

25 July 2023

Tambourah Metals adds 1% Lithium at Russian Jack Project

Highlights

- Rock chip sample confirmed over 1% Lithium at Russian Jack Project
- Heritage Clearances have been prepared for selected areas
- Accelerated Exploration for L-C-T pegmatites continues at newly acquired prospects including Haystack Well

Tambourah Metals Ltd is pleased to announce that it has identified Lithium bearing pegmatites 1 km from the previously reported sampling from rock chips in September 2022 at the RJ NW project.¹ At Bonney Sth results of initial rock chip sampling identified anomalous Lithium in pegmatites.

Tambourah Metals has previously identified significant swarms of possible L-C-T pegmatites at Russian Jack. Several locations have been added to the project area including the recent Haystack Well lithium project (purchased from MRR in July 2023²) The pegmatite swarms throughout the Russian Jack area cover a sizeable portion of tenement area of approximately 380km² (Figure 1).

The results will be provided to CSIRO as part of the collaboration to use machine learning and exploration data to cover large areas of potential lithium exploration areas.

The Company has entered a collaboration partnership with the CSIRO to apply machine learning using their hyperspectral dataset to define first pass exploration targets across the Russian Jack Lithium project.

Sampling results

Bonney Sth project is located 6km SW of an historic Tin prospect. The results have confirmed the presence of Lithium bearing pegmatites at two locations over 0.1% Lithium. The Bonney Sth adjoins the recently purchased Haystack Well Lithium project. The company has been in the field completing investigations in June as part of their due diligence.

 $^{^{1}}$ ASX TMB announcement "Expanding Lithium Projects at Russian Jack" - 02/09/2022

 $^{^{\}rm 2}$ ASX TMB announcement "Tambourah Completes Acquisition of Pilbara Projects" - 03/07/2023

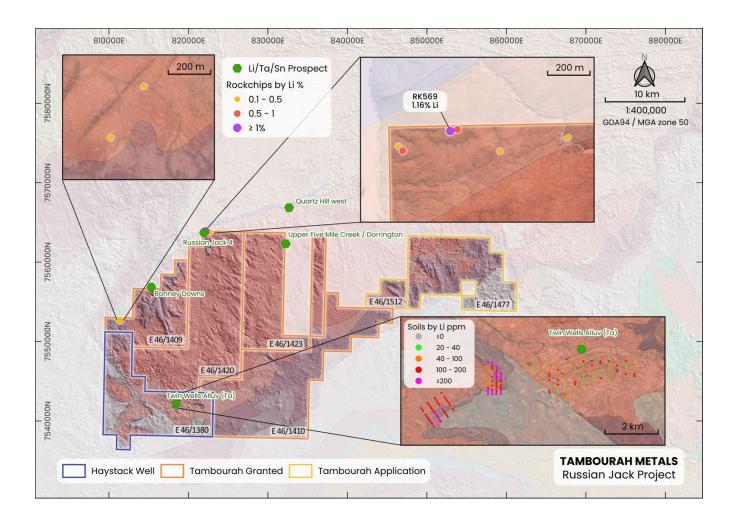


Figure 1: Location and samples at Russian Jack Project

In September 2022, the company had previously reported the sampling at RJ NW pegmatites sampled with Lithium up to 1420 ppm.

Pegmatite swarms have now been confirmed in the northern boundary of the tenement of E46/1420. The recent field investigations were to provide data for the CSIRO collaboration. Samples with content of Lithium more than 1% have been identified in limited sampling.

The target area for possible LCT bearing pegmatites now extends over 1 km to the northeast of the initial sampling program. A proposed Heritage survey will be expanded to include these new areas.

Figure 2: Sample RK569 with 1.16 % Lithium

Field Notes: Pegmatite aplite transitional zone with red pinkish hued schistose textured biotite muscovite mica clusters developed from medium to coarse grained K feldspar quartz minerals ground mass.

Chairperson Rita Brooks said:

"We are working within a large area that hosts untested pegmatites and with the use of hyperspectral data in collaboration with CSIRO can assist with plans to drill test areas using the results of machine learning and apply this process to other geological regions. This will assist in the identification of priority areas to investigate. We are now planning heritage surveys working with the Palyku group to clear priority areas and the company will subsequently apply for Program of Work (POW)."

