

28 October 2024

QUARTERLY ACTIVITIES REPORT

for the period ended 30 September 2024

Wia Gold Limited (ASX: WIA) (**Wia** or the **Company**) is pleased to provide its Quarterly Activities Report for the period ended 30 September 2024. During the Quarter, the primary focus was drilling at the Company's 2.1Moz Kokoseb Gold Project (**Kokoseb**) in Namibia with some additional drilling conducted at the Bouaflé Project in Côte d'Ivoire.

12,478m were drilled during the quarter at Kokoseb, including 9,453m of RC and 3,025m of DD across all zones of the deposit. Assay results were reported in August from forty-nine (49) RC drillholes and eight (8) diamond drillholes¹ with this report containing assay results for a further fifty-five (55) RC drillholes and eight (8) DD holes or diamond tail drillholes (Figure 1) recently received.

Results continue to demonstrate the continuity of mineralisation along the 4.8km Kokoseb gold deposit with mineralisation remaining open along strike and at depth.

Three drill rigs (2 diamond and 1 RC) continue operating at Kokoseb, (with a focus on both Mineral Resource Estimate (MRE) growth (extensional drilling and new zones exploration) and classification upgrade (infill drilling in key shallow areas).

HIGHLIGHTS

Namibia - Kokoseb Gold Project

- Latest assay results at the NW Zone define a tight fold hinge with significant intercepts including:
 - o 32m at 1.69 g/t Au from 104m in KRC301
 - 13m at 2.27 g/t Au from 201m in KRC301
 - o 16m at 1.62 g/t Au from 113m in KRC302
 - o 20m at 1.59 g/t Au from 102m in KRC303
- Diamond drillholes across the Central Zone have returned new significant intercepts, including:
 - o 22.0m at 1.63 g/t Au from 421.2m in KDD035
 - 10.0m at 2.66 g/t Au from 476.0m in KDD038
- As reported during the quarter, mineralisation extended at the Central Zone, with significant intercepts including:
 - o 22.2m at 2.54 g/t Au from 361.5m in KDD029
 - 20.9m at 1.53 g/t Au from 287.9m in KDD031
 - o 5.0m at 3.38 g/t Au from 352.6m in KDD034
 - 26m at 2.06 g/t Au from 165m in KRC238
 - 28m at 1.86 g/t Au from 236m in KRC240
- Mineralisation discovered at the Eastern Zone, with significant shallow open intercepts including:
 - o 7m at 1.29 g/t Au from 61m in KRC245
 - o 26m at 1.08 g/t Au from 101m in KRC246

¹ See ASX announcement dated 20 August 2024.

- 4m at 4.95 g/t Au from 80m in KRC209
- Extensional drilling at the Southern and Gap Zones returned:
 - o 10m at 1.21 g/t Au from 306m in KRC244
 - 12m at 1.26 g/t Au from 119m in KRC221
 - o 19m at 1.18 g/t Au from 245m in KRC222
- Aggressive exploration drilling with 3 rigs continues at Kokoseb, targeting additional mineralisation, to increase mineral resources in multiple new sub-parallel zones of mineralisation and completing extensional drilling from the current MRE.

Côte d'Ivoire - Bouaflé Gold Project

- Two high-grade gold intercepts returned from sheared and highly altered contact zone with a gabbro, including:
 - 10m at 4.54 g/t Au from 96m in BFRC0039
 - 4m at 87.43 g/t Au from 79m in BFRC0037
- Other targets have also returned significant mineralisation, including:
 - o 6m at 8.51 g/t Au from 93m in BFRC0033
 - o 16m at 1.56 g/t Au from 69m in BFRC0030
 - 3m at 5.47 g/t Au from 40m in BFRC0020
 - 10m at 1.74 g/t Au from 78m in BFRC0018
 - 5m at 1.93 g/t Au from 49m in BFRC0010
- Follow-up RC drilling commenced in October.

Côte d'Ivoire – Issia Gold Project

• Auger drilling defines four significant, in situ gold anomalies of +30ppb and +800m strike with mineralisation remaining open along strike.

Corporate

- A\$0.841 million raised through exercise of options.
- Following shareholder approval in July, \$0.9 million was received from Directors, Josef El-Raghy and Mark Arnesen, closing the placement announced in the June quarter.

Figure 1 – Drill holes location on Kokoseb geology and US\$1,800/oz Au pit shell outline², location of all cross sections and significant intercepts on drill holes reported during the quarter³

² See ASX announcement dated 16 April 2024 for further information on reported updated Kokoseb MRE.

³ Intercept calculated using 0.5 g/t cut-off grade and 2m max consecutive internal low grade.

EXPLORATION – NAMIBIA (Kokoseb)

The NW Zone

At the NW Zone, both the Central Zone and the Northern Zone trends are merging at an acute angle which is interpreted as been a tight fold hinge (Figure 2). RC drillholes KRC301 to KRC304 and diamond tail KRD230 were testing the hinge interpretation (Figure 4) and so have intersected either sub-continuous mineralisation (the core of the hinge), or two distinct intersections, which are the two limbs (or the two trends). Significant intercepts from latest assay results include:

12m at 1.37 g/t Au from 140m in KRC301 10m at 1.37 g/t Au from 156m in KRC301 13m at 2.27 g/t Au from 201m in KRC301 14m at 1.02 g/t Au from 228m in KRC301 20m at 0.85 g/t Au from 89m in KRC302

32m at 1.69 g/t Au from 104m in KRC301

16m at 1.62 g/t Au from 113m in KRC302

5m at 1.11 g/t Au from 92m in KRC303

20m at 1.59 g/t Au from 102m in KRC303

10.0m at 1.27 g/t Au from 211m in KRD230

10.8m at 1.02 g/t Au from 224.7m in KRD230

More specifically targeting the depth extension of the northern limb of the fold, corresponding to the Northern Zone, latest drillhole results have returned the following significant intercepts:

22.0m at 1.42 g/t Au from 368.4m in KRD292

30.0m at 0.79 g/t Au from 301.6m in KRD292

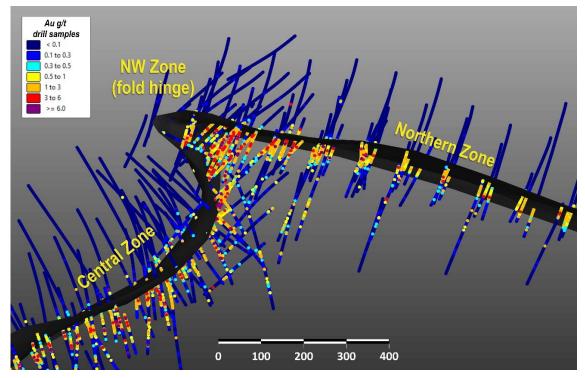


Figure 2 – Modelled hanging wall of the mineralisation at the NW area of Kokoseb, controlled by a tight fold hinge; looking north, slightly down plunge

Definition of the main high-grade shoot at Central Zone

Definition of the main Central Zone high-grade shoot continues with significant intercepts including 22.2m at 2.54 g/t Au in KDD029, including an internal higher-grade interval of 3.0m at 5.34 g/t Au. Diamond drillhole KDD029 high-grade intercept, drilled on section below KDD025⁴, lies within the interpreted south-plunging high-grade gold shoot, which spans 380 meters in length and remains open at depth on multiple sides (Figure 3). The shoot is characterised by gold intervals exceeding 4.5 g/t, consistently found within broader significant intercepts across all drill holes to date.

This high-grade gold shoot remains a priority for one of the diamond drill rigs currently operating at Kokoseb.

Other surrounding significant gold intercepts were returned during the quarter from diamond drillholes **KDD033**, **KDD036** and **KDD038**. Latest results from **KDD036** and **KDD038** include:

3.6m at 1.72 g/t Au from 359.0m in KDD036

4.0m at 1.08 g/t Au from 365.1m in KDD036

15.5m at 1.46 g/t Au from 376.0m in KDD036

10.0m at 2.66 g/t Au from 476.0m in KDD038

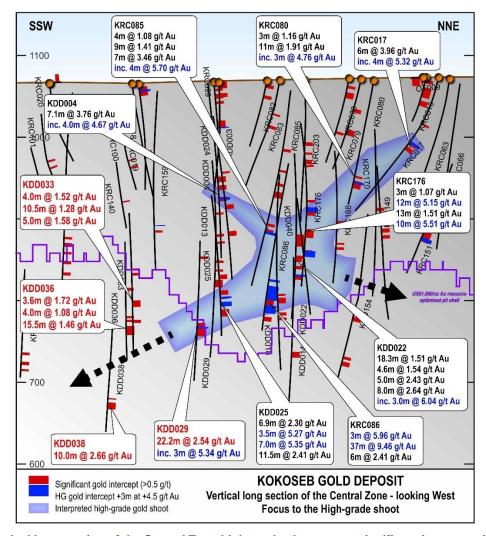


Figure 3 – Vertical long section of the Central Zone high-grade shoot; most significant intercepts in context with results reported (intercepts in black previously reported, in blue corresponding to intervals of high-grade gold)⁵

⁴ See ASX announcement dated 20 May 2024.

⁵ See ASX announcement dated 17 November 2022, 15 May 2023, 29 May 2023, 12 March 2024, 11 April 2024 and 20 May 2024.

Additional complementary drilling and depth extensions at Central Zone

Additional complementary drilling to the MRE pattern was conducted on the northern side of the Central Zone, targeting the main strongly mineralised plunging shoot (Figure 4). This drilling yielded solid intercepts that are enhancing the continuity within the MRE model, including 20.9m at 1.53 g/t Au in KDD031, 5.0m at 3.38 g/t Au in KDD034, 26m at 2.06 g/t Au in KRC238 and 28m at 1.86 g/t Au in KRC240.

