

Historical Drill Validation Study Confirms High Grade Zones at Monument Gold Project

HIGHLIGHTS

HISTORICAL DRILL DATA REVIEW AND VALIDATION COMPLETED

- Validation program over 16,000m of historical drilling completed at the Korong-Waihi 3.3Mt @
 1.4g/t Au (154koz contained gold) Mineral Resource Estimate at the Monument Gold Project, Laverton WA
- Previous drilling was completed at Monument by Carpentaria Exploration, Dominion, WMC Exploration, and Syndicated Metals (now Latitude 66 ASX:LAT)
- Re-validation of these legacy datasets has standardised results to consistent geological context and true widths (See JORC Table 1) and confirmed high grade, thick intercepts, supporting continuity across the Banded Iron Formation (BIF) lodes forming the Korong and Waihi deposits
- Pending assays from Verity's phase one resource upgrade RC infill drill program will be reported in true widths and in the context of these historical results

HIGH GRADE INTERCEPTS VALIDATED AND REPORTED TO JORC (2012) CODE INCLUDE:

Korong (139koz Au Resource):

- 6.7m @ 13.15 g/t Au (MRC036 from 95m)
- 5.90m @ 7.24 g/t (MRC003 from 79m)
- 2.90m @ 5.41 g/t (MRC028 from 112m)
- 3.00m @ 3.52 g/t (MRCD004 from 139m)
- 3.90m @ 3.16 g/t (MRC042 from 48m)
- 3.00m @ 3.09 g/t (MRC039 from 104m)
- 4.70m @ 3.15 g/t (KORC001 from 95m)
- 3.70m @ 3.07 g/t (KORC002 from 130m)
- 2.10m @ 6.58 g/t (MK042 from 263m)
- 3.30m @ 5.12 g/t (MK012 from 104m)
- 11.80m @ 1.85 g/t (MK034 from 30m)

Waihi (15koz Au Resource):

- 2.70m @ 5.71 g/t (WHRC005 from 62m)
- 2.10m @ 2.45 g/t (WHRC010 from 113m)
- 0.50m @ 10.82 g/t (MK033 from 91m)
- 4.20m @ 3.55 g/t (WASC03 from 29m)
- 4.9m @ 1.53 g/t (WAC06 from 56m)
- 2.80m @ 4.82 g/t (MK032 from 36m)

Verity Resources Limited (ASX: VRL, FSE: 48B0) (Verity or the Company) is pleased to announce that is has completed a comprehensive review and validation of historical drilling of the Korong-Waihi 3.3Mt @ 1.4g/t Au (154koz Au) Inferred Mineral Resource Estimate at the 100%-owned Monument Gold Project in the prolific Laverton Goldfields, Western Australia.

The study was undertaken over historic drilling data previously completed by several companies including Carpentaria Exploration, Dominion, WMC Exploration and various other smaller operators since the 1970's prior to its acquisition and further exploration completed by Syndicated Metals/DiscovEx (now Latitude 66 ASX:LAT) in 2016.

This work brings these legacy datasets - some collected prior to the adoption of the JORC Code (2012) - into a consistent reporting framework with intercepts recalculated and presented as true widths within a clearly defined geological context. The validation concludes an intensive compilation and audit phase recently announced by the Company and provides a robust foundation for the completed phase one and planned phase two resource upgrade and expansion drilling and mine planning studies.

Verity Director, Patrick Volpe commented,

"Our geological team has completed a rigorous validation of over 16,000m of historical drilling at Monument, drawing on over 50 years of successful exploration by Carpentaria, Dominion, WMC and others, now standardised to JORC 2012 true widths. This study is a significant milestone in our resource upgrade and expansion strategy because it prioritises the parts of the 154koz Korong–Waihi resource that can deliver the highest returns.

With the recent successful \$3 million raise, we are fully funded to execute. Phase-one RC infill drilling at Korong is complete with assays pending as we target a portion of the current 154koz Inferred resource to upgrade to Indicated. The opportunity is larger and we see multiple growth corridors along the 20km BIF trend with numerous expansion targets still to test. Validated high-grade, thick intercepts give us confidence that our methodical approach to resource upgrades and discovery are achievable from here."

Historical Data Validation

The purpose of the program was to review and standardise older drilling that had not previously been reported to JORC (2012) standard. All "low-confidence" intercepts were removed and the remaining intercepts are included and are now reported to JORC Code (2012) standards as true widths within the current geological model at Korong (See Table 1).

The validated results confirm strong mineralisation with high-grade and meaningful thicknesses that support continuity of the banded iron formation host and underpin the next phase of resource work. Notable examples at Korong include **6.70m at 13.15 g/t gold** in hole MRC036 and **5.90m at 7.24 g/t gold** in hole MRC003, together with a suite of consistent intercepts across the lode from both modern and legacy programs that met the inclusion threshold.

A JORC Code (2012) Table 1 is annexed to this release and sets out the sampling, survey and verification steps used.

Phase One Infill Drilling Complete

In parallel with the validation, the Company has completed the first phase of RC infill drilling at Korong on approximately 25m by 25m spacings, designed to upgrade a portion of the current Korong Inferred resource to Indicated confidence. Assays from this program are pending and will be released once received and verified against the validated dataset.

Follow-up programs will target extensions along strike and at depth and will incorporate additional twin holes to validate the historical drilling where applicable.

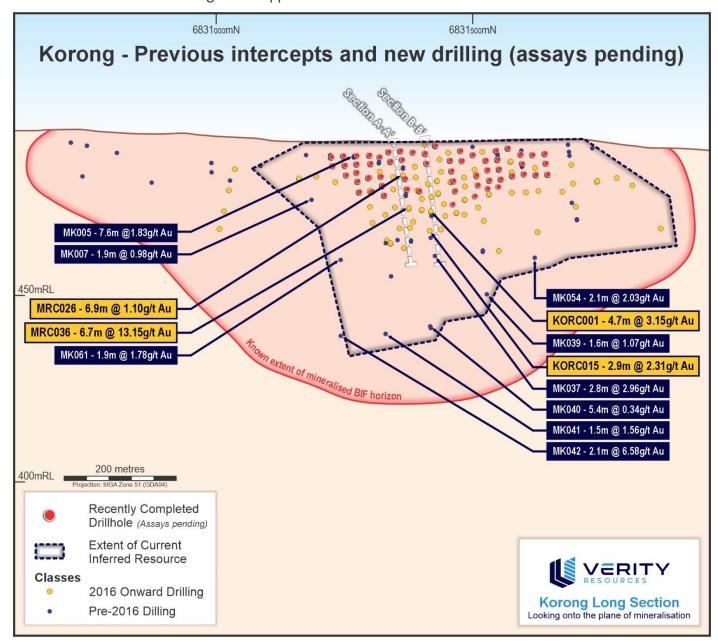


Figure 1. Long section view of recently completed drilling and validated historical intercepts looking from the hanging wall down onto the mineralised Banded Iron Formation (BIF) horizon (red outline). Outline of the current 154koz Au Inferred Resource is shown (black).

Representative Cross Sections

The following cross sections pass through the middle of the Korong and Waihi deposits and are representative of the mineralisation style.