The Russian Jack Lithium Project

The Russian Jack Project is located 295 km SE of Port Hedland. The project is composed of 5 Exploration licences and 3 applications. The company recently applied to extend the project area with a new exploration licence application E46/1512 adjoining E46/1410 to the east.

TMB recently purchased the Haystack Well Lithium project as part of a 6-project purchase of Lithium projects from Minrex Resources in the Pilbara.² Located on the Noreena Downs pastoral lease the project hosts the Twin Wells alluvial tantalum prospect and the Haystack Well prospect where Lithium soil sampling up to 589ppm has been reported.

Next steps

The company is planning to complete Heritage surveys and clear areas of interest in order to commence sampling and mapping programs to determine drill target areas. Concurrently the company will apply for POWs to prepare for drilling programs. The area is over 380 sq km in size with pegmatites that have never been sampled. The company will conduct reconnaissance and heritage clearing with helicopter support where access is limited.

"Effective exploration relies on the ability to target orebodies that may have footprints that are 10s to 100s of metres in diameter, however the starting search area may be many hundreds of kilometres. To reduce the search space, spatial data sets and data analytics can assist greatly. Tambourah Metals has identified a target geology with similar areas to the Lithium projects in the Pilbara. With more detailed exploration and using supervised machine learning of remotely sensed data sets such as visible and near infrared spectra from satellites can be effectively employed in this manner.

CSIRO will work with Tambourah Metals Ltd to investigate the potential to use satellite imagery and new machine learning which may reduce the search space significantly. These methods have not been applied to L-C-T pegmatite exploration targets in the East Pilbara"³.

Authorised on Behalf of the Board of Tambourah Metals Ltd.

Rita Brooks

Executive Chairperson

E: admin@tambourahmetals.com.au

P: +61 8 9481 8669

³ Applying supervised machine learning to reduce critical minerals search space in the Pilbara (OD-230619). CSIRO Internal document to TMB.

About Tambourah Metals Ltd

Tambourah Metals Ltd is advancing and developing critical minerals projects for a decarbonised future. The Company's primary objective is the rapid exploration and development of its flagship Tambourah Gold and Lithium project in the Pilbara. The Tambourah goldfield is an is an advanced gold exploration project with lithium and gold development potential. Importantly, Tambourah Metals Ltd has an exciting opportunity for further regional growth through gold and lithium exploration at its Russian Jack and Nullagine projects in the East Pilbara. The Company has also expanded its Julimar Nth and WH Sth (Ni-PGE-Cu) projects in the SW terrane. The Company's other projects include the Achilles Ni-PGE-Cu-Au in the NE Goldfields and the advanced Cheela Gold project.

Figure 3: Tambourah Metals Projects - Location Map

Competent Person Statements

The information in this report that relates to Exploration Results is based on information compiled by Mr. Ralf Kriege, a full-time employee of the company, who is a Member of The Australasian Institute of Mining and Metallurgy. Mr. Ralf Kriege has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Ralf Kriege consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward Looking Statements

Certain statements in this document are or may be "forward-looking statements" and represent Tambourah's intentions, projections, expectations, or beliefs concerning among other things, future exploration activities. The projections, estimates and beliefs contained in such forward-looking statements don't necessarily involve known and unknown risks, uncertainties, and other factors, many of which are beyond the control of Tambourah, and which may cause Tambourah's actual performance in future periods to differ materially from any express or implied estimates or projections. Nothing in this document is a promise or representation as to the future. Statements or assumptions in this document as to future matters may prove to be incorrect and differences may be material. Tambourah does not make any representation or warranty as to the accuracy of such statements or assumptions.

Exploration Results

The references in this announcement to historic Exploration Results for Russian Jack were reported in accordance with Listing Rule 5.7 in the announcements titled:

Expanding Lithium Projects at Russian Jack – 02/09/2022 Extensive Pegmatite Swarms Identified at Russian Jack – 20/09/2022 L-C-T Pegmatites Exploration Expanded at Russian Jack - 21/11/2022

The Company confirms that it is not aware of any new information or data that materially affects the information included in the previous market announcements noted above.

Table 1: Pegmatite rock chip mapping from recent sampling program.

