

26 February 2024

More Wide Lead-Silver Intercepts at Rip n Tear as Scale of Mineralised System Continues to Grow

Phase 1 diamond drilling near complete; Drilling to resume at Durnings

Highlights:

- Assay results received from additional extensional diamond (**DD**) drill-holes completed recently on EL8615 at the Rip n Tear Prospect, part of the 100%-owned Lachlan Project in NSW.
- The diamond extension to MYRCD0002 was designed to test for depth extensions and continuity of mineralisation from previous broad RC drill intercepts which terminated in mineralisation at the northern MLEM anomaly. Diamond drilling wedged from 177.9m down the original 232m deep RC hole. Results include:

MYRCD0002 (see ASX: TLM, 20 October 2023)

- o RC 192m at 1.3% Pb, 10.1g/t Ag, 0.06% Zn from 40m to 232m end-of-hole
- \circ DD wedge 70.1m at 1.3% Pb, 12.g/t Ag, from 177.9m to 248.0m and
 - 24m at 0.8% Pb, 9.9g/t Ag, 0.01% Zn from 270.6m to 294.6m
- Combined RC+DD wedge
 - <u>208m at 1.2% Pb, 8.9/t Ag, 0.06% Zn</u> from 40m to 248m; and
 - 24m at 0.8% Pb, 9.9g/t Ag, 0.01% Zn from 270.6m to 294.6m
- The diamond extension to MYRCD0004 was designed to test for depth extensions and continuity of mineralisation from previous narrow RC intersections within the target horizon and confirm geological continuity of mineralisation at the Southern MLEM anomaly. Diamond drilling extended from the end of the original RC hole at 234m. Results include:

MYRCD0004 (see ASX: TLM, 6 December 2023)

TALISMAN

- RC 18m at 0.28% Pb, 5.2g/t Ag, 0.01% Zn from 142m to 160m
- \circ DD wedge 59.2m at 0.8% Pb, 1.5g/t Ag, 0.05% Zn from 255m to 314.2m
- Extensional diamond drilling has also been completed at MYDD0012, located close to MYRCD0002 and MYDD0013 at the eastern extension of the MLEM survey anomaly, approximately 800m east of MYRCD0003. These holes were designed to target further extensions of the prospective mineralised horizon. Assays are awaited.
- The latest results have confirmed the depth extension and continuity of lead-silver-zinc mineralisation at Rip n Tear over a strike length of more than 1.6km and down-hole widths of up to 200m, highlighting the substantial scale of the mineralised system.
- The diamond rig will move to complete extensional drilling on RC holes at the Durnings discovery.

Talisman Mining Limited (ASX: TLM, **Talisman**) is pleased to advise that it has received further significant assay results from diamond holes drilled in early 2024 targeting depth extensions of previous broad zones of lead-silver mineralisation intersected in the initial Reverse Circulation (RC) drilling at the **Rip n Tear Prospect**, part of its 100%-owned **Lachlan Project** in central NSW.

Rip n Tear is located approximately 35km north of Condobolin on EL8615. It lies approximately 20km north-west of the Company's Durnings discovery, both of which were tested as part of a 7,200m RC drilling campaign completed in late 2023 across four priority prospects within the Lachlan Project area (see Figure 1).

Assays have now been received for holes MYRCD0002 and MYRCD0004, diamond drill-hole extensions of the discovery holes MYRC0002 and MYRC0004 completed in December.

Figure 1 – Lachlan Project location plan highlighting prospect locations along the Canbelego-Mineral Hill Volcanic Belt.

Background

The Rip N Tear prospect is an under-explored target on EL8615 defined by strongly anomalous base metal soil geochemistry containing two large, coherent conductive MLEM anomalies (ASX: TLM, 8 May 2023).

The prospect is situated within a complex structural setting associated with NNE and NE trending faults which are interpreted to provide a pathway for mineralised fluids from local granite intrusions.

Historic drilling was limited to three percussion holes (~61m deep, drilled in 1970's). The initial Talisman program consisted of seven RC holes designed to test two conductive anomalies at depth at approximately 800m to 1,000m drill-hole spacing.

Results from the initial RC drilling (Table 3) (ASX: TLM, 20 October and 6 December, 2023). include:

- MYRC0002 192m at 1.32% Pb, 10.1g/t Ag, 0.06% Zn from 40m to 232m end-of-hole;
- MYRC0003 80m at 1.56% Pb, 14.7g/t Ag, 0.11% Zn from 188m to 268m end-of-hole;
- MYRC0004 18m at 0.28% Pb, 5.2g/t Ag and 0.01% Zn from 142m to 160m;
- MYRC0005 6m at 0.81% Pb and 5.6g/t Ag from 44m to 50m;
- MYRC0006 10m at 0.85% Pb, 3.3g/t Ag and 0.02% Zn from 246m to 256m; and
- MYRC0007 10m at 0.81% Pb, 12.4g/t Ag and 0.04% Zn from 222m to 232m.

RC drilling of a further four holes (MYRC008-MYRC0011) for 688m was completed in early December targeting strike extensions of MYRC0002 and MYRC0003, guided by the extensive MLEM anomaly (see Figure 2).

Drilled at approximately 500m spacing, these RC holes were designed to target a buried lead-silver and sulphide-rich sedimentary unit which appears to host the mineralisation.

RC drilling has intersected broad zones of disseminated galena and silver with accessory sphalerite with strong sulphide mineralisation in sericite and ankerite/siderite altered sedimentary rocks in the target position.

As with the previous drilling program, RC drill penetration and sample quality has been reduced by high water inflows at depth and therefore several of the RC holes were suspended in mineralisation or above the targeted mineralised position.

Diamond drill tails were completed in December 2023 on RC holes (MYRC0002 and MYRC0003) in the north and (MYRC0004) in the south of Rip n Tear. All holes intersected further significant zones of sulphide mineralisation.

Assay results for the recent extensional diamond drilling are summarised in Table 3, detailed in Table 4 and Table 5. Significant results are illustrated in Figure 2 and include:

TALISMAN

Northern Anomaly

MYRCD0002

- o Diamond wedge
 - 70.1m at 1.31% Pb, 12.0g/t Ag, 0.01% Zn from 177.9m to 248m; and
 - 24m at 0.80% Pb, 9.9g/t Ag, 0.01% Zn from 270.6m to 294.6m
- Combining the parent RC hole with the diamond wedge results in:
 - 208.0m at 1.2% Pb, 8.9g/t Ag, 0.06% Zn from 40m to 248m; and
 - 24m at 0.80% Pb, 9.9g/t Ag, 0.01% Zn from 270.6m to 294.6m

MYRCDD0003 ((ASX: TLM, 30 January 2023)

- o Diamond Tail
 - 41m at 0.3% Pb, 10.4g/t Ag, 0.02% Zn from 272m to 313m, including
 - 21m at 0.5% Pb, 11.5g/t Ag, 0.02% Zn from 272m to 293m
- Combining the parent RC hole with the diamond tail results in:
 - 105.0m at 1.3% Pb, 13.5g/t Ag, 0.09% Zn from 188m to 293m.

Southern Anomaly

MYRCD0004

o 59.2m at 0.77% Pb, 1.5g/t Ag, 0.05% Zn from 255m to 314.2m

Figure 2 – Rip n Tear RC and diamond drilling results over MLEM Geophysical survey image. True width in MYRCDD002 and MYCRDD003 is approximately 40% to 50% of downhole intersection. True with of MYRCDD0004 is approximately 80% of downhole intersection.

Geology and Mineralisation

TALISMAN

MINING LIMITED

The Rip n Tear Prospect is located within EL8615 on the eastern edge of the Canbelego-Mineral Hill Rift Zone (Figure 1), adjacent to a large, controlling, basin margin, NW-SE oriented structure.

