

ASX / Media Announcement 14 February 2023

Vital achieves 26% increase in Tardiff Mineral Resource tonnes and 19% increase in contained NdPr

Highlights

- Updated Mineral Resource Estimate ("MRE") for the Tardiff Upper Zone ("Tardiff") at Nechalacho achieves a 26% increase in Mineral Resource tonnes and a 20% increase in total rare earth oxides ("TREO") tonnes
- Tardiff is estimated to contain 1.67 million tonnes of TREO within a total mineral resource of 119.0 million tonnes at 1.4% TREO
- Tardiff is estimated to include 416,000 tonnes of neodymium and praseodymium (NdPr), a 19% increase over the previous MRE estimate dated 13 December 2019
- Vital will commence drilling at Nechalacho this month, aiming to infill the Tardiff deposit to increase confidence in the Inferred component of the MRE
- Vital aims to develop Tardiff to become a large-scale, long-life rare earths producer; initial economic assessment for Tardiff due in Q3 CY23

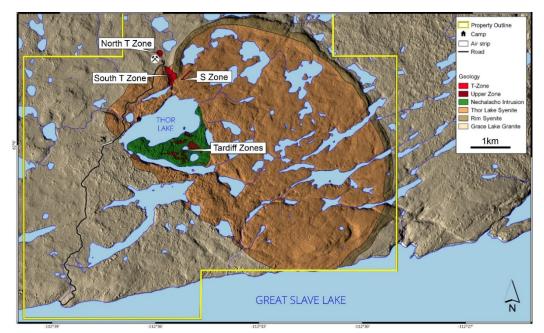


Figure 1: Location of the Tardiff deposit at Vital's Nechalacho Rare Earths Project, Canada

Vital Metals' Managing Director John Dorward said: *"With a contained NdPr endowment of more than 416,000 tonnes, this updated MRE for the Tardiff Deposit underlines the global significance of the Nechalacho Rare Earths Project. This is why we recently sharpened our focus towards advancing*

Nechalacho through economic studies and permitting. Tardiff is one of the largest single deposits of these critical minerals in the Western World and responded extremely well to the drill bit in 2021 and 2022. We are excited to be launching our follow up drilling program in the current field season and look forward to reporting results over the coming months."

Canada's first rare earths mining company Vital Metals Ltd (ASX: VML | OTCQB: VTMXF) ("Vital", "Vital Metals" or "the Company") is pleased to announce a substantial increase in the Mineral Resource Estimate for its Tardiff Upper Zone Deposit ("Tardiff"), which forms part of the Nechalacho Rare Earth Project ("Nechalacho" or the "Project"), 100 kilometres south-east of Yellowknife in Canada's Northwest Territories.

Vital has updated the MRE with the incorporation of 4,483 metres of drilling from 66 holes drilled over the 2021 and 2022 drilling seasons. Total MRE tonnage (across all classifications) has increased by approximately 26%, with a slight reduction in TREO grade of approximately 4%.

The Company holds a 100% interest in the minerals located on the mining leases at Nechalacho between the surface topography and the depth limit of 150 metres above sea level ("ASL"), or approximately 90 metres below surface, known as the Upper Zone. The material below 150 metres ASL is referred to as the Basal Zone and is retained by the original owner, Avalon Advanced Minerals Inc. ("**Avalon**").

Key points

- Vital achieved the MRE increase due to re-interpreting the cut-off grades for the resource and the inclusion of Tardiff Zone 2 area in the resource and the inclusion of an additional 4,483 metres of drilling from the 2021 and 2022 campaigns;
- Vital selected a cut-off grade percentage of the full suite of rare earth oxides as opposed to the previous practice of using an Nd₂O₃ based cut-off value;
- the MRE was interpolated using Ordinary Kriging;
- 5,500 metres of drilling is planned for the 2023 field season at Nechalacho with a focus on increasing confidence in the current MRE with additional infill drilling; and
- additional exploration drilling will be focused on assessing the potential to increase North T's resources through extension drilling and testing other potential satellite targets.

The Tardiff MRE was compiled and is reported in accordance with the Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC 2012 edition) and Chapter 5 of the ASX Listing Rules.

Cut-off Grade % TREO	Category	Tonnage (Mt)	TREO Grade (%)	NdPrO:TREO Ratio	Nd ₂ O ₃ (%)	Pr ₆ O ₁₁ (%)
1.0	Inferred	108.1	1.39	25.1%	0.28	0.07
1.0	Indicated	6.3	1.45	24.8%	0.28	0.08
1.0	Measured	4.6	1.59	24.6%	0.31	0.08
1.0	Total	119.0	1.40	25.1%	0.28	0.07

Table 1: Tardiff Upper Zone Deposit – Mineral Resource Estimate at 1.0% cut-off (31 December 2022)

TREO = Total Rare Earth Oxides – La₂O₃, CeO₂, Pr₆O₁₁, Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃, Y₂O₃

NdPrO = Neodymium oxide and Praseodymium oxide: Nd₂O₃+Pr₆O₁₁

Summary of Key Information

The Tardiff Upper Zone Deposit is hosted near the top of a layered nepheline syenite intrusion, which is part of an anorogenic alkaline granitoid intrusion. The TREO mineralisation is hosted in hydrothermally altered eudialyte syenite and mainly contained in the minerals bastnaesite, synchysite, parisite, fergusonite, samarskite, allanite and monazite.

Tardiff extends approximately 2km in length and the upper limit of the MRE is covered in glacial till which varies from surface to 10 metres in depth.

Diamond core drilling of PQ, NQ and HQ diameter core using wireline recovery was used for all the drilling at Tardiff. A limited number of oriented core holes were drilled by Avalon for geotechnical purposes.

Rock Quality Designation ("RQD") logging was performed on all drill holes starting in 2009. Due to the very limited weathering profile and semi-massive nature of the mineralisation, core recovery was generally excellent.

All 2021 and 2022 drill samples were analysed by ALS Laboratories in North Vancouver, BC using ICP-MS. Historic drill samples were treated by several different companies, including Acme Laboratories, Actlabs and ALS.

Cut-off Grade % TREO	Category	Tonnage (Mt)	TREO Grade (%)	NdPrO:TREO Ratio	Nd2O3 (%)	Pr ₆ O ₁₁ (%)
0.8	Inferred	155.5	1.24	25.2%	0.25	0.07
0.8	Indicated	8.9	1.29	24.8%	0.25	0.07
0.8	Measured	5.9	1.43	24.6%	0.28	0.08
0.8	Total	170.3	1.25	25.1%	0.25	0.07
0.9	Inferred	130.8	1.31	25.2%	0.26	0.07
0.9	Indicated	7.6	1.37	24.8%	0.27	0.07
0.9	Measured	5.2	1.51	24.6%	0.29	0.08
0.9	Total	143.6	1.32	25.1%	0.26	0.07
1.0	Inferred	108.1	1.39	25.1%	0.28	0.07
1.0	Indicated	6.3	1.45	24.8%	0.28	0.08
1.0	Measured	4.6	1.59	24.6%	0.31	0.08
1.0	Total	119.0	1.40	25.1%	0.28	0.07
1.1	Inferred	87.9	1.47	25.1%	0.29	0.08
1.1	Indicated	5.3	1.53	24.7%	0.30	0.08
1.1	Measured	3.9	1.68	24.6%	0.32	0.09
1.1	Total	97.1	1.48	25.0%	0.29	0.08
1.2	Inferred	70.4	1.54	25.0%	0.31	0.08
1.2	Indicated	4.3	1.62	24.7%	0.31	0.09
1.2	Measured	3.3	1.77	24.6%	0.34	0.09
1.2	Total	78.1	1.56	25.0%	0.31	0.08

Table 2: Tardiff Upper Zone – Mineral Resource Estimate (31 December 2022) at selected cut-off grades

TREO = Total Rare Earth Oxides – La₂O₃, CeO₂, Pr₆O₁₁, Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃, Y₂O₃

NdPrO = Neodymium oxide and Praseodymium oxide: Nd₂O₃+Pr₆O₁₁

Estimation and Modelling Techniques

Key parameters employed for the estimation of the 31 December 2022 MRE include the following:

- The block model uses a block size of 10 x 10 x 4m with sub-blocks size 2.5 x 2.5 x 1m;
- The blocks were assigned the lithology codes from wireframes that delineated the different lithology domains;
- The rock density in the mineralised zone was assigned to each block by using the nearest neighbour search technique using downhole density data;
- No capping of the REO data was used. Previous modelling used capping of high grades, but the latest close spaced drilling showed the high-grade outliers in the Avalon data were supported by other high grades in nearby holes in the close spaced drilling;
- The assays were composited into one metre intervals for the resource estimation;
- An ordinary kriging interpolation with 3 search passes of differing dimensions was used for the Mineral Resource Estimation. The first pass was an ellipsoid with a 200m by 100m by 12m search. Passes 2 and 3 were octant passes with Pass 2 being 60m by 30m by 12m and the Pass 3 being 40m by 20m by 8m. Passes 2 and 3 required at least four octants with more than 10 composite samples.
- Pass 1 was restricted to between 5 and 24 composites whilst Passes 2 and 3 were restricted to between 10 and 24 composites;

- A cut-off grade of 1.0% TREO was selected, and by-products were not considered in the cut-off grade calculation; and
- The cut-off grade, based upon the full suite of rare earth oxide assays, was used for the updated MRE as opposed to the previous MRE which used a 0.1% Nd₂O₃ cut-off value.

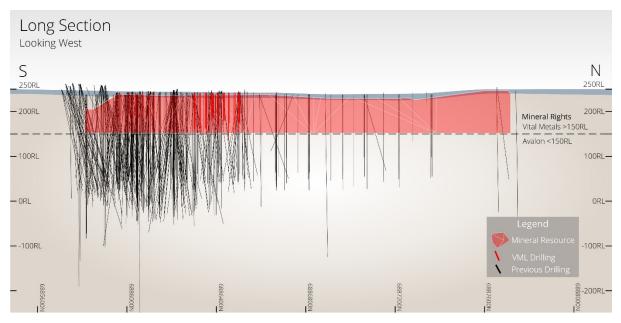


Figure 2: Tardiff Upper Zone Longitudinal Section looking west

Table 3: Tardiff Upper Zone – Mineral Resource Estimate (31 December 2022) individual REO proportions at a 1.0% cut-off grade (Total Resource)

REO	% of TREO
CeO2	43.96%
La2O3	18.43%
Nd2O3	19.81%
Pr6011	5.29%
Sm2O3	3.49%
Eu2O3	0.36%
Gd2O3	2.45%
Tb4O7	0.25%
Dy2O3	0.97%
Ho2O3	0.14%
Er2O3	0.32%
Tm2O3	0.04%
Yb2O3	0.26%
Lu2O3	0.04%
Y2O3	4.21%

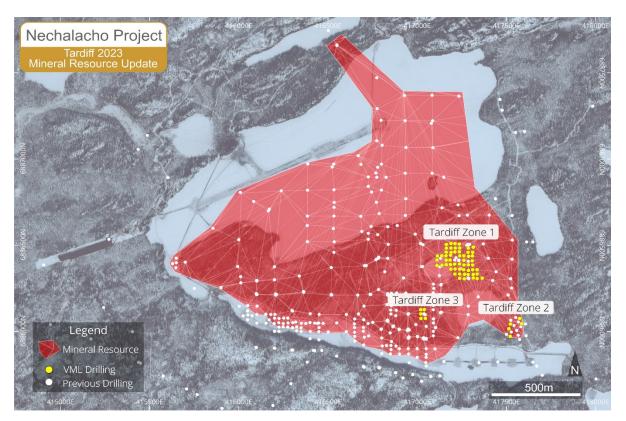


Figure 3: Tardiff Upper Zone Plan View

Upcoming Catalysts

Commencement of drilling at Nechalacho	Q1 CY2023
Drilling results from Nechalacho	Q2/3 CY2023
Completion of Tardiff initial economic assessment	Q3 CY2023
Completion of Saskatoon Calcine Circuit	Q3 CY2023

Contact: Mr John Dorward Managing Director Vital Metals Limited Phone: +61 2 8823 3100 Email: <u>vital@vitalmetals.com</u>

This announcement has been authorized for release by the Board of Vital Metals.