Sample ID	East	North	Li	Li2O	Cs	Nb	Rb	Sn	Та	K2O
			%	ppm	ppm	ppm	ppm	ppm	ppm	%
RJRK100	821,892.40	7,564,051.00	0.002	43	0.7	5	2.1	5	0.5	0.06
RJRK101	821,982.60	7,563,975.30	0.005	108	38.3	36	1235	63	24.1	5.01
RJRK102	821,790.90	7,563,794.20	0.005	108	22.1	65	587	44	39.4	2.09
RJRK103	821,836.00	7,563,710.40	0.015	323	37.6	45	1105	209	21.9	3.79
RJRK104	821,895.60	7,563,699.10	0.055	1184	45.8	46	762	248	14.9	1.95
RJRK105	822,074.40	7,563,733.80	0.057	1227	49.9	46	1425	367	17.1	4.75
RJRK106	822,316.80	7,563,762.70	0.025	538	29.4	46	1145	84	21.7	5.19
RJRK107	821,776.40	7,563,579.90	0.049	1055	177.5	43	951	55	18.3	2.99
RJRK108	821,944.70	7,563,582.40	0.005	108	19.6	18	375	18	6.2	5.38
RJRK109	822,049.40	7,563,587.20	0.004	86	23.1	34	782	11	22.8	3.62
RJRK110	822,217.70	7,563,563.80	0.022	474	16.6	69	690	41	16.9	3.99
RJRK111	822,355.50	7,563,538.90	0.011	237	25.9	55	895	60	12.5	3.67
RJRS0001	809,714.70	7,552,982.60	0.002	43	2.5	5	9.2	42	1.9	0.06
RJRS0002	810,738.30	7,552,402.60	0.013	280	19.1	24	220	24	2.6	2.58
RJRS0003	812,281.60	7,552,305.30	0.004	86	50.6	15	987	5	11.5	6.38
RJRS0004	812,288.80	7,552,313.70	0.007	151	31.6	22	454	40	28.6	3
RJRS0005	812,277.30	7,552,339.40	0.003	65	68.7	11	827	48	6.7	7.87
RJRS0006	812,264.40	7,552,348.20	0.005	108	58.4	21	632	40	11.6	7.82
RJRS0007	812,238.20	7,552,338.40	0.003	65	37.4	30	448	38	14.2	4.78
RJRS0008	812,203.20	7,552,329.40	0.005	108	24.8	20	532	33	9.8	4.48
RJRS0009	812,032.50	7,552,327.70	0.007	151	0.7	16	13.9	25	0.6	0.16
RJRS0011	812,172.90	7,552,199.00	0.012	258	48.2	48	510	87	9.5	3.77
RJRS0012	812,204.00	7,552,204.40	0.001	22	75.3	19	1575	51	12.4	7.66
RJRS0013	812,227.50	7,552,221.20	0.002	43	44.7	23	949	5	19.6	5.01
RJRS0014	812,237.20	7,552,256.50	0.006	129	82.8	44	1800	78	33.9	7.79
RJRS0015	812,225.10	7,552,708.70	0.004	86	85.1	23	803	6	11.6	6.18
RJRS0016	812,274.50	7,552,717.50	0.003	65	58.4	25	623	40	28.7	6.43
RJRS0017	812,295.90	7,552,731.20	0.004	86	61.8	50	571	45	34.2	5
RJRS0018	812,345.00	7,552,822.40	0.021	452	164.5	47	1120	121	19.2	7.64
RJRS0019	812,394.40	7,552,939.40	0.019	409	83	27	552	42	35	2.87
RJRS0020	812,394.40	7,553,034.10	0.026	560	38.3	117	660	167	36.9	3.13
RJRS0021	812,148.80	7,552,776.00	0.003	65	51.7	24	761	38	26.1	4.41
RJRS0022	812,083.00	7,552,714.90	0.022	474	127	37	679	33	10.8	5.02
RJRS0023	811,626.10	7,552,622.80	0.006	129	88.4	37	1295	42	117.5	6.11
RJRS0024	811,544.90	7,552,694.10	0.011	237	58.1	10	994	39	10.2	2.87
RJRS0025	811,465.30	7,552,747.50	0.169	3639	207	59	1945	203	64.1	3.88
RJRS0026	811,465.30	7,552,750.50	0.073	1572	191	45	2410	134	85.4	6.81
RJRS0027	811,380.50	7,552,747.00	0.004	86	29.4	66	418	62	122.5	2.65
RJRS0028	811,366.10	7,552,732.70	0.004	86	56.9	40	1020	74	55	5.35
RJRS0029	811,432.30	7,552,640.40	0.013	280	238	30	2050	43	53.6	8.16
RJRS0030	811,626.30	7,552,582.30	0.018	388	87.7	60	1195	39	93.7	3.73
RJRK201	837,264.30	7,563,536.70	0.001	22	15.4	16	418	5	2.4	5.44