Korong

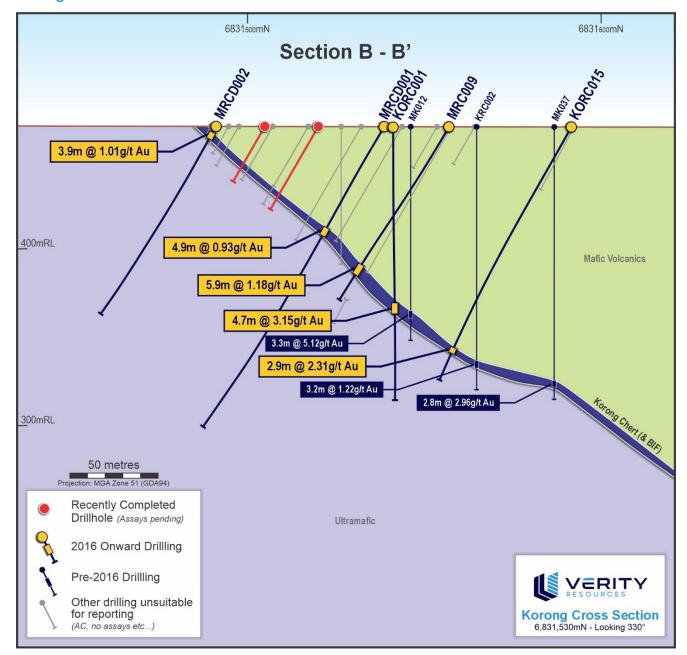


Figure 2. Representative cross section through the core of the Korong mineralisation showing the BIF main mineralised lode.

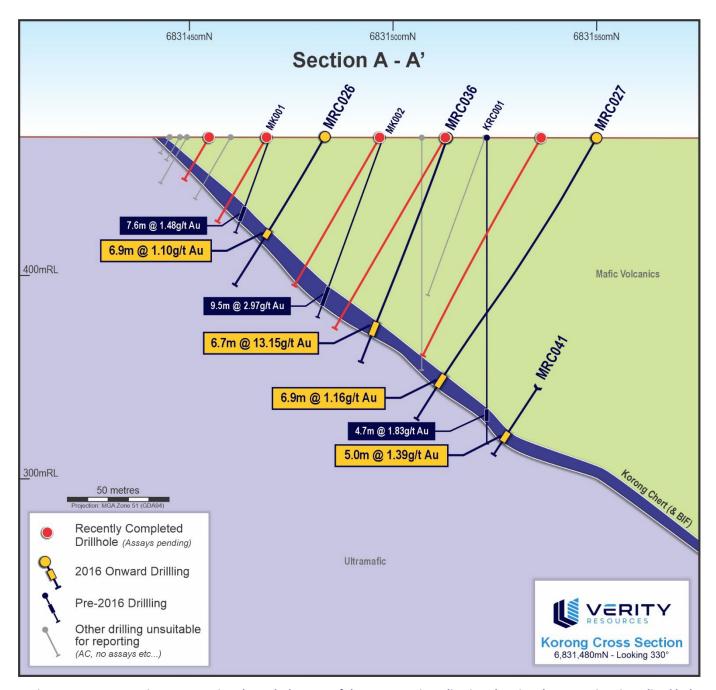


Figure 3. Representative cross section through the core of the Korong mineralisation showing the BIF main mineralised lode.

Waihi

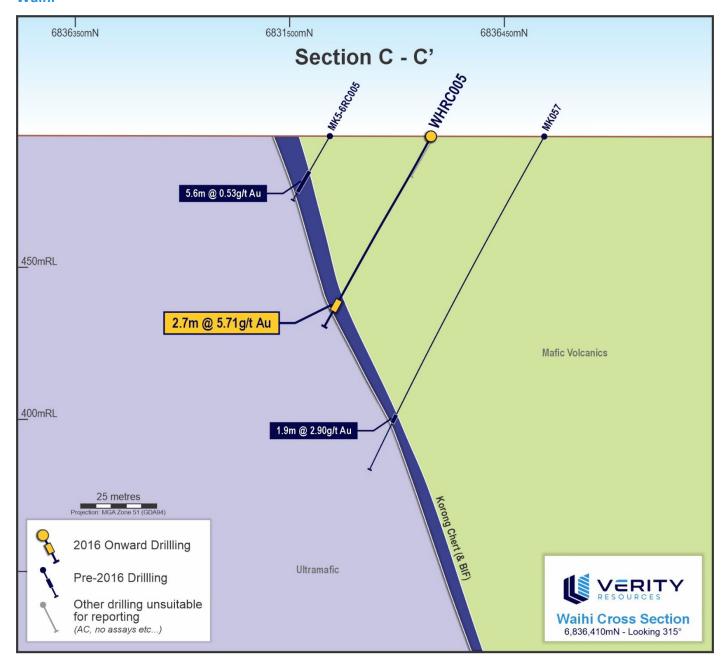


Figure 4. Representative cross section through the core of the Waihi mineralisation showing the BIF main mineralised lode.

Monument Gold Project

The Monument Gold Project is in WA's world-class Laverton Gold District and comprises ~195km² of tenure located approximately 40km west of Laverton, adjacent and along strike of Genesis Minerals' (ASX: GMD) 3.3Moz Au Mt Morgan Project. A Mineral Resource Estimate of 154koz of gold (see ASX announcement on 2 August 2021) was undertaken on the Korong and Waihi deposits, which occur along ~20km of relatively untested banded iron formation, interpreted to be the same unit that hosts the 1.4Moz Westralia gold deposit, located immediately southeast of Monument.

To date, only ~10% of the potential 20km strike has been drilled with detailed air core and reverse circulation drilling. There is currently additional priority targets identified along the banded iron formations horizon, that

forms part of a 20km potential structural strike length identified that could also potentially host multiple other syenite-intrusion style targets (in total approximately 60 targets remaining to be tested).

Figure 5. Monument Gold Project location in the Laverton Gold District amongst major gold deposits.

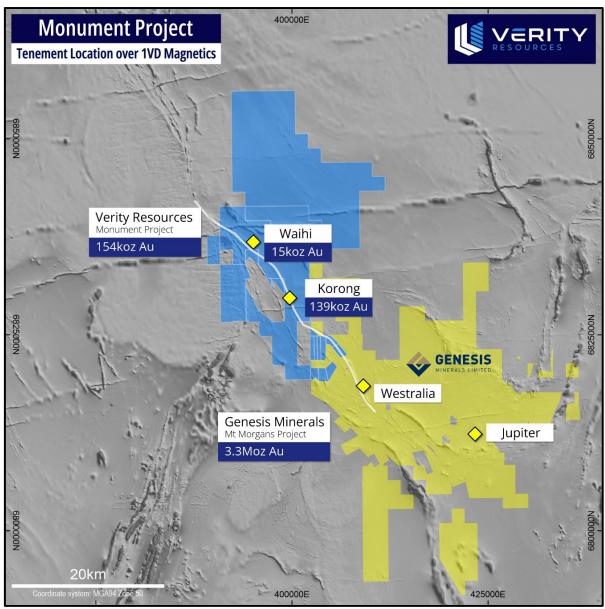


Figure 6. Monument Gold Project location adjacent to Genesis Minerals' 3.3Moz Mt Morgan Project

This announcement has been authorised for release by the Board of Verity Resources Limited.