Devonian-age sediments of the Ewolong Formation (sandstone and conglomerate) and Gwando Siltstone host the prospect. To the west lies the older Ordovician-age Girilambone Group, which is intruded by the early Devonian-age Yellow Mountain Granite.

The granite intrusion(s) are interpreted to be the source of heat, fluid and metal for several other lead-silver-zinc and copper-gold deposits and mineralised prospects along the Mineral Hill Rift. Rip N Tear is cut by two NW-SE trending faults interpreted to be transverse faults in a rift setting.

Anomalous lead-in-soil geochemistry results, and the coincident MLEM response illustrated in Figures 2, highlight the proximity of the faults to the surface expression of the mineralisation.

The target horizon consists of broad zones of disseminated and blebby sulphides (galena, pyrite and rare sphalerite) associated with sericite and ankerite/siderite alteration hosted in sandstone, siltstone and coarse angular quartz breccia/conglomerate. Narrow veins of quartz and galena have also been observed below the thick sedimentary horizon.

MYRCDD0002 and MYRCDD0003 are interpreted as being drilled at a moderate angle to the mineralised zones. True width of mineralised zones in these holes are estimated at approximately 40% to 50% of downhole widths. MYDD0012 intersected Girilambone sediments close to surface faulted against mineralised Devonian sediments at depth. A fault zone has been interpreted between the collar positions of MYRCDD0012 and MYRCDD0002. (See Cross Section Figure 3).

<u>Rip n Tear – Next Steps</u>

TALISMAN

MINING LIMITED

The diamond rig has completed hole MYDD0012 (assays pending) located close by MYRC0002 to gather structural and stratigraphic information on the widest part of the mineralised zone.

A strong MLEM anomaly extension defined a further 800m east of MYRCDD0003 (our easternmost hole to date) has also been tested with diamond hole MYDD0013 (assays pending) to establish if the mineralisation defined to date continues to the east (see Figure 2).

With assays confirming a wider than logged mineralised zone in MYRCDD0004 further sampling of diamond core will be undertaken on this hole to further define the extent and grade of the mineralised zones (Table 4).

The diamond drill rig will re-locate to Durnings in the next week to undertake RC hole extension drilling over previously drilled RC holes at that location.

Figure 3 – Rip n Tear – Interpreted section (oblique to the interpreted dip and strike) of the Rip n Tear northern MLEM anomaly deposit. True width of mineralisation in MYRCDD0002 is approximately 40% to 50% of downhole intersection.

Durnings – Exploration Update

Once diamond drilling is complete at Rip n Tear, the rig will mobilise to Durnings to complete diamond drilling tails from three previous RC holes (DRRC0006, DRRC008 and DRRC0010) which terminated in mineralisation. The diamond tails program has been designed to test depth extensions of the mineralised zones. (ASX: TLM 14 December 2023 and 9 January 2024).

In addition, follow-up RC drilling will commence in early March, above and immediately along strike from the discovery hole DRRD0006. This step-out RC drilling is designed to provide information on the extent, dip and strike of the high-grade core of the mineralisation.

Currently, an auger drilling and soil geochemistry program is underway over the Eastern GAIP Target at Durnings. The program is expected to take approximately three weeks to complete and will guide the initial RC drilling of this large and previously undrilled target during the June Quarter (see Figure 4).

Figure 4 – Durnings – RC drill hole locations and Eastern GAIP target over GAIP Geophysical survey image on EL8680.

Management Comment

Talisman's Managing Director, Andrew Munckton, said: "We are very encouraged to see more significant assay results being returned from extensional diamond drilling at the Rip n Tear discovery.

"These new results demonstrate the continuity of the lead-silver mineralised horizon, hosted in a folded and faulted sequence of sediments, in drilling over a strike extent of more than 1.6km and downhole widths up to 200m. This clearly demonstrates the significant scale of the mineralised system.

"The current diamond drilling program is nearing completion with results awaited for several holes aimed at indicating the extent of the mineralisation with diamond tails from RC holes MYRC0008 and MYRC0009 and surface diamond holes MYDD0012 and MYDD0013. If confirmed, this will further extend the mineralisation to a strike length of 2.3km and provide an overall picture of the scale of the opportunity at Rip n Tear.

"Importantly, the diamond drilling and multi-element assaying at Rip n Tear provides detailed geological context to the mineralisation – which appears extensive, consistent and detectable with geophysics.

"While it is still very early in the exploration phase, the Rip n Tear project so far appears to have all the indicators of an extensive mineralised system in a sedimentary basin setting.

"Meanwhile at Durnings, our focus remains on targeting mineralized extensions from the discovery hole at this target, DRRC0006, which identified a sulphide-rich, 6m intersection from 274m downhole, which returned a high-grade assay result of 10.3% Pb, 3.5% Zn 126g/t Ag, 0.4% Cu and 1.93g/t Au.

"Step-out RC drilling above and along strike from the original RC intersection in DRRC0006 will provide additional information on the size and direction of the high-grade core to this extensively altered and mineralized position.

"Meanwhile, the untested Eastern GAIP target at the Durnings is currently being assessed with auger drilling and soil geochemistry to identify the initial RC drilling locations for follow-up.

"Overall, our geologists are looking forward to integrating the geological knowledge derived from the RC and diamond drilling programs with the full assay dataset and the proposed diamond tail drilling program to gain a more accurate picture of the orientation and style of the lead-silver rich horizon at Rip n Tear and the high grade lead-zinc-silver-copper-gold sulphide mineralisation at Durnings. This information will allow us to fully test these extensive structural corridors later in the year."

Ends

For further information, please contact:

Andrew Munckton - Managing Director on +61 4 3563 5598

MINING LIMITED

Nicholas Read (Media inquiries) on +61 4199 29046

This release has been authorised by the Board of Talisman Mining Limited.

Table 1: Drill-hole information summary - Durnings

Exploratio n Licence	Prospect	Hole Typ e	Hole ID	Easting	Northing	RL	Dip	Azimuth (MGA 94)	EOH Depth
EL8680	Durnings	RC	DRRC0006	505927	6386293	291	-60	50	286
EL8680	Durnings	RC	DRRC0007	505819	6386566	287	-61	47	238
EL8680	Durnings	RC	DRRC0008	505691	6386868	282	-61	47	268
EL8680	Durnings	RC	DRRC0009	505639	6387024	285	-60	51	322
EL8680	Durnings	RC	DRRC0010	505829	6386739	290	-60	49	268
EL8680	Durnings	RC	DRRC0011	505988	6386156	283	-60	50	328

Details and coordinates of the RC holes relevant to this release.

Table 2: Drill-hole information summary - Rip N Tear

Exploration Licence	Prospect	Hole Type	Hole ID	Easting	Northing	RL	Dip	Azimuth (MGA 94)	EOH Depth
EL8615	Rip N Tear	RC	MYRC0008	489184	6413709	276	-60	345	178
EL8615	Rip N Tear	RC	MYRC0009	488279	6413817	270	-60	331	166
EL8615	Rip N Tear	RC	MYRC0010	487750	6413341	273	-60	328	178
EL8615	Rip N Tear	RC	MYRC0011	488445	6413579	273	-60	329	156
EL8615	Rip N Tear	RC	MYDD0012	488630	6413719	274	-60	323	447
EL8615	Rip N Tear	RC	MYDD0013	490425	6413807	264	-60	340	283
EL8615	Rip N Tear	RC	MYRCD0002	488727	6413960	282	-60	202	318
EL8615	Rip N Tear	RC	MYRCD0003	489671	6414071	264	-60	180	411
EL8615	Rip N Tear	RC	MYRCD0004	487799	6412334	270	-60	299	457

Details and coordinates of the RC and Diamond Holes relevant to this release.