Sample ID	East	North	Li	Li2O	Cs	Nb	Rb	Sn	Та	К2О
- Campions			<u></u> %	ppm	ppm	ppm	ppm	ppm	ppm	%
RJRK202	837,080.20	7,563,365.30	0.02	431	32.7	97	514	42	24.1	3.63
RK501	811,859.70	7,542,281.70	0.001	22	26.9	80	612	15	67.2	4.24
RK502	811,868.20	7,542,282.90	0.001	22	29.3	31	536	14	17.2	7.36
RK503	811,878.30	7,542,285.50	0.001	22	37.7	42	965	24	35.5	6.22
RK504	811,876.00	7,542,284.80	0.001	22	59.5	65	1315	8	60.7	7.84
RK505	814,684.60	7,543,139.70	0.009	194	26.3	19	437	7	6.3	4.14
RK546	821,859.60	7,563,862.80	0.002	43	47.5	55	1150	30	219	5.37
RK547	821,867.20	7,563,870.90	0.045	969	247	73	1730	53	140.5	4.48
RK548	821,863.40	7,563,880.10	0.007	151	112.5	52	1375	43	81	4.2
RK549	821,883.60	7,563,871.00	0.024	517	342	48	2410	46	133	7.24
RK550	821,887.90	7,563,862.10	0.002	43	45.3	26	1240	16	44.8	4.63
RK551	821,891.70	7,563,861.50	0.005	108	43.3	51	1235	58	37.5	3.93
RK552	821,893.40	7,563,861.10	0.019	409	89.3	36	1390	50	21.3	3.01
RK553	821,830.70	7,563,783.70	0.007	151	38.4	40	1525	54	16.2	7
RK554	821,843.90	7,563,750.00	0.001	22	26.4	5	339	5	0.6	10.2
RK555	821,855.00	7,563,706.10	0.011	237	55.6	90	1540	130	33.4	5.91
RK556	821,878.70	7,563,701.10	0.076	1636	60.4	59	1630	520	25	5.4
RK557	821,913.40	7,563,698.70	0.009	194	35.5	24	1585	27	14	7.84
RK558	821,952.10	7,563,691.90	0.041	883	46.4	58	1605	298	58.6	5.21
RK559	821,834.80	7,563,550.50	0.007	151	161.5	58	1160	49	23.4	7.79
RK560	821,928.80	7,563,266.60	0.017	366	35.1	30	1210	57	9.9	6.88
RK561	822,088.00	7,563,168.20	0.009	194	16	13	465	30	1.2	4.5
RK562	821,999.70	7,563,231.30	0.008	172	16	81	555	83	18.1	3.27
RK563	821,939.70	7,563,267.90	0.017	366	17	74	321	61	20.6	1.14
RK564	821,906.40	7,563,362.70	0.005	108	22.4	36	789	39	20.2	5.78
RK565	821,895.00	7,563,386.80	0.002	43	28	20	1335	8	13.8	11.2
RK566	821,881.10	7,563,429.50	0.002	43	46.5	12	615	30	9.8	7.51
RK567	821,976.00	7,563,843.20	0.003	65	52.1	56	1055	57	65.5	4.94
RK568	822,096.70	7,563,880.60	0.019	409	151.5	42	1345	93	17.4	6.11
RK569	822,111.50	7,563,880.90	1.16	24975	682	89	6350	199	67.1	10.05
RK570	822,136.80	7,563,884.50	0.676	14554	251	108	4380	279	48.7	7.68
RK571	822,144.30	7,563,883.80	0.005	108	39.3	24	1550	12	10.9	8.08
RK572	822,319.30	7,563,823.00	0.009	194	42.2	60	1200	51	30.7	4.64
RK573	822,668.40	7,563,804.30	0.043	926	53.4	35	1695	74	9.3	8.35
RK574	822,664.00	7,563,809.00	0.343	7385	171	36	2100	91	6.9	5.35
RK575	822,661.60	7,563,811.20	0.019	409	44.6	27	1410	81	9.6	6.64
RK576	822,548.80	7,563,764.00	0.019	409	56.1	78	996	59	28.3	4.53
RK577	822,473.50	7,563,711.30	0.015	323	29.6	95	587	63	47.7	1.8
RK578	822,412.20	7,563,703.00	0.02	431	30.8	54	1190	83	28.1	4.79
RK579	822,339.80	7,563,757.90	0.104	2239	78.1	79	2180	409	19.4	9.18
RK580	822,148.40	7,563,735.40	0.018	388	28.4	45	645	77	20.4	2.5
RK581	822,135.20	7,563,735.70	0.004	86	21	37	837	147	19.4	3.78
RK582	822,114.10	7,563,731.80	0.065	1399	47.4	63	1055	623	23	2.1
RK583	822,084.50	7,563,736.80	0.063	1356	45.7	44	1600	159	13.9	5.44

