulation drilling was used to obtain 1 m samples	sampling and calibration disc
	from which 3 kg was pulverised to produce a 30 g	every 30 readings
	charge for fire assay'). In other cases more	All co-ordinates are in UTM
	explanation may be required, such as where there	grid (GDA94 Z53) and drill hole
	is coarse gold that has inherent sampling	collars have been surveyed by
	problems. Unusual commodities or mineralisation	DGPS to an accuracy of 0.1m.
	types (egsubmarine nodules) may warrant	Down holes surveys using
	disclosure of detailed information.	Truman with readings every
		6m.
		Diamond samples were
		collected at geologically
		defined intervals (minimum
		sample length 0.1m, maximum
		sample length 1.5m) for all
		drill holes in the current
		program Samples are cut using
		an automated diamond saw
		and half core is submitted for
		analysis at Bureau Veritas, SA.
		The sample size is deemed
		appropriate for the grain size
		of the material being sampled.
		Mineralisation is determined
		by descriptive geological logs
		for diamond hole as well as
		the incorporation of assay
		results and pXRF readings
Drilling	• Drill type (eg core, reverse circulation, open-hole	Diamond drilling - GMP drilling
techniques	hammer, rotary air blast, auger, Bangka, sonic, etc)	Pty Ltd. B&D Multi 35 Rig

ASX: THR

	and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	0-6m open hammer – transported cover sequence. HQ standard tube diamond drilling
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Core recovery assessed and measured relative to drill rod measurements into laptop computer. HQ single tube drilling through weathered zone to maximise sample recovery. The sample recovery and condition is recorded every meter. Generally, core recovery is 98- 100%, but occasionally drops to 70% in friable clays zones due to compaction and/or broken ground. No relationship is known to exist between sample recovery and grade
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All core is qualitative geologically logged (lithology, structure, alteration, veining, mineralization weathering, colour and other features of the core). Core photography completed prior to core cutting and after Core (and intersections) logged based on geological, lithological and structural boundaries. All drill samples are measured for magnetic susceptibility at 1m intervals, and XRF readings taken every 0.5m.
Criteria	IORC Code explanation	Commentary
Criteria Sub- sampling techniques and sample preparation	 JORC Code explanation If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size 	CommentaryHalfcoresamplessubmittedforlaboratoryanalysis.Diamond core was given uptotwoweeks tototwoweeks topriortocutting and sampleprep.SamplingisSamplingiscarriedusingstandardprotocolsandQAQCprocedurespriorindustrypractice.FieldQAQCproceduresinvolvedtheuseofcertifiedstandards, blanks

		routinely checked against originals. Handheld pXRF readings reported. pXRF readings taken on whole (HQ) core at 0.5m
		intervals prior to cutting. Vanta Series C 40 second reading time. Instrument calibrated at start, QAQC with 2 standards and 1 blank every 30 readings. External instrument calibration completed annually.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Readings taken every 0.5mdown holeDiamond core sampledthrough potential copper andgold zones.Samples submitted to BureauVeritas for 50g fire assay andAqua Regia multi-elementanalysis.Internal certified laboratoryQAQC is undertakenincluding check samples,blanks and internal standardsHandheld pXRF readingsreported.Vanta Series C 40 secondreading time.Instrument calibrated atstart, QAQC with 2 standardsand 1 blank every 30readings. External instrumentcalibration completedannually.Readings taken every 0.5m
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	down holeAll drilling data is collected in a series of templates in excel including geological logging, sample information, collar and survey information, All data is digitally recorded in the company's electronic database.