ABOUT VITAL METALS

Vital Metals Limited (ASX: VML) is Canada's first rare earths mining company following commencement of mining at its Nechalacho rare earths project in Canada in June 2021. It holds a portfolio of rare earths, technology metals and gold projects located in Canada and Germany.

Nechalacho Rare Earth Project - Canada

The Nechalacho project is located at Nechalacho in the Northwest Territories of Canada and has potential to develop into a significant large scale supplier of critical electric motor magnet minerals.

Competent Person Declaration

The information in this report relating to Mineral Resource Estimation at the Nechalacho Rare Earths Project is based on, and fairly represents, information and supporting documentation prepared for Vital Metals Limited by Mr Brendan Shand. Mr Shand is a Competent Person and a member of the Australasian Institute of Mining and Metallurgy and an employee of the Company. Mr Shand has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Shand consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Compliance Statements

This announcement contains information relating to exploration results in respect of the Nechalacho Project extracted from ASX market announcements dated 26 May 2021 "<u>Vital Intersects Broad High</u> <u>Grade REO at Tardiff Zone</u>", 3 August 2021 "<u>Vital Intersects High-Grade REO in Tardiff Zones 2 & 3</u>" and 22 July 2022 "<u>Vital Intersects Further Broad Zones of REO at Tardiff</u>" and reported in accordance with the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" ("2012 JORC Code"). VML confirms that it is not aware of any new information or data that materially affects the information included in the abovementioned ASX market announcement.

Forward Looking Statements

This release includes forward looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward-looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production output.

Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance and achievements to differ

materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of resources or reserves, political and social risks, changes to the regulatory framework within which the Company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

Forward looking statements are based on the Company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the Company's business and operations in the future. The Company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the Company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the Company or management or beyond the Company's control.

Although the Company attempts to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be anticipated, estimated or intended, and many events are beyond the reasonable control of the Company. Accordingly, readers are cautioned not to place undue reliance on forward looking statements.

Forward looking statements in this release are given as at the date of issue only. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the Company does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

Information provided pursuant to ASX Listing Rule 5.8.1

Definitions

TREO includes the rare earth element oxides, La_2O_3 , CeO_2 , Nd_2O_3 , Pr_6O_{11} , Sm_2O_3 , Eu_2O_3 , Gd_2O_3 , Tb_4O_7 , Dy_2O_3 , Ho_2O_3 , Er_2O_3 , Tm_2O_3 , Yb_2O_3 , Lu_2O_3 and Y_2O_3 .

LREO includes the light rare earth element oxides, La_2O_3 , CeO_2 , Nd_2O_3 and Pr_6O_{11} .

HREO includes the heavy rare earth element oxides, Sm2O3, Eu₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃ and Y₂O₃.

KT and MT means thousands and millions of metric tonnes, respectively.

REO means rare earth oxides

Geology and Geological Interpretation

The area referred to in this announcement is located near Thor Lake in the Mackenzie Mining District of the Northwest Territories. Tardiff is hosted by a syenite intrusion that is part of the Blatchford Lake Intrusive Complex. A number of magmatic layers, collectively referred to as the Lake Zone, host the rare earth mineralization in the upper part of the Nechalacho intrusion. The boundary of the rare earth mineralisation on the horizontal plane is defined by the outer limit of the syenite intrusion and has been used as a limit in the modelling.

Sampling and sub-sampling techniques

The geological database used for the Lake Zone Resource estimate includes a total of 7,498 samples over a combined length of 14,290.75 metres from 415 diamond drill holes were available, with 2 metres as the most common sample length. Owing to the large spatial extent of Tardiff, the drill hole spacing is highly variable, with the closest drill spacing at approximately 25 metres. The diamond drill core was sawn or split mechanically. Samples from Tardiff were riffle split following crushing, before being pulverized (see Table 1 for further details).

Drilling Techniques

Drilling was diamond core drilling, mainly with NQ (4.76 cm), HQ (6.35 cm) or PQ (8.50 cm) drilling with the majority of the holes being HQ diameter for Tardiff.

Classification Criteria

The lithological controls on the mineralization have been extensively studied and are well understood, and adequate density data sets are available for the estimated resource domains. The resource confidence categories were assigned based on successively larger searches for TREO in Tardiff. Further

details are provided in Table 1. Stringent quality control procedures were followed during the acquisition of the assay data set for Tardiff.

Sample Analysis Method

For the Upper Zone, routine assaying of 14 lanthanides as well as Y, Th, U, Al, Si, P, Mg, Fe, Ca, Ga, Hf, Nb, S, Sc, Ta, Ti and Zr have been performed usually by ALS Global Laboratories in North Vancouver, BC using ICP-MS techniques. Other independent laboratories including Acme, Actlabs and SGS were used for check analyses of one in 10 to 25 of drill core samples at particular periods. For the drill program of 2007 all core samples were analysed in two independent laboratories. Custom certified standards were prepared from typical project mineralization with similar overall chemistry and utilized in all analyses post 2007. Details of QAQC procedures are publicly available in Canadian NI 43-101 reports.

Estimation Methodology

Grade estimation was performed using the Ordinary Kriging Method with search ellipses for inferred resources and search octants for measured and indicated resources. The searches were restricted to the REO mineralised syenite above the 150RL using a wireframe of the syenite limits. All the rare earth oxides were estimated individually. Further details on the grade interpolation methods are given in Table 1.

Cut off grades

TREO was chosen for the cut-off grade as a number of the REO are of economic importance. The cutoff grade for this resource estimate is preliminary, at pre-scoping study level, as no detailed market, metallurgical or engineering studies have been performed.

Mining and metallurgical considerations

Mining and metallurgical factors or assumptions were not explicitly used in estimating the Mineral Resource, but open pit mining methods will be utilised for any future mining operations. Metallurgical test work and associated mineralogical study work has been carried out to support the process flowsheet development and economic assessment.

Appendix 1 - JORC Code, 2012 Edition – Table 1 report – Tardiff

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All samples are splits of diamond drill core over lengths of one (PQ-diameter core) or two meters (NQ and HQ diameter). Shorter or slightly longer samples were taken in cases where geological contacts were encountered. Of the NQ- and HQ-diameter core, a half or quarter mechanical split was sampled; the PQ-diameter core was sampled entirely in the mineralized zones and a third of the core was sawn and sampled in unmineralized or weakly mineralized zones. The drill core was crushed and splits for geochemical analysis were prepared by independent laboratories. The samples are considered representative because the drill core was marked with a centre line for the sampler, so that no sampling bias was introduced by choosing the location of the split. Drill core was crushed to 90% passing 10 mesh. The PQ core was crushed to 6 mesh (about 3.3 mm) and about 2 kg was split off using a rotary splitter which were then crushed to 10 mesh. Splits of 250 g pulps were then prepared. For the Avalon drill-holes the REE concentrations were determined using ICP-MS and XRF for the highest concentrations by several geochemical laboratories. The laboratories), 4B (Actlabs), and ME-MS81d, ME-MS81h and XRF10 (ALS Laboratories). The majority of the samples were analyzed by ALS Laboratories. All the 2021 and 2022 REO assaying was carried out by ALS Laboratories using ICP-MS.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond core drilling of PQ NQ and HQ diameter core using wireline recovery was used for all the drilling at Tardiff. A limited number of oriented core holes were drilled by Avalon for geotechnical purposes.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RQD logging was performed on all drill holes starting in 2009. Due to the very limited weathering profile, core recovery was generally excellent. For the entire data set for Tardiff, RQD averages 96.2% with a median of 98.7%. The split lines were marked on the core to ensure systematic representative sampling. Owing to the semi-massive nature of the mineralization in combination with the drill method (diamond core drilling) and the excellent core recovery, grade modification due preferential loss/gain of material is highly unlikely.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill core was logged geologically by qualified personnel to a level adequate for mineral resource estimation. The logging is qualitative. All drill core for the 2007 to 2014 holes was photographed digitally with Avalon maintaining a database for these holes. All holes in the 2021 and 2022 drilling programs were photographed digitally and the database of these photos is maintained by Vital Metals. 415 drill holes logged and sampled intersections of the Upper Zone over a total length of 14,290.75 m were used for the resource estimate.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Of the NQ- and HQ-diameter core, a half or quarter mechanical split was sampled; the PQ-diameter core was sampled entirely in the mineralized zones and a third of the core was sawn and sampled in unmineralized or weakly mineralized zones. Sampling of mechanical or sawn splits of core is standard practice and considered appropriate for hard rock deposits. Duplicate analyses of the rejects and the pulps were routinely performed for the Avalon drilling. Independent core duplicates sampled by RPA in 2010 yielded similar assay values to the original data. The sample size (one- or two-meter-long core intervals) is considered appropriate for the rock type (hydrothermally altered nepheline syenite containing REE in in finer-grained replacement mineral assemblages).