Table 3: RC and DD drill-hole assay intersections for Mineralized Zones (Significant Intersections)

Details of significant RC and DD drilling intersections received to date for the Rip n Tear prospects by Talisman are provided below.

Hole	Sample Type	Intersections	From	То	Interval (m)	Ag g/t	Pb (%)	Zn (%)	Comments
MYRC0001	RC		86	88	2	5.30	0.02	0.01	weathered rock (Ag 5 g/t cut off)
MYRC0001	RC		100	102	2	6.34	0.13	0.03	weathered rock (Ag 5 g/t cut off)
MINCOODI	inc.		100	102	2	0.54	0.15	0.05	weathered rock (ng 5 g) rear on j
MYRC0002	RC		40	232	192	10.10	1.32	0.06	weathered rock (Pb 0.5 % cut off)
MYRC0002	RC	including	40	68	28	8.89	0.70	0.05	weathered rock (Pb 0.5 % cut off)
MYRC0002	RC	Including	164	232	68	16.60	1.74	0.02	fresh rock to EOH (Pb 0.5 % cut off)
MYRC0002	RC	Including	194	214	20	25.38	2.66	0.01	fresh rock (Pb 0.5% cut off)
MYRCDD0002	DD	Č.	177.9	248	70.1	12.02	1.31	0.00	fresh rock (Pb 0.5% cut off)
MYRCDD0002	DD		270.6	294.6	24	9.88	0.80	0.01	fresh rock (Pb 0.5% cut off)
MYRCDD0002	DD		306	308	2	14.06	1.28	0.01	fresh rock (Pb 0.5% cut off)
MYRCDD0002	DD		315	316	1	27.10	3.34	0.00	fresh rock (Pb 0.5% cut off)
MYRCDD0002	Combined RC/DD		40	248	208	8.92	1.17	0.06	weathered & fresh rock (Pb 0.5% cut off)
MYRC0003	RC		188	268	80	14.68	1.56	0.11	fresh rock (Pb 0.5% cut off)
MYRC0003	RC	Including	226	268	42	16.71	1.95	0.19	fresh rock (Pb 0.5 % cut off)
MYRC0003	RC	Including	262	268	6	14.59	2.56	0.63	fresh rock (Pb 0.5 % cut off)
MYRCDD0003	DD		272	313	41	10.41	0.32	0.02	fresh rock (Ag 5 g/t cut off)
MYRCDD0003	DD	Including	272	293	21	11.47	0.51	0.02	fresh rock (Ag 5 g/t cut off)
MYRCDD0003	DD		320	326	6	5.37	0.01	0.00	fresh rock (Ag 5 g/t cut off)
MYRCDD0003	DD		342	356	14	7.81	0.03	0.00	fresh rock (Ag 5 g/t cut off)
MYRCDD0003	Combined RC/DD		188	293	105	13.45	1.29	0.09	fresh rock (Pb 0.5 % or Ag 5 g/t cut off)
MYRC0004	RC		110	112	2	5.10	0.04	0.01	weathered rock (Ag 5 g/t cut off)
MYRC0004	RC		142	160	18	5.15	0.28	0.01	weathered rock (Ag 5 g/t cut off)
MYRC0004	RC		150	152	2	6.7	0.56	0.01	weathered rock (Pb 0.5 % cut off)
MYRC0004	RC		170	172	2	1.24	0.61	0.01	weathered rock (Pb 0.5 % cut off)
MYRC0004	RC		220	228	8	6.00	0.57	0.03	weathered rock (Pb 0.5 % cut off)
MYRCDD0004	DD		255.00	314.23	59.23	1.47	0.77	0.05	weathered rock (Pb 0.5% cut off)
MYRC0005	RC		12	14	2	0.44	0.75	0.03	weathered rock (Pb 0.5 % cut off)
MYRC0005	RC		44	50	6	5.63	0.81	0.00	weathered rock (Pb 0.5 % cut off)
MYRC0006	RC		118	122	4	7.38	0.02	0.01	weathered rock (Ag 5 g/t Cut off)
MYRC0006	RC		130	132	2	7.75	0.02	0.01	weathered rock (Ag 5 g/t Cut off)
MYRC0006	RC		246	256	10	3.25	0.85	0.02	weathered rock (Pb 0.5 % cut off)
MAND COOOT	DC.		102	202	10	0.00	0.64	0.05	
MYRC0007	RC		192	202	10	8.28	0.64	0.05	weathered rock (Pb 0.5 % cut off)
MYRC0007	RC		222	232	10	12.35	0.81	0.04	fresh & weathered rock (Pb 0.5% cut off)
AN/D COOOD	DC.		450	170	26	F 10	0.50	0.01	freeh week (Dh O E0) en An E a (h sub eff.)
MYRC0008	RC		152	178	26	5.18	0.50	0.01	fresh rock (Pb 0.5% or Ag 5 g/t cut off)
MYRC0009	RC		100	158	58	5.16	0.58	0.04	fresh rock (Pb 0.5% cut off)
MYRC0009	RC		162	158	4	5.16	0.38	0.04	fresh rock (Ag 5 g/t cut off)
MYRC0009	RC	NSI	102	100	4	3.11	0.57	0.00	incontrock (Ag 5 g/r cut on)
MYRC0010 MYRC0011	RC	NSI							
WITKCOUT1	KL	ICM							

All Table 3 intersections are length-weighted assay intervals either from two metre assay intervals taken directly from the RC drill rig splitter or 0.5 to 1.5 metre Diamond core assay samples. See Table 4 and 5 for intervals of core loss and no sampling within the reported mineralised zones (Significant Intercepts) for MYRCDD004 and MYRCDD002.

All listed intersections are reported as down hole intersections at 0.5% Pb and/or 5g/t Ag and/or 0.20 % Cu and/or 0.5 % Zn and or 0.25g/t Au lower cut-off as indicated in the comments section of Table 3. True width is approximately 40% to 50% of reported downhole intersection in MYRCDD002 and MYRCD003. Appendix 2 contains full details on sampling and data aggregation methods including cut-off grades.

Table 4: Sample and assay sheet for Mineralized Zones (Significant Intersections) within DD core inMYRCDD004