For further information, please contact:

Verity Resources Limited

info@verityresources.com.au

About Verity Resources

Verity Resources owns 100% of the Monument Gold project located near Laverton in Western Australia. This project currently has a JORC-compliant (2012) Inferred resource of 3.257 Mt @ 1.4 g/t for 154,000 ounces Au. (inferred resources calculated by CSA Global in 2021 to JORC 2012 compliance using a 0.5 g/t cut-off grade; see 2 August 2021 ASX announcement "Mineral Resources Estimate declared for Monument Gold Project "for further information).

Verity Resources also holds a supply critical metals portfolio via a joint venture that includes rare earth elements, lithium, gold, base and precious metals in Brazil, including licences in the "Lithium Valley" and Poços de Caldas in the state of Minas Gerais, globally known as prolific lithium and rare earth elements districts respectively. The Company also owns 70% of the Pimenta Project, a potential large-scale REE project in eastern Minas Gerais.

Verity Resources also holds large base and precious metals projects in the Limpopo Mobile Belt in Botswana, a district known for hosting major nickel and copper-producing operations. The Company's Botswana portfolio contains three flagship projects where high-grade Cu-Ag (Airstrip and Dibete) and a Maiden JORC Inferred Resource (Maibele North) have been discovered. Maibele North currently hosts a JORC (2012) inferred resource of 2.4Mt @ 0.72% Ni and 0.21% Cu + PGE's + Co + Au and is located within 50km of the Selebi-Phikwe mine recently acquired by NASDAQ-listed NexMetals Mining Corp. (NASDAQ:NEXML).

Competent Persons Statement (Monument Gold Project, Western Australia)

The information in this report that relates to Exploration Targets and Exploration Results is based on recent and historical exploration information compiled by Mr Michael Jackson, who is a Competent Person and a Member of the Australian Institute of Geoscientists. Mr Jackson is a consultant to Verity Resources Limited. Mr Jackson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for the reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Jackson consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Disclaimer

In relying on the above mentioned ASX announcement and pursuant to ASX Listing Rule 5.23.2, the Company confirms that it is not aware of any new information or data that materially affects the information included in the above announcement. No material exploration data or results are included in this document that have not previously been released publicly. The source of all data or results have been referenced.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning the Company's mineral properties, planned exploration program(s) and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may," "potential," "should," and similar expressions are forward looking statements. All such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, which could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Our audience is cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

Monument Gold Project, Western Australia, Resource Information

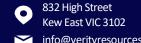
Korong Resource							
Deposit	Tonnes	Grade (g/t)	Au (Oz)				
Korong	3,034,000	1.4	139,000				
Waihi	223,000	2.1	15,000				
Total	3,257,000	1.4	154,000				

Table 1: Inferred Resource was calculated at Korong and Waihi by CSA Global Pty Ltd in 2021 (see Table 2) using a 0.5g/t cut-off grade. See ASX announcement on 2 August 2021 "Mineral Resource Estimate Declared for Monument Gold Project".

Reference to Previous Announcements

The information in this announcement that relates to exploration results is extracted from the following Company announcements released to the ASX:

- ASX:VRL 15 July 2025 "Resource Upgrade and Expansion Drill Campaign to Commence Amended"
- ASX:VRL 19 December 2022 "Broad, High-Grade Gold Intersected at Monument Gold Project"
- ASX:VRL 2 August 2021 "Mineral Resource Estimate Declared For Monument Gold Project"
- ASX:VRL, 14 April 2021, "Drilling Extends Shallow, BIF-hosted Gold Mineralisation at Monument Gold Project"
- ASX:VRL, 17 March 2021, "RC Drilling Confirms BIF-hosted Gold Mineralisation at Monument Gold Project"
- ASX:LAT (Formerly Syndicated Metals Limited), 7 June 2018, "Syndicated on Track For Maiden Gold Resource In WA As Strong Assay Results Confirm Potential of Monument Project"
- ASX:LAT (Formerly Syndicated Metals Limited), 28 November 2016, "Strong Gold Mineralisation Returned From Maiden Drilling Program At Monument Project, WA"



JORC Code, 2012 Edition – Table 1

Appendix A – JORC CODE, 2012 Edition Section 1 – Sampling Techniques and Data

Section 1 – Sampl	ection 1 – Sampling Techniques and Data							
Criteria	JORC Code explanation	Commentary						
Sampling techniques	 Nature & quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity & the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	RC samples were split into roughly 3kg subsamples using a rig-mounted cone or riffle splitter and collected into calico bags over 1m intervals. The residual bulk samples are placed in lines of piles on the ground. Core samples are selected visually based on observations of alteration and mineralisation and sampled to contacts or metre intervals as appropriate. Once samples are marked the core is cut in half longitudinally with one half taken for assay and the other half returned to the core tray. Some old the older generation diamond core may have been sampled by ¼ core which limits the sample support and therefore representivity of such samples and this has been reflected in their classification as validation Class B for consideration of their input into any future mineral resource estimates.						
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) & details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented & if so, by what method, etc.). If no site visits have been undertaken indicate why this is the case.	Reverse Circulation (RC) RC drilling from 1981 onward was undertaken using 5½ to 5¾ inch face sampling bits. Earlier RC drilling up to 1980 used a crossover sampling bit. Diamond Drilling Holes recorded as diamond holes were drilled with HQ and NQ diameter drill core. The MK037-65 series drillholes involved an RC precollar drilled and sampled in the same way as the standalone RC drillholes. Some diamond core was reportedly oriented by the impact pencil method however no resultant data remains in a digital format.						
Drill sample recovery	 Method of recording & assessing core & chip sample recoveries & results assessed. 	KORC001-KORC021 For the Verity Resources 2021 (Then called SI6) drillholes continuous visual monitoring and						

	Measures taken to maximise sample recovery & ensure representative nature of the samples. Whether a relationship exists between sample recovery & grade & whether sample bias may have occurred due to preferential loss/gain of fine/coarse material	assessment of sample recoveries was undertaken by suitably qualified field staff (contract geologist and senior field assistant). Where low recoveries or wet samples were identified these were recorded in the field sample data. To aid in achieving high recoveries and maintaining a dry sample a support truck mounted air booster was used when necessary. KRC001-KRC009 No recovery data is available MK001-MK065, MK2, MK5 and WA RC series For the Carpenteria Exploration Pty Ltd and WMC drilling, RC drilling recoveries were monitored visually by means approximating bag weight to theoretical weight followed by checking sample loss through outside return and sampling equipment. Sample recoveries were recorded on drilling logs. "Wet" samples were recorded as having lower quality sample recovery. Core Recovery was recorded on Drilling logs. Core recovery was generally >98% except were fractured ground was recorded on drilling logs. MRC001-MRC049 and precollars of the MRCD001-007 series For 2016 & 2018 Syndicated Metals drilling, the cone split original and duplicate calico samples and the reject green bag samples were weighed to test for biases and sample recoveries. The majority of the check work was undertaken through the main ore zones. Diamond Drillholes For all drill core intervals of sample loss were recorded as such in the geological logging and reflected in the assignment of sample intervals. Relationship between recovery and Grade All samples in mineralised zones are recorded as good recovery and as such no relationship between grade and recovery is apparent.
Logging	 Whether core & chip samples have been geologically & geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies & metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length & percentage of the relevant intersections logged 	All RC and diamond drillholes have been visually logged for primary rock type, regolith, alteration and veining across their entire length. The major generation of mineralisation is tightly constrained to a main BIF horizon and a thinner horizon stratigraphically above it. Logging adequately captures the position of these target lithologies. All drilling of all vintages have the original drill logs available, however only the MRCD00x series drillholes have core photographs available.
Sub-sampling techniques & sample	If core, whether cut or sawn & whether quarter, half or all core taken.	Subsampling Diamond drill core was sawn and half core taken in most cases (limited quarter core samples were used).

preparation

- If non-core, whether riffled, tube sampled, rotary split, etc.& whether sampled wet or dry.
- For all sample types, the nature, quality & appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

RC samples were split with an in-line cone or riffle splitter directly off the drill rig.