Sample ID	East	North	Li	Li2O	Cs	Nb	Rb	Sn	Та	К2О
			%	ppm	ppm	ppm	ppm	ppm	ppm	%
RK584	822,017.10	7,563,733.20	0.049	1055	21.8	18	364	121	7.3	0.77
RK585	821,976.20	7,563,807.10	0.004	86	68.8	13	2620	41	11	11.85
RK586	821,924.20	7,563,798.80	0.003	65	73.4	12	2430	30	7.5	10.15
RK587	821,849.80	7,563,799.60	0.034	732	44.9	17	664	42	3.1	2.39
RK588	821,853.50	7,563,798.30	0.01	215	63.9	21	1755	25	15.2	7.83
RK589	821,858.60	7,563,798.50	0.118	2541	89.7	74	1035	144	30.3	1.78
RK590	821,863.20	7,563,798.00	0.036	775	85	36	1925	126	21.3	7.17
RK591	821,864.90	7,563,792.30	0.065	1399	134.5	55	2460	94	23.2	9.25
RK592	821,874.50	7,563,788.30	0.729	15695	671	34	5030	91	20	6.91
RK593	821,884.50	7,563,793.80	0.047	1012	59.3	105	1005	80	47.2	3.12
RK603	811,891.40	7,542,288.80	0.002	43	45	69	1225	66	45.3	5.67
RK604	811,897.90	7,542,303.20	0.002	43	35.3	52	1035	28	30	6.5
RK605	812,106.00	7,542,361.50	0.003	65	56.5	66	1135	74	100.5	3.07
RK606	813,896.30	7,543,404.20	0.002	43	9.1	17	382	34	4.5	5.08
RK607	813,876.30	7,543,412.60	0.003	65	12.3	12	637	31	7.3	4.58
RK609	813,757.40	7,543,953.50	0.002	43	23.4	26	922	10	9.3	14.15
RK610	813,750.10	7,543,960.60	0.001	22	26.5	26	1340	81	8.1	9.52
RK611	813,695.10	7,543,825.20	0.002	43	21.3	62	821	61	11.3	5.58
RK612	813,871.10	7,543,330.50	0.003	65	19.2	38	908	62	24.2	8.46
RK613	813,873.90	7,543,324.60	0.004	86	9.1	19	528	42	7.5	7.06
RK753	810,622.30	7,552,582.70	0.007	151	5.5	5	94.7	5	0.7	1.95
RK754	811,067.30	7,552,767.10	0.004	86	24	39	531	6	117.5	7.16
RK755	811,095.90	7,552,752.80	0.003	65	20.1	51	534	11	219	5.85
RK756	811,128.60	7,552,743.50	0.004	86	13.3	6	323	5	25.8	5.83
RK757	811,156.10	7,552,759.00	0.004	86	18.6	43	293	13	106	5.22
RK758	811,001.60	7,552,659.30	0.004	86	53.8	32	673	14	252	6.54
RK759	810,967.00	7,552,632.30	0.003	65	29.7	42	854	16	80.5	5.9
RK760	811,192.20	7,552,518.60	0.002	43	27.8	5	593	5	6.6	10.05
RK761	811,223.00	7,552,546.30	0.004	86	53.2	23	1165	10	32.4	5.61
RK762	811,267.40	7,552,611.40	0.003	65	53.8	35	719	17	143.5	5.81
RK763	811,298.20	7,552,509.90	0.171	3682	1050	21	4190	64	6.4	7.54
RK764	811,210.80	7,552,484.00	0.038	818	98.7	43	987	27	52.4	5.26
RK765	811,224.60	7,552,498.00	0.008	172	41.5	43	560	51	62.6	3.64
RK766	811,224.90	7,552,482.80	0.014	301	30.3	32	606	15	45.7	6.82
RK767	811,419.20	7,552,451.50	0.005	108	88.9	49	1145	14	137.5	5.96
RK768	811,442.30	7,552,456.70	0.002	43	102.5	17	430	5	10.2	6.43
RK769	811,463.10	7,552,484.50	0.006	129	167.5	27	1415	32	47.6	6.97
RK770	811,422.10	7,552,546.00	0.021	452	77.1	70	679	18	220	2.22