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The analyses of the REE are considered total analyses. The methods include lithium metaborate/tetraborate fusion (Actlabs), in some cases followed by dilute nitric digestion (Acme Labs, ALS Laboratories) of 0.1 g of pulp followed by multi-element ICP-MS analysis. Samples with high REE values were analyzed via XRF or further diluted using ICP-MS. These methods are deemed appropriate to analyze the REE. Handheld XRF was only used as a guide for drill core logging. For the Avalon drilling the pulp of every tenth sample was analyzed by a secondary laboratory. Every 40th sample was a blank and one of several inhouse standards was inserted as every 15th sample. Assay batches that did not meet the quality control criteria were re-assayed. For the 2021 and 2022 drilling by Vital Metals the blanks and house standards were inserted as per Avalon's ratio. Acceptable levels of accuracy and precision were maintained.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The assay values of the REE-mineralized zones were confirmed by multiple independent consultants, universities and laboratories. No twinned holes were drilled. However, in multiple cases, zones of REE-mineralization were intersected from different drill hole collar locations. Industry standard procedures were followed for data entry, verification and storage. Following industry standard reporting practices, oxides were calculated from the ppm assay values for the REE.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill hole collar locations were determined by registered surveyors. All collar location data are in the UTM NAD83 Zone 12N coordinate system. A 0.5 m resolution satellite digital elevation survey was obtained by Avalon in 2010, providing adequate topographic data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The drill hole collars are spaced 25 m, 50 m, or wider in the less explored areas. In combination with geological and grade continuity in the deposit, these spacings are considered adequate for the assigned resource confidence categories. The drill hole assays were composited in one metre intervals within the

Criteria	JO	ORC Code explanation	Со	ommentary
				intercepts of the mineralized zones.
Orientation of data in relation to geological structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	•	The zones of REE mineralization are sub horizontal magmatic layers which have not been structurally modified. As the drill holes generally dip -45 to - 90°, averaging -76°, the REE-mineralized zones were intersected at appropriate angles. However, the apparent drill hole intercept lengths may be longer than true thicknesses in cases where the drill hole dip \neq -90°.
Sample security	•	The measures taken to ensure sample security.	•	Samples were double-sealed and standard chain of custody procedures were applied. Due to the nature of the mineralization (wt. % concentration levels) and the number of drill hole samples, post-sampling modification is highly unlikely.
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	•	The sampling techniques and data for the Avalon drilling have been independently reviewed and approved multiple times, including reviews by consulting firms RPA and MICON. Vital Metals has followed the same sampling techniques previously used by Avalon.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The property is located in the Northwest Territories of Canada, approximately 100 km ESE of Yellowknife, centered on coordinates 416,400 m E / 6,887,000 m N or 112° 36' 6" W / 62° 6' 20" N. The Upper Zone REE deposits are located mainly on Mining Lease NT-3178, which is 100% owned by Avalon Advanced Materials Inc. and expires 21 May 2027. The adjacent properties include Mining Leases NT-3179, NT-3265, NT-3267 and NT3266, and Mining Claims Angela 1, Angela 2 and Angela 3 (all registered to Avalon Advanced Materials Inc.). On June 24, 2019, Avalon Advanced Materials Inc. announced that it has entered into a definitive agreement with Vital Metals Pty Ltd. to transfer ownership of the near-surface mineral resources on the

Criteria	JORC Code explanation	Commentary
		Property, which includes the Upper Zone and will grant Avalon a royalty (see Avalon's News Release NR 19-04). A 2.5% NSR royalty to J. Daniel Murphy applies to the Thor Lake property which is capped at an escalating amount indexed to the rate of inflation. Cheetah has been granted the option to purchase Avalon's option in this third party-owned royalty for a payment of \$1.5 million provided that, upon exercising the option, Cheetah extinguishes this royalty. Avalon has also agreed to waive the Avalon-owned 3% net smelter royalty (over the same mining leases), for the first five years of commercial production and to grant Cheetah the option to pay Avalon \$2.0 million within eight years of the transaction closing to extend the waiver of Avalon's royalty in perpetuity (see Avalon's News Release NR 19-04).
		 Although there are no known impediments, provincial and/or federal approvals and consultation with local communities are standard requirements for obtaining a license to operate in the area.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Historic exploration drilling on the property was performed by Highwood Resources in the 1980s. None of the 1980s data was used for the Mineral Resource estimation.
Geology	• Deposit type, geological setting and style of mineralisation.	• Tardiff is hosted near the top of a layered nepheline syenite intrusion, which is part of an anorogenic alkaline granitoid intrusion. The REE mineralization is hosted in hydrothermally altered eudialyte syenite and the REE are mainly contained in the minerals bastnäsite, synchysite, parisite, fergusonite, samarskite, allanite, monazite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth 	 See Appendices 2 and 3 for the Avalon drill hole locations, azimuth, dip and intercepts. For the details of the holes drilled by Vital Metals in 2021 and 2022 see Vital Metals ASX releases 26 May 2021, 03 August 2021 and 22 July 2022.

Criteria	JORC Code explanation	Commentary
	 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximul and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	TREO with no lengths no more than 2 metres of below 1% TREO of internal material within an intercept.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	the true width. A lot of the Avalon drill holes are steeply angled and for these the interval lengths are slightly longer than true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These shoul include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• A map and a cross-section showing the drill hole collars and traces with the geological wireframe for Tardiff above the 150RL are included in the announcement.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or	 An airborne magnetics survey has been performed. A sample from drill core of the Upper Zone has been extracted and on-going metallurgical test-work is being carried to develop a flowsheet for extracting the REO. The rocks do not contain significant amounts of sulphide and, with the

Criteria	JORC Code explanation	Commentary
	contaminating substances.	exception of low thorium concentrations (~140 ppm on average), there are no deleterious elements in the Tardiff Project.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• On-going resource development drilling is going to be carried out over the next couple of years to define a resource around 40 million tonnes in the measured and indicated categories. It is expected a feasibility study will be carried out on the 40 million tonnes.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 The database has been routinely validated by Avalon against the original assay sheets before sending the database to Vital Metals. Data from the 2021 and 2022 drilling programs has been check thoroughly to ensure the data integrity has been maintained during the data entering process. All original data from the 2021 and 2022 drilling programs and the database received from Avalon is stored separately from the data entering process to ensure the data integrity can be checked in the future
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• Brendan Shand, the competent person for this Mineral Resource estimation, has visited the site and is satisfied the mineralisation is as per the data received from Avalon. Inspections of the core and mineralisation in trenches was carried out to verify the REO mineralisation was as expected.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The geology of the syenite intrusion is well understood from drill hole logs and outcrop observations. The REO mineralisation is hosted in mafic, hydrothermally altered eudialyte syenite. Continuity between drill holes has been assumed and is supported by the predictable nature of the layered mineralization as observed in drill holes. The outer intrusion contacts are sharp and provide a vertical limit to the

Criteria	JORC Code explanation	Commentary
		 mineralization. The contact between the Upper Zone and the HREO richer Basal Zone is also commonly sharp along a sub-horizontal plane at approximately the 150RL. This is the reason Avalon used the 150RL as the boundary between the portion of the REO mineralisation they sold to Vital Metals and the portion of the mineralisation they decided to keep ownership of. The continuity of the mineralization was largely controlled by the deposition of eudialyte crystals in magmatic cumulate layers and by the interstitial crystallization of eudialyte in distinct horizons. Localized hydrothermal REE-mobilization and redeposition in locally semi-massive bastnäsite veins and pervasive disseminated zones is less predictable and no attempt has been made to outline these zones in 3D.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	• In plan, the wireframe Tardiff extends approximately 1,940 m in N-S and E- W direction at its widest points. Vertically, the Mineral Resource lower limit is at the 150 RL. Above the 150RL Vital Metals has ownership of the REO mineralisation and below the 150RL Avalon Advanced Materials has maintained ownership. The 150RL closely approximates the geological contact between the Upper Zone and the Basal Zone. The Upper limit of the Mineral Resource is the contact between the Nechalacho Syenite and a layer of Glacial Till that varies in thickness from 0 to 10 metres.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the 	 The Dassault Systems / Geovia Surpac software was used to generate the resource model. The block model uses a block size of 10 x 10 x4 m with sub-blocks size 2.5 x 2.5 x 1 m The blocks were assigned the lithology codes from wireframes that delineated the different lithology domains. The rock density in the mineralised zone was assigned to each block by using the nearest neighbour search technique using downhole density data. No assumptions about correlation between variables were made. No capping of the REO data was used. Previous modelling used capping of high grades, but the latest close spaced drilling showed the high-grade outliers in the Avalon data was supported by other high grades in nearby

Criteria	JORC Code explanation	Commentary
	 average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to cor resource estimates. Discussion of basis for using or not using grade cutting or cappin The process of validation, the checking process used, the comparamodel data to drill hole data, and use of reconciliation data if av 	dimensions was used for the Mineral Resource Estimation. The first passng.was an ellipsoid with a 200 m by 100 m by 12m search. The 2 and 3 passesrison ofwere octant passes with pass 2 60 m by 30 m by 12m and the pass 3 40 m
Moisture	• Whether the tonnages are estimated on a dry basis or with natu moisture, and the method of determination of the moisture cont	
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters of	 The cut-off grade for this resource estimate is preliminary, at pre-scoping study level, as no detailed market, metallurgical or engineering studies have been performed.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum dimensions and internal (or, if applicable, external) mining diluti always necessary as part of the process of determining reasonal prospects for eventual economic extraction to consider potential methods, but the assumptions made regarding mining methods parameters when estimating Mineral Resources may not always rigorous. Where this is the case, this should be reported with an of the basis of the mining assumptions made. 	on. It issurface resources have thick sequences of greater than 1% TREO within 95blemetres of the surface and are thus amenable to open pit mining.I miningandandbe
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of dete reasonable prospects for eventual economic extraction to consid	assumptions have been applied to this resource estimate.

Criteria	JORC Code explanation	Commentary
	metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	
Environmental factors or assumptions	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 Conventional waste dumps would be designed as part of the future mine design but would require permitting. The waste material is low in sulphides and other environmentally hazardous material and is likely to have low hazardous potential. Approximately 50% of the Mineral Resource is under small shallow lakes. The lakes appear to be small enough to dewater. Getting environmental approvals would be required to dewater these lakes before mining could occur in the areas under these lakes. It is expected the first areas to be mined would be the areas not covered by the lakes.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Density was measured every five meters on a 10 cm size core segment using the water displacement method. This method is considered adequate as the rock contains little porosity. The average density for the Upper Zone is 2.806 ± 0.156 t/m³ (N = 1,907, 1 standard deviation). As the density data was very comprehensive and the density was reasonably uniform throughout the mineralised syenite above the 150RL a nearest neighbour approached was used to assign densities to the blocks.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The interpolation passes were used as a basis for assigning the confidence categories. Measured: Pass 3, 40 m by 20m by 8m octant search with at least 4 octants. Minimum composite samples is 10 and maximum is 24. Indicated: Pass 2, 60m by 30m by 12m octant search with at least 4 octants. Minimum composite samples is 10 and maximum is 24. Indicated: Pass 1, 200m by 100m by 12m ellipsoid search. Minimum composite samples is 5 and maximum is 24.

Criteria	JORC Code explanation	Commentary
		 The relevant factors affecting the confidence in the block model estimates have been considered. The main control on block confidence is the distribution of the drill hole data, as the input assays are considered to be of high quality and the geology is well understood. Brendan Shand, the Competent Person for this report, considers the classifying block confidence methods and criteria to be adequate.
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	• The current mineral resource estimate has not been externally reviewed or audited.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The relative accuracy and confidence in the mineral resource estimate is considered to be adequately reflected by the confidence categories assigned to the blocks of the resource model, which are based on the block's distance from assay data and the number of composited samples captured by the searches. Geostatistical methods have helped to produce a robust resource estimate for Tardiff above the 150RL; local variability in the resource estimation may exist and the likelihood of this affecting the resource estimation in any particular area is reflected in the confidence levels assigned to blocks in the area. There has been no production from Tardiff and hence no reconciliation data is available to estimate the accuracy of the resource estimation and the confidence levels.