Latest assay results were returned at depth extensional diamond drillholes **KDD035** and **KDD037**, with significant intercepts including:

22.0m at 1.63 g/t Au from 421.2m in KDD035

4.0m at 1.32 g/t Au from 413.4m in KDD037

9.0m at 2.44 g/t Au from 442.1m in KDD037

3.2m at 2.35 g/t Au from 454.3m in KDD037

4.0m at 1.72 g/t Au from 377.2m in KRD154

6.0m at 2.05 g/t Au from 384.2m in KRD154

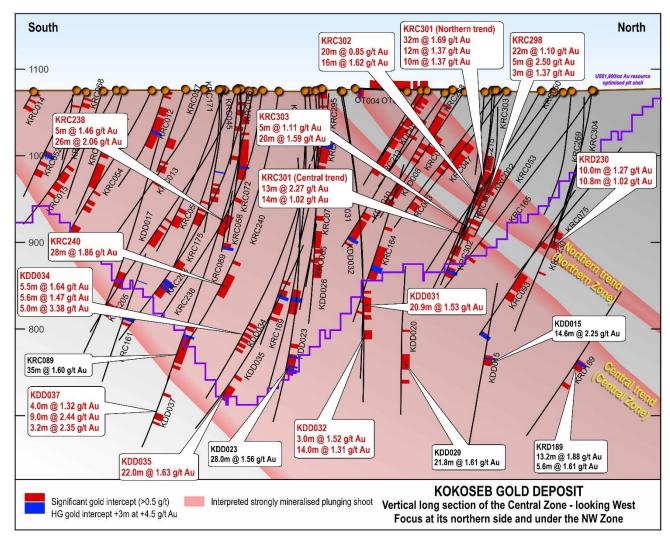


Figure 4 – Vertical long section of the north side of the Central Zone (partially going under the NW Zone); most significant intercepts in context with results reported (intercepts in black previously reported, in blue corresponding to intervals of high-grade gold)⁶

⁶ See ASX announcement dated 17 November 2022, 15 May 2023, 29 May 2023, 12 March 2024, 11 April 2024 and 20 May 2024.

Southern Zone and Gap Zone extensional drilling

Drilling focused on extensions of the MRE and completing the standard inferred resource pattern at these zones (Figure 5).

Extensional drilling at the Southern Zone and Gap Zone has returned significant intercepts, including 10m at 1.21 g/t Au in KRC244, 12m at 1.26 g/t Au in KRC221 and 19m at 1.18 g/t Au in KRC222 during the quarter.

Latest drill results along the Gap Zone include the following significant intercepts:

3m at 1.42 g/t Au from 42m in KRC270

3m at 1.54 g/t Au from 109m in KRC270

5m at 1.65 g/t Au from 179m in KRC271

19m at 0.71 g/t Au from 196m in KRC271

17m at 0.96 g/t Au from 156m in KRC249

14m at 1.25 g/t Au from 308m in KRC252

7m at 2.90 g/t Au from 37m in KRC248

15m at 1.16 g/t Au from 26m in KRC263

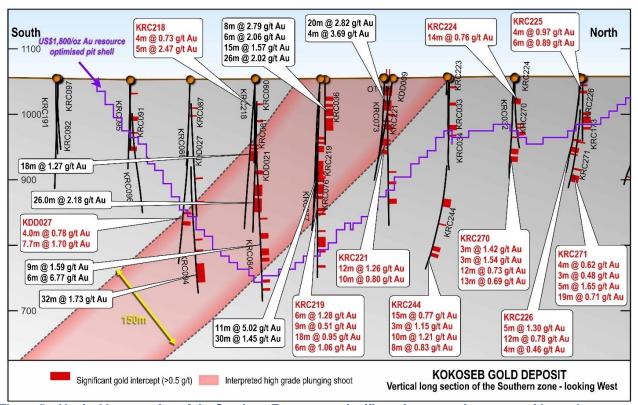


Figure 5 – Vertical long section of the Southern Zone; most significant intercepts in context with results reported (intercepts in black previously reported)⁷

Eastern Zone delivers a new shallow mineralised shoot

Initial drilling in the Eastern Zone has intersected a new mineralised shoot from shallow drilling⁸, including significant intercepts of 7m at 1.29 g/t Au in KRC245 and 26m at 1.08 g/t Au in KRC246

⁷ See ASX announcement dated 17 August 2022, 14 December 2022, 15 May 2023 and 29 May 2023.

⁸ See ASX announcement dated 20 August 2024.

(Figures 6). Further south of these results, and still within the Eastern Zone, KRC209 returned a high-grade intercept of 4m at 4.95 g/t Au.

The Eastern Zone is not included in the existing MRE, however from its surface signature (Figure 1), represents at least 1.3km of known gold mineralisation which has received very limited drilling to date.

As an exploration target, further drilling was completed during the quarter, from which mineralised intersections were returned as encouraging in some drillholes. The Eastern Zone is to date not developing as a significant new Zone of mineralisation, however shows shallow shoots from which latest significant intercepts include:

4m at 1.25 g/t Au from 148m in KRC251 12m at 1.30 g/t Au from 6m in KRC290 9m at 0.63 g/t Au from 40m in KRC299

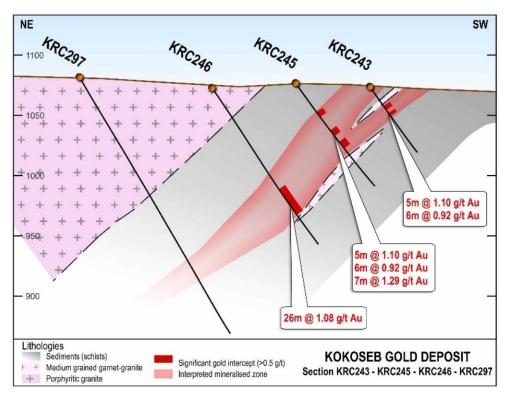


Figure 6 – Drill section of the new Eastern Zone shallow mineralised shoot, including KRC243, KRC245, KRC246 and KRC297

Exploration drilling along the Southern Regional Thrust has to date failed to highlight any significant gold mineralisation at shallow depths. Sulphides zones were however intersected in the metasediments located under the thrust, highlighting potential mineralised channel ways to follow-up for further exploration. The area has been downgraded to a lower priority target for now.

EXPLORATION – NAMIBIA (Regional)

During the quarter, Wia continued it's regional reconnaissance program over various exploration licences. These programs include stream sediment sampling, reconnaissance mapping and rock chipping, aiming to fast track a decision on pursuing systematic exploration programs under a JV agreement.

EXPLORATION - CÔTE D'IVOIRE

Bouaflé Gold Project – Significant mineralised zone identified from two drillholes

BFRC0039 and **BFRC0037** have both intersected a shallow and strongly mineralised zone which is located at the contact zone with a gabbro (Figures 7 and 8) – and are the only drillholes which have intersected this contact zone. The contact zone is sheared and highly altered. The two drillholes are spaced 200m apart and mineralisation is fully open along strike and at depth.

This mineralised zone has never been intersected by any drillhole in the past, which makes it distinctive and very encouraging. It is located in the concave of the regional mineralised shear (Figure 8) which is a favourable structural context for gold deposition.

Other drillholes were mostly testing the regional mineralised shear – which was the only target for previous explorers. Several quality intercepts, including 10m at 1.74 g/t Au in BFRC0018, 16m at 1.56 g/t Au in BFRC0030 and 6m at 8.51 g/t Au in BFRC0033, are highlighting strong mineralised shoots, hosted in metasediments within the shear corridor. These intercepts will drive the focus of a future resource drilling campaign at Bouaflé.

Follow-up drilling program

The second phase drilling program, totalling 2,000m, has commenced in October. The aim of the program is to uncover the full potential of this mineralised zone and its surroundings.

The other targets are either considered ready-to-drill as resource definition, or are downgraded at lower priority focus.

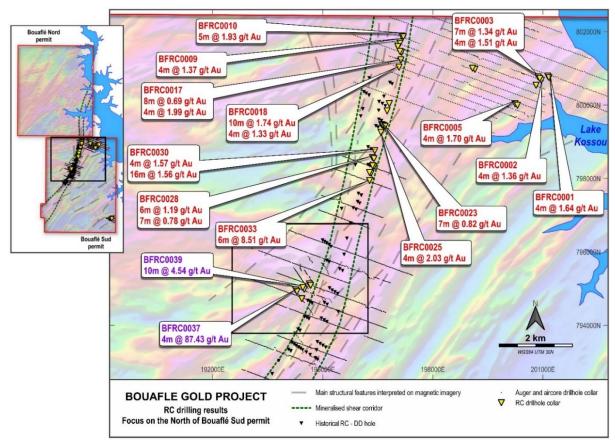


Figure 7 – Significant intercepts (of +8 gramXmetres and +4m width) at the northern side of the Bouaflé Sud permit – magnetics rtp imagery as background and location of Figure 8

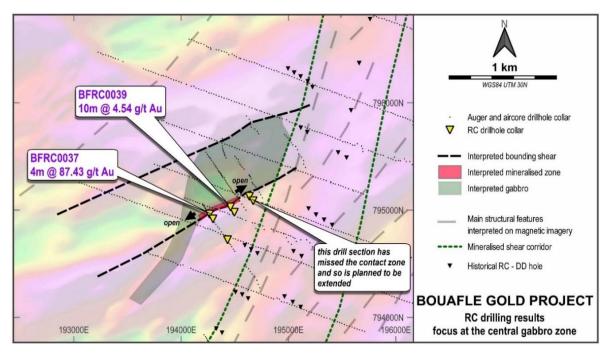


Figure 8 – Map of the interpreted gabbro and location of the significant mineralised zone intersected by BFRC0037 and BFRC0039

Issia Gold Project – Coherent in situ gold anomalies confirmed by auger drilling

An auger program was completed during the first half 2024 at the Issia permit, from which all gold results were returned from laboratory during the quarter (Figure 9).

Four significant +30ppb gold in auger coherent anomalies of +800m strike length were highlighted, the longest one being 1.2km of strike. These coherent in situ anomalies are complemented by other smaller ones, all being open along strike.

Further auger drilling is planned, to test for the extensions of the anomalies, and to complete a systematic pattern across the original gold in soil corridor. A few diamond drillholes are also planned at the Project, to test for the in-situ fresh mineralisation.

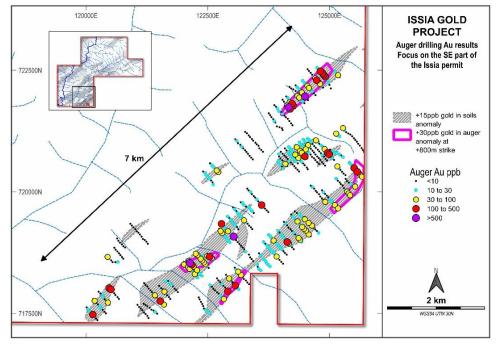


Figure 9 - Auger gold result at the Issia permit

Regional Exploration

Applying the strategy of moving the ground quickly, Wia has relinquished the Bocanda permit and abandoned the Tagba application, both part of the Bocanda Project, after returning insignificant results.

A new permit application, named Kpesso, was submitted to the Direction of Mines (Figure 10) at the Mankono Project, including some of the prospective trends which have been highlighted by surface work at the Mankono Permit.