These industry-standard splitting techniques are appropriate for the gold mineralisation under consideration.

QAQC for pre-2016 drilling

All 2016 or later drilling has the original QAQC data digitally available.

Earlier drill campaigns have only sporadic mentions of sub sampling techniques and field duplicate/second-half sampling employed, but the MK001-MK065, MK2-..., MK5-... and WA... series drilling of Carpentaria Exploration and WMC Exploration required laboratories to insert certified standards, blanks, and check replicates as part of their own internal procedures, which were industry best practice at the time.

QAQC for MRC series holes

Quality Control (QC) procedures involved the use of reference material - with blanks and field sample duplicates.

Field duplicates were submitted to the laboratory at a rate of 1:50. The duplicates were collected using a second chute on the cone splitter and collected at the same time as the original sample.

QAQC for KORCxxx and WHRCxxx series holes:

All RC percussion sample material was passed through a rig-mounted cyclone with a cone splitter attached to the base and collected at 1m intervals into prenumbered calico bags.

At the completion of each 6m drill rod the cyclone and cone splitter were cleaned to avoid contamination.

Duplicate Quality Control (QC) samples were taken every 60 samples as an identical split in conjunction with the corresponding original sample.

Appropriateness of sample sizes and grain size

These industry-standard sample sizes are considered appropriate to the grain size of the material being sampled.

Quality of assay data & laboratory tests

- The nature, quality & appropriateness of the assaying & laboratory procedures used & whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make & model, reading times, calibrations factors applied & their derivation, etc.
- Nature of quality control procedures adopted (e.g. standards, blanks,

All 2016 drilling or later is assayed by fire assay with a 30g or larger charge and an AAS finish which is appropriate for this style of gold mineralisaiton. Some of the earlier generations of drilling were assayed with an aqua regia digest, which is considered a near total digest for most styles of gold mineralisation including that of this project.

No geophysical tools were used.

Laboratory QAQC for pre-2016 drilling

All 2016 or later drilling has the original QAQC data digitally available. Earlier drill campaigns have only sporadic mentions of sub sampling techniques and

	duplicates, external laboratory checks) & whether acceptable levels of accuracy (i.e. lack of bias) & precision have been established.	field duplicate/second-half sampling employed, but the MK001-MK065, MK2, MK5 and WA series drilling of Carpentaria Exploration and WMC Exploration required laboratories to insert certified standards, blanks, and check replicates as part of their own internal procedures, which were industry best practice at the time. Laboratory QAQC for MRC series holes Quality Control (QC) procedures involved the use of reference material - with blanks and field sample duplicates. For the analysis of RC and Percussion samples the Quality Control (QC) procedures involved the use of laboratory duplicates and Standards to determine accuracy and precision. The Standards used were analysed at a rate of 1 per 25 samples. Laboratory Duplicates were analysed at a rate of 1 in 10 generally with a repeat bias toward ore grade (>1.0g/t Au) material Laboratory QAQC for KORCxxx and WHRCxxx series holes: Certified reference materials obtained from an external, independent supplier were inserted every 60 samples.
Verification of sampling & assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical & electronic) protocols. Discuss any adjustment to assay data. 	The exercise to which this table 1 relates was a verification of mostly previously released exploration results. Having been completed by a consultancy and competent person not involved in the original reporting, this review can be considered an independent verification. The drilling campaign just completed and the subject of this release involves twinning of several of the drillholes mentioned in this release. Assays are pending. Primary assay certificates and digital field files are available for 2016 drilling and later. All data is managed digitally by a dedicated geoscience data management consultancy. No assay data is adjusted from the original certified values.
Location of data points	 Accuracy & quality of surveys used to locate drill holes (collar & down-hole surveys), trenches, mine workings & other locations used in Mineral Resource estimation. Specification of the grid system used. Quality & adequacy of topographic control 	Given the technology available at the time drilling from 1979 to 2003 has a degree of imprecision in both collar and downhole surveys. The resultant drill intercept positions are approximate, but accuracy is sufficient for the purposes for which it is employed. 2016 drilling and later is located with a hand-held GPS and recorded in the MGA94 Zone 51 UTM coordinate system. Downhole surveys are digitally recorded with a driller operated north-seeking gyroscopic survey tool. Regional government DEM datasets provide adequate topographic control in this flat terrain.

Data spacing & distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing & distribution is sufficient to establish the degree of geological & grade continuity appropriate for the Mineral Resource & Ore Reserve estimation procedure(s)&classifications applied. Whether sample compositing has been applied. 	Drilling to date has been at various grid spacings in a multitude of different drill campaigns of various data quality and suitability for future resource estimates resulting in a very sporadic spacing. Nominally, Korong and Waihi might be considered to be drilled out at 50m x 50m spacing, but very inconsistently. The drill program that is the subject of this release will attain a 25 x 25m intercept spacing on the target mineralised structures. It is expected that a 25m x 25m drill spacing will achieve an indicated resource, subject to final assessment as part of the MRE process of course. Samples have not been composited from the raw samples and assays however composite grades are reported in this release across the geological context of a single intercept (see data aggregation methods).
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures & the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation & the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed & reported if material 	The geometry of the target structure, a BIF horizon, is very well constrained by geological logging. That horizon dips moderately at Korong and drillholes are able to intersect the horizon at near perpendicular angles. That horizon dips moderately to steeply at Waihi and drillholes are able to intersect the horizon at high angles. The drill intercept angle does not introduce a sampling bias.
Sample security	The measures taken to ensure sample security the different materials.	Given the samples of concern range in time from 1979 to 2021 it is difficult to make assertions about sample security measures. No issues are highlighted in more recent reporting of these intercepts in previous JORC 2012 Table 1s.
Audits or reviews	The results of any audits or reviews of sampling techniques & data.	This re-release of many previously reported intercepts and careful consideration of data quality and historical drilling, sampling and assaying procedures can be considered a review in that context. This review compared Class A (fully validated) drill intercepts against those of Class B (good, but less certain data). Visual comparison in the geological context showed no issues or inconsistencies with the older, less well documented data. A statistical comparison of individual sample assays via a Q-Q plot did imply a broader spread of grades in the older data through a trendline that was not 1:1. That Q-Q plot implied that the older data tended to under report lower grades (<1g/t) and overreport higher grades (>1) assuming the more modern data as a baseline. A similar Q-Q plot of true-width-gram-metres of the Class A aggregated drill intercepts versus Class B aggregated intercepts significantly mitigated this data disparity.