Appendix 2 - List of historic Avalon Advanced Materials drill-holes used in the Mineral Resource estimation

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L07-052	6886424	416835	244	201.17	-90	0
L07-053	6886310	416923.8	241.7	250.1	-90	0
L07-054	6886376	417029.5	241.46	250.1	-90	0
L07-055	6886414	417234.4	241.75	200.4	-90	0
L07-056	6886309	417285.5	240.91	21.4	-90	0
L07-056A	6886309	417285.5	240.91	198.3	-90	0
L07-057	6886212	417510.6	240.75	33.9	-90	0
L07-057A	6886212	417510.6	240.75	183	-90	0
L07-058	6886419	417532.6	243.75	164.7	-90	0
L07-059	6886542	417126.6	243.5	151	-90	0
L07-060	6886717	417139.3	240.07	143.25	-90	0
L07-061	6886424	416835	244	18.3	-60	142
L07-061A	6886424	416835	244	183	-60	142
L07-062	6886216	416736.6	243.16	149.45	-90	0
L07-063	6886212	416521.3	243.64	183	-90	0
L07-064	6886321	416339.5	243.1	183	-90	0
L08-065	6887221	417086.7	237.31	189.1	-90	0
L08-066	6887222	416932.7	237.29	164.7	-90	0
L08-067	6887368	416928.6	237.28	140.3	-90	0
L08-068	6887370	417084	237.23	183	-90	0
L08-069	6887364	417234	237.21	186.05	-90	0
L08-070	6887067	416937.3	237.19	183	-90	0
L08-071	6887066	417088.6	237.26	140.3	-90	0
L08-072	6887066	417088.6	237.26	195.3	-60	0

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L08-073	6886917	417084.3	237.25	186.05	-90	0
L08-074	6886917	416933.1	237.21	192.15	-90	0
L08-075	6886969	416685	237.23	27.45	-90	0
L08-075A	6887019	416669.6	237.22	204.35	-90	0
L08-076	6887224	416797.9	237.21	206.9	-90	0
L08-077	6887079	416803.8	237.19	210.45	-90	0
L08-078	6886684	416787.3	237.21	183	-90	0
L08-079	6886669	416534	237.23	164.7	-90	0
L08-080	6886821	416533.9	237.19	173.85	-90	0
L08-081	6886769	416936.9	237.2	173.85	-90	0
L08-082	6886520	416535.3	237.2	189	-90	0
L08-083	6886521	416384.7	237.2	179.95	-90	0
L08-084	6886669	416384.8	237.22	173.85	-90	0
L08-085	6886819	416385.5	237.2	213.5	-90	0
L08-086	6886971	416532.7	237.22	213.5	-90	0
L08-087	6886971	416387.3	237.19	179.95	-90	0
L08-088	6886816	416238.3	237.23	189.1	-90	0
L08-089	6886710	416171.9	237.18	213.5	-90	0
L08-090	6886668	416683.9	237.22	192.15	-90	0
L08-091	6886673	416934.1	237.22	213.5	-90	0
L08-092	6886596	416530.5	237.19	228.75	-55	0
L08-093	6886749	416534.9	237.79	161.65	-55	180
L08-094	6886720	416534.4	237.9	198.25	-90	0
L08-095	6886970	416800	237.2	188.65	-90	0
L08-096	6886820	416800	237.2	185	-90	0
L08-097	6886214	417128.4	241.36	201.3	-90	0

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L08-098	6886109	417131.9	243.99	238.8	-90	0
L08-099	6886510	417020	243.28	183	-90	144
L08-100	6886510	417020	243.28	198.25	-75	335
L08-101	6886510	417020	243.28	204.35	-65	335
L08-102	6886510	417020	243.28	198.25	-75	245
L08-103	6886510	417020	243.28	228.75	-65	245
L08-104	6886510	417020	243.28	228.75	-76	155
L08-105	6886510	417020	243.28	204.05	-66	155
L08-106	6886510	417020	243.28	228.45	-76	65
L08-107	6886510	417020	243.28	210.15	-65	65
L08-108	6886503	417032.8	243.28	213.2	-75	110
L08-109	6886503	417032.8	243.28	182.7	-75	200
L08-110	6886607	416835.9	238.314	216.85	-90	0
L08-111	6886505	416838.1	244.4103	201.3	-90	0
L08-112	6886346	416819.1	242.6138	198.25	-90	0
L08-113	6886219	416834	244.0193	198.25	-90	0
L08-114	6886223	416936.6	243.3462	192.15	-90	0
L08-115	6886156	416830.6	243.5849	198.25	-90	0
L08-116	6886100	416949.5	244.1941	198.25	-90	0
L08-117	6886023	417103.9	243.1783	205.1	-90	0
L08-118	6886305	417524	241.8387	216.55	-90	0
L08-119	6886530	417533.7	246.1595	198.25	-90	0
L08-120	6886672	417532.1	243.0985	198.25	-90	0
L08-121	6887153	417551.6	241.2897	198.25	-90	0
L08-122	6887345	417465	242.8842	21.4	-90	0
L08-122A	6887283	417477	242.8842	109.8	-90	0

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L08-123	6886675	417404.2	238.4571	207.4	-90	0
L08-124	6886572	417400.1	241.5943	198.25	-90	0
L08-125	6886425	417399.9	242.7624	195.2	-90	0
L08-126	6886506	417284.3	241.1258	204.35	-90	0
L08-127	6886672	417235.4	238.0429	201.3	-90	0
L08-128	6885964	417228.7	240.2761	213.5	-90	0
L08-129	6885961	416952.1	240.5429	213.5	-90	0
L08-130	6886371	416518.8	246.0406	198.25	-90	0
L08-131	6886229	416363.2	249.7816	244	-90	0
L08-132	6886218	416206.9	247.1045	261.65	-90	0
L08-133	6886375	416200	238.5	64.05	-90	0
L08-134	6886377	415993.9	242.3092	231.8	-90	0
L08-135	6886532	416000.2	248.5231	210.45	-90	0
L08-136	6887306	417984.8	257.31	368.8	-90	0
L09-137	6886377	417030	241.364	199.78	-75	90
L09-138	6886376	417025	241.364	184.71	-70	270
L09-139	6886009	416952.1	242.3202	199.95	-90	0
L09-140	6886015	416950	242.4148	166.42	-75	0
L09-141	6886009	416956.2	242.4148	199.95	-70	90
L09-142	6885869	416952.4	237.1669	224.33	-90	0
L09-143	6885962	416801.3	237.1593	197.21	-90	0
L09-144	6886424	417130.9	240.5949	200.25	-90	0
L09-145	6886324	417124.6	240.6127	203.3	-90	0
L09-146	6886374	417127.7	240.5917	194.16	-90	0
L09-147	6886200	417342.6	239.8266	212.14	-90	0
L09-148	6886147	417287.2	239.8023	214.88	-90	0

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L09-149	6886098	417286.2	239.8086	215.19	-90	0
L09-150	6886147	417401.9	239.8423	215.19	-90	0
L09-151	6886295	417423	240.5541	215.19	-90	0
L09-152	6886269	417133.8	241.0472	193.85	-90	0
L09-153	6885868	417050.6	237.1706	215.19	-90	0
L09-154	6885819	416955.6	237.1823	230.43	-90	0
L09-155	6885870	416850.6	237.1913	230.43	-90	0
L09-156	6885429	416609.4	241.1934	309.68	-90	0
L09-157	6885919	416853.6	237.1716	206.04	-90	0
L09-158	6885869	416901.4	237.1894	206.04	-90	0
L09-159	6885916	416804.4	237.1555	203	-90	0
L09-160	6885872	416801.9	237.1936	224.33	-90	0
L09-161	6885967	416704.2	237.1594	199.95	-90	0
L09-162	6885999	416603.1	237.1677	215.19	-90	0
L09-163	6886110	417135	243.996	203	-75	35
L09-164	6886110	417135	243.996	184.71	-74	125
L09-165	6886109	417131.1	243.996	184.71	-75	180
L09-166	6886109	417130.9	243.727	193.85	-75	270
L09-167	6886023	417103.8	243.018	184.1	-75	90
L09-168	6886023	417103.8	243.055	184.71	-74	180
L09-169	6886022	417103.3	242.991	190.8	-75	270
L09-170	6885958	417038.4	240.917	203	-89	90
L09-171	6885958	417038	240.917	199.95	-75	90
L09-172	6885958	417036.3	240.929	199.95	-75	0
L09-173	6885957	417037	240.917	199.95	-75	270
L09-174	6885956	417036.7	240.862	184.71	-70	220

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L09-175	6885956	417038.5	240.693	233.89	-75	180
L09-176	6885965	416951.4	240.588	218.24	-75	180
L09-177	6885965	416953.2	240.54	206.04	-75	270
L09-178	6886102	417039	244.488	169.47	-90	0
L09-179	6886102	417038.8	244.44	178.61	-76	0
L09-180	6886101	417039.6	244.503	169.47	-75	270
L09-181	6886099	417040.8	244.633	184.47	-75	180
L09-182	6886098	417045	244.76	193.47	-73	90
L09-183	6886199	417041	242.711	184.37	-89	0
L09-184	6886200	417041	242.783	190.32	-74	0
L09-185	6886200	417047.9	242.294	190.47	-75	90
L09-186	6886202	417045.6	242.295	199.07	-75	180
L09-187	6886204	417041.1	242.634	196.23	-75	270
L09-188	6886213	417130.4	241.269	190.08	-76	90
L09-189	6886112	417136.2	243.805	177.65	-76	315
L09-190	6886006	416945.2	242.018	204.36	-74	270
L09-191	6886061	416833.2	244.344	198.65	-74	0
L09-192	6886064	416836	244.039	201.36	-75	270
L09-193	6886062	416831.7	244.069	201.36	-75	180
L09-194	6886061	416835.5	244.324	1070	-90	0
L09-195	6886061	416835.5	244.582	181.66	-75	90
L09-196	6885963	416954.7	240.312	257.86	-70	225
L09-197	6885961	417032.8	241.073	251.76	-65	225
L09-198	6885964	417036.7	241.171	206.04	-65	135
L09-199	6886064	416836.3	244.108	248.72	-68	135
L09-200	6886066	416833.3	243.779	207.75	-74	225

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L09-201	6886006	416949.9	241.951	203	-68	270
L09-202	6886007	416950.2	241.984	186.86	-82	270
L09-203	6885969	416954.6	240.874	227.38	-70	270
L09-204	6885969	416955	240.842	221.28	-83	270
L09-205	6886232	416363.3	249.617	299.04	-74	180
L09-206	6886216	416211.7	247.324	301.95	-75	180
L10-207	6886046	416250.2	237.11	282.53	-88	0
L10-208	6885997	416501.4	237.09	288.31	-88	0
L10-209	6886273	417135.1	241.03	199.92	-75	90
L10-210	6886273	417135.1	241.03	243.46	-66	90
L10-211	6886414	417233.2	241.64	199	-76	0
L10-212	6886411	417234.5	241.56	221	-75	270
L10-213	6886407	417287	241.12	227.4	-89	0
L10-214	6886363	417245.9	241.37	202.85	-90	0
L10-215	6886310	417288.6	240.98	227.1	-75	270
L10-216	6886310	417287.8	240.97	232.71	-76	180
L10-217	6886306	417289.2	240.94	223.97	-75	90
L10-218	6886308	417288.7	240.88	203.1	-76	0
L10-219	6886214	417134	241.44	183.2	-75	180
L10-220	6886214	417133.9	241.49	200.3	-66	180
L10-221	6885790	416789	260.66	452	-88	0
L10-222	6886306	417524.6	241.97	275.05	-75	90
L10-223	6886252	417530	241.3	212.9	-89	0
L10-224	6886505	417284	241.62	196.6	-80	180
L10-225	6886502	417289.7	241.52	201.65	-75	90
L10-226	6886505	417294.1	241.62	221.4	-75	0