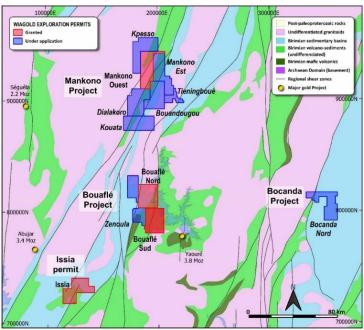


Figure 10 - Côte d'Ivoire exploration permits

CORPORATE

Cash

As at 30 September 2024, Wia held a cash balance of A\$12.7 million (excluding trade creditors) and zero debt.

Following shareholder approval in July, \$0.9 million was received from Directors, Josef El-Raghy and Mark Arnesen for the placement announced in the June quarter.

\$0.841 million was raised through the exercise of 14,955,098 5 cent options (\$0.195 million) and 23,552,032 10 cent options (\$0.646 million) exercisable on or before 30 September 2024.

Payments to related parties

During the September Quarter, the Company made payments to related parties of \$30,000, which related to payments for directors remuneration.

Information Required Under Listing Rules 5.3.1 and 5.3.2

Evaluation and exploration expenditure during the June Quarter amounted to \$3.847 million. There were no mining production and development activities.

Annual General Meeting

The Annual General Meeting of the Company will be held on Thursday, 21 November 2024. Please refer to the Notice of Meeting lodged with the ASX for full details.

Tenement Interests

The Company's tenement interests as at 30 September 2024 are shown in the table below.

In Namibia, EPL6536 was abandoned. In Côte d'Ivoire, 0886DMICM15/09/2021 Tagba application was abandoned and permit PR0872 Bocanda was relinquished. A new application, 1224DMICM16/09/2024 Kpesso, was submitted.

Tenement interests as at 30 September 2024

Tenement	Ownership	Project	Location
EPL6226	100%	Hagenhof	Namibia
EPL4833	80%*	Katerina	Namibia
EPL8039	80%*	Katerina	Namibia
EPL7246	80%*	Katerina	Namibia
EPL4818	80%*	Okombahe	Namibia
EPL7980	100%	Okombahe	Namibia
EPL6534	90%	Gazina	Namibia
EPL6535	90%	Gazina	Namibia
EPL4953	90%	Gazina	Namibia
EPL8249	80%*	Hagenhof NE	Namibia
EPL8021 – Application	100%	Owambo	Namibia
EPL8709	100%	Okombahe W	Namibia
PR0844 Bocanda Nord	80%	Bocanda	Côte d'Ivoire
PR0861 Bouaflé South	80%	Bouaflé	Côte d'Ivoire
PR0822 Bouaflé North	80%	Bouaflé	Côte d'Ivoire
0412DMICM20/05/2021 Zenoula	80%	Bouaflé	Côte d'Ivoire
1224DMICM16/09/2024 Kpesso	80%	Mankono	Côte d'Ivoire
PR0871 Mankono Ouest	80%	Mankono	Côte d'Ivoire
0181DMICM11/08/2017 Mankono East	80%	Mankono	Côte d'Ivoire
0410DMICM19/05/2021 Tieningboue	80%	Mankono	Côte d'Ivoire
0533DMICM09/06/2021 Bouandougou	80%	Mankono	Côte d'Ivoire
0088DMICM12/02/2021 Dialakoro	80%	Mankono	Côte d'Ivoire
0534DMICM10/06/2021 Kouata	80%	Mankono	Côte d'Ivoire
PR0880 Issia	80%	Issia	Côte d'Ivoire

^{*} The Company received the shares to reflect the interest increase to 80% during the quarter (previous interest 51%).

Reference to Previous ASX Announcements

In relation to the information in this announcement on the Kokoseb MRE, other than subsequently released drilling results, WIA confirms that it is not aware of any new information or data that materially affects the information included in that announcement dated 16 April 2024. All material assumptions and technical parameters underpinning the estimates in that ASX release continue to apply and have not materially changed.

In relation to the exploration results included in this September Quarterly Activities Report, the dates of which are referenced, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements.

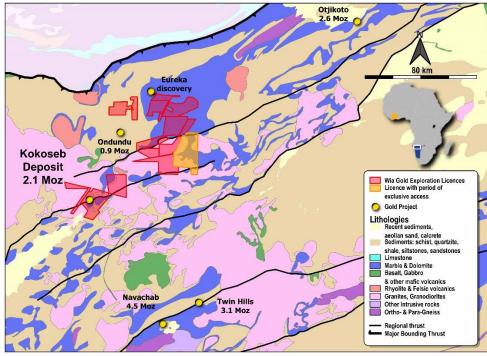
Competent Person's Statement

The information in this announcement that relates to exploration results at the Kokoseb Gold Deposit located on the Company's Damaran Gold Project and to exploration results at the Issia Gold Project

in Côte d'Ivoire is based on information compiled by Company geologists and reviewed by Mr Pierrick Couderc, in his capacity as Exploration Manager of Wia Gold Limited. Mr. Couderc is a member of both the Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Couderc consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

This announcement has been authorised for release by the Company's board of directors.

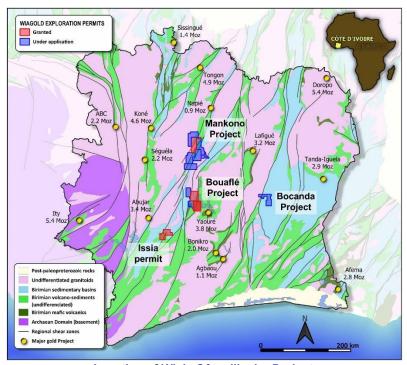
Contact details


Josef El-Raghy
Executive Chairman
+61 8 9420 8270

Bobby Morse / George Pope Burson Buchanan +44 20 7466 5000

Cut-off Au g/t	Tonnes (Mt)	Au g/t	Au Moz
0.20	130	0.69	2.88
0.25	115	0.75	2.77
0.30	100	0.80	2.57
0.40	83	0.91	2.43
0.50	66	1.0	2.12
0.60	53	1.2	2.04
0.80	34	1.4	1.53
1.00	23	1.7	1.26

Table 1 – Kokoseb Inferred Mineral Resource estimates for selected cut-off grades announced to ASX on 16 April 2024. The estimates in this table are rounded to reflect their precision. They are based on drilling data available at 4 April 2024.



Location of Wia's Kokoseb Gold Project

About Wia's Namibia Projects

Since 2018 the Company has successfully consolidated a very large land position on the Damara belt in central Namibia (the **Damaran Project**). The Damaran Project, which hosts the Kokoseb Deposit, covers a total area of over 2,000km² held under joint venture with the state-owned mining company, Epangelo.

Location of Wia's Côte d'Ivoire Projects

About Wia's Côte d'Ivoire Projects

The Company currently holds four granted permits in the Country – Mankono Ouest, Bouaflé Sud, Bouaflé Nord and Issia – one permit under renewal process – Bocanda Nord – and eight permits under application. The total land package (including the permit applications) represents over 4,000 km².

Appendix 1. Kokoseb – Location of diamond and RC drillholes reported in this report

Hole ID	Easting	Northing	RL	Length (m)	Dip (°)	Azi (°)
KDD035	526015	7660803	1070	498	-60	116
KDD036	525577	7660190	1068	435	-60	120
KDD037	525903	7660688	1070	492	-60	110
KDD038	525525	7660226	1067	522	-60	120
KRC247	528486	7659986	1071	210	-55	221
KRC248	525452	7659592	1061	66	-55	81
KRC249	525370	7659597	1061	220	-60	81
KRC250	528608	7659250	1063	200	-60	271
KRC251	528580	7659056	1057	195	-60	273
KRC252	525328	7659601	1059	431	-60	81
KRC253	528412	7658858	1064	150	-55	301
KRC254	528506	7658806	1061	234	-60	301
KRC255	526770	7660772	1077	190	-55	201
KRC256	528600	7659463	1063	180	-60	271
KRC257	526734	7660674	1076	185	-55	201
KRC258	528600	7659656	1067	150	-60	271
KRC259	527742	7660521	1071	126	-55	201
KRC260	526660	7658056	1070	180	-55	301
KRC261	527780	7660624	1074	246	-60	201
KRC262	526757	7657999	1068	190	-55	301
KRC263	525429	7659545	1061	145	-55	81
KRC264	525294	7659438	1059	400	-60	81
KRC265	526857	7657945	1071	195	-55	301
KRC266	526947	7657892	1075	318	-55	301
KRC267	527045	7657843	1077	441	-55	301
KRC268	526176	7660899	1073	138	-55	201
KRC269	526351	7661028	1075	180	-60	271
KRC270	525703	7658588	1056	216	-60	81
KRC271	525618	7658676	1057	233	-60	80
KRC272	525563	7658766	1055	252	-60	80
KRC273	525641	7657839	1065	256	-55	120
KRC274	525508	7658861	1055	275	-60	80
KRC275	525730	7657793	1065	240	-55	120
KRC276	525932	7657663	1065	245	-55	300
KRC277	525819	7657619	1071	130	-90	360
KRC278	525812	7657690	1066	90	-90	360
KRC279	526018	7657621	1069	245	-55	300
KRC280	526038	7657831	1062	242	-55	300
KRC281	526134	7657783	1063	320	-55	300
KRC282	528118	7658254	1066	220	-55	300
KRC283	526217	7657725	1065	220	-55	300
KRC284	528434	7658958	1061	120	-55	270

Hole ID	Easting	Northing	RL	Length (m)	Dip (°)	Azi (°)
KRC285	525576	7659482	1062	218	-55	80
KRC286	528432	7659162	1061	138	-55	270
KRC287	525297	7659769	1063	385	-60	120
KRC288	528676	7659157	1061	300	-60	270
KRC289	528489	7659356	1062	96	-55	270
KRC290	528470	7659758	1070	135	-55	270
KRC291	528592	7659763	1068	180	-55	270
KRC293	528600	7659855	1069	300	-60	270
KRC295	526371	7660736	1078	408	-60	90
KRC296	528548	7660078	1067	269	-60	220
KRC297	528476	7660121	1082	247	-60	220
KRC298	526443	7660933	1076	234	-60	275
KRC299	528215	7660507	1075	102	-60	220
KRC301	526495	7660931	1077	300	-60	270
KRC302	526401	7660931	1076	245	-60	270
KRC303	526384	7660936	1076	209	-55	270
KRC304	526447	7661033	1076	270	-60	275
KRD154	525813	7660398	1071	408	-60	121
KRD230	526506	7661031	1077	369	-60	271
KRD292	526842	7661203	1080	424	-60	200
KRD294	526922	7661104	1082	414	-60	200

Appendix 2. Diamond and RC drill holes gold assays reported in this report, using a cut-off grade of 0.2 g/t gold and max 2m consecutive internal waste material