		SAMP	LE DETAILS			AS	SAY RESU	LTS	WEIGHTED ASSAY INTERVAL		
Hole ID	From (m)	To (m)	Sample ID	Interval (m)	Sample Type	Pb-ppm	Zn-ppm	Ag-ppm	Pb-ppm	Zn-ppm	Ag-ppm
MYRCDD0004	255	256	100174	1	DD	8120	1900	0.86	8120	1900	0.86
MYRCDD0004	256	257	NO SAMPLE	1	NO SAMPLE						
MYRCDD0004	257	258	100175	1	DD	1820	533	10.1	1820	533	10.1
MYRCDD0004	258	258.6	NO SAMPLE	0.6	NO SAMPLE						
MYRCDD0004	258.6	258.7	CORE LOSS	0.1	CORE LOSS						
MYRCDD0004	258.7	259	NO SAMPLE	0.3	NO SAMPLE						
MYRCDD0004	259	260	100176	1	DD	5180	549	1.01	5180	549	1.01
MYRCDD0004	260	260.5	NO SAMPLE	0.5	NO SAMPLE						
MYRCDD0004	260.5	261.3	CORE LOSS	0.8	CORE LOSS						
MYRCDD0004	261.3	262	NO SAMPLE	0.7	NO SAMPLE						
MYRCDD0004	262	263	100177	1	DD	10500	842	1.3	10500	842	1.3
MYRCDD0004	263	264	NO SAMPLE	1	NO SAMPLE						
MYRCDD0004	264	265	100178	1	DD	5910	225	0.8	5910	225	0.8
MYRCDD0004	265	265.3	NO SAMPLE	0.3	NO SAMPLE						
MYRCDD0004	265.3	266.6	CORE LOSS	1.3	CORE LOSS						
MYRCDD0004	266.6	267	NO SAMPLE	0.4	NO SAMPLE						
MYRCDD0004	267	267.7	100179	0.7	DD	8060	454	0.83	5642	317.8	0.581
MYRCDD0004	267.7	270.4	CORE LOSS	2.7	CORE LOSS						
MYRCDD0004	270.4	271.4	NO SAMPLE	1	NO SAMPLE						
MYRCDD0004	271.4	273.7	CORE LOSS	2.3	CORE LOSS						
MYRCDD0004	273.7	274.5	100180	0.8	DD	13200	588	1.21	10560	470.4	0.968
MYRCDD0004	274.7	276.7	CORE LOSS	2	CORE LOSS						
MYRCDD0004	276.7	277.2	NO SAMPLE	0.5	NO SAMPLE						
MYRCDD0004	277.2	279.7	CORE LOSS	2.5	CORE LOSS						
MYRCDD0004	279.7	280	NO SAMPLE	0.3	NO SAMPLE						
MYRCDD0004	280	280.6	100181	0.6	DD	12800	437	0.75	7680	262.2	0.45
MYRCDD0004	280.6	281.2	CORE LOSS	0.6	CORE LOSS						
MYRCDD0004	281.6	282.45	CORE LOSS	0.85	CORE LOSS						
MYRCDD0004	283	284	100182	1	DD	9620	618	2.12	9620	618	2.12
MYRCDD0004	284	285	NO SAMPLE	1	NO SAMPLE						
MYRCDD0004	285	286	100183	1	DD	10600	1250	1.07	10600	1250	1.07
MYRCDD0004	286	287	NO SAMPLE	1	NO SAMPLE						
MYRCDD0004	287	288	100184	1	DD	15300	936	2.01	15300	936	2.01
MYRCDD0004	288	289	NO SAMPLE	1	NO SAMPLE						
MYRCDD0004	289	291.1	CORE LOSS	2.1	CORE LOSS						
MYRCDD0004	291.1	292	NO SAMPLE	0.9	NO SAMPLE						
MYRCDD0004	292	293	100185	1	DD	6040	428	0.91	6040	428	0.91
MYRCDD0004	294	295	100186	1	DD	4880	186	0.87	4880	186	0.87
MYRCDD0004	295	295.1	NO SAMPLE	0.1	NO SAMPLE						
MYRCDD0004	295.1	295.3	CORE LOSS	0.2	CORE LOSS						
MYRCDD0004	295.3	296	NO SAMPLE	0.7	NO SAMPLE						
MYRCDD0004	296	297	100187	1	DD	5970	160	0.61	5970	160	0.61
MYRCDD0004	297	298	NO SAMPLE	1	NO SAMPLE						
MYRCDD0004	298	299	100188	1	DD	4630	156	0.8	4630	156	0.8
MYRCDD0004	299	299.9	NO SAMPLE	0.9	NO SAMPLE						
MYRCDD0004	299.9	300.3	CORE LOSS	0.4	CORE LOSS						
MYRCDD0004	300.3	301	NO SAMPLE	0.7	NO SAMPLE						
MYRCDD0004	301	302	100189	1	DD	2390	156	0.86	2390	156	0.86
MYRCDD0004	302	303	NO SAMPLE	1	NO SAMPLE						
MYRCDD0004	303	304	100191	1	DD	5630	228	0.73	5630	228	0.73
MYRCDD0004	304	305	NO SAMPLE	1	NO SAMPLE						
MYRCDD0004	305	306	100192	1	DD	4260	135	1.06	4260	135	1.06
MYRCDD0004	306	307	NO SAMPLE	1	NO SAMPLE						
MYRCDD0004	307	308	100193	1	DD	8210	207	0.92	8210	207	0.92
MYRCDD0004	308	309.3	NO SAMPLE	1.3	DD						
MYRCDD0004		309.7	CORE LOSS	0.4	CORE LOSS						
MYRCDD0004	309.7	310	NO SAMPLE	0.3	NO SAMPLE						
MYRCDD0004		310.65	100194	0.65	DD	17550	284	0.68	11407	184.6	0.442
MYRCDD0004		310.95	CORE LOSS	0.3	CORE LOSS						
MYRCDD0004	310.95	312.2	NO SAMPLE	1.25	NO SAMPLE						
MYRCDD0004	312.2	312.5	CORE LOSS	0.3	CORE LOSS						
		512.5	- SOUL FOR	0.0	55.12 2055	1		1	1		

ABN 71079 536 495 Suite 1, Ground Floor, 33 Colin St, West Perth 6005 www.talismanmining.com.au

Table 5: Sample and assay sheet for mineralized zones (Significant Intersections) within DD core in MYRCDD002.