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L10-227	6885791	416789	260.69	376	-59	0
L10-228	6886499	417278.8	241.59	206	-75	270
L10-229	6886047	416351.3	237.1	248.21	-89	0
L10-230	6886048	416153.5	237.07	251.8	-90	0
L10-231	6888605	417214.1	247.61	401	-89	0
L10-232	6886099	416101.5	237.05	282.4	-89	0
L10-233	6888807	417322.1	247.52	197	-89	0
L10-234	6886146	416002.5	237.15	272.65	-89	0
L10-235	6889222	417912.5	247.12	440	-88	0
L10-236	6886100	416151.5	237.1	263.5	-88	0
L10-237	6886099	416202.5	237.08	284	-89	0
L10-238	6886046	416198.4	237.1	278	-90	0
L10-239	6889281	418199.8	247.18	207	-89	0
L10-240	6886049	416101.8	236.99	290	-89	0
L10-241	6887745	416502.1	244.64	407.6	-89	0
L10-242	6886096	416051.3	237.17	274	-89	0
L10-243	6885794	416701	261	395	-89	0
L10-244	6886147	416102.8	236.86	277	-90	0
L10-245	6885794	416701	260	298.3	-65	0
L10-246	6886150	416050.8	236.96	257.6	-89	0
L10-247	6885794	416701	260	254.3	-65	45
L10-248	6886249	415751.1	237.16	250	-90	0
L10-249	6886399	415650.2	237.07	269	-88	0
L10-250	6886385	414906.5	242.889	302.35	-90	0
L10-251	6886534	415272.3	246.035	353	-90	0
L10-252	6885999	415403.5	256.75	302	-89	0

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L10-253	6885907	416099	258.555	359	-89	0
L10-254	6885908	416098.5	258.488	320	-64	0
L10-255	6885907	416098.4	258.535	239	-76	0
L10-256	6885903	416201.8	255.984	359	-90	0
L10-257	6885904	416201.8	256.006	303.75	-64	0
L10-258	6885903	416201.8	256.069	296	-74	0
L10-259	6885903	416201.1	256.123	302	-65	330
L10-260	6886274	417091.7	241.596	205.5	-90	0
L10-261	6886212	416207.1	247.388	281	-75	225
L10-262	6886250	417093.2	241.415	199.5	-90	0
L10-263	6886212	416207.3	247.463	293	-75	270
L10-264	6886225	417090.3	241.563	196.5	-90	0
L10-265	6886211	416208.6	247.432	272	-75	315
L10-266	6886174	417091.6	242.568	184.5	-90	0
L10-267	6886212	416208.2	247.26	290	-76	0
L10-268	6886151	417091.8	242.709	201.5	-90	0
L10-269	6886212	416208.2	247.174	305	-75	135
L10-270	6886126	417090.8	244.623	213.5	-90	0
L10-271	6886214	416207.8	247.228	311	-75	90
L10-272	6886073	417091.6	244.692	203	-90	0
L10-273	6886228	416364.8	249.539	278	-65	135
L10-274	6886049	417091.4	242.916	185	-90	0
L10-275	6886212	416521	243.81	299	-67	315
L10-276	6886000	417090.6	242.842	182	-90	0
L10-277	6886060	416836.4	244.14	251	-54	220
L10-278	6886122	416883.2	243.02	176	-90	0

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L10-279	6886211	416834.5	243.955	249.65	-64	180
L10-280	6886180	416876.3	243.516	172	-90	0
L10-281	6886049	417091.2	242.902	269	-66	250
L10-282	6886223	416885.4	243.971	177	-90	0
L10-283	6886174	417091.4	242.531	218	-65	20
L10-284	6886222	416855.1	243.825	173	-90	0
L10-285	6885962	417036.9	241.192	277.6	-55	150
L10-286	6886091	416880.3	243.367	166	-90	0
L10-287	6885974	417091.1	241.104	221	-90	0
L10-288	6886101	416852.7	243.014	175	-90	0
L10-289	6886213	416519.3	243.81	249.1	-75	90
L10-290	6886124	416852.1	242.93	202	-90	0
L10-291	6886213	416519.3	243.81	261.5	-76	180
L10-292	6886149	416854.8	242.89	194	-90	0
L10-293	6886213	416519.3	243.81	286.4	-67	180
L10-294	6886174	416853.6	243.15	190	-90	0
L10-295	6886211	416519.4	243.21	241.9	-76	225
L10-296	6886200	416854.9	243.09	179	-90	0
L10-297	6886211	416519.4	243.21	259.5	-76	270
L10-298	6886243	416783.9	243.13	179	-90	0
L10-299	6886211	416519.4	243.21	239	-76	0
L10-300	6886040	416993.4	243.47	182.4	-89	0
L10-301	6886211	416519.4	243.21	224	-75	45
L10-302	6886892	415603	239.49	364.6	-88	0
L10-303	6886211	416519.4	243.21	209.5	-76	135
L10-304	6886228	416364.4	249.44	302	-75	270

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L10-305	6886228	416364.4	249.44	281	-73	0
L10-306	6886228	416364.4	249.44	281	-74	315
L10-307	6886228	416364.4	249.44	309	-73	230
L10-308	6886228	416364.4	249.44	284	-75	90
L10-309	6887888	416777.8	245.67	287	-90	0
L10-310	6887658	416550.1	253.23	278	-88	0
L10-311	6887661	416550.9	253.27	211	-75	0
L11-312	6886300	416200.5	239.811	295.5	-90	0
L11-313	6886295	416101.2	240.392	268.5	-90	0
L11-314	6886300	416200.5	239.811	263	-75	0
L11-315	6886282	416011.7	240.585	70.5	-90	0
L11-316	6886300	416200.5	239.811	321	-65	0
L11-317	6886318	416010.8	241.289	250.5	-90	0
L11-318	6886295	416101.2	240.392	277	-74	0
L11-319	6886255	415900.3	238.291	241.5	-90	0
L11-320	6886295	416101.2	240.392	90	-60	0
L11-321	6886370	415647.7	237.126	256.5	-90	0
L11-322	6886295	416101.2	240.392	271	-65	0
L11-323	6886393	415629.2	237.124	271.5	-90	0
L11-324	6886292	416100.7	240.568	270	-75	180
L11-325	6886425	415649.7	237.367	254.8	-90	0
L11-326	6886282	416011.7	240.585	265	-75	180
L11-327	6886402	415700.3	238.382	247.5	-90	0
L11-328	6886255	415900.3	238.291	277	-75	180
L11-329	6886091	416024.5	237.245	250.5	-90	0
L11-330	6886255	415900.3	238.291	253	-76	0

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L11-331	6886068	416049.5	237.198	250.5	-90	0
L11-332	6886598	415855.2	237.098	250.5	-89	0
L11-333	6886091	416074.5	237.084	235.5	-90	0
L11-334	6886099	416450.8	238.239	242	-88	0
L11-335	6886119	416048.9	237.112	265.5	-90	0
L11-336	6886099	416603.1	238.228	247.5	-89	0
L11-337	6885820	417048.6	237.109	224.5	-90	0
L11-338	6886049	416549.1	237.056	251.5	-89	0
L11-339	6885825	417150.1	237.172	246.5	-90	0
L11-340	6886000	416448.7	237.123	235.5	-90	0
L11-341	6885942	416856.3	237.118	224	-90	0
L11-342	6886000	416400.5	237.152	269.5	-90	0
L11-343	6885915	416881.5	237.085	211.5	-90	0
L11-344	6886049	416448.6	237.123	250.5	-89	0
L11-345	6885895	416854.1	237.099	211.5	-90	0
L11-346	6886000	416348.8	237.063	289.5	-90	0
L11-347	6885918	416828.3	237.075	247.5	-90	0
L11-348	6886001	416200.7	237.097	352.5	-73	180
L11-349	6886049	416276.3	237.082	280.5	-90	0
L11-350	6885725	418002.8	243.656	352.5	-89	0
L11-351	6886051	416224.6	237.221	262.5	-90	0
L11-352	6885823	417649.2	237.048	321	-90	0
L11-353	6886027	416248.6	237.035	247.5	-90	0
L11-354	6885823	417452.2	237.123	309.37	-89	0
L11-355	6886067	416170.1	237.053	202.5	-90	0
L11-356	6886077	416252.3	237.052	253.5	-90	0

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L11-357	6886098	416179.4	237.054	256.5	-90	0
L11-358	6885819	417346.4	237.064	309.85	-90	0
L11-359	6885821	415438.1	256.5122	7.92	-90	0
L11-360	6885742	415577.4	256.3067	46.63	-45	120
L11-361	6885742	415576.9	256.1734	53.04	-45	300
L11-362	6885667	415707.1	254.1885	90.1	-45	120
L11-363	6885667	415707.1	254.1885	80.2	-45	300
L11-364	6885634	415766.9	251.8234	100.58	-45	120
L11-365	6885554	415906.2	250.343	119.79	-45	300
L11-366	6885519	415969.4	249.627	126.2	-46	300
L11-367	6885519	415969.7	249.5978	165.8	-45	120
L11-368	6885442	416090.3	247.0913	150.57	-47	300
L11-369	6885441	416094.7	247.1231	132.89	-88	0
L11-370	6885442	416095.5	247.1813	202.39	-44	37
L11-371	6885816	415448.8	256.3943	75	-45	120
L11-372	6885571	416191.6	250.0378	235.92	-43	37
L11-373	6885698	416292.6	252.928	342.15	-46	37
L11-374	6886101	416671.1	240.0249	239.3	-90	0
L11-375	6885698	416292.8	252.9085	300.53	-57	37
L11-376	6886101	416671.1	240.0249	237	-78	180
L11-377	6885697	416291.9	253.0236	453.24	-89	18
L11-378	6886101	416671.1	240.0249	236	-78	90
L11-379	6885822	416383.5	253.9013	328.44	-44	37
L11-380	6886119	416302	242.065	271	-90	0
L11-381	6885888	416423.6	258.2723	257.86	-90	0
L11-382	6886120	416299.7	242.2951	288.5	-78	280