Hole ID	From (m)	To (m)	Gold g/t
KDD035	398.2	399.2	0.4460
KDD035	399.2	400.2	0.1800
KDD035	400.2	401.2	0.3770
KDD035	401.2	402.2	0.0840
KDD035	402.2	403.2	0.3840
KDD035	403.2	404.2	0.0540
KDD035	404.2	405.2	0.5960
KDD035	405.2	406.2	0.5200
KDD035	406.2	407.2	0.6310
KDD035	407.2	408.2	0.5540
KDD035	408.2	409.2	0.9620
KDD035	412.2	413.2	0.3540
KDD035	413.2	414.2	0.0740
KDD035	414.2	415.2	0.4470
KDD035	415.2	416.2	0.3930
KDD035	419.2	420.2	0.3190
KDD035	420.2	421.2	0.1070
KDD035	421.2	422.2	3.0400
KDD035	422.2	423.2	3.0800
KDD035	423.2	424.2	0.5820
KDD035	424.2	425.2	1.5800
KDD035	425.2	426.2	3.8300
KDD035	426.2	427.2	3.9400
KDD035	427.2	428.2	0.2640
KDD035	428.2	429.2	1.0800

Hole ID	From (m)	To (m)	Gold g/t
KDD035	429.2	430.2	2.6900
KDD035	430.2	431.2	1.0950
KDD035	431.2	432.2	1.0200
KDD035	432.2	433.2	2.2800
KDD035	433.2	434.2	0.9200
KDD035	434.2	435.2	0.9540
KDD035	435.2	436.2	1.0400
KDD035	436.2	437.2	1.0750
KDD035	437.2	438.2	0.2160
KDD035	438.2	439.2	0.2520
KDD035	439.2	440.2	0.5020
KDD035	440.2	441.2	1.3350
KDD035	441.2	442.2	0.5920
KDD035	442.2	443.2	4.5500
KDD035	443.2	444.2	0.3730
KDD035	444.2	445.2	0.1700
KDD035	445.2	446.2	0.1780
KDD035	446.2	447.2	0.7720
KDD036	295.8	296.8	0.3490
KDD036	296.8	297.8	0.2260
KDD036	297.8	298.8	0.0690
KDD036	298.8	299.8	0.1340
KDD036	299.8	300.8	0.3480
KDD036	310.7	311.7	0.2770
KDD036	311.7	312.7	0.7310

Hole ID	From (m)	To (m)	Gold g/t
KDD036	312.7	313.7	0.1490
KDD036	313.7	314.7	0.8390
KDD036	314.7	315.7	1.3900
KDD036	315.7	316.7	0.8620
KDD036	316.7	317.7	0.3690
KDD036	317.7	318.5	0.0300
KDD036	318.5	319.2	0.0100
KDD036	319.2	320.2	0.4230
KDD036	338.1	339.1	0.3570
KDD036	339.1	340.1	1.3650
KDD036	340.1	341.1	0.0180
KDD036	341.1	341.7	0.3300
KDD036	357.3	359.0	0.2230
KDD036	359.0	359.7	2.8100
KDD036	359.7	360.7	0.7520
KDD036	360.7	361.7	2.3000
KDD036	361.7	362.6	1.2850
KDD036	362.6	363.1	0.0150
KDD036	363.1	364.1	0.1010
KDD036	364.1	365.1	0.3310
KDD036	365.1	366.1	1.7900
KDD036	366.1	367.1	1.2650
KDD036	367.1	368.1	0.5840
KDD036	368.1	369.1	0.6880
KDD036	371.9	372.9	0.2210
KDD036	372.9	373.5	0.1630
KDD036	373.5	374.1	0.2450
KDD036	374.1	376.0	0.0320
KDD036	376.0	376.5	1.5600
KDD036	376.5	377.5	1.3250
KDD036	377.5	378.5	0.9240
KDD036	378.5	379.5	1.0200
KDD036	379.5	380.5	0.3130
KDD036	380.5	381.5	1.3400
KDD036	381.5	382.5	0.4830
KDD036	382.5	383.5	1.3300
KDD036	383.5	384.5	6.7900
KDD036	384.5	385.5	2.4000
KDD036	385.5	386.5	0.1310
KDD036	386.5	387.5	0.2090
KDD036	387.5	388.5	1.7800
KDD036	388.5	389.5	0.0260 1.1000
KDD036	389.5	390.5	
KDD036 KDD037	390.5 384.0	391.5 385.0	2.7100 0.3260
KDD037	385.0	385.8	0.3100
KDD037			0.3570
KDD037	385.8 386.5	386.5 388.4	0.0160
KDD037	388.4	389.4	1.2650
KDD037	389.4	390.4	0.2530
KDD037	390.4	391.2	0.0520
KDD037	391.2	391.9	0.3060
KDD037	391.9	392.7	0.0390
KDD037	392.7	393.7	0.0200
KDD037	393.7	394.7	0.4560
KDD037	394.7	395.5	0.2240
KDD037	407.1	408.1	0.2430
KDD037	407.1	408.1	0.6390
KDD037	408.1	408.9	0.2060
KDD037	408.9	410.5	0.2950
KDD037	403.0	+10.5	0.2330

Hole ID	From (m)	To (m)	Gold g/t
KDD037	410.5	411.0	0.0210
KDD037	411.0	411.7	0.2290
KDD037	411.7	412.4	0.0110
KDD037	412.4	413.4	0.2210
KDD037	413.4	414.4	0.6250
KDD037	414.4	415.4	1.4800
KDD037	415.4	416.4	1.1550
KDD037	416.4	417.4	2.0100
KDD037	417.4	418.4	0.1600
KDD037	418.4	419.3	0.4090
KDD037	441.1	442.1	0.2260
KDD037	442.1	443.1	8.3600
KDD037	443.1	444.1	0.6050
KDD037	444.1	445.1	0.6090
KDD037	445.1	445.8	1.7950
KDD037	445.8	446.5	0.6530
KDD037	446.5	447.1	0.4250
KDD037	447.1	448.1	5.7400
KDD037	448.1	449.1	1.6300
KDD037	449.1	450.1	1.7200
KDD037	450.1	451.1	1.3450
KDD037	451.1	452.0	0.1260
KDD037	452.0	453.5	0.0180
KDD037	453.5	454.3	0.4040
KDD037	454.3	455.1	1.2300
KDD037	455.1	455.7	8.6500
KDD037	455.7	456.7	0.0480
KDD037	456.7	457.5	1.1600
KDD038	334.5	335.5	2.0100
KDD038	335.5	336.5	0.0420
KDD038	336.5	337.5	0.0740
KDD038	337.5	338.5	0.2010
KDD038	343.5	344.5	0.3960
KDD038	344.5	345.5	0.0320
KDD038	345.5	346.5	0.0210
KDD038	346.5	347.5	1.5300
KDD038	347.5	348.5	0.1830
KDD038	348.5	349.5	0.2920
KDD038	367.9	368.9	0.5670
KDD038	368.9	369.9	0.1080
KDD038	369.9	370.8	0.4020
KDD038	370.8	371.4	0.0090
KDD038	371.4	372.4	0.1330
KDD038	372.4	373.1	0.4460
KDD038	373.1	374.4	0.2710
KDD038	374.4	375.4	0.2010
KDD038	375.4	376.4	0.0110
KDD038	376.4	377.4	0.2800
KDD038	409.9	410.9	0.2190
KDD038	410.9	411.9	0.1000
KDD038	411.9	412.9	0.4360
KDD038	412.9	413.9	0.0940
KDD038	413.9	414.7	0.2750
KDD038	426.9	427.9	0.2590
KDD038	427.9	428.5	1.2650
KDD038	428.5	429.0	0.3390
KDD038	429.0	430.5	0.0550
KDD038	430.5	431.5	0.2290
KDD038	462.0	463.0	0.2840
KDD038	463.0	464.0	0.3310

Hole ID	From (m)	To (m)	Gold g/t
KDD038	464.0	465.0	0.0160
KDD038	465.0	466.0	0.0950
KDD038	466.0	467.0	0.6390
KDD038	467.0	468.0	0.1670
KDD038	468.0	469.0	0.5980
KDD038	469.0	470.0	0.4480
KDD038	470.0	471.0	0.3320
KDD038	471.0	472.0	0.1170
KDD038	472.0	473.0	0.3900
KDD038	473.0	474.0	0.5120
KDD038	474.0	475.0	1.0400
KDD038	475.0	476.0	1.7750
KDD038	476.0	477.0	10.2500
KDD038	477.0	478.0	0.5130
KDD038	478.0	479.0	1.5350
KDD038	479.0	480.0	0.7790
KDD038	480.0	481.0	6.5000
KDD038	481.0	482.0	2.6200
KDD038	482.0	483.0	1.1200
KDD038	483.0	484.0	0.0820
KDD038	484.0	485.0	0.0410
KDD038	485.0	486.0	0.2790
KRC051	264.0	265.0	0.2790
KRC051	265.0	266.0	0.3840
KRC051	266.0	267.0	0.1880
KRC051	267.0	268.0	0.2650
KRC051	268.0	269.0	0.9340
KRC051	269.0	270.0	0.6570
KRC051	270.0	271.0	1.1150
KRC051	271.0	272.0	0.3350
KRC051	272.0	273.0	0.2550
KRC051	273.0	274.0	0.6830
KRC051	274.0	275.0	0.5750
KRC051	275.0	276.0	0.1750
KRC051	276.0	277.0	0.2250
KRC051 KRC051	277.0	278.0	0.2620 0.2190
KRC051	278.0	279.0	0.2190
KRC051	279.0	280.0	0.4780
KRC051	280.0 281.0	281.0 282.0	0.6900
KRC051	282.0	283.0	0.0590
KRC051	283.0	284.0	0.0990
KRC051	284.0	285.0	1.7350
KRC051	298.0	299.0	0.9730
KRC051	299.0	300.0	0.7680
KRC051	300.0	301.0	0.5880
KRC051	301.0	302.0	0.2870
KRC051	302.0	303.0	1.0600
KRC051	303.0	304.0	0.5770
KRC051	304.0	305.0	0.1800
KRC051	305.0	306.0	0.6310
KRC051	306.0	307.0	0.2910
KRC051	307.0	308.0	0.7820
KRC051	308.0	309.0	0.2730
KRC051	309.0	310.0	0.3280
KRC051	310.0	311.0	0.3510
KRC051	311.0	312.0	0.3780
KRC248	15.0	16.0	0.2530
KRC248	16.0	17.0	0.1210
KRC248	17.0	18.0	0.0680
	1.55		