		SAMP	LE DETAILS			AS	SAY RESU	LTS	WEIGHTE	D ASSAY II	VTERVAL
Hole ID	From (m)	To (m)	Sample ID	Interval (m)	Sample Type	Pb-ppm	Zn-ppm	Ag-ppm	Pb-ppm	Zn-ppm	Ag-ppm
MYRCDD0002	177.9	179	100312	1.1	DD	13750	30	7.5	15125	33	8.25
MYRCDD0002	179	180	100313	1	DD	15600	26	8.62	15600	26	8.62
MYRCDD0002	180	181	100314	1	DD	15000	27	7.94	15000	27	7.94
MYRCDD0002	181	182	100315	1	DD	20800	22	9.42	20800	22	9.42
MYRCDD0002	182	183	100316	1	DD	15300	21	8.61	15300	21	8.61
MYRCDD0002	183	184	100317	1	DD	8000	22	3.65	8000	22	3.65
MYRCDD0002	184	185	100318	1	DD	14500	35	14.45	14500	35	14.45
MYRCDD0002	185	186	100319	1	DD	12900	28	9.14	12900	28	9.14
MYRCDD0002	186	187	100310	1	DD	12500	30	7.14	12500	30	7.14
MYRCDD0002	180	187	100320	1	DD	17050	36	10.95	17050	36	10.95
			100321	1			44			44	
MYRCDD0002	188	189			DD	15100		13.25	15100		13.25
MYRCDD0002	189	190	100323	1	DD	29400	53	11.5	29400	53	11.5
MYRCDD0002	190	191	100324	1	DD	21400	29	8.27	21400	29	8.27
MYRCDD0002	191	192	100325	1	DD	15250	32	10.5	15250	32	10.5
MYRCDD0002	192	193	100326	1	DD	13550	258	7.92	13550	258	7.92
MYRCDD0002	193	194	100327	1	DD	20600	27	9.93	20600	27	9.93
MYRCDD0002	194	195	100328	1	DD	38900	29	28.7	38900	29	28.7
MYRCDD0002	195	196	100329	1	DD	9020	24	6.72	9020	24	6.72
MYRCDD0002	196	196.5	100330	0.5	DD	8950	28	5.43	4475	14	2.715
MYRCDD0002	196.5	196.6	NO SAMPLE	0.1	NO SAMPLE						
MYRCDD0002	196.6	197	100331	0.4	DD	22300	37	14.65	8920	14.8	5.86
MYRCDD0002	198	199	100332	1	DD	10850	568	14.1	10850	568	14.1
MYRCDD0002	199	200	100333	1	DD	20900	46	26.9	20900	46	26.9
MYRCDD0002	200	201	100334	1	DD	8720	33	12.1	8720	33	12.1
MYRCDD0002	201	202	100336	1	DD	10450	39	18.5	10450	39	18.5
MYRCDD0002	202	203	100337	1	DD	8090	116	19.55	8090	116	19.55
MYRCDD0002	203	203.9	CORE LOSS	-	CORE LOSS	0000	110	10.00	0000		10.00
MYRCDD0002	203.9	205.1	100338	1.2	DD	5510	72	37.1	6612	86.4	44.52
		205.1		1.2		3310	12	57.1	0012	00.4	44.52
MYRCDD0002	205.1		CORE LOSS		CORE LOSS	75.00		47.4	75.00		47.4
MYRCDD0002	206	207	100339	1	DD	7560	111	17.1	7560	111	17.1
MYRCDD0002	207	208	100340	1	DD	8370	52	3.43	8370	52	3.43
MYRCDD0002	208	208.5	100341	0.5	DD	5580	30	15.7	2790	15	7.85
MYRCDD0002	208.5	209	CORE LOSS		CORE LOSS						
MYRCDD0002	209	210	100342	1	DD	5430	18	5.86	5430	18	5.86
MYRCDD0002	210	211	100343	1	DD	7790	144	5.91	7790	144	5.91
MYRCDD0002	211	212	100344	1	DD	13600	21	6.79	13600	21	6.79
MYRCDD0002	212	213	100345	1	DD	18400	18	12.2	18400	18	12.2
MYRCDD0002	213	214	100346	1	DD	9240	13	4.39	9240	13	4.39
MYRCDD0002	214	215	100347	1	DD	4830	83	5.04	4830	83	5.04
MYRCDD0002	215	216	100348	1	DD	7000	14	6.11	7000	14	6.11
MYRCDD0002	216	216.6	100349	0.6	DD	10300	12	5.46	6180	7.2	3.276
MYRCDD0002	216.6	216.7	CORE LOSS		CORE LOSS						
MYRCDD0002	216.7	210.7	100350	1.3	DD	15650	16	5.69	20345	20.8	7.397
MYRCDD0002	218.7	210	100350	1.5	DD	16950	13	11.35	16950	13	11.35
MYRCDD0002	218	219	100351	1	DD	11450	10	7.89	11450	10	7.89
				_							
MYRCDD0002	220	221	100353	1	DD	12500	11	6.56	12500	11	6.56
MYRCDD0002	221	222	100354	1	DD	21700	26	8.52	21700	26	8.52
MYRCDD0002	222	223	100355	1	DD	23400	35	9.17	23400	35	9.17
MYRCDD0002	223	224	100356	1	DD	15000	15	8.58	15000	15	8.58
MYRCDD0002	224	225	100357	1	DD	16350	18	13.3	16350	18	13.3
MYRCDD0002	225	226	100358	1	DD	18100	10	13.1	18100	10	13.1
MYRCDD0002	226	227	100359	1	DD	20500	11	17.3	20500	11	17.3
MYRCDD0002	227	228	100361	1	DD	5530	7	3.64	5530	7	3.64
MYRCDD0002	228	229	100362	1	DD	12400	9	9.84	12400	9	9.84
MYRCDD0002	229	230	100363	1	DD	21900	10	16.65	21900	10	16.65
MYRCDD0002	230	231	100364	1	DD	17600	11	10.7	17600	11	10.7
MYRCDD0002	231	232	100365	1	DD	9860	11	6.26	9860	11	6.26
MYRCDD0002	232	233.4	100366	1.4	DD	12900	9	6.37	18060	12.6	8.918
MYRCDD0002	233.4	234.3	CORE LOSS	0.9	CORE LOSS						
MYRCDD0002	234.3	234.5	100367	0.7	DD	9290	44	5.23	6503	30.8	3.661

Table 5 (cont): Sample and assay sheets for mineralized zones (Significant Intersections) within DD core in MYRCDD002.

		SAMP	LE DETAILS			AS	SAY RESU	LTS	WEIGHTE	D ASSAY II	NTERVALS
Hole ID	From (m)	To (m)	Sample ID	Interval (m)	Sample Type	Pb-ppm	Zn-ppm	Ag-ppm	Pb-ppm	Zn-ppm	Ag-ppm
MYRCDD0002	235	236.1	CORE LOSS	1.1	CORE LOSS						
MYRCDD0002	236.1	237.1	100368	1	DD	12500	16	21.1	12500	16	21.1
MYRCDD0002	237.1	237.6	CORE LOSS	0.5	CORE LOSS						
MYRCDD0002	237.6	238.3	100369	0.7	DD	4320	11	66.9	3024	7.7	46.83
MYRCDD0002	238.3	238.6	CORE LOSS	0.3	CORE LOSS						
MYRCDD0002	238.6	239.2	100370	0.6	DD	3090	81	49	1854	48.6	29.4
MYRCDD0002	239.2	239.5	CORE LOSS	0.3	CORE LOSS						
MYRCDD0002	239.5	240.1	100371	0.6	DD	3900	71	24.9	2340	42.6	14.94
MYRCDD0002	240.1	241	CORE LOSS	0.9	CORE LOSS						
MYRCDD0002	241	241.2	100372	0.2	DD	9840	95	19.05	1968	19	3.81
MYRCDD0002	241.2	242	CORE LOSS	0.8	CORE LOSS						
MYRCDD0002	242	242.2	100373	0.2	DD	3440	16	9.63	688	3.2	1.926
MYRCDD0002	242.2	242.6	CORE LOSS	0.4	CORE LOSS	0.1.0	10	5.00	000	0.2	1.020
MYRCDD0002	242.6	242.8	100374	0.2	DD	2760	179	8.85	552	35.8	1.77
MYRCDD0002	242.8	242.6	CORE LOSS	0.2	CORE LOSS	2700	175	0.05	552	55.8	1.77
MYRCDD0002	242.6	243.0	100375	0.4	DD	3360	46	6.75	1344	18.4	2.7
MYRCDD0002	243.0	244	CORE LOSS	0.4	CORE LOSS	3300	40	0.75	1344	10.4	2.7
MYRCDD0002 MYRCDD0002	244	244.2	100376	0.2	DD	3990	31	6.63	3192	24.8	5.304
MYRCDD0002	245	246.1	100377	1.1	DD	4120	157	8.91	4532	172.7	9.801
MYRCDD0002	246.1	246.2	CORE LOSS	0.1	CORE LOSS	5440	00	0.54	4500	00.2	7.000
MYRCDD0002	246.2	247.1	100378	0.9	DD	5110	98	8.54	4599	88.2	7.686
MYRCDD0002	247.1	247.2	CORE LOSS	0.1	CORE LOSS	5640	60	40.05			
MYRCDD0002	247.2	248	100379	0.8	DD	5610	68	10.25	4488	54.4	8.2
MYRCDD0002	248	248.8	100380	0.8	DD	4110	24	8.6	3288	19.2	6.88
MYRCDD0002	248.8	249.1	CORE LOSS	0.3	CORE LOSS						
MYRCDD0002	249.1	250	100381	0.9	DD	4070	95	9.19	3663	85.5	8.271
MYRCDD0002	250	250.4	100382	0.4	DD	2660	61	10.75	1064	24.4	4.3
MYRCDD0002	250.4	250.5	CORE LOSS	0.1	CORE LOSS						
MYRCDD0002	250.5	251.2	100383	0.7	DD	3400	21	8.57	2380	14.7	5.999
MYRCDD0002	251.2	252.3	CORE LOSS	1.1	CORE LOSS						
MYRCDD0002	252.3	253.2	100384	0.9	DD	3890	16	10.3	3501	14.4	9.27
MYRCDD0002	253.2	253.9	CORE LOSS	0.7	CORE LOSS						
MYRCDD0002	253.9	255.1	100386	1.2	DD	4490	8	15.2	5388	9.6	18.24
MYRCDD0002	255.1	255.6	CORE LOSS	0.5	CORE LOSS						
MYRCDD0002	255.6	257	100387	1.4	DD	3680	35	14.2	5152	49	19.88
MYRCDD0002	257	258	100388	1	DD	4590	13	16.6	4590	13	16.6
MYRCDD0002	258	259	100389	1	DD	4050	8	14.75	4050	8	14.75
MYRCDD0002	259	260	100390	1	DD	3660	12	9.48	3660	12	9.48
MYRCDD0002	260	261	100391	1	DD	4270	12	7.46	4270	12	7.46
MYRCDD0002	261	262	100392	1	DD	4430	10	7.27	4430	10	7.27
MYRCDD0002	262	262.6	100393	0.6	DD	3720	10	8.29	2232	6	4.974
MYRCDD0002	262.6	262.8	CORE LOSS	0.2	CORE LOSS						
MYRCDD0002	262.8	263.8	100394	1	DD	4480	40	7.46	4480	40	7.46
MYRCDD0002	263.8	266.2	CORE LOSS	2.4	CORE LOSS						
MYRCDD0002	266.2	267	100395	0.8	DD	4410	40	11.2	3528	32	8.96
MYRCDD0002	267	268	100396	1	DD	4450	55	10.15	4450	55	10.15
MYRCDD0002	268	269.1	100397	1.1	DD	4780	52	10.65	5258	57.2	11.715
MYRCDD0002	269.1	269.6	CORE LOSS	0.5	CORE LOSS						
MYRCDD0002	269.6	270	100398	0.4	DD	4430	35	6.85	1772	14	2.74
MYRCDD0002	270	270.6	CORE LOSS	0.6	CORE LOSS						
MYRCDD0002	270.6	271.2	100399	0.6	DD	5280	42	6.38	3168	25.2	3.828
MYRCDD0002	271.2	271.4	CORE LOSS	0.2	CORE LOSS						
MYRCDD0002	271.4	272	100400	0.6	DD	6100	55	8.07	3660	33	4.842
MYRCDD0002	272	272.4	CORE LOSS	0.4	CORE LOSS						
MYRCDD0002	272.4	272.8	100401	0.4	DD	8220	51	19.8	3288	20.4	7.92
MYRCDD0002	272.8	273.6	NO SAMPLE	0.8	NO SAMPLE						
MYRCDD0002	273.6	274.5	100402	0.9	DD	8860	70	16.4	7974	63	14.76
MYRCDD0002	274.5	275.2	NO SAMPLE	0.7	NO SAMPLE						
MYRCDD0002		276	100403	0.8	DD	9190	49	8.43	7352	39.2	6.744
				0.4	CORE LOSS						