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L11-383	6885889	416425.2	258.3375	385.27	-44	36
L11-384	6886123	416298.8	242.3591	252.5	-78	100
L11-385	6885888	416423.6	258.2723	269.44	-74	217
L11-386	6886213	416101.8	240.6334	277	-90	0
L11-387	6886211	416667.2	242.1079	343.5	-67	217
L11-388	6886213	416101.8	240.6334	288.5	-78	315
L11-389	6886211	416667.2	242.1079	274.5	-90	0
L11-390	6886214	416101.2	240.6751	276.5	-78	20
L11-391	6886211	416667.2	242.1079	248.5	-75	217
L11-392	6886006	416946.7	241.7888	202	-78	270
L11-393	6886213	416737.2	242.8706	275	-64	180
L11-394	6886219	416098.8	240.8505	280	-78	145
L11-395	6886214	416739.1	242.8683	268.5	-64	0
L11-396	6886014	416899.4	241.7581	193	-78	0
L11-396a	6886014	416899.4	241.7581	13	-78	0
L11-397	6886215	416739.9	242.9928	209.5	-75	45
L11-398	6886013	416899.8	241.7128	199	-90	0
L11-399	6886214	416739.1	240	184.5	-75	135
L11-400	6886010	416899.5	241.5678	225.5	-78	45
L11-401	6886382	416714.7	245.9672	212	-89	0
L11-402	6886011	416899.3	241.5017	208	-78	180
L11-403	6886382	416714.7	245.98	206	-76	180
L11-404	6886029	416865.4	243.154	211	-90	0
L11-405	6886383	416714	246.0979	215	-76	135
L11-406	6886029	416865.4	243.154	208	-80	180
L11-407	6886382	416713.9	246.0492	194	-77	225

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L11-408	6886031	416864.8	243.457	205	-78	270
L11-409	6886382	416712.7	245.8474	209	-75	0
L11-410	6886031	416865.2	243.407	208	-78	0
L11-411	6886381	416713.7	246.036	212	-75	315
L11-412	6886031	416866.7	243.373	214	-78	45
L11-413	6886428	416783.3	245.429	209	-90	0
L11-414	6886032	416868.6	243.53	211	-82	90
L11-415	6886427	416783.3	245.395	194	-74	180
L11-416	6886027	416864.1	242.901	202	-78	225
L11-417	6886428	416782.5	245.588	209	-73	0
L11-419	6886427	416784.2	245.285	209	-75	270
L11-421	6886427	416784.2	245.285	257	-75	225
L11-423	6886431	416785	245.492	239	-72	315
L11-424	6886416	416768.9	245.987	200	-74	90
L11-425	6886418	416770.6	245.988	224	-73	135
L12-418	6886008	416951	242.5388	202	-85	0
L12-420	6886008	416951	242.5388	211.5	-77	0
L12-422	6886101	416671	240.2364	299	-73	235
L12-426	6885961	416950.5	240.8465	229.5	-84	180
L12-427	6886147	416702	241.0259	250.5	-89	180
L12-428	6885961	416951.9	240.7457	224	-82	0
L12-429	6886147	416702	241.0259	251	-79	180
L12-430	6885970	417001.9	241.196	217	-90	0
L12-431	6886012	416797.8	238.8611	194	-90	0
L12-432	6885971	417002	241.2625	262	-60	0
L12-433	6886012	416797.8	238.8611	194	-79	0

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L12-434	6885971	417001.6	241.2929	241	-75	180
L12-435	6886014	416799.8	238.8269	200	-80	180
L12-436	6885955	417051.1	241.0647	196	-80	0
L12-437	6886053	416751.6	238.99	206	-89	0
L12-438	6885960	417050.9	241.1664	256	-80	180
L12-439	6886053	416751.6	238.99	200	-70	0
L12-440	6886030	417050.4	243.3736	227	-88	0
L12-441	6886053	416751.6	238.99	179	-80	0
L12-442	6886103	416951.9	243.9708	181	-80	0
L12-443	6886053	416751.6	238.99	206	-70	180
L12-444	6886103	416951.9	243.9708	181	-79	180
L12-445	6886053	416751.6	238.99	194	-79	180
L12-446	6886077	416275	237.1996	117	-90	0
L12-447	6886068	416700.9	238.6831	229.25	-89	0
L12-448	6886077	416275	237.1996	259.55	-90	0
L12-449	6886068	416700.9	238.6831	189.2	-69	0
L12-450	6886075	416226.2	237.3783	258	-90	0
L12-451	6886068	416700.9	238.6831	200	-84	90
L12-452	6886077	416200.6	237.1373	263.6	-90	0
L12-453	6886068	416700.9	238.6831	206.35	-82	135
L12-454	6886004	416325.1	237.2294	274.5	-90	0
L12-455	6886068	416700.9	238.6831	220	-84	180
L12-456	6886055	416319.1	237.13	260.3	-90	0
L12-457	6885992	416848.8	239.06	208	-90	0
L12-458	6885900	416899.9	237.07	235	-90	0
L12-459	6885992	416848.8	239.04	196	-82	180

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L12-460	6885900	416949.9	237.1	220.5	-90	0
L12-461	6886001	416225.8	237.18	249.6	-89	0
L12-462	6885900	417000	237.1	223	-90	0
L12-463	6886025	416225.9	237.13	250	-89	0
L12-464	6885900	417051	237.08	247	-90	0
L12-465	6886026	416274.8	237.12	250	-89	0
L12-466	6885899	417100.3	237.07	205	-90	0
L12-467	6886027	416324.7	237.24	273	-89	0
L12-468	6885850	417050.1	237.1	250	-90	0
L12-469	6885850	417000.6	237.11	241	-90	0
L12-470	6885799	417050.8	237.1	223	-90	0
L12-471	6885795	416700.6	261.048	256	-75	0
L12-472	6885796	416700.4	261.202	277	-61	0
L12-473	6885797	416700.5	261.254	253	-68	340
L12-474	6885796	416701.3	261.327	250	-67	20
L12-475	6885788	416788	260.643	250	-74	12
L12-476	6885789	416786	260.451	250	-80	20
L12-477	6885731	416920.7	260.903	301	-54	0
L12-478	6885730	416920.8	260.782	277	-58	0
L12-479	6885730	416920.8	260.705	262	-64	0
L12-480	6885730	416920.8	260.719	249	-73	0
L12-481	6885761	416878.4	262.946	280	-70	342
L12-482	6885762	416878.9	262.963	284	-56	0
L12-483	6885761	416878.9	262.954	278	-65	0
L12-484	6885761	416879	262.962	260	-73	0
L12-485	6885761	416879	262.996	242	-83	0

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L12-486	6885750	416975.8	256.127	278	-56	0
L12-487	6885750	416975.8	256.089	263	-64	0
L12-488	6885750	416975.9	256.037	260	-70	0
L12-489	6885750	416975.7	256.192	242	-82	0
L12-490	6885749	416975.8	256.581	251	-89	0
L12-491	6885712	417025	248.387	277	-47	0
L12-492	6885712	417025.1	248.454	278	-53	0
L12-493	6885712	417025.1	248.72	260	-62	0
L12-494	6885711	417025.3	248.866	236	-68	0
L12-495	6885738	417076.1	245.599	254	-53	0
L12-496	6885738	417076.1	245.609	251	-62	0
L12-497	6885745	417127.7	242.143	281	-47	0
L12-498	6885744	417127.7	242.176	236	-59	0
L12-499	6885795	416700.1	261.146	263	-58	335
L12-500	6885795	416700.7	260.988	266	-58	20
L12-501	6885893	416302.3	257.445	281	-66	0
L12-502	6885892	416302.3	257.496	269	-77	0
L12-503	6885893	416302.3	257.466	277	-72	0
L12-504	6885893	416302.2	257.344	304	-58	0
L12-505	6885892	416298.1	257.242	281	-74	315
L12-506	6885892	416297.6	257.43	355	-47	315
L12-507	6885890	416465.3	258.234	349	-51	315
L12-508	6886215	416208.3	247.217	322	-47	135
L12-509	6886215	416208	247.158	325	-66	135
L13-510	6886044	416647.8	237.053	215	-88	0
L13-511	6885944	416650.7	236.919	215	-89	0

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L13-512	6886001	416698.8	236.99	200	-89	0
L13-513	6885995	416649.2	237.022	212	-89	0
L13-514	6886103	416400.5	238.42	251	-89	0
L13-515	6886052	416399.9	236.894	233	-89	0
L13-516	6885958	416399.9	236.914	236	-89	0
L13-517	6885952	416449.3	236.938	212	-89	0
L13-518	6885953	417574.7	237.875	50	-90	0
L13-519	6885978	417566.6	238.348	50	-89	0
L13-520	6886414	417210.9	241.504	52.3	-90	0
L13-521	6886428	417218.4	241.46	50	-89	0
L13-522	6885857	416549	258	251	-72	315
L13-523	6885857	416549	258	251	-77	0
L13-524	6885857	416549	258	233	-73	45
L13-525	6885890	416420	258	266	-80	284
L14-526	6886046	416725.2	237.981	191	-88	0
L14-527	6886072	416649.9	238.013	182	-89	0
L14-528	6886023	416698.9	236.88	185	-89	0
L14-529	6885971	416650	236.793	188	-90	0
L14-530	6885922	416700.2	236.916	185	-90	0
L14-531	6886023	416649	236.83	188	-90	0
L14-532	6885974	416727.9	236.872	182	-89	0
L14-533	6886048	416425.3	236.845	221	-90	0
L14-534	6886046	416375.7	236.834	221	-89	0
L14-535	6886022	416301.3	236.853	239	-90	0
L14-536	6886022	416450.3	236.841	218	-90	0
L14-537	6886022	416349.3	236.892	239	-89	0

Hole_ID	Northing	Easting	Elevation (m)	Length (m)	Dip	Orig_Azimuth
L14-538	6886047	416473.2	236.851	227	-90	0
L14-539	6886051	416302.5	236.946	242	-89	0
L14-540	6886048	416441.2	236.937	230	-89	0
L14-541	6886214	416099.6	240.4976	244.5	-88	285
L14-542	6886214	416099.6	240.4976	262.5	-84	263
L14-543	6886214	416099.6	240.4976	270	-81	270
L14-544	6885889	416420	258.3084	271.5	-68	272
L14-545	6885889	416420	258.3084	247.5	-66	179
L14-546	6885889	416420	258.3084	238.5	-61	180
L14-547	6885889	416420	258.3084	238.5	-76	180

Appendix 3- Historic Avaion Advanced Material Drill-nole intercepts							
Hole_ID	From	То	Interval (m)	TREO (%)			
L07-053	7	12	5	1.53			
L07-053	32	46	14	1.54			
L07-053	56	60.55	4.55	1.96			
L07-053	70.53	91	20.47	1.60			
L07-054	42	74.71	34.71	1.45			
L07-054	79.27	87.75	8.48	1.63			
L07-055	15.25	47	31.75	4.76			
L07-056A	84	91.55	7.55	2.07			
L07-057A	73	91.5	18.5	1.40			
L07-058	27.75	33.25	5.5	5.44			
L07-058	46	65	19	1.39			