Hole ID	From (m)	To (m)	Gold g/t
KRC248	18.0	19.0	0.3620
KRC248	19.0	20.0	0.6210
KRC248	20.0	21.0	1.9800
KRC248	21.0	22.0	0.2150
KRC248	22.0	23.0	0.6550
KRC248	23.0	24.0	0.6410
KRC248	24.0	25.0	0.9570
KRC248	25.0	26.0	0.5380
KRC248	26.0	27.0	0.5160
KRC248	27.0	28.0	0.2780
KRC248	36.0	37.0	0.4890
KRC248	37.0	38.0	0.6460
KRC248	38.0	39.0	1.4350
KRC248	39.0	40.0	3.2100
KRC248	40.0	41.0	2.0100
KRC248	41.0	42.0	3.6000
KRC248	42.0	43.0	3.8500
KRC248	43.0	44.0	5.5800
KRC248	44.0	45.0	0.2280
KRC248	45.0	46.0	0.4770
KRC249	122.0	123.0	0.2860
KRC249	123.0	124.0	0.0500
KRC249	124.0	125.0	0.0840
KRC249	125.0	126.0	1.5850
KRC249	126.0	127.0	0.9620
KRC249	127.0	128.0	1.3750
KRC249	128.0	129.0	0.1430
KRC249 KRC249	129.0	130.0	0.0760 0.7470
KRC249	130.0	131.0	0.7470
KRC249	131.0 136.0	132.0 137.0	0.6170
KRC249	137.0	137.0	1.1800
KRC249	138.0	139.0	0.5700
KRC249	139.0	140.0	0.4760
KRC249	140.0	141.0	0.3830
KRC249	141.0	142.0	1.7400
KRC249	142.0	143.0	0.5510
KRC249	143.0	144.0	0.1300
KRC249	144.0	145.0	0.3680
KRC249	145.0	146.0	0.3250
KRC249	156.0	157.0	0.6150
KRC249	157.0	158.0	0.7050
KRC249	158.0	159.0	0.9440
KRC249	159.0	160.0	0.6480
KRC249	160.0	161.0	0.7780
KRC249	161.0	162.0	0.6030
KRC249	162.0	163.0	1.4650
KRC249	163.0	164.0	1.6400
KRC249	164.0	165.0	1.3950
KRC249	165.0	166.0	0.6980
KRC249	166.0	167.0	0.5310
KRC249	167.0	168.0	1.5400
KRC249	168.0	169.0	2.7300
KRC249	169.0	170.0	1.1100
KRC249	170.0	171.0	0.0750
KRC249	171.0	172.0	0.2950
KRC249	172.0	173.0	0.5090
KRC250 KRC250	124.0	125.0	1.1200
	125.0	126.0	1.3700
KRC250	126.0	127.0	0.1300

Hole ID	From (m)	To (m)	Gold g/t
KRC250	127.0	128.0	0.2530
KRC250	128.0	129.0	0.4890
KRC250	129.0	130.0	0.4880
KRC250	130.0	131.0	1.0400
KRC250	131.0	132.0	0.3630
KRC250	170.0	171.0	1.3250
KRC250	171.0	172.0	0.8700
KRC250	172.0	173.0	0.1610
KRC250	173.0	174.0	0.4450
KRC251	144.0	145.0	0.4370
KRC251	145.0	146.0	0.2400
KRC251	146.0	147.0	0.0390
KRC251	147.0	148.0	0.0470
KRC251	148.0	149.0	2.7200
KRC251	149.0	150.0	0.0690
KRC251	150.0	151.0	0.7420
KRC251	151.0	152.0	1.4550
KRC251	152.0	153.0	0.3400
KRC251	153.0	154.0	0.2450
KRC251	158.0	159.0	0.4900
KRC251	159.0	160.0	0.0210
KRC251	160.0	161.0	0.2870
KRC251	161.0	162.0	0.7310
KRC251	162.0	163.0	0.0990
KRC251	163.0	164.0	0.1330
KRC251	164.0	165.0	0.2100
KRC251	165.0	166.0	0.0380
KRC251	166.0	167.0	0.0240
KRC251	167.0	168.0	0.2310
KRC251	168.0	169.0	0.6690
KRC251	169.0	170.0	0.8290
KRC252	305.0	306.0	0.2250
KRC252	306.0	307.0	0.0490
KRC252	307.0	308.0	0.2600
KRC252	308.0	309.0	0.6110
KRC252	309.0	310.0	0.4080
KRC252	310.0	311.0	0.1150
KRC252	311.0	312.0	0.7490
KRC252	312.0	313.0	0.7480
KRC252	313.0	314.0	0.6430
KRC252	314.0	315.0	0.8670
KRC252 KRC252	315.0	316.0	1.7150 1.0650
KRC252	316.0	317.0	1.2350
KRC252	317.0	318.0	1.2350
KRC252	318.0 319.0	319.0 320.0	3.3100
KRC252		320.0 321.0	3.4600
KRC252	320.0 321.0	321.0	1.4500
KRC252	321.0	322.0	0.2590
KRC255	1.0	2.0	0.2330
KRC255	2.0	3.0	0.2100
KRC255	3.0	4.0	0.3410
KRC255	4.0	5.0	0.5400
KRC255	5.0	6.0	4.6300
KRC255	6.0	7.0	0.5960
KRC255	7.0	8.0	1.3100
KRC255	8.0	9.0	0.0980
KRC255	9.0	10.0	0.4600
KRC255	10.0	11.0	0.4440
KRC255	11.0	12.0	0.4440
NNC233	11.0	12.0	0.1030

Hole ID	From (m)	To (m)	Gold g/t
KRC255	12.0	13.0	0.3010
KRC255	13.0	14.0	0.9910
KRC255	14.0	15.0	0.3430
KRC255	87.0	88.0	3.4600
KRC255	88.0	89.0	3.0500
KRC255	89.0	90.0	1.3550
KRC258	127.0	128.0	0.3940
KRC258	128.0	129.0	1.0700
KRC258	129.0	130.0	0.4760
KRC259	28.0	29.0	0.5510
KRC259	29.0	30.0	0.1240
KRC259	30.0	31.0	0.5010
KRC259	31.0	32.0	0.3670
KRC259	32.0	33.0	0.1480
KRC259	33.0	34.0	0.0870
KRC259	34.0	35.0	0.2440
KRC259	35.0	36.0	0.5320
KRC259 KRC259	36.0	37.0	0.7140 0.3650
KRC259	41.0 42.0	42.0 43.0	0.3650
KRC259	43.0	44.0	0.6490
KRC259	44.0	45.0	0.4280
KRC259	45.0	46.0	0.3700
KRC259	46.0	47.0	0.2140
KRC263	25.0	26.0	0.3520
KRC263	26.0	27.0	1.3800
KRC263	27.0	28.0	0.9670
KRC263	28.0	29.0	0.2490
KRC263	29.0	30.0	0.2710
KRC263	30.0	31.0	0.6330
KRC263	31.0	32.0	0.2890
KRC263	32.0	33.0	0.8080
KRC263	33.0	34.0	0.8930
KRC263	34.0	35.0	1.7800
KRC263	35.0	36.0	0.0700
KRC263	36.0	37.0	0.5090
KRC263	37.0	38.0	3.0300
KRC263	38.0	39.0	4.6800
KRC263	39.0	40.0	0.0950
KRC263 KRC263	40.0	41.0	1.7800 0.0890
KRC263	41.0	42.0	0.0890
KRC264	42.0 362.0	43.0 363.0	0.5270
KRC264	363.0	364.0	0.3030
KRC264	364.0	365.0	0.3000
KRC264	365.0	366.0	0.2100
KRC264	369.0	370.0	0.6910
KRC264	370.0	371.0	1.0500
KRC264	371.0	372.0	0.5190
KRC264	372.0	373.0	0.5500
KRC270	29.0	30.0	0.2320
KRC270	30.0	31.0	1.2300
KRC270	31.0	32.0	0.1830
KRC270	32.0	33.0	0.0850
KRC270	33.0	34.0	0.3360
KRC270	34.0	35.0	0.4450
KRC270	35.0	36.0	0.7710
KRC270	41.0	42.0	0.3540
KRC270	42.0	43.0	2.7700
KRC270	43.0	44.0	0.7810

Hole ID	From (m)	To (m)	Gold g/t
KRC270	44.0	45.0	0.6990
KRC270	45.0	46.0	0.2540
KRC270	109.0	110.0	0.6060
KRC270	110.0	111.0	2.9400
KRC270	111.0	112.0	1.0650
KRC270	133.0	134.0	0.9340
KRC270	134.0	135.0	0.0560
KRC270	135.0	136.0	0.7510
KRC270	136.0	137.0	0.2540
KRC270	137.0	138.0	1.7300
KRC270	138.0	139.0	0.6850
KRC270	139.0	140.0	1.8600
KRC270	140.0	141.0	0.0520
KRC270	141.0	142.0	0.3720
KRC270	142.0	143.0	0.6510
KRC270	143.0	144.0	0.7770
KRC270	144.0	145.0	0.6150
KRC270	145.0	146.0	0.0480
KRC270	146.0	147.0	0.2400
KRC270	147.0	148.0	0.3150
KRC270	148.0	149.0	0.0650
KRC270	149.0	150.0	0.2320
KRC270	150.0	151.0	0.5710
KRC270	151.0	152.0	0.4830
KRC270	152.0	153.0	1.1400
KRC270	153.0	154.0	0.3990
KRC270	154.0	155.0	2.2900
KRC270	155.0	156.0	0.3110
KRC270	156.0	157.0	1.3000
KRC270	157.0	158.0	0.1770
KRC270	158.0	159.0	0.2030
KRC270	159.0	160.0	0.7000
KRC270	160.0	161.0	0.6100
KRC270	161.0	162.0	0.2580
KRC270	162.0	163.0	0.5910
KRC270 KRC271	163.0	164.0	0.3920 0.3470
	14.0 15.0	15.0	
KRC271 KRC271		16.0	0.2780 0.9970
KRC271	16.0	17.0	0.9970
KRC271	17.0 18.0	18.0 19.0	0.2680
KRC271	19.0	20.0	0.5810
KRC271	20.0	21.0	0.1510
KRC271	21.0	22.0	0.4130
KRC271	119.0	120.0	0.2740
KRC271	120.0	121.0	0.6100
KRC271	121.0	122.0	0.1510
KRC271	122.0	123.0	0.6870
KRC271	123.0	124.0	0.2150
KRC271	177.0	178.0	0.3360
KRC271	178.0	179.0	0.3690
KRC271	179.0	180.0	2.5500
KRC271	180.0	181.0	2.5400
KRC271	181.0	182.0	0.8180
KRC271	182.0	183.0	0.2660
KRC271	183.0	184.0	2.0900
KRC271	184.0	185.0	0.4620
KRC271	185.0	186.0	0.1650
KRC271	186.0	187.0	0.4560
KRC271	187.0	188.0	0.2880