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Approximately 1-2 kg of rock chips were collected from each sample site. No sub sampling was undertaken of the rock chip samples. The rock chips were collected from various points around the outcrop to ensure maximum representivity of the sample for that location. No geometrical consideration can be made from random rock chip samples.
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	No drilling was undertaken during the collection of the rock chip samples.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling was undertaken during the collection of the rock chip samples.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	The rock chip samples were described in the field by the field geologist.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No drilling was undertaken during the collection of the rock chip samples. N0 QAQC samples were submitted into the assay stream.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The entire samples were dried, crushed and pulverized to 85% passing 75um. The samples assayed using ICPMS at ALS Perth (ME_ICP89) for a suite of elements including SiO2, Fe2O3, CaO, K2O, TiO2 with Li, Ta, Nb, Sn, Rb and Cs. ALS undertook standard internal QAQC sampling.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No drilling was undertaken during the collection of the rock chip samples. All sample and geological were logged onto paper in the field and then transferred to a digital database by the logging geologist. There has been no adjustment made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The rock chip sample locations were all surveyed using handheld GPS, with a +/- 5m accuracy. The survey method is appropriate for first pass exploration MGA94 Z50 coordinate system was used.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The sample spacing was sufficient for the first pass rock chip sampling of the mineralization style of pegmatite veins Grade continuity is yet to be established as the samples are isolated rock chip samples. No sample compositing has been undertaken.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of sampling is considered to be appropriate for first pass exploration of pegmatite veins. At the first pass exploration stage there does not appear to be any bias introduced into the sampling and the geological or assay results as a function of the orientation of the sampling with respect to the geological structure.
Sample security	The measures taken to ensure sample security.	 The samples were transported from site to Centurion Transport in Newman by TMB field staff, where they were appropriately packed in bulka bags and delivered by Centurion Transport directly to ALS Perth.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 There have been no audits conducted on the results this far. Audits will be conducted as a component of the ongoing project assessment.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The sampling was conducted on E46/1409, E46/1420 and E46/1423 which are 100% owned by the company. Additional sampling was conducted on E46/1380, a tenure that Tambourah is in the process of acquiring from Minrex Resources Limited (MRR) as part of the conducted Due Diligence. There are no third-party royalties applied to the tenements. TMB has a heritage agreement in place with the local traditional owners, the Palyku People.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Very little lithium exploration has been overtaken over these projects. No ground geophysics and very little geological mapping has been historically completed. Tambourah completed very limited rock chip sampling in 2022 on E46/1420. E46/1380 was subject to soil sampling programmes by Minrex Resources Limited (MRR).
Geology	 Deposit type, geological setting and style of mineralisation. 	Lithium bearing pegmatites are the target geology
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 See the main body of the announcement. See appendix 1 for the full assay report for the samples
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 There have been no data aggregation methods applied to the assay results. No metal equivalent grades have been reported or used in the calculating of the assay results.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Rock chips are taken from surface and are not representative of the entire thickness of pegmatite units.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	See appendix 1
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data to be reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Hyperspectral analysis Rock chip sampling Soil sampling Heritage surveys