Appendix 3- Historic Avalon Advanced Material Drill-hole Intercepts

Hole_ID	From	То	Interval (m)	TREO (%)
L07-058	73	94.45	21.45	1.40
L07-059	69	80.2	11.2	1.64
L07-060	16	31.6	15.6	2.30
L07-060	55	61.3	6.3	1.47
L07-060	71	90	19	2.01
L07-061A	51	65.65	14.65	1.58
L07-063	34	68.3	34.3	1.73
L07-063	91	95.1	4.1	1.72
L07-064	58	62	4	1.35
L07-064	65	76	11	1.34
L07-064	80	84.8	4.8	1.13
L08-065	27	43	16	1.76
L08-065	47	70.65	23.65	2.75
L08-067	22	26.75	4.75	1.31
L08-068	72	80	8	1.47
L08-069	82.6	87	4.4	3.44
L08-070	29	35.25	6.25	2.38
L08-070	46.4	58	11.6	1.52
L08-070	68.6	78.6	10	2.12
L08-071	11.5	20.2	8.7	2.18
L08-071	32.3	20.2	-12.1	-0.91
L08-072	39.55	49.2	9.65	2.12
L08-073	42.6	54	11.4	1.54
L08-073	60	68	8	2.60
L08-073	82	86.25	4.25	2.30
L08-074	0.25	16	15.75	1.66

Hole_ID	From	То	Interval (m)	TREO (%)
L08-074	24	28	4	1.38
L08-074	76	88	12	2.17
L08-075A	23	27	4	1.38
L08-076	35	39	4	1.07
L08-076	72.9	81.4	8.5	1.58
L08-077	44	61.25	17.25	1.52
L08-078	27	31.3	4.3	2.09
L08-078	37.1	42.5	5.4	2.10
L08-079	24	42.5	18.5	0.38
L08-079	35.4	74.6	39.2	1.50
L08-080	6.75	10.75	4	1.61
L08-080	35.8	48.15	12.35	2.29
L08-080	60.9	66.5	5.6	1.49
L08-080	69.7	76	6.3	1.19
L08-081	30.35	65.8	35.45	1.70
L08-082	35	53.75	18.75	1.41
L08-084	7.25	13.5	6.25	1.75
L08-084	26.6	48	21.4	1.94
L08-084	57	68	11	2.49
L08-085	17.7	28.6	10.9	1.95
L08-085	42.4	48	5.6	1.70
L08-085	61.15	87	25.85	1.49
L08-086	16.9	24.15	7.25	2.10
L08-086	41.8	50.25	8.45	1.51
L08-087	15	41	26	2.11
L08-087	75.2	81.2	6	1.32

Hole_ID	From	То	Interval (m)	TREO (%)
L08-088	15.4	31	15.6	1.69
L08-088	58	86.5	28.5	2.30
L08-090	24.4	39.5	15.1	1.35
L08-091	52.4	63.25	10.85	2.54
L08-091	81.4	87.65	6.25	2.18
L08-092	34	50	16	1.69
L08-092	67	74	7	1.76
L08-093	72	101	29	1.87
L08-095	5.7	14	8.3	1.37
L08-095	42	66	24	1.66
L08-095	74	84.7	10.7	1.51
L08-096	21.65	26.5	4.85	1.84
L08-096	46.8	55.4	8.6	1.51
L08-097	17.2	42.4	25.2	1.37
L08-097	70.15	80	9.85	2.18
L08-098	37.5	59	21.5	1.40
L08-098	65	72.95	7.95	1.60
L08-099	15	22.1	7.1	1.69
L08-099	58	64.4	6.4	2.44
L08-099	85	91.35	6.35	1.73
L08-100	16.3	22.1	5.8	1.66
L08-100	64.7	70.4	5.7	1.84
L08-101	70.7	84	13.3	2.54
L08-102	13.6	22	8.4	2.10
L08-103	8	23.8	15.8	1.33
L08-103	63	69.5	6.5	1.93

Hole_ID	From	То	Interval (m)	TREO (%)
L08-103	86	91.5	5.5	1.96
L08-104	15	28	13	1.57
L08-104	73	77.05	4.05	2.77
L08-105	6	14	8	3.04
L08-105	26	31.3	5.3	1.39
L08-105	39	43	4	1.46
L08-105	85	89.65	4.65	2.01
L08-105	94	100.1	6.1	2.01
L08-106	68	88.3	20.3	1.45
L08-107	5.8	11	5.2	2.55
L08-108	6.4	30	23.6	1.39
L08-108	70.5	83.35	12.85	1.68
L08-109	6	21	15	1.50
L08-109	27.2	33.65	6.45	1.79
L08-109	40	46	6	1.40
L08-109	93	97	4	1.48
L08-110	6	18	12	2.51
L08-111	9.15	15	5.85	2.66
L08-111	21	31	10	1.74
L08-111	87	91	4	1.24
L08-113	10	15.15	5.15	1.36
L08-113	42	58	16	1.46
L08-113	80.5	94	13.5	2.03
L08-114	5.9	17	11.1	1.70
L08-114	64.9	71	6.1	1.39
L08-114	81.6	88	6.4	1.32

Hole_ID	From	То	Interval (m)	TREO (%)
L08-115	76.1	94	17.9	1.82
L08-116	18	22	4	1.33
L08-117	48.8	87	38.2	1.59
L08-118	8	19	11	2.86
L08-118	30	68.4	38.4	1.99
L08-118	79	91.2	12.2	1.18
L08-125	9	27	18	1.64
L08-125	37	55.8	18.8	1.62
L08-125	89	93	4	1.28
L08-126	12	20	8	2.95
L08-126	36	42	6	1.21
L08-126	52	58	6	1.25
L08-126	86	92	6	2.65
L08-127	6	10	4	3.11
L08-127	22	89	67	1.84
L08-129	84	88	4	1.15
L08-132	73.6	80.2	6.6	1.54
L08-132	88	96.55	8.55	1.24
L08-134	60.75	69	8.25	2.05
L09-137	64	73.1	9.1	1.44
L09-137	89.15	95	5.85	2.87
L09-138	32.55	38	5.45	2.57
L09-138	46	65.4	19.4	2.01
L09-139	42.15	58	15.85	1.36
L09-139	80	84	4	2.28
L09-140	48.85	54.7	5.85	1.53

Hole_ID	From	То	Interval (m)	TREO (%)
L09-140	67	72.45	5.45	1.31
L09-141	77.4	91	13.6	1.54
L09-143	28	32	4	1.32
L09-144	21.3	34.55	13.25	3.10
L09-144	41	45	4	1.51
L09-145	5.3	41	35.7	1.35
L09-145	65	78.2	13.2	1.84
L09-146	8.84	21.7	12.86	1.57
L09-146	34.75	46.7	11.95	1.38
L09-146	78	89	11	1.85
L09-147	50.5	75	24.5	1.44
L09-148	49	56.5	7.5	1.57
L09-149	55	65	10	1.54
L09-150	71	90	19	1.34
L09-151	51.2	67.9	16.7	1.55
L09-151	86	90	4	1.18
L09-152	27	39	12	1.72
L09-152	43	56	13	1.97
L09-162	83	87	4	1.38
L09-163	3.1	9	5.9	1.51
L09-163	31.2	72	40.8	1.62
L09-164	3	12	9	1.21
L09-164	47.1	53	5.9	1.72
L09-164	69	97	28	1.70
L09-165	1.5	12	10.5	1.43
L09-165	32	45.6	13.6	1.66

Hole_ID	From	То	Interval (m)	TREO (%)
L09-165	62.95	83.15	20.2	1.41
L09-166	2.6	11	8.4	1.38
L09-166	37	55	18	1.56
L09-166	61	69.5	8.5	1.73
L09-167	47.6	57	9.4	1.64
L09-167	68	80.5	12.5	1.77
L09-168	65	96	31	1.68
L09-169	62.05	86.4	24.35	1.79
L09-171	39	43	4	1.26
L09-171	59.6	63.6	4	1.12
L09-172	7.87	13	5.13	1.25
L09-172	79	94.4	15.4	1.58
L09-174	90	94	4	1.12
L09-177	69.45	76.95	7.5	1.36
L09-177	84.05	90	5.95	1.36
L09-178	6.84	43	36.16	2.34
L09-178	69	75.25	6.25	1.42
L09-179	7	24.6	17.6	2.81
L09-179	31	39.05	8.05	1.35
L09-179	83.1	94.45	11.35	1.69
L09-180	7	43.95	36.95	2.11
L09-180	57	73	16	1.68
L09-181	12	83.7	71.7	1.87
L09-182	9	17	8	1.60
L09-182	26.35	53.2	26.85	2.36
L09-183	2.3	12.4	10.1	1.54

Hole_ID	From	То	Interval (m)	TREO (%)
L09-183	28	51	23	1.57
L09-184	6	13	7	1.58
L09-184	31	49.5	18.5	1.59
L09-184	79	83	4	1.09
L09-185	2.2	21	18.8	1.90
L09-185	44	52	8	1.51
L09-185	66	70	4	1.57
L09-185	90	95	5	1.66
L09-186	2.3	16	13.7	1.64
L09-186	39	45	6	2.17
L09-186	61	65	4	1.80
L09-186	74.2	96	21.8	1.64
L09-187	4	12	8	1.23
L09-187	34	50	16	1.22
L09-188	21	47.2	26.2	1.78
L09-189	3	8	5	1.48
L09-189	36	53.7	17.7	1.43
L09-189	60	64.9	4.9	1.61
L09-190	41.45	56.9	15.45	1.95
L09-190	62.6	68.2	5.6	1.46
L09-191	18	26	8	1.37
L09-191	30	34	4	1.24
L09-191	42	55.7	13.7	1.68
L09-191	68.5	72.9	4.4	3.39
L09-191	85	99	14	1.96
L09-192	20.5	25.55	5.05	1.38

Hole_ID	From	То	Interval (m)	TREO (%)
L09-192	31	37	6	1.62
L09-193	31.45	39.3	7.85	2.81
L09-194	20	26.6	6.6	1.54
L09-194	31.45	63	31.55	1.83
L09-195	16	20	4	1.18
L09-195	24	55.5	31.5	1.84
L09-195	93	97	4	1.14
L09-197	92	98	6	1.44
L09-198	40	44	4	1.13
L09-199	22.25	62.35	40.1	1.72
L09-199	66.5	81	14.5	1.75
L09-199	87	101	14	1.72
L09-200	11	15	4	1.17
L09-200	29	39	10	1.23
L09-200	43	47.85	4.85	1.40
L09-200	69.85	92	22.15	1.30
L09-201	38	61	23	1.37
L09-201	65	70.5	5.5	1.57
L09-202	46	53.5	7.5	1.30
L09-202	88	92	4	3.34
L09-203	63.2	78.5	15.3	1.43
L09-205	79	83	4	1.36
L09-206	67	101	34	1.50
L10-209	10	14	4	1.10
L10-209	28.16	62	33.84	1.50
L10-210	35	72	37	1.47

Hole_ID	From	То	Interval (m)	TREO (%)
L10-211	14.2	50	35.8	3.27
L10-212	14.05	45	30.95	5.14
L10-213	15	68.45	53.45	2.25
L10-214	10.85	39.7	28.85	1.39
L10-214	78.9	87.05	8.15	2.37
L10-215	22	58	36	1.62
L10-215	80.4	94	13.6	1.95
L10-216	40	46.5	6.5	1.52
L10-216	54	62.25	8.25	1.78
L10-216	80	94	14	1.72
L10-217	19	27	8	3.16
L10-217	35	52	17	1.52
L10-217	90	94	4	1.26
L10-218	22.75	28	5.25	1.50
L10-218	36	42	6	3.46
L10-218	46	52	6	2.17
L10-218	56.95	93	36.05	1.26
L10-219	27	52	25	1.93
L10-219	60.8	66	5.2	1.76
L10-219	70	74	4	1.21
L10-219	78.45	95.15	16.7	1.71
L10-220	25	100.05	75.05	1.77
L10-222	5	11	6	1.97
L10-222	15	19	4	2.42
L10-222	27.8	74	46.2	1.62
L10-222	88	96.15	8.15	1.69