Hole ID	From (m)	To (m)	Gold g/t
KRC271	188.0	189.0	0.1240
KRC271	189.0	190.0	0.2170
KRC271	190.0	191.0	0.5980
KRC271	191.0	192.0	0.1100
KRC271	192.0	193.0	0.0790
KRC271	193.0	194.0	0.3920
KRC271	194.0	195.0	0.2270
KRC271	195.0	196.0	0.3780
KRC271	196.0	197.0	0.5950
KRC271	197.0	198.0	1.1000
KRC271	198.0	199.0	1.3950
KRC271	199.0	200.0	1.6250
KRC271	200.0	201.0	1.2150
KRC271	201.0	202.0	0.6330
KRC271	202.0	203.0	0.6760
KRC271	203.0	204.0	0.5370
KRC271	204.0	205.0	0.4120
KRC271	205.0	206.0	0.9540
KRC271	206.0	207.0	0.3420
KRC271	207.0	208.0	0.4780
KRC271	208.0	209.0	0.5820
KRC271 KRC271	209.0	210.0	0.5350
KRC271	210.0	211.0	0.4810 1.0050
KRC271	211.0	212.0	0.2510
KRC271	212.0	213.0	0.2310
KRC271	213.0	214.0	0.5220
KRC272	214.0 193.0	215.0 194.0	0.3220
KRC272	194.0	194.0	0.6390
KRC272	195.0	196.0	0.4690
KRC272	196.0	197.0	0.2160
KRC272	200.0	201.0	0.8340
KRC272	201.0	202.0	0.2080
KRC272	202.0	203.0	0.3050
KRC272	203.0	204.0	0.1410
KRC272	204.0	205.0	0.7710
KRC272	205.0	206.0	0.2880
KRC272	209.0	210.0	0.3250
KRC272	210.0	211.0	0.2020
KRC272	211.0	212.0	0.0860
KRC272	212.0	213.0	0.3880
KRC272	213.0	214.0	0.3510
KRC272	214.0	215.0	0.4780
KRC272	215.0	216.0	0.0790
KRC272	216.0	217.0	0.1950
KRC272	217.0	218.0	0.2270
KRC272	218.0	219.0	0.3980
KRC272	219.0	220.0	0.3030
KRC272	220.0	221.0	0.2400
KRC272	221.0	222.0	0.3290
KRC272	222.0	223.0	0.3960
KRC272 KRC272	223.0	224.0	0.7850
KRC272	224.0	225.0	1.0950 0.7190
KRC272	225.0 226.0	226.0 227.0	0.7190
KRC272	227.0	227.0	0.2520
KRC272	228.0	229.0	0.1860
KRC272	229.0	230.0	0.3360
KRC272	230.0	231.0	0.2810
KRC274	189.0	190.0	0.2680
	200.0	250.5	

Hole ID	From (m)	To (m)	Gold g/t
KRC274	190.0	191.0	0.2250
KRC274	191.0	192.0	0.3580
KRC274	192.0	193.0	0.0510
KRC274	193.0	194.0	0.1080
KRC274	194.0	195.0	0.5730
KRC274	195.0	196.0	0.5960
KRC274	196.0	197.0	0.2310
KRC274	197.0	198.0	0.8040
KRC274	201.0	202.0	0.2590
KRC274	202.0	203.0	0.9120
KRC274	203.0	204.0	0.3190
KRC274	204.0	205.0	0.0610
KRC274	205.0	206.0	0.2090
KRC274	220.0	221.0	1.8350
KRC274	221.0	222.0	0.2980
KRC274	222.0	223.0	0.4410
KRC274	223.0	224.0	0.1270
KRC274	224.0	225.0	0.2110
KRC274	225.0	226.0	0.2580
KRC274	226.0	227.0	3.0400
KRC274	227.0	228.0	0.0860
KRC274	228.0	229.0	0.5440
KRC274	229.0	230.0	0.3090
KRC274	230.0	231.0	0.2470
KRC274	231.0	232.0	0.9690
KRC274	232.0	233.0	2.6300
KRC274	233.0	234.0	0.7020
KRC274 KRC274	234.0	235.0	0.1710
KRC274	235.0	236.0	0.2000 0.1210
KRC274	236.0 237.0	237.0 238.0	0.1210
KRC274	238.0	239.0	0.3220
KRC274	239.0	240.0	0.2530
KRC274	240.0	241.0	0.4830
KRC274	241.0	242.0	0.7180
KRC274	242.0	243.0	0.1750
KRC274	243.0	244.0	0.0260
KRC274	244.0	245.0	0.4940
KRC274	245.0	246.0	0.3190
KRC274	246.0	247.0	0.4470
KRC274	247.0	248.0	0.0730
KRC274	248.0	249.0	0.0410
KRC274	249.0	250.0	0.2930
KRC274	250.0	251.0	0.0730
KRC274	251.0	252.0	0.3870
KRC286	58.0	59.0	1.2750
KRC286	59.0	60.0	0.4730
KRC286	60.0	61.0	0.2510
KRC287	268.0	269.0	0.4650
KRC287	269.0	270.0	0.1530
KRC287	270.0	271.0	0.7800
KRC287	271.0	272.0	0.4320
KRC287	272.0	273.0	0.8990
KRC287	273.0	274.0	0.1670
KRC287	274.0	275.0	0.0350
KRC287	275.0	276.0	0.5820
KRC287	276.0	277.0	0.1230
KRC287	277.0	278.0	0.3710
KRC287	346.0	347.0	0.4700
KRC287	347.0	348.0	0.2220

Hole ID	From (m)	To (m)	Gold g/t
KRC287	348.0	349.0	0.2430
KRC287	349.0	350.0	1.5100
KRC287	350.0	351.0	0.4550
KRC287	354.0	355.0	0.3350
KRC287	355.0	356.0	0.8080
KRC287	356.0	357.0	0.5310
KRC288	240.0	241.0	0.3210
KRC288	241.0	242.0	0.1320
KRC288	242.0	243.0	1.5100
KRC288	243.0	244.0	0.4860
KRC288	244.0	245.0	0.5600
KRC288	245.0	246.0	0.1180
KRC288	246.0	247.0	0.1110
KRC288	247.0	248.0	0.3740
KRC288	248.0	249.0	0.2530
KRC288	249.0	250.0	0.2910
KRC288	250.0	251.0	2.9600
KRC288	251.0	252.0	0.2590
KRC288	260.0	261.0	0.4140
KRC288	261.0	262.0	0.1850
KRC288	262.0	263.0	2.2900
KRC288	263.0	264.0	7.4000
KRC288 KRC288	264.0	265.0	0.2000 0.3910
KRC288	265.0	266.0	0.3910
KRC288	266.0	267.0	0.1390
KRC288	267.0 268.0	268.0 269.0	0.3540
KRC289	39.0	40.0	0.2510
KRC289	40.0	41.0	1.1500
KRC289	41.0	42.0	0.9930
KRC289	42.0	43.0	0.1380
KRC289	43.0	44.0	0.8010
KRC289	44.0	45.0	0.3780
KRC290	6.0	7.0	2.0600
KRC290	7.0	8.0	0.6340
KRC290	8.0	9.0	0.5190
KRC290	9.0	10.0	0.0660
KRC290	10.0	11.0	0.0025
KRC290	11.0	12.0	2.2200
KRC290	12.0	13.0	4.3800
KRC290	13.0	14.0	0.4960
KRC290	14.0	15.0	0.5060
KRC290	15.0	16.0	1.8900
KRC290	16.0	17.0	2.0600
KRC290	17.0	18.0	0.7550
KRC290	18.0	19.0	0.1960
KRC290	19.0	20.0	0.2910
KRC290	67.0	68.0	1.5300
KRC290	68.0	69.0	0.4950
KRC290	69.0	70.0	1.7750
KRC290	70.0	71.0	0.4070
KRC290	71.0	72.0	0.5880
KRC290	77.0	78.0	0.2350
KRC290 KRC290	78.0	79.0	0.0630
KRC290 KRC290	79.0	80.0	0.2230
KRC290 KRC290	80.0 81.0	81.0 82.0	0.1040 0.8400
KRC290	82.0	83.0	0.6080
KRC290	83.0	84.0	0.0080
KRC290	84.0	85.0	0.3290
	U 1 .U	05.0	0.3230

Hole ID	From (m)	To (m)	Gold g/t
KRC295	244.0	245.0	0.9850
KRC295	245.0	246.0	0.1450
KRC295	246.0	247.0	0.4650
KRC295	247.0	248.0	0.5350
KRC295	248.0	249.0	0.3890
KRC295	252.0	253.0	1.1950
KRC295	253.0	254.0	0.4960
KRC295	254.0	255.0	0.2730
KRC295	255.0	256.0	1.4900
KRC295	256.0	257.0	1.5750
KRC295	257.0	258.0	0.7650
KRC295	258.0	259.0	0.1530
KRC295	259.0	260.0	2.2500
KRC295	294.0	295.0	1.3900
KRC295	295.0	296.0	1.7900
KRC295	296.0	297.0	0.2050
KRC295	297.0	298.0	0.1510
KRC295	298.0	299.0	0.2060
KRC296	188.0	189.0	0.2000
KRC296	189.0	190.0	0.1490
KRC296	190.0	191.0	0.0420
KRC296	191.0	192.0	0.4840
KRC296	192.0	193.0	0.1470
KRC296	193.0	194.0	0.2030
KRC296	213.0	214.0	0.2540
KRC296	214.0	215.0	0.2040
KRC296	215.0	216.0	0.0110
KRC296	216.0	217.0	0.3400
KRC296	217.0	218.0	0.0400
KRC296	218.0	219.0	0.0340
KRC296	219.0	220.0	0.3540
KRC296	220.0	221.0	0.1100
KRC296	221.0	222.0	0.2780
KRC296	222.0	223.0	0.5320
KRC296	223.0	224.0	0.0970
KRC296 KRC296	224.0	225.0	0.0480 0.7520
KRC296	225.0	226.0	0.7320
KRC297	226.0	227.0 187.0	0.3330
KRC297	186.0 187.0		0.3220
KRC297	188.0	188.0 189.0	0.5650
KRC297	189.0	190.0	0.2950
KRC298	103.0	104.0	0.2370
KRC298	104.0	105.0	0.0710
KRC298	105.0	106.0	0.1410
KRC298	106.0	107.0	0.5940
KRC298	107.0	108.0	0.2810
KRC298	108.0	109.0	1.5450
KRC298	109.0	110.0	0.9020
KRC298	110.0	111.0	0.8750
KRC298	111.0	112.0	0.7280
KRC298	112.0	113.0	0.4420
KRC298	113.0	114.0	1.6300
KRC298	114.0	115.0	1.8550
KRC298	115.0	116.0	1.0050
KRC298	116.0	117.0	1.2100
KRC298	117.0	118.0	1.8250
KRC298	118.0	119.0	0.9690
KRC298	119.0	120.0	1.5250
KRC298	120.0	121.0	0.4680
-			