The conclusion of this review is that Class B intercepts lack the precession that one would generally expect of data informing an indicated resource, but that imprecision does not affect the ability of that data to verify geological continuity or infer grade continuity and is therefore valid to inform an inferred resource It is planned that future resource drilling will be designed to supersede Class B drill data currently in
use.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 AC reported has been undertaken on tenement E39/1846, E39/2139 & E39/2035 which are located approximately 40km northwest of Laverton, in the Eastern Goldfields Region, Western Australia. Soil sampling was undertaken on P39/6051, P39/6052, P39/6053 & P39/5837 which are located approximately 40km northwest of Laverton, in the Eastern Goldfields Region, Western Australia. The tenements are held by
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Monument Mining Pty Ltd, a wholly owned subsidiary of Verity Resources Ltd. No historic drilling by other parties has been reported.
Geology	Deposit type, geological setting and style of mineralisation.	The deposit style being targeted is Archaean, shear-hosted gold deposits. Gold mineralisation principally occurs in sheeted quartz stockwork veins derived from open space filling (brittle fracturing) of sheared metamorphic rocks altered by varying quantities of silica, pyrite, pyrrhotite, arsenopyrite, sphalerite, galena and chalcopyrite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Drill hole location, depth and directional information collected by Verity is included in the report.

Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Drill hole intercepts are reported using a 0.1g/t Au cut-off grade with no internal dilution. Intercepts are reported as downhole lengths using length weighted averages. No top-cut has been applied to the reported intercepts. Anomalous soil sample results are reported using a 5ppb Au lower cut-off.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Refer "Orientation of data in relation to geological structure" in Section 1. True width of mineralisation is not known at this stage.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	A location plan of each of the prospects showing the drill collars is provided in the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The report is considered balanced with the information provided. The report shows drill collars for all holes completed.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating	No testwork has been undertaken in relation to metallurgical and geotechnical studies.

	substances.	
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Based on the encouraging results, follow-up AC and RC drilling is planned for 2025. Assessment of regional targets is ongoing.



Appendix A – Drill Hole Information

List of drill holes validly testing the Korong and Waihi main lodes.

HoleID	Hole Type	Company	DrillDate	CollDip	CollBrg	ЕОН	Easting MGA94Z51	Northing MGA94Z51	RL
KORC001	RC	SI6	17/01/2021	-89	3	150	398787	6831543	464
KORC002	RC	SI6	18/01/2021	-90	0	144	398877	6831482	463
KORC003	RC	SI6	19/01/2021	-61	243	144	398834	6831602	466
KORC004	RC	SI6	19/01/2021	-60	240	138	398819	6831624	467
KORC005	RC	SI6	20/01/2021	-61	247	174	398947	6831500	461
KORC006	RC	SI6	4/02/2021	-60	245	120	398625	6831940	462
KORC007	RC	SI6	4/02/2021	-60	243	126	398614	6831899	463
KORC008	RC	SI6	5/02/2021	-60	241	138	398635	6831866	464
KORC008	RC	SI6	5/02/2021	-60	241	138	398635	6831866	464
KORC009	RC	SI6	5/02/2021	-60	237	102	398689	6831810	466
KORC010	RC	SI6	5/02/2021	-61	243	108	398706	6831762	467
KORC011	RC	SI6	6/02/2021	-61	238	114	398731	6831715	469
KORC012	RC	SI6	6/02/2021	-61	243	115	398754	6831670	471
KORC013	RC	SI6	6/02/2021	-61	241	126	398814	6831642	468
KORC014	RC	SI6	7/02/2021	-61	239	174	398875	6831743	463
KORC015	RC	SI6	8/02/2021	-60	243	156	398878	6831582	464
KORC016	RC	SI6	8/02/2021	-61	245	138	398874	6831541	464
KORC017	RC	SI6	9/02/2021	-61	243	144	398699	6832039	459
KORC018	RC	SI6	9/02/2021	-61	240	78	398873	6831281	458
KORC019	RC	SI6	9/02/2021	-61	238	78	398857	6831316	459
KORC020	RC	SI6	10/02/2021	-61	242	72	398855	6831357	460
KORC021	RC	SI6	10/02/2021	-89	63	72	398814	6831417	461
KRC001	RC	Cedardale	28/11/2003	-90	0	150	398853	6831529	467
KRC002	RC	Cedardale	28/11/2003	-90	0	148	398830	6831564	468
KRC003	RC	Cedardale	28/11/2003	-90	0	150	398863	6831502	467
KRC004	RC	Cedardale	29/11/2003	-60	240	118	398709	6831841	469
MK001	RC	CarpExpl	4/06/1979	-70	240	50	398763	6831471	468
MK002	RC	CarpExpl	4/06/1979	-70	240	94	398810	6831501	468
MK003	RC	CarpExpl	2/06/1979	-70	240	50	398777	6831421	467
MK004	RC	CarpExpl	3/06/1979	-70	240	80	398819	6831448	467
MK005	RC	CarpExpl	30/05/1979	-70	240	37	398786	6831367	466
MK007	RC	CarpExpl	5/06/1979	-70	240	96	398897	6831321	464
MK012	DD	CarpExpl	15/12/1979	-90	0	120.3	398795	6831550	469
MK013	DD	CarpExpl	23/01/1980	-90	0	179	398876	6831480	466
MK019	RC	CarpExpl	9/01/1980	-60	255	43	398946	6831106	463
MK021	RC	CarpExpl	9/01/1980	-60	255	56	398949	6831149	462
MK030	RC	CarpExpl	18/01/1980	-60	220	50	394616	6836448	495
MK032	RC	CarpExpl	21/01/1980	-60	220	62	394578	6836481	495
MK033	DD	CarpExpl	21/01/1980	-70	220	110.6	394600	6836505	495
MK034	RC	CarpExpl	30/01/1980	-60	237	56	398667	6831706	472
MK037	DD	CarpExpl	26/01/1980	-90	0	153	398866	6831589	468