		No adjustments have been
		made to the assay data.
		All significant intersections
		-
		have been verified by an
		alternative company geologist.
		There are no twinned drillholes
		Rare earth element analyses
		were originally reported in
		elemental form but have been
		converted to relevant oxide
		concentrations as in the
		industry standard.
		$TREO = La_2O_3 + CeO_2 + Pr_6O11 +$
		$Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 +$
		Tb ₄ O ₇ + Dy ₂ O ₃ + Ho ₂ O ₃ + Er ₂ O ₃ +
		Tm ₂ O ₃ + Yb ₂ O ₃ + Lu ₂ O ₃ + Y ₂ O ₃
Location of	• Accuracy and quality of surveys used to locate drill	Collars picked up using DGPS –
data points	holes (collar and down-hole surveys), trenches, mine	MGA94 zone 53 (GDA) used.
-	workings and other locations used in Mineral Resource	Down hole survey readings
	estimation.	taken every 6m with Boart
	 Specification of the grid system used. 	Longyear Truman multi shot
	 Quality and adequacy of topographic control. 	camera
Data	• Data spacing for reporting of Exploration Results.	Drillhole data spacing is
spacing	 Whether the data spacing and distribution is 	considered appropriate to
and	sufficient to establish the degree of geological and	allow confident
distribution	grade continuity appropriate for the Mineral	interpretation of exploration
	Resource and Ore Reserve estimation procedure(s)	results.
	and classifications applied.	pXRF readings taken every
	 Whether sample compositing has been applied. 	0.5m down the hole. No
		sample compositing has been
		applied
Orientation	• Whether the orientation of sampling achieves unbiased	Drill holes were oriented
of data in	sampling of possible structures and the extent to which	vertical (090 degrees) or 070
relation to	this is known, considering the deposit type.	towards 090degrees which is
geological	• If the relationship between the drilling orientation and	perpendicular to strike of the
structure	the orientation of key mineralised structures is	geological trough.
	considered to have introduced a sampling bias, this	Orientational bias is not
	should be assessed and reported if material.	applicable this stage with half
		core samples taken across full
		mineralised zone and pXRF
		sampling every 0.5m downhole
Sample	The measures taken to ensure sample security.	Samples were trucked from
security		Alford to Adelaide, to
		Challenger Geological Services
		for cutting and prep, prior to
		submission to Bureau Veritas,
		Adelaide for analysis.
Audits or	• The results of any audits or reviews of sampling	No formal audits have been

reviews

techniques and data.

undertaken

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Alford East project: The JV area covers portions E6529 which are 100% owned by Spencer Metals Ltd. PML 268 lies within E6529 There are no non- government royalties, historical sites or environmental issues. Underlying land title is Freehold land which extinguishes native title. All tenure in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The general area of this report has been explored in the past by various companies including Jododex, Uranez, North Broken Hill, MIM, Hillgrove Resources, Argonaut Resources and Sandfire Resources. Activities include AC, RC, & Diamond drilling, and significant geophysical surveying. The Company has reviewed past exploration data generated by these companies.
Geology	 Deposit type, geological setting and style of mineralisation. 	Primary deposits in the region are considered to be of Iron Oxide Copper Gold (IOCG) affinity, related to the 1590Ma Hiltaba/GRV event. Cu-Au-Mo-Pb mineralisation is structurally controlled and associated with significant metasomatic alteration and deep weathering or kaolinisation of host rocks. Locally, the low-grade copper/gold oxide mineralisation that forms the basis for this Exploration results

		announcement, is hosted within variably weathered and sheared metasedimentary basement lithologies.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Drillhole information is included in report. Plan and sections showing drillhole locations is included in report
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated 	Weighted averaging technique is used for reporting exploration assay results, No metal equivalents are reported.
Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	The gold & REE's are associated with copper oxide mineralization within intense clay alteration. The alteration is interpreted to be similar to that found in the adjacent Alford West area. The drilling intersections quoted are downhole intercept lengths with an unknown orientation to dip and plunge of the target mineralisation
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate maps and sections included in document.

Balanced	• Where comprehensive reporting of all Exploration	All results have been reported
reporting	Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All data have been reported
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional work will be carried to define the known extent of the REE from historic drilling. Drilling, hydrogeological and metallurgical studies to continue. Refer to diagram in document for geological interpretation and potential extensions.