Hole ID	From (m)	To (m)	Gold g/t
KRC298	121.0	122.0	0.7620
KRC298	122.0	123.0	2.1400
KRC298	123.0	124.0	1.6350
KRC298	124.0	125.0	0.0240
KRC298	125.0	126.0	0.3140
KRC298	126.0	127.0	2.4100
KRC298	127.0	128.0	1.0550
KRC298	136.0	137.0	0.2290
KRC298	137.0	138.0	0.0070
KRC298	138.0	139.0	0.7220
KRC298	139.0	140.0	9.2700
KRC298	140.0	141.0	0.4560
KRC298	141.0	142.0	0.8270
KRC298	142.0	143.0	1.2100
KRC298	143.0	144.0	0.2400
KRC298	169.0	170.0	0.4040
KRC298	170.0	171.0	0.4330
KRC298	171.0	172.0	0.1100
KRC298	172.0	173.0	0.5130
KRC298	173.0	174.0	0.4140
KRC298	174.0	175.0	0.9250
KRC298	175.0	176.0	0.1590
KRC298	176.0	177.0	0.2300
KRC298	180.0	181.0	0.4170
KRC298	181.0	182.0	0.0320
KRC298	182.0	183.0	0.1490
KRC298	183.0	184.0	0.5340
KRC298	184.0	185.0	0.1330
KRC298	185.0	186.0	0.2440
KRC298	186.0	187.0	0.8770
KRC298	187.0	188.0	0.4600
KRC298	188.0	189.0	0.3830
KRC298	189.0	190.0	0.7790
KRC298	194.0	195.0	0.5250
KRC298	195.0	196.0	0.3360
KRC298	196.0	197.0	1.3200
KRC298	197.0	198.0	0.4380
KRC298	198.0	199.0	0.0100
KRC298	199.0	200.0	0.4320
KRC298	200.0	201.0	0.4450
KRC298	201.0	202.0	0.0025
KRC298	202.0	203.0	0.4320
KRC298	203.0	204.0	0.4190
KRC298	204.0	205.0	1.6050
KRC298	205.0	206.0	0.4620
KRC298	206.0	207.0	2.0500
KRC298	207.0	208.0	0.4340
KRC298	208.0	209.0	0.0590
KRC298	209.0	210.0	0.4870
KRC298	210.0	211.0	0.0380
KRC298	211.0	212.0	0.0490
KRC298	212.0	213.0	0.6350
KRC298	213.0	214.0	0.1940
KRC298	214.0	215.0	0.1380
KRC298	215.0	216.0	0.3040
KRC299	40.0	41.0	0.6190
KRC299	41.0	42.0	0.3710
KRC299	42.0	43.0	0.6500
KRC299	43.0	44.0	0.6570
KRC299	44.0	45.0	0.4320

Hole ID	From (m)	To (m)	Gold g/t
KRC299	45.0	46.0	0.3650
KRC299	46.0	47.0	0.5050
KRC299	47.0	48.0	0.1650
KRC299	48.0	49.0	1.9000
KRC299	49.0	50.0	0.1190
KRC299	50.0	51.0	0.3340
KRC301	94.0	95.0	0.3590
KRC301	95.0	96.0	0.9580
KRC301	96.0	97.0	0.7300
KRC301	97.0	98.0	0.9700
KRC301	98.0	99.0	0.1860
KRC301	99.0	100.0	0.3560
KRC301	100.0	101.0	0.7100
KRC301	101.0	102.0	0.3800
KRC301	102.0	103.0	0.3650
KRC301	103.0	104.0	0.2150
KRC301	104.0	105.0	1.0000
KRC301	105.0	106.0	0.6530
KRC301 KRC301	106.0	107.0	3.6500 3.2100
KRC301	107.0	108.0	1.1900
KRC301	108.0 109.0	109.0 110.0	0.6280
KRC301	110.0	111.0	0.6060
KRC301	111.0	112.0	3.6100
KRC301	112.0	113.0	0.2640
KRC301	113.0	114.0	1.1250
KRC301	114.0	115.0	2.1400
KRC301	115.0	116.0	0.3530
KRC301	116.0	117.0	0.5560
KRC301	117.0	118.0	1.2100
KRC301	118.0	119.0	3.6800
KRC301	119.0	120.0	1.4300
KRC301	120.0	121.0	1.5250
KRC301	121.0	122.0	1.8500
KRC301	122.0	123.0	1.1700
KRC301	123.0	124.0	3.5800
KRC301	124.0	125.0	2.5100
KRC301	125.0	126.0	0.2260
KRC301	126.0	127.0	2.6900
KRC301	127.0	128.0	2.9100
KRC301	128.0	129.0	1.6500
KRC301	129.0	130.0	0.7470
KRC301 KRC301	130.0	131.0	1.8500 0.8050
KRC301	131.0	132.0	1.2900
KRC301	132.0	133.0	2.8200
KRC301	133.0 134.0	134.0 135.0	0.6790
KRC301	135.0	136.0	2.6300
KRC301	136.0	137.0	0.0340
KRC301	137.0	138.0	0.0210
KRC301	138.0	139.0	0.2600
KRC301	139.0	140.0	0.4950
KRC301	140.0	141.0	0.5640
KRC301	141.0	142.0	1.1300
KRC301	142.0	143.0	1.1450
KRC301	143.0	144.0	0.7790
KRC301	144.0	145.0	0.7260
KRC301	145.0	146.0	1.2300
KRC301	146.0	147.0	0.4060
KRC301	147.0	148.0	2.4100

Hole ID	From (m)	To (m)	Gold g/t
KRC301	148.0	149.0	0.8270
KRC301	149.0	150.0	1.1150
KRC301	150.0	151.0	0.8160
KRC301	151.0	152.0	5.3300
KRC301	155.0	156.0	0.3140
KRC301	156.0	157.0	2.4100
KRC301	157.0	158.0	2.7100
KRC301	158.0	159.0	1.3700
KRC301	159.0	160.0	0.2830
KRC301	160.0	161.0	1.4350
KRC301	161.0	162.0	3.0900
KRC301	162.0	163.0	0.5250
KRC301	163.0	164.0	0.6630
KRC301	164.0	165.0	0.5020
KRC301	165.0	166.0	0.6880
KRC301	166.0	167.0	0.1560
KRC301	167.0	168.0	0.3310
KRC301	201.0	202.0	1.5150
KRC301	202.0	203.0	0.9850
KRC301	203.0	204.0	5.0100
KRC301	204.0	205.0	1.2650
KRC301	205.0	206.0	0.4270
KRC301	206.0	207.0	0.5100
KRC301	207.0	208.0	0.3520
KRC301	208.0	209.0	7.8700
KRC301	209.0	210.0	5.5400
KRC301	210.0	211.0	4.8700
KRC301	211.0	212.0	0.2120
KRC301	212.0	213.0	0.0590
KRC301	213.0	214.0	0.9200
KRC301	214.0	215.0	0.1460
KRC301	215.0	216.0	0.2400
KRC301	221.0	222.0	0.5700
KRC301 KRC301	222.0	223.0	0.4770
KRC301	223.0	224.0	0.3240 0.5330
KRC301	228.0 229.0	229.0	2.4300
KRC301	230.0	230.0 231.0	0.8580
KRC301	231.0	232.0	0.6780
KRC301	232.0	233.0	0.5520
KRC301	233.0	234.0	0.0210
KRC301	234.0	235.0	0.8020
KRC301	235.0	236.0	1.4400
KRC301	236.0	237.0	1.5500
KRC301	237.0	238.0	0.6650
KRC301	238.0	239.0	1.2000
KRC301	239.0	240.0	1.5500
KRC301	240.0	241.0	0.7090
KRC301	241.0	242.0	1.2350
KRC301	242.0	243.0	0.2650
KRC301	243.0	244.0	0.4570
KRC301	244.0	245.0	0.1230
KRC301	245.0	246.0	0.4000
KRC301	246.0	247.0	0.3700
KRC301	247.0	248.0	0.5540
KRC301	248.0	249.0	0.1960
KRC301	249.0	250.0	1.6100
KRC301	250.0	251.0	0.7510
KRC301	251.0	252.0	0.2850
KRC301	252.0	253.0	0.1770

Hole ID	From (m)	To (m)	Gold g/t
KRC301	253.0	254.0	0.3870
KRC301	254.0	255.0	0.0480
KRC301	255.0	256.0	0.4510
KRC301	256.0	257.0	0.5990
KRC301	257.0	258.0	0.3300
KRC301	258.0	259.0	0.2910
KRC301	259.0	260.0	0.0320
KRC301	260.0	261.0	0.2700
KRC301	261.0	262.0	0.2140
KRC301	262.0	263.0	0.3210
KRC301	263.0	264.0	0.0750
KRC301	264.0	265.0	0.1190
KRC301	265.0	266.0	0.3500
KRC302	80.0	81.0	0.2660
KRC302	81.0	82.0	0.1080
KRC302	82.0	83.0	0.2000
KRC302	83.0	84.0	0.1580
KRC302	84.0	85.0	0.3640
KRC302	85.0	86.0	0.3540
KRC302	86.0	87.0	0.1730
KRC302	87.0	88.0	0.1410
KRC302	88.0	89.0	0.2020
KRC302	89.0	90.0	0.8810
KRC302	90.0	91.0	0.1910
KRC302	91.0	92.0	0.2690
KRC302	92.0	93.0	0.8590
KRC302	93.0	94.0	0.8230
KRC302	94.0	95.0	0.0280
KRC302	95.0	96.0	0.1850
KRC302	96.0	97.0	0.6730
KRC302	97.0	98.0	0.6800
KRC302	98.0	99.0	0.1650
KRC302	99.0	100.0	0.9520
KRC302	100.0	101.0	0.1770
KRC302	101.0	102.0	0.7360
KRC302	102.0	103.0	0.2690
KRC302	103.0	104.0	0.2400
KRC302	104.0	105.0	1.8800
KRC302	105.0	106.0	0.8240
KRC302	106.0	107.0	1.1150
KRC302	107.0	108.0	1.6150
KRC302	108.0	109.0	4.3700
KRC302	113.0	114.0	1.0750
KRC302	114.0	115.0	0.7530
KRC302	115.0	116.0	1.4250
KRC302	116.0	117.0	0.6920
KRC302	117.0	118.0	3.6900
KRC302	118.0	119.0	8.1600
KRC302	119.0	120.0	1.6450
KRC302	120.0	121.0	1.7500
KRC302	121.0	122.0	0.5140
KRC302	122.0	123.0	0.7820
KRC302	123.0	124.0	1.4150
KRC302	124.0	125.0	0.6900
KRC302	125.0	126.0	0.6210
KRC302	126.0	127.0	1.2850
KRC302	127.0	128.0	0.8250
KRC302	128.0	129.0	0.6200
KRC302	129.0	130.0	0.3610
KRC302	130.0	131.0	0.1570