HoleID	Hole Type	Company	DrillDate	CollDip	CollBrg	ЕОН	Easting MGA94Z51	Northing MGA94Z51	RL
MK038	DD	CarpExpl	27/01/1980	-90	0	143.6	398822	6831681	470
MK039	DD	CarpExpl	10/02/1980	-90	0	193	398887	6831719	467
MK040	DD	CarpExpl	12/02/1980	-90	0	260	398979	6831605	465
MK041	DD	CarpExpl	16/01/1981	-90	0	275	399020	6831513	464
MK042	DD	CarpExpl	30/01/1981	-90	0	319.9	399054	6831416	463
MK049	RC	CarpExpl	27/06/1980	-65	255	93	399047	6830849	465
MK050	RC	CarpExpl	30/06/1980	-65	255	81	399008	6830992	464
MK054	DD	CarpExpl	12/02/1981	-90	0	193	398783	6831778	469
MK055	DD	CarpExpl	27/02/1981	-60	221	112	394393	6836686	500
MK056	DD	CarpExpl	28/03/1981	-60	221	130	394650	6836486	494
MK057	DD	CarpExpl	8/04/1981	-60	221	124	394690	6836457	493
MK061	DD	CarpExpl	25/05/1981	-75	239	205.5	398977	6831427	464
MK063	DD	CarpExpl	11/06/1981	-70	239	193	398723	6831859	468
MK065	DD	CarpExpl	10/06/1985	-90	0	187.1	398933	6831518	466
MK2-3RC1	RC	CarpExpl	18/05/1986	-60	240	27	398925	6831100	463
MK2-3RC5	RC	CarpExpl	18/05/1986	-60	235	33	398977	6830906	465
MK2-3RC6	RC	CarpExpl	19/05/1986	-60	240	27	398985	6830839	466
MK2-3RC7	RC	CarpExpl	19/05/1986	-60	240	33	398990	6830804	466
MK5-6RC002	RC	CarpExpl	16/05/1986	-60	222	26	394749	6836267	490
MK5-6RC005	RC	CarpExpl	16/05/1986	-60	221	25	394640	6836407	494
MK5-6RC006	RC	CarpExpl	16/05/1986	-60	221	26	394600	6836435	494
MK5-6RC007	RC	CarpExpl	17/05/1986	-60	218	27	394566	6836471	495
MK5-6RC008	RC	CarpExpl	17/05/1986	-60	218	33	394531	6836531	496
MK5-6RC009	RC	CarpExpl	17/05/1986	-60	222	27	394476	6836549	496
MK5-6RC010	RC	CarpExpl	17/05/1986	-60	218	27	394437	6836582	497
MK5-6RC011	RC	CarpExpl	17/05/1986	-60	220	27	394401	6836612	498
MK5-6RC012	RC	CarpExpl	17/05/1986	-60	220	34	394360	6836647	499
MRC001	RC	SMD	29/10/2016	-60	240	60	398757	6831498	469
MRC002	RC	SMD	29/10/2015	-61	241	109	398779	6831511	469
MRC003	RC	SMD	31/10/2016	-60	240	136	398807	6831528	468
MRC004	RC	SMD	31/10/2016	-60	240	127	398822	6831541	468
MRC005	RC	SMD	30/10/2016	-60	240	139	398846	6831554	468
MRC006	RC	SMD	1/11/2016	-60	240	49	398721	6831538	470
MRC007	RC	SMD	1/11/2016	-60	240	67	398746	6831554	470
MRC008	RC	SMD	2/11/2016	-60	240	91	398772	6831557	470
MRC009	RC	SMD	2/11/2016	-60	240	116	398810	6831566	469
MRC010	RC	SMD	3/11/2016	-60	240	133	398812	6831593	469
MRC011	RC	SMD	3/11/2016	-59	242	37	398701	6831548	470
MRC012	RC	SMD	5/11/2016	-60	237	91	398759	6831586	470
MRC013	RC	SMD	5/11/2015	-61	243	91	398739	6831604	471
MRC014	RC	SMD	5/11/2016	-60	288	103	398759	6831617	471
MRC015	RC	SMD	6/11/2016	-61	242	115	398784	6831627	470
MRC016	RC	SMD	7/11/2016	-60	240	79	398714	6831617	471

HoleID	Hole Type	Company	DrillDate	CollDip	CollBrg	ЕОН	Easting MGA94Z51	Northing MGA94Z51	RL
MRC017	RC	SMD	7/11/2016	-61	244	31	398672	6831613	472
MRC018	RC	SMD	8/11/2016	-60	245	49	398670	6831678	472
MRC019	RC	SMD	8/11/2016	-61	241	67	398691	6831691	472
MRC020	RC	SMD	9/11/2016	-60	240	61	398664	6831733	471
MRC021	RC	SMD	9/11/2016	-60	240	49	398624	6831799	470
MRC022	RC	SMD	9/11/2016	-60	240	79	398666	6831823	469
MRC023	RC	SMD	10/11/2016	-60	240	103	398712	6831853	469
MRC024	RC	SMD	10/11/2016	-61	248	121	398788	6831654	470
MRC025	RC	SMD	1/11/2016	-71	241	97	398783	6831562	469
MRC026	RC	SMD	13/11/2016	-61	240	85	398787	6831484	468
MRC027	RC	SMD	13/11/2016	-60	240	163	398899	6831554	467
MRC028	RC	SMD	14/11/2016	-61	242	130	398884	6831487	466
MRC029	RC	SMD	15/11/2016	-61	242	61	398799	6831434	467
MRC036	RC	SMD	20/04/2018	-71	240	118	398836	6831519	468
MRC037	RC	SMD	16/04/2018	-60	244	73	398798	6831464	467
MRC038	RC	SMD	16/04/2018	-60	241	100	398826	6831480	467
MRC039	RC	SMD	17/04/2018	-60	240	124	398863	6831503	467
MRC040	RC	SMD	18/04/2018	-60	241	156	398909	6831531	466
MRC041	RC	SMD	18/04/2018	-60	239	181	398951	6831554	465
MRC042	RC	SMD	20/04/2018	-61	241	64	398819	6831420	466
MRC043	RC	SMD	21/04/2018	-60	240	88	398849	6831435	466
MRC044	RC	SMD	21/04/2018	-60	238	112	398881	6831455	466
MRC045	RC	SMD	22/04/2018	-60	235	142	398912	6831474	466
MRC046	RC	SMD	23/04/2018	-60	275	46	398922	6831147	463
MRC047	RC	SMD	23/04/2018	-60	272	76	398973	6831145	462
MRC048	RC	SMD	23/04/2018	-60	272	118	399024	6831147	462
MRC049	RC	SMD	23/04/2018	-60	270	160	399073	6831146	462
MRCD001	DD	SMD	25/10/2016	-59	239	345.6	398783	6831541	469
MRCD002	RC	SMD	25/10/2016	-61	241	125	398701	6831492	469
MRCD003	RC	SMD	26/10/2016	-60	240	159	398730	6831628	471
MRCD004	DD	SMD	31/10/2016	-61	252	384.71	398873	6831599	468
MRCD005	DD	SMD	12/11/2016	-60	235	318.3	398721	6831743	471
MRCD006	DD	SMD	23/11/2016	-60	242	145.88	398823	6831685	470
MRCD007	DD	SMD	18/11/2016	-58	252	378.4	398809	6831794	469
WAC02	RC	WMC	1/03/1991	-60	221	50	394637	6836454	494
WAC03	RC	WMC	1/03/1991	-60	221	60	394672	6836424	493
WAC04	RC	WMC	1/03/1991	-60	221	54	394698	6836409	493
WAC06	RC	WMC	1/03/1991	-60	221	64	394718	6836357	492
WANC01	RC	WMC	1/06/1991	-60	221	54	394443	6836634	498
WANC02	RC	WMC	15/06/1991	-60	221	57	394423	6836644	499
WANC03	RC	WMC	15/06/1991	-60	221	57	394408	6836659	499
WANC04	RC	WMC	15/06/1991	-60	221	54	394392	6836669	499
WANC05	RC	WMC	16/06/1991	-60	221	54	394377	6836684	500