Table 5 (cont): Sample and assay sheets for mineralized zones (Significant Intersections) within DD core in MYRCDD002.

		SAMP	PLE DETAILS			AS	SAY RESU	LTS	WEIGHTED ASSAY INTERVALS		
Hole ID	From (m)	To (m)	Sample ID	Interval (m)	Sample Type	Pb-ppm	Zn-ppm	Ag-ppm	Pb-ppm	Zn-ppm	Ag-ppm
MYRCDD0002	276.4	277	100404	0.6	DD	6220	60	10.15	3732	36	6.09
MYRCDD0002	277	277.6	NO SAMPLE	0.6	NO SAMPLE						
MYRCDD0002	277.6	278	100405	0.4	DD	5630	26	17.35	2252	10.4	6.94
MYRCDD0002	278	279	100406	1	DD	5630	34	11.15	5630	34	11.15
MYRCDD0002	279	280	100407	1	DD	8660	91	7.92	8660	91	7.92
MYRCDD0002	280	281	100408	1	DD	8820	175	9.13	8820	175	9.13
MYRCDD0002	281	282	100409	1	DD	7630	76	9.03	7630	76	9.03
MYRCDD0002	282	283	100411	1	DD	9480	87	20.3	9480	87	20.3
MYRCDD0002	283	283.3	CORE LOSS	0.3	CORE LOSS						
MYRCDD0002	283.3	284.1	100412	0.8	DD	9130	43	7.96	7304	34.4	6.368
MYRCDD0002	284.1	284.5	CORE LOSS	0.4	CORE LOSS						
MYRCDD0002		285	100413	0.5	DD	11050	40	5.29	5525	20	2.645
MYRCDD0002		286.4	100414	1.4	DD	7910	38	4.7	11074	53.2	6.58
MYRCDD0002		286.8	CORE LOSS	0.4	CORE LOSS	,,,,,		,	11071	0012	0.00
MYRCDD0002		287.1	100415	0.3	DD	5180	101	21	1554	30.3	6.3
MYRCDD0002		288.1	CORE LOSS	1	CORE LOSS	5100	101		1334	50.5	0.5
MYRCDD0002		289.3	100416	1.2	DD	11650	170	14.7	13980	204	17.64
MYRCDD0002	289.3	290.6	CORE LOSS	1.2	CORE LOSS	11050	170	14.7	13300	204	17.04
MYRCDD0002		290.0	100417	0.4	DD	8500	52	4.85	3400	20.8	1.94
MYRCDD0002		291	100417	1.4	DD	6510	54	1.62	9114	75.6	2.268
	291						41				
MYRCDD0002		292.6 294.4	100419	0.2	DD	3870	41	8.85	774	8.2	1.77
MYRCDD0002			CORE LOSS	1.8	CORE LOSS	6240	40	10	1200	8	0.00
MYRCDD0002	294.4	294.6	100420	0.2	DD	6340	40	4.9	1268	8	0.98
MYRCDD0002		294.9	NO SAMPLE	0.3	NO SAMPLE	1.420	76	2.6	204	45.0	0.50
MYRCDD0002	294.9	295.1	100421	0.2	DD	1420	76	2.6	284	15.2	0.52
MYRCDD0002		296	100422	0.9	DD	719	35	0.61	647.1	31.5	0.549
MYRCDD0002	296	297	100423	1	DD	613	30	0.67	613	30	0.67
MYRCDD0002	297	298	100424	1	DD	568	40	0.63	568	40	0.63
MYRCDD0002	298	299	100425	1	DD	555	56	0.68	555	56	0.68
MYRCDD0002	299	300	100426	1	DD	706	54	1.31	706	54	1.31
MYRCDD0002	300	301	100427	1	DD	425	44	1.37	425	44	1.37
MYRCDD0002	301	302	100428	1	DD	749	67	1.8	749	67	1.8
MYRCDD0002		303	100429	1	DD	2510	326	4.24	2510	326	4.24
MYRCDD0002	303	304	100430	1	DD	2480	88	4.26	2480	88	4.26
MYRCDD0002	304	305	100431	1	DD	3380	4080	6.37	3380	4080	6.37
MYRCDD0002	305	306	100432	1	DD	479	41	3.68	479	41	3.68
MYRCDD0002	306	307	100433	1	DD	6590	41	9.47	6590	41	9.47
MYRCDD0002	307	308	100434	1	DD	19100	138	18.65	19100	138	18.65
MYRCDD0002	308	309	100436	1	DD	1830	65	8.44	1830	65	8.44
MYRCDD0002	309	310	100437	1	DD	1785	120	18.9	1785	120	18.9
MYRCDD0002	310	311.3	100438	1.3	DD	1515	81	5.71	1969.5	105.3	7.423
MYRCDD0002	311.3	312	100439	0.7	DD	459	658	8.3	321.3	460.6	5.81
MYRCDD0002	312	313	100440	1	DD	102	36	6.62	102	36	6.62
MYRCDD0002	313	314	100441	1	DD	44.6	20	3.36	44.6	20	3.36
MYRCDD0002	314	315	100442	1	DD	1885	17	4.65	1885	17	4.65
MYRCDD0002	315	316	100443	1	DD	33400	17	27.1	33400	17	27.1
MYRCDD0002	316	317	100444	1	DD	3810	175	7.04	3810	175	7.04
MYRCDD0002	317	318	100445	1	DD	112	275	2.38	112	275	2.38
MYRCDD0002	318	318.6	100446	0.6	DD	219	60	4.73	131.4	36	2.838

bout Talisman Mining

Talisman Mining Limited (ASX:TLM) is an Australian mineral development and exploration company. The Company's aim is to maximise shareholder value through exploration, discovery and development of complementary opportunities in base and precious metals.