Hole_ID	From	То	Interval (m)	TREO (%)
L10-223	3.7	51	47.3	1.58
L10-224	16	24	8	1.21
L10-224	30	43.6	13.6	1.60
L10-224	64.5	70	5.5	2.02
L10-224	76.55	93	16.45	2.60
L10-225	6.9	15	8.1	1.09
L10-225	19	38	19	1.14
L10-225	51	55	4	1.67
L10-225	67	94	27	2.06
L10-226	15	33	18	1.59
L10-226	43	55.9	12.9	1.33
L10-226	82.9	95	12.1	2.27
L10-228	9	43	34	1.36
L10-228	80.3	92.7	12.4	2.93
L10-237	74	87	13	1.43
L10-244	53	59	6	1.24
L10-244	69.4	73.6	4.2	1.51
L10-260	7	38.75	31.75	1.74
L10-260	50	54.6	4.6	1.49
L10-261	74.5	101	26.5	1.67
L10-262	4.85	32	27.15	1.77
L10-263	60.1	100.4	40.3	1.79
L10-264	20.7	54	33.3	1.57
L10-265	68	95.05	27.05	1.89
L10-266	5.5	78.8	73.3	1.45
L10-267	74	91.8	17.8	1.42

Hole_ID	From	То	Interval (m)	TREO (%)
L10-268	20	30	10	1.71
L10-268	53	93	40	1.78
L10-269	93	97	4	1.20
L10-270	38	49.2	11.2	1.58
L10-270	55.6	81	25.4	1.65
L10-271	78	96.65	18.65	2.14
L10-272	38.2	80.5	42.3	1.76
L10-274	34	70.7	36.7	1.88
L10-274	81.5	92.3	10.8	2.12
L10-275	50	61.1	11.1	1.87
L10-276	62.2	77	14.8	1.58
L10-276	83	93	10	1.45
L10-277	22	26	4	1.30
L10-277	51	70	19	1.35
L10-278	9	15	6	1.43
L10-279	76	105	29	1.58
L10-280	9	14.45	5.45	1.58
L10-280	75.4	93	17.6	1.53
L10-281	44	50	6	1.68
L10-281	78	102.5	24.5	1.41
L10-282	9.6	37	27.4	1.86
L10-282	78	94	16	2.17
L10-283	13.2	30	16.8	1.65
L10-283	38	62	24	1.52
L10-283	80	87.5	7.5	2.02
L10-283	97	102	5	2.11

Hole_ID	From	То	Interval (m)	TREO (%)
L10-284	14.9	23.2	8.3	2.66
L10-284	41.1	49.65	8.55	2.88
L10-284	81.3	90	8.7	1.73
L10-285	60	64	4	1.43
L10-286	10	31	21	1.56
L10-286	45.5	67	21.5	1.90
L10-287	68	91	23	1.45
L10-288	89.6	94	4.4	1.85
L10-289	32	38	6	1.36
L10-289	42	58	16	1.76
L10-289	71.75	75.8	4.05	2.06
L10-289	91.4	96.7	5.3	1.77
L10-290	13	17.35	4.35	1.24
L10-291	50.7	95	44.3	1.92
L10-292	69	93	24	1.37
L10-293	63	102	39	1.64
L10-294	64	93	29	1.59
L10-295	51	96.1	45.1	1.68
L10-296	26	31.2	5.2	1.20
L10-296	62.3	92.8	30.5	2.18
L10-297	51	77.6	26.6	1.67
L10-298	11	16.3	5.3	1.88
L10-298	50	63	13	1.15
L10-298	66.7	93	26.3	1.83
L10-299	8	12	4	1.13
L10-299	45	65	20	1.67

Hole_ID	From	То	Interval (m)	TREO (%)
L10-300	48.3	81.6	33.3	1.53
L10-301	53	61	8	1.55
L10-303	30.5	64	33.5	1.81
L10-303	78	96	18	1.74
L10-304	88	104	16	1.48
L10-305	57	102.5	45.5	1.48
L10-306	66	72	6	1.52
L10-308	93	97	4	1.80
L11-313	77.15	90	12.85	1.45
L11-314	79.6	88.8	9.2	1.21
L11-316	74	94	20	1.44
L11-318	83	93	10	2.38
L11-324	77	94.7	17.7	1.96
L11-326	72	82.5	10.5	1.32
L11-332	82	86.15	4.15	1.87
L11-336	36	52	16	1.36
L11-336	81	89	8	1.37
L11-341	50	56	6	1.39
L11-341	59.9	73.2	13.3	1.49
L11-341	82	87	5	1.48
L11-347	74	88	14	1.24
L11-374	11	21.3	10.3	1.21
L11-374	31	37	6	1.37
L11-374	46.6	52.1	5.5	1.44
L11-376	28.3	43	14.7	1.23
L11-376	82.7	92	9.3	2.69

Hole_ID	From	То	Interval (m)	TREO (%)
L11-378	14	36	22	1.24
L11-382	72.3	86.45	14.15	2.14
L11-384	62.75	81.7	18.95	1.62
L11-387	66	102	36	1.89
L11-389	54	84	30	1.84
L11-390	79.3	93	13.7	1.67
L11-391	65	91	26	1.62
L11-392	66	70.5	4.5	1.64
L11-396	50	55	5	1.46
L11-396	87	94	7	1.65
L11-398	45	55.1	10.1	1.32
L11-400	29	41	12	1.36
L11-400	52	58	6	1.71
L11-401	31.8	42.3	10.5	2.15
L11-401	54	58.5	4.5	1.16
L11-401	78	88	10	2.26
L11-402	37	43	6	1.24
L11-403	34.7	40.4	5.7	1.28
L11-403	46	52	6	1.42
L11-403	63	73	10	1.05
L11-403	82.6	91	8.4	1.62
L11-404	21	44.1	23.1	1.22
L11-404	69	75.8	6.8	1.77
L11-405	36	48	12	2.17
L11-405	54	71	17	1.88
L11-405	79.7	98	18.3	1.44

Hole_ID	From	То	Interval (m)	TREO (%)
L11-406	37	44	7	1.69
L11-406	49	61.9	12.9	1.55
L11-407	24	30	6	2.05
L11-407	34	73.9	39.9	1.71
L11-407	84	99	15	1.42
L11-408	21	39	18	1.63
L11-409	33	45.7	12.7	2.01
L11-409	70	85.9	15.9	1.33
L11-410	75	90	15	1.61
L11-411	32	48.9	16.9	1.40
L11-411	75	88.9	13.9	2.12
L11-412	87	95	8	1.74
L11-413	9.7	23	13.3	1.46
L11-413	29	33	4	1.43
L11-414	50	56	6	1.30
L11-414	83	90	7	1.34
L11-415	17.7	25	7.3	1.88
L11-415	80	86	6	1.06
L11-415	94	100	6	1.75
L11-416	41	47	6	1.51
L11-416	59	68.6	9.6	2.05
L11-417	10.3	16	5.7	1.25
L11-417	20	42	22	1.61
L11-417	66	70	4	1.81
L11-419	13.9	18	4.1	1.32
L11-419	60	64	4	1.86

Hole_ID	From	То	Interval (m)	TREO (%)
L11-421	12.8	34	21.2	1.48
L11-423	18	22	4	2.26
L11-423	28	38.5	10.5	1.61
L11-423	69	80.6	11.6	2.19
L11-424	21	25	4	1.60
L11-424	74	78	4	1.13
L11-424	88	99	11	1.35
L11-425	18	25.5	7.5	1.28
L11-425	69	91	22	1.30
L12-418	48	54	6	1.74
L12-420	42	59	17	1.55
L12-420	67	74.5	7.5	1.47
L12-422	22	27	5	1.17
L12-422	89	95	6	2.30
L12-427	32	38	6	1.76
L12-427	54.2	85.8	31.6	1.47
L12-429	28	36.45	8.45	1.52
L12-429	60.65	65	4.35	2.09
L12-430	13	17	4	1.46
L12-430	85	89	4	1.03
L12-431	25	41	16	1.23
L12-431	53	63	10	1.69
L12-432	18	22	4	1.18
L12-432	38	42	4	1.08
L12-432	62	66	4	1.47
L12-432	93	106	13	1.42

Hole_ID	From	То	Interval (m)	TREO (%)
L12-433	34	40	6	1.18
L12-433	50	56	6	2.04
L12-434	62	70	8	1.18
L12-434	74	78	4	1.27
L12-435	29	35	6	1.25
L12-435	61	70	9	2.36
L12-436	6	10	4	1.37
L12-436	54.35	59.3	4.95	1.36
L12-436	80.65	86.45	5.8	1.24
L12-436	89	93	4	1.46
L12-437	21	27	6	1.54
L12-437	31	35	4	1.32
L12-437	47	51.6	4.6	1.73
L12-438	17	22	5	1.07
L12-438	70	74.1	4.1	1.27
L12-439	18	24	6	1.49
L12-439	40.4	55.35	14.95	1.77
L12-440	44	48	4	1.34
L12-440	70	93	23	1.59
L12-441	16	22	6	1.33
L12-441	43	51.3	8.3	1.66
L12-442	70	95.8	25.8	1.61
L12-443	21	29	8	1.22
L12-443	48.3	60.2	11.9	1.59
L12-443	64.95	75	10.05	1.53
L12-444	19	24	5	1.55

Hole_ID	From	То	Interval (m)	TREO (%)
L12-444	70.8	81	10.2	1.95
L12-445	23	27	4	1.65
L12-445	47.4	54.4	7	1.53
L12-447	38	44	6	1.31
L12-447	65	72.8	7.8	1.84
L12-448	72	78	6	1.20
L12-449	17	21	4	1.08
L12-449	47	56.5	9.5	1.47
L12-450	79	83	4	1.63
L12-451	17	25	8	1.43
L12-451	38	44.6	6.6	1.51
L12-453	20	24	4	1.17
L12-453	37	45.8	8.8	1.30
L12-455	41	45	4	1.20
L12-455	68	75	7	1.59
L12-455	78.9	89	10.1	1.48
L12-457	34	45	11	1.43
L12-457	51	55.5	4.5	1.62
L12-459	24	28	4	1.26
L12-459	40	44	4	1.07
L12-464	28	32	4	1.73
L12-464	84	88	4	2.30
L13-519	23	32.8	9.8	3.48
L13-520	12.25	44	31.75	2.57
L13-521	16	46.6	30.6	2.83
L14-526	22	32	10	1.14

Hole_ID	From	То	Interval (m)	TREO (%)
L14-526	41.32	49	7.68	1.30
L14-526	66.16	73.8	7.64	1.61
L14-527	34.5	38.5	4	3.04
L14-531	29	33	4	1.18
L14-538	82	86	4	1.51