HoleID	Hole Type	Company	DrillDate	CollDip	CollBrg	ЕОН	Easting MGA94Z51	Northing MGA94Z51	RL
WANC06	RC	WMC	17/06/1991	-60	221	69	394362	6836699	500
WASC01	RC	WMC	11/06/1991	-60	221	73	394862	6836234	487
WASC02	RC	WMC	11/06/1991	-60	221	60	394835	6836259	488
WASC03	RC	WMC	11/06/1991	-60	221	39	394833	6836229	488
WHRC001	RC	SI6	22/01/2021	-61	223	150	394391	6836698	505
WHRC002	RC	SI6	23/01/2021	-61	219	120	394390	6836674	506
WHRC004	RC	SI6	25/01/2021	-60	216	180	394671	6836514	490
WHRC005	RC	SI6	26/01/2021	-61	214	72	394662	6836431	493
WHRC006	RC	SI6	27/01/2021	-61	217	150	394723	6836443	488
WHRC007	RC	SI6	28/01/2021	-61	217	162	394810	6836338	485
WHRC008	RC	SI6	29/01/2021	-61	219	102	394845	6836197	483
WHRC009	RC	SI6	31/01/2021	-60	214	120	394815	6836274	484
WHRC010	RC	SI6	1/02/2021	-60	212	162	394726	6836380	489
WHRC011	RC	SI6	2/02/2021	-60	213	108	394724	6836311	489
WHRC012	RC	SI6	2/02/2021	-60	213	120	394768	6836291	486
WHRC013	RC	SI6	3/02/2021	-60	214	144	394855	6836283	483

Appendix B – Summary of Main Lode Drill Intercepts – Korong 139koz Inferred Resource

HoleID	Lode	FROM	то	True Thickness	Intercept Grade	Validation Class	Reference
KORC001	KOR_Main	95	101	4.70	3.15	Α	210317
KORC002	KOR_Main	130	135	3.70	3.07	А	210317
KORC003	KORC003 KOR_Main		120	2.90	1.99	Α	210317
KORC004	KOR_Main	110	117	6.80	1.20	А	210317
KORC005	KOR_Main	154	156	2.00	2.60	Α	210317
KORC007	KOR_Main	27	28	1.00	0.83	А	210414
KORC008	KOR_Main	48	52	3.90	1.35	Α	210414
KORC009	KOR_Main	59	60	1.00	0.74	Α	210414
KORC010	KOR_Main	62	64	1.90	0.33	Α	210414
KORC011	KOR_Main	73	78	4.90	0.71	Α	210414
KORC012	KOR_Main	78	84	5.80	1.68	Α	210414
KORC013	KOR_Main	113	116	2.90	0.71	Α	210414
KORC014	KOR_Main	163	166	3.00	1.29	Α	210414
KORC015	KOR_Main	136	139	2.90	2.31	А	210414
KORC016	KOR_Main	124	129	4.90	2.56	А	210414
KORC018	KOR_Main	52	58	5.80	0.24	Α	210414
KORC019	KOR_Main	47	48	1.00	0.51	А	210414
KORC020	KOR_Main	52	55	2.90	1.45	Α	210414
KORC021	KOR_Main	60	65	3.80	2.03	А	210414
KRC001	KOR_Main	133	139	4.70	1.83	В	Historical
KRC002	KOR_Main	132	136	3.20	1.22	В	Historical
KRC003	KOR_Main	133	136	2.40	2.76	В	Historical
KRC004	KOR_Main	76	79	3.00	1.90	В	Historical
MK001	KOR_Main	36	44	7.60	1.48	В	Historical
MK002	KOR_Main	78	88	9.50	2.97	В	Historical
MK003	KOR_Main	20	28	7.60	1.56	В	Historical
MK004	KOR_Main	64	66	1.90	2.60	В	Historical
MK005	KOR_Main	12	20	7.60	1.83	В	Historical
MK007	KOR_Main	88	90	1.90	0.98	В	Historical
MK012	KOR_Main	104.1	108.3	3.30	5.12	В	Historical
MK013	KOR_Main	139.3	140.1	0.60	1.83	В	Historical
MK019	KOR_Main	32	36	4.00	0.82	В	Historical
MK021	KOR_Main	42.5	46	3.50	0.16	В	Historical
MK034	KOR_Main	30	42	11.80	1.85	В	Historical
MK037	KOR_Main	142.6	146.1	2.80	2.96	В	Historical
MK038	KOR_Main	131	138.5	5.90	1.62	В	Historical
MK039	KOR_Main	185.4	187.4	1.60	1.07	В	Historical
MK040	KOR_Main	233.2	241	5.40	0.34	В	Historical
MK041	KOR_Main	251.9	254.1	1.50	1.56	В	Historical
MK042	KOR_Main	262.5	265.6	2.10	6.58	В	Historical
MK049	KOR_Main	79	81	1.90	0.76	В	Historical
MK050	KOR_Main	70	71	1.00	0.52	В	Historical

HoleID	Lode	FROM	то	True Thickness	Intercept Grade	Validation Class	Reference
MK054	KOR_Main	146.8	149.5	2.10	2.03	В	Historical
MK061	KOR_Main	171.1	173.1	1.90	1.78	В	Historical
MK063	KOR_Main	92	97.5	5.20	2.06	В	Historical
MK065	KOR_Main	169.1	172.7	2.80	1.35	В	Historical
MK2-3RC1	KOR_Main	16	20	3.90	0.42	В	Historical
MK2-3RC5	KOR_Main	24	28	3.90	0.40	В	Historical
MK2-3RC6	KOR_Main	20	22	2.00	0.74	В	Historical
MK2-3RC7	KOR_Main	22	24	2.00	0.54	В	Historical
MRC001	KOR_Main	39	44	4.90	0.81	А	161128
MRC002	KOR_Main	58	61	2.90	1.08	Α	161128
MRC003	KOR_Main	79	85	5.90	7.24	А	161128
MRC004	KOR_Main	91	97	5.90	2.73	А	161128
MRC005	KOR_Main	111	119	7.90	1.54	А	161128
MRC006	KOR_Main	31	32	1.00	0.60	А	161128
MRC007	KOR_Main	50	53	3.00	1.69	А	161128
MRC008	KOR_Main	65	73	7.90	1.43	Α	161128
MRC009	KOR_Main	93	99	5.90	1.18	Α	161128
MRC010	KOR_Main	103	105	2.00	2.82	Α	161128
MRC011	KOR_Main	18	22	4.00	2.18	Α	161128
MRC012	KOR_Main	65	71	5.80	0.62	А	161128
MRC013	KOR_Main	58	62	3.90	1.32	Α	161128
MRC014	KOR_Main	73	77	3.90	0.08	Α	161128
MRC015	KOR_Main	90	94	3.90	0.87	Α	161128
MRC016	KOR_Main	44	48	3.90	0.84	А	161128
MRC017	KOR_Main	13	18	4.90	0.90	Α	161128
MRC018	KOR_Main	23	29	5.90	1.08	Α	161128
MRC019	KOR_Main	42	46	3.90	0.71	А	161128
MRC020	KOR_Main	29	31	2.00	1.56	А	161128
MRC021	KOR_Main	26	28	2.00	0.28	А	161128
MRC022	KOR_Main	50	51	1.00	0.71	А	161128
MRC023	KOR_Main	84	87	2.90	3.28	А	161128
MRC024	KOR_Main	100	104	3.80	0.99	А	161128
MRC025	KOR_Main	75	83	7.60	1.62	А	161128
MRC026	KOR_Main	53	60	6.90	1.10	А	161128
MRC027	KOR_Main	137	144	6.90	1.16	А	161128
MRC028	KOR_Main	112	115	2.90	5.41	А	161128
MRC029	KOR_Main	39	45	5.90	1.86	A	161128
MRC036	KOR_Main	97	104	6.70	13.15	А	180607
MRC037	KOR_Main	54	58	4.00	1.48	A	180607
MRC038	KOR_Main	75	78	3.00	1.72	A	180607
MRC039	KOR_Main	104	107	3.00	3.09	A	180607
MRC040	KOR_Main	133	138	5.00	2.88	A	180607
MRC041	KOR_Main	168	173	5.00	1.39	A	180607