Talisman has secured tenements in the Cobar/Mineral Hill region in Central NSW through the grant of its own Exploration Licenses and through a joint venture agreement. The Cobar/Mineral Hill region is a richly mineralised district that hosts several base and precious metal mines including the CSA, Tritton, and Hera/Nymagee mines. This region contains highly prospective geology that has produced many long-life, high-grade mineral discoveries. Talisman has identified several areas within its Lachlan Cu-Au Project tenements that show evidence of base and precious metals endowment which have had very little modern systematic exploration completed to date. Talisman believes there is significant potential for the discovery of substantial base metals and gold mineralisation within this land package and is undertaking active exploration to test a number of these targets.

Talisman also has secured access to over 1000 km2 of highly prospective tenure in South Australia's Gawler Craton known as the Mabel Creek Project. Mabel Creek is prospective for large scale Iron Oxide Copper Gold (IOCG) deposits and intrusion related rare earths and battery metals mineralisation. Mable Creek is surrounded by similar tenure owned and being actively explored by Australia's biggest resource companies including BHP, Rio Tinto and FMG.

Competent Person's Statement

Information in this announcement that relates to Exploration Results and Exploration Targets is based on, and fairly represents information and supporting documentation compiled by Dr Tim Sharp, who is a member of the Australasian Institute of Geoscientists. Dr Sharp is a full-time employee of Talisman Mining Ltd and has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Sharp has reviewed the contents of this announcement and consents to the inclusion in this announcement of all technical statements based on his information in the form and context in which they appear.

Forward-Looking Statements

This ASX release may include forward-looking statements. These forward-looking statements are not historical facts but rather are based on Talisman Mining Ltd.'s current expectations, estimates and assumptions about the industry in which Talisman Mining Ltd operates, and beliefs and assumptions regarding Talisman Mining Ltd.'s future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates", "potential" and similar expressions are intended to identify forward-looking statements. Forward-looking statements are only predictions and are not guaranteed, and they are subject to known and unknown risks, uncertainties, and assumptions, some of which are outside the control of Talisman Mining Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecast. Actual values, results or events may be materially different to those expressed or implied in this presentation. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, Talisman Mining Ltd does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement is based.

Appendix 2

JORC Tables Section 1 & 2

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 RC Drilling samples are collected at two metre intervals via a drill rig mounted cyclone and static cone splitter set to a 12% split to produce a nominal 4-7kg sample which was collected in a pre-numbered sample bag. RC samples undergo routine 2 metre composite pXRF analysis using a Olympus Vanta M-series to aid in logging and identifying zones of interest. Diamond core samples, either PQ, HQ3 or NQ2 in size diameter, were either cut in half longitudinally or a third longitudinally, using an automated Almnonte core saw Core was placed in boats, holding core in place. Core sample intervals varied from 0.3 to 1.3m in length but were predominantly aligned to 1m intervals or with sample boundaries which respected geological contacts. Sampling is controlled by Talisman protocols and QAQC procedures as per industry standard and a chain of custody maintained through transfer to ALS Laboratories in Adelaide, SA. RC /DD samples were dried, crushed (where required), split and pulverised (total prep) to produce a master pulp. From this master pulp, a 0.25g sub sample was taken for multi-element analysis by four acid digest with an ICP-MS finish. A 30g sub sample was also taken for fire assay for gold with ICP-AES finish
Drilling techniques	• Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC drilling cited in this report was undertaken by Strike Drilling Pty Ltd using a LC36 (KWL 700) truck-mounted Reverse Circulation drill rig. A truck-mounted booster and compressor provided high pressure air with an auxiliary compressor used where ground conditions warranted. RC drilling was completed with a face sampling hammer of nominal 140mm size. Diamond Drilling cited in this report was undertaken by DDH1 Drilling Pty LTD ùsing an Evolution FH3000 or UDR1200 truck mounted rig. The core was orientated using a Reflex Ez-Ori Tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 RC Drilling RC drill sample recovery is generally high with sample recoveries and quality recorded in the database by the logging geologist Sample recoveries were monitored in real-time by the presence of Talisman personnel at the drill site. •No known relationship exists between recovery and grade

TALISMAN

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 and no known bias exists. Diamond Drilling Core recovery data was recorded for each run by measuring total length of core retrieved against the downhole interval actually drilled and stored in the database. TLM representatives continuously monitor core recovery and core presentation quality as drilling is conducted and issues or discrepancies are rectified promptly to maintain industry best standards. Core recoveries within mineralised zones (significant intercepts) are shown in Table 4 and 5.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 RC Drilling RC logging records lithology, mineralogy, mineralisation, alteration, structure, weathering, colour and other primary features of the rock samples and is considered to be representative across the intercepted geological units. RC logging is both qualitative and quantitative depending on the field being logged. All RC drill-holes are logged in full to end of hole. All RC chip trays are photographed, and then stored onsite in the Lachlan Copper-Gold Project. All information collected is entered directly into laptop computers or tablets, validated in the field, and then transferred to the database. The level of logging detail is considered appropriate for exploration and to support appropriate mineral resource estimation, mining studies, and metallurgical studies.
		 Diamond Drilling DD logging is carried out on site once geology personnel retrieve core trays from the drill rig site. Core is collected from the rig daily. DD logging records lithology, mineralogy, mineralisation, alteration, structure, weathering, colour and other primary features of the rock samples and is considered to be representative across the intercepted geological units. All DD drill-holes are logged in full to end of hole. Drillhole collar coordinates, azimuth, dip, depth and sampling intervals are also recorded. DD logging is to geological contacts. DD logging is both qualitative and quantitative depending on the field being logged. Logging of diamond drilling includes geotechnical data, RQD and core recoveries. Drill core is photographed prior to any cutting and/or sampling, and then stored onsite in the Lachlan Copper - Gold Project. Photographs are available for every diamond drillhole completed. All information collected is entered directly into laptop computers or tablets, validated in the field, and then transferred to the database. The level of logging detail is considered appropriate for exploration and to support