HoleID	Lode	FROM	то	True Thickness	Intercept Grade	Validation Class	Reference
MRC042	KOR_Main	48	52	3.90	3.16	А	180607
MRC043	KOR_Main	73	76	3.00	2.04	Α	180607
MRC044	KOR_Main	103	106	3.00	2.09	Α	180607
MRC045	KOR_Main	129	131	2.00	1.05	Α	180607
MRC046	KOR_Main	19	20	1.00	0.64	Α	180607
MRC047	KOR_Main	64	65	1.00	0.70	Α	180607
MRC048	KOR_Main	103	104	1.00	2.38	Α	180607
MRC049	KOR_Main	135	137	1.90	0.07	Α	180607
MRCD001	KOR_Main	66	71	4.90	0.93	Α	161128
	KOR_HW	*Note original r	elease for MRCD	0001 reported a	hangingwall inte	rcept – not the i	main lode.
MRCD002	KOR_Main	4	8	3.90	1.01	Α	161128
MRCD003	KOR_Main	52	58	5.90	0.50	Α	161128
MRCD004	KOR_Main	138.95	142	3.00	3.52	Α	161128
MRCD005	KOR_Main	72	72.9	0.90	0.61	А	161128
MRCD006	KOR_Main	120	125	5.00	2.39	Α	161128
MRCD007	KOR_Main	132	137.76	5.70	1.61	А	161128

Reference list (also applies to Appendix C)

The Reference in the table of intercepts shows the original release of that intercept. Note that the original releases were in downhole width not true width and were categorised according to a strict cut-off grade rather than this reporting which reports to a consistent geological horizon, that being the quartz veined Banded Iron Formation horizon of the main lode. For these reasons the intercepts reported here may differ from the original release.

- Historical Drillholes predating 2016
- 161128 Syndicated Metals Ltd (now ASX:LAT), 28 November 2016, Strong Gold Mineralisation Returned From Maiden Drilling Program At Monument Project, WA
- 180607 Syndicated Metals Ltd (now ASX:LAT), 7 June 2018, Syndicated on Track For Maiden Gold Resource In WA As Strong Assay Results Confirm Potential of Monument Project
- 210317 ASX:VRL, 17 March 2021, RC Drilling Confirms BIF-hosted Gold Mineralisation at Monument Gold Project
- 210414 ASX:VRL, 14 April 2021, Drilling Extends Shallow, BIF-hosted Gold Mineralisation at Monument Gold Project

Notes on Validation Classes (also applies to Appendix C)

All holes are categorised into validation classes reflecting the confidence level of the data according to the following criteria.

Validation	Data attributes
Class	
Α	High spatial confidence - Collar and downhole surveys with modern technology
	Assay certificates available
	Documented performance of blanks, standards, duplicates and repeats
	Appropriate drilling and sampling techniques to assess grade continuity
В	Thorough geological logging and clear geological context
	Moderate spatial confidence - Collar and downhole surveys enable approximate location of the intercept
	with some imprecision due to the collar and downhole survey technology of the time
	Appropriate drilling and sampling techniques to assess grade continuity
	Assay data may not include documented performance of blanks, standards, duplicates and repeats.
	But, assay values are consistent with the geological context and gold grade is consistent with surrounding
	Class A intercepts.

C Drilling or sampling tech
(not reported) RAB drilling, spear or sco

Drilling or sampling techniques unsuitable to assess grade continuity in a mineral resource estimate (e.g. RAB drilling, spear or scoop sampling etc.).

No documented QAQC procedures and data.

Incomplete assaying: Drillholes starting or ending in the target zone, or holes ending in grade for which the representative composite intercept cannot therefore be calculated, or some or all of the target structure was not assayed.

Low spatial confidence – Insufficient data to confidently locate the drill intercept.

Appendix C – Summary of Main Lode and Hangingwall Drill Intercepts – Waihi 15koz Inferred Resource

HoleID	Lode	FROM	то	True Thickness	Intercept Grade	Validation Class	Reference
MK5-6RC008	WAI_HW	27	29	1.40	1.38	B	Historical
WAC02	WAI_HW	38	44	4.20	2.76	В	Historical
WANC01 WAI_HW		37	43	4.20	0.31	В	Historical
WANC02	WAI_HW	39	45	4.20	1.24	В	Historical
WANC03	WAI_HW	42	46	2.80	1.38	В	Historical
WANC04	WAI_HW	43	45	1.40	0.67	В	Historical
WANC04 WANC05	WAI_HW	40	41	0.70	1.37	В	Historical
		48	49	0.70	0.66	В	
WANC06	WAI_HW	50			1.26	В	Historical
WASC02	WAI_HW		53	2.10		1	Historical
MK030	WAI_Main	42	46	2.80	0.72	В	Historical
MK032	WAI_Main	36	40	2.80	4.82	В	Historical
MK033	WAI_Main	90.6	91.5	0.50	10.82	В	Historical
MK055	WAI_Main	96.3	101.8	3.20	0.67	В	Historical
MK056	WAI_Main	108	109.4	0.90	1.45	В	Historical
MK057	WAI_Main	103.9	106.9	1.90	2.90	В	Historical
MK5-6RC002	WAI_Main	18	20	1.40	0.18	В	Historical
MK5-6RC005	WAI_Main	14	22	5.60	0.53	В	Historical
MK5-6RC006	WAI_Main	16	18	1.40	0.62	В	Historical
MK5-6RC007	WAI_Main	14	18	2.80	0.23	В	Historical
MK5-6RC009	WAI_Main	14	16	1.40	0.02	В	Historical
MK5-6RC010	WAI_Main	16	18	1.40	0.00	В	Historical
MK5-6RC011	WAI_Main	18	20	1.40	0.50	В	Historical
MK5-6RC012	WAI_Main	21	23	1.40	0.66	В	Historical
WAC03	WAI_Main	46	53	4.90	1.51	В	Historical
WAC04	WAI_Main	44	49	3.50	1.64	В	Historical
WAC06	WAI_Main	56	63	4.90	1.53	В	Historical
WASC01	WAI_Main	60	64	2.80	0.62	В	Historical
WASC03	WAI_Main	29	35	4.20	3.55	В	Historical
WHRC001	WAI_Main	107	110	2.00	2.38	Α	210317
WHRC002	WAI_Main	83	88	3.90	1.17	Α	210317
WHRC004	WAI_Main	175	177	1.10	0.00	Α	210317
WHRC005	WAI_Main	62	66	2.70	5.71	A	210414
WHRC006	WAI_Main	112	114	1.40	0.26	A	210414
WHRC007	WAI_Main	159	160	0.60	0.69	A	210414
WHRC008	WAI_Main	6	7	0.70	0.45	A	210414
WHRC009	WAI_Main	69	72	2.10	1.38	A	210414
WHRC010	WAI_Main	113	116	2.10	2.45	A	210414
WHRC011	WAI_Main	44	47	2.10	0.23	A	210414
WHRC012	WAI_Main	66	67	0.70	0.23		210414
	_					Α	
WHRC013	WAI_Main	102	103	0.70	0.00	A	210414