TALISMAN

Criteria	JORC Code explanation	Commentary
		appropriate mineral resource estimation, mining studies, and metallurgical studies
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC Drilling RC samples were dried, crushed (where required), split and pulverised (total prep) to produce a 0.25g sub sample for base metal analysis or a 30g sub sample for gold analysis by fire assay. QAQC protocols for all RC sampling involved the use of Certified Reference Material (CRM) as assay standards. All QAQC controls and measures were routinely reviewed. Sample size is considered appropriate for geochemical sampling for base-metal and gold mineralisation given the nature of drilling and anticipated distribution of mineralisation. Field duplicates were collected at a 1 in 30 sample rate. Diamond Drilling Diamond drill core (NQ3, HQ or PQ) samples collected for analysis were longitudinally cut in half, and quarters for the QAQC samples using a using an automated Almnonte core saw. Core was placed in boats, holding core in place. Half core or quarter core sample intervals typically varied from 0.3m to 1.3m in length. 1m sample intervals were favoured and are the most common method of sampling, however sample boundaries do principally coincide with geological contacts. The remaining core was retained in core trays. DD samples were dried, crushed (where required), split and pulverised (total prep) to produce a 0.25g sub sample for base metal analysis or a 30g sub sample for gold analysis by fire assay. QAQC protocols for all DD sampling involved the use of Certified Reference Material (CRM) as assay standards. All QAQC controls and measures were routinely reviewed. Sample size is considered appropriate for geochemical sampling for base-metal and gold mineralisation given the nature of drilling and anticipated distribution of mineralisation. Field duplicates were collected at a 1 in 30 sample rate.
Quality of ssay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometres, handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 RC Drilling QAQC protocols for all RC sampling involved the use of certified reference materials as assay standards, inserted at a 1 in 50 sampling rate. Blank samples were inserted at a 1 in 500 sampling rate using a Certified Reference Material (CRM) coarse blank. All assays are required to conform to the procedural QAQC guidelines as well as routine laboratory QAQC guidelines. All QAQC controls and measures were routinely reviewed. Laboratory checks (repeats) occurred at a frequency of 1 in 25.

Criteria	JORC Code explanation	Commentary
	 Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Field duplicates returned a reasonable level of precision with some minor variation in Au attributed to nugget effect of gold mineralisation. Each 2m composite RC sample undergoes routine pXRF analysis using a Olympus Vanta M-series to aid in logging and identifying zones of interest. All pXRF readings were taken in Geo-Exploration mode with a 45 second 3 beam reading. Standard reference materials were used to calibrate the pXRF instrument every 30 samples.
		 Diamond Drilling QAQC protocols for all DD sampling involved the use of certified reference materials as assay standards, inserted at a 1 in 50 sampling rate. Blank samples were inserted at a 1 in 50 sampling rate using a certified reference material coarse blank. Field Duplicates were inserted at a 1 in 30 sampling rate.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intercepts have been verified by alternate company personnel. Logging and sampling data is captured and imported using Ocris software. Assay data is uploaded to a secure database directly from the CSV file provided by the laboratory. Primary laboratory assay data is always kept and is not replaced by any adjusted or interpreted data
Location of data points	 Accuracy and quality of surveys used to locate drill-holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Talisman RC drill collar locations are pegged using a hand- held GPS. Final collar locations were also picked up using a hand-held GPS with +/- 3m accuracy.The coordinate system used is the Geocentric Datum of Australia (GDA) 1994. All coordinates are in the Map Grid of Australia zone 55 (MGA), Universal Transverse Mercator.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing at the Lachlan Copper-Gold Project varies depending on requirements. No mineral resource is being reported for the Lachlan Copper-Gold Project. No sample compositing has been applied.
Orientation of data in relation	 Whether the orientation of sampling achieves unbiased sampling of possible 	Samples were taken according to observations at the time in the field

TALISMAN

Criteria	JORC Code explanation	Commentary
to geological structure	 structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 MYRCDD002 and MYRCDD003 are interpreted as being drilled down dip of the mineralised zones and therefore true width of these zones are approximately 40 to 50% of downhole widths.
Sample security	• The measures taken to ensure sample security.	RC and DD samples were stored on site at the Lachlan Copper Gold Project prior to submission under the supervision of the Senior Geologist. Samples were transported to ALS Chemex Laboratories Adelaide by an accredited courier service or by company personnel using secure company vehicles.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audits or reviews of the sampling techniques and data have been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Central Lachlan Copper Gold Project currently comprises 15 granted exploration licences: EL8414 held in joint venture by Haverford (89% participating interest) and Peel Mining Limited (11% participating interest) (Refer Talisman ASX announcement 20 October 2020 for full details); and EL8547, EL8571, EL8615, EL8677, EL8658, EL8659, EL8680, EL8719, EL9298, EL9299, EL9302, EL9306, EL9315 and EL9379 held 100% by Haverford. Native Title Claim NC2012/001 has been lodged over the area of the following tenements by NTSCORP Ltd on behalf of the Ngemba, Ngiyampaa, Wangaaypuwan and Wayilwan traditional owners; EL8414, EL8571, EL8615, EL8677, EL8658, EL8659, EL9298, EL9299, EL9302, EL9302, EL9302, EL9306, EL9315 and EL9379. All tenements are in good standing and there are no existing known impediments to exploration or mining.

TALISMAN

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Lachlan Copper-Gold Project has been subject to exploration by numerous previous explorers. Exploration work has included diamond, RC and Air Core drilling, ground and down-hole EM surveys, soil sampling, geological interpretation and other exploration and other explored to a survey of the surveys of the surveys
Geology	Deposit type, geological setting and style of mineralisation.	 geophysics (magnetics, gravity). The Lachlan Copper-Gold Project lies within the Central Lachlan Fold belt in NSW. The Lachlan Copper-Gold Project is considered prospective for epithermal style base-metal and precious metal mineralisation, orogenic mineralisation, and Cobar style base-metal mineralisation.
Drill-hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill-holes: easting and northing of the drill-hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill-hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Historical drilling intercepts have been appropriately referenced to source information. A reference to historic mining grade has been referenced to open file source material.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Significant intersections reported from the Lachlan Lead-Zinc-Silver-Copper-Gold Project are based on a nominal 0.25g/t Au, 0.2% Cu, 5g/t Ag, 0.5% Pb or 0.5% Zn cutoff, no more than 6m of internal dilution (including core loss and no samples) and a minimum composite grade of 0.25g/t Au, 0.2% Cu, 5g/t Ag, 0.5% Pb or 0.5% Zn. Cu and Au grades used for calculating significant intersections are uncut. All results reported in this document have been derived from 2m split samples. Length weighted intercepts are reported for mineralised intersections. Weighted intercept calculation : From (m) To (m) = (sample width x assay) + (sample width x assay) / sample width + sample width. Core loss and intervals not sampled within significant intercepts are excluded from length weighted calculations.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Drill-holes relating to the Lachlan Copper-Gold Project are reported as down hole intersections. True widths of reported mineralisation are not known at this time.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill-hole collar locations and appropriate sectional views.	Appropriate maps with scale are included within the body of the accompanying document.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All relevant data is reported and provides an appropriate representation of the results. The accompanying document is considered to represent a balanced report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Geophysics 37.3 line km of Gradient Array Induced Polarisation (GAIP) was completed at the Durinings project. 24 GAIP receiver lines of 1.1km or 1.8km length at 100m spacings were completed with Rx Dipole Length 50m and Tx Dipole Length 2400m, 3800m. All survey locatiçons have been recorded in GDA94/MGA55. The GAIP survey lines were acquired in a SW-NE (054 deg) orientation against northwest striking geology interpreted by Talisman Geologists. The Gradient Array Induced Polarisation Survey (GAIP) at the Durnings project was collected by Fender Geophysics using a GDD Rx-32 16-channel receiver and GDDD TX4 Transmitter. Non-polarising porous electrode receiver pots and 120mm x 800mm x 5mm aluminium plates were utlised. GAIP data was reviewed, processed and interpreted by Ned Stolz, Principal Geophysicist from Southern Geoscience Consultants Pty Ltd. All meaningful and material information is reported.

TALISMAN

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Planned future work at the Lachlan Copper-Gold Project includes soil sampling, RC/ diamond drilling and geophysical surveys.