Hole ID	From (m)	To (m)	Gold g/t
KRC302	131.0	132.0	0.2730
KRC302	142.0	143.0	0.2240
KRC302	143.0	144.0	0.2940
KRC302	144.0	145.0	0.4520
KRC302	145.0	146.0	0.7970
KRC302	146.0	147.0	0.3320
KRC302	147.0	148.0	0.0850
KRC302	148.0	149.0	0.9250
KRC302	149.0	150.0	0.4030
KRC302	169.0	170.0	0.3290
KRC302	170.0	171.0	0.4570
KRC302	171.0	172.0	0.4040
KRC302	178.0	179.0	0.3950
KRC302	179.0	180.0	0.3940
KRC302	180.0	181.0	0.7700
KRC302	181.0	182.0	0.3630
KRC302	182.0	183.0	0.5530
KRC302	183.0	184.0	0.5300
KRC302	184.0	185.0	0.2180
KRC302	185.0	186.0	0.0890
KRC302	186.0	187.0	0.5000
KRC303	79.0	80.0	0.4140
KRC303 KRC303	80.0	81.0	0.3010
KRC303	81.0	82.0	0.3370
KRC303	82.0	83.0	0.8390 0.2310
KRC303	83.0	84.0	0.2310
KRC303	84.0 85.0	85.0 86.0	0.5510
KRC303	86.0	87.0	1.0700
KRC303	87.0	88.0	2.1400
KRC303	92.0	93.0	0.8490
KRC303	93.0	94.0	0.8680
KRC303	94.0	95.0	0.4700
KRC303	95.0	96.0	0.7160
KRC303	96.0	97.0	2.6700
KRC303	97.0	98.0	0.3720
KRC303	101.0	102.0	0.4960
KRC303	102.0	103.0	0.9750
KRC303	103.0	104.0	1.9850
KRC303	104.0	105.0	1.1000
KRC303	105.0	106.0	0.7740
KRC303	106.0	107.0	1.1450
KRC303	107.0	108.0	1.0750
KRC303	108.0	109.0	0.3450
KRC303	109.0	110.0	1.3950
KRC303	110.0	111.0	3.5100
KRC303	111.0	112.0	5.4200
KRC303	112.0	113.0	2.2800
KRC303	113.0	114.0	1.4600
KRC303	114.0	115.0	1.3650
KRC303 KRC303	115.0	116.0	0.7420
KRC303	116.0	117.0	2.0400 0.9500
KRC303	117.0	118.0	2.5600
KRC303	118.0	119.0	0.9510
KRC303	119.0 120.0	120.0 121.0	0.7890
KRC303	120.0	121.0	0.7890
KRC303	129.0	130.0	0.2200
KRC303	130.0	131.0	2.3400
KRC303	131.0	132.0	0.5820
	101.0	_02.0	

Hole ID	From (m)	To (m)	Gold g/t
KRC303	148.0	149.0	0.4250
KRC303	149.0	150.0	0.4650
KRC303	150.0	151.0	0.3720
KRC303	151.0	152.0	0.1740
KRC303	152.0	153.0	0.3960
KRC303	153.0	154.0	1.0300
KRC303	154.0	155.0	0.0590
KRC303	155.0	156.0	0.2840
KRC303	156.0	157.0	0.2080
KRD154	310.2	311.2	0.2000
KRD154	311.2	312.2	0.5510
KRD154	312.2	313.2	0.3910
KRD154	313.2	314.2	0.0420
KRD154	314.2	315.2	0.4510
KRD154	315.2	316.2	0.2190
KRD154	316.2	317.2	0.1730
KRD154	317.2	318.2	0.8210
KRD154	318.2	319.2	1.2650
KRD154	322.2	323.2	0.4470
KRD154	323.2	324.2	2.4900
KRD154	324.2	325.2	0.5410
KRD154	325.2	326.2	1.2150
KRD154	326.2	327.2	0.1490
KRD154	327.2	328.2	0.1190
KRD154	328.2	329.2	0.5700
KRD154	333.2	334.2	2.1500
KRD154	334.2	335.2	0.1590
KRD154	335.2	336.2	0.0240
KRD154	336.2	337.2	0.4580
KRD154	345.2	346.2	0.8990
KRD154	346.2	347.2	0.4550
KRD154	347.2	348.2	0.3250
KRD154	359.2	360.2	0.3400
KRD154	360.2	361.2	0.3160
KRD154	361.2	362.2	0.1690
KRD154	362.2	363.2	0.3530
KRD154	363.2	364.2	0.2330
KRD154	376.2	377.2	0.2320
KRD154	377.2	378.2	1.1250
KRD154	378.2	379.2	3.0000
KRD154	379.2	380.2	0.3450
KRD154 KRD154	380.2	381.2	2.4200
KRD154 KRD154	381.2	382.2	0.4790
KRD154 KRD154	382.2	383.2	0.1530 0.0090
KRD154 KRD154	383.2	384.2	0.0090
KRD154 KRD154	384.2	385.2	3.6600
KRD154 KRD154	385.2	386.2	2.0600
KRD154	386.2	387.2	2.0400
KRD154	387.2 388.2	388.2 389.2	0.0720
KRD154	389.2	390.2	3.5200
KRD292	360.4	361.4	0.3280
KRD292	361.4	362.4	0.3280
KRD292	362.4	363.4	0.1000
KRD292	363.4	364.4	0.9620
KRD292	364.4	365.4	0.3480
KRD292	365.4	366.4	0.3480
KRD292	366.4	367.4	0.1120
KRD292		368.4	0.3060
KRD292	367.4 368.4		0.5000
NND232	368.4	369.4	0.0030

Hole ID	From (m)	To (m)	Gold g/t
KRD292	369.4	370.4	1.1150
KRD292	370.4	371.4	0.4650
KRD292	371.4	372.4	0.7490
KRD292	372.4	373.4	0.3960
KRD292	373.4	374.4	0.6230
KRD292	374.4	375.4	2.1400
KRD292	375.4	376.4	9.5500
KRD292	376.4	377.4	0.8750
KRD292	377.4	378.4	0.5080
KRD292	378.4	379.4	1.0150
KRD292	379.4	380.4	1.4350
KRD292	380.4	381.4	0.6540
KRD292	381.4	382.4	1.2950
KRD292	382.4	383.4	0.1970
KRD292	383.4	384.4	0.4920
KRD292	384.4	385.4	1.5450
KRD292	385.4	386.4	1.4850
KRD292	386.4	387.4	3.8200
KRD292 KRD292	387.4 388.4	388.4	0.7030 0.9660
KRD292	389.4	389.4 390.4	0.5410
KRD292	390.4	391.4	0.0220
KRD292	390.4	392.4	0.0090
KRD292	392.4	393.4	0.2920
KRD292	393.4	394.4	0.4680
KRD292	394.4	395.4	0.0560
KRD292	395.4	396.4	0.1410
KRD292	396.4	397.4	0.5280
KRD292	397.4	398.4	0.5170
KRD292	412.4	413.4	0.3010
KRD292	413.4	414.4	0.0220
KRD292	414.4	415.4	0.0160
KRD292	415.4	416.4	0.2310
KRD292	416.4	417.4	0.7090
KRD292	417.4	418.4	0.1680
KRD292	418.4	419.4	0.0430
KRD292	419.4	420.4	0.3510
KRD292	420.4	421.4	0.1990
KRD292	421.4	422.4	0.2000
KRD294	289.6	290.6	0.2450
KRD294	290.6	291.6	0.2180
KRD294	291.6	292.6	0.3310
KRD294 KRD294	292.6	293.6	1.2300
KRD294	293.6	294.6	0.5360 0.7250
KRD294	294.6 295.6	295.6 296.6	0.7680
KRD294	296.6	297.6	0.2150
KRD294	297.6	298.6	0.4740
KRD294	298.6	299.6	0.4360
KRD294	299.6	300.6	0.4930
KRD294	300.6	301.6	0.4320
KRD294	301.6	302.6	2.1300
KRD294	302.6	303.6	1.1450
KRD294	303.6	304.6	0.6500
KRD294	304.6	305.6	0.2210
KRD294	305.6	306.6	0.1430
KRD294	306.6	307.6	0.5410
KRD294	307.6	308.6	0.2050
KRD294	308.6	309.6	0.5820
KRD294	309.6	310.6	0.9770

Hole ID	From (m)	To (m)	Gold g/t
KRD294	310.6	311.6	1.7900
KRD294	311.6	312.6	2.4300
KRD294	312.6	313.6	0.8280
KRD294	313.6	314.6	0.9150
KRD294	314.6	315.6	0.6270
KRD294	315.6	316.6	0.4780
KRD294	316.6	317.6	1.2600
KRD294	317.6	318.6	1.0150
KRD294	318.6	319.6	0.5060
KRD294	319.6	320.6	1.1450
KRD294	320.6	321.6	0.1170
KRD294	321.6	322.6	0.5070

Hole ID	From (m)	To (m)	Gold g/t
KRD294	322.6	323.6	0.1940
KRD294	323.6	324.6	0.5010
KRD294	324.6	325.6	0.5930
KRD294	325.6	326.6	0.7210
KRD294	326.6	327.6	0.8040
KRD294	327.6	328.6	0.3490
KRD294	328.6	329.6	0.4940
KRD294	329.6	330.6	0.8820
KRD294	330.6	331.6	0.9960
KRD294	331.6	332.6	0.4230
KRD294	332.6	333.6	0.2340
KRD294	333.6	334.6	0.4270

Appendix 3. Issia Auger collar coordinates and max gold ppb per hole (values above 30ppb)

Hole ID	Easting (m)	Northing (m)	RL (m)	Depth (m)	Dip (°)	Gold ppb
ISSAU0006	124915	722369	222	7	90	108
ISSAU0007	124882	722406	229	5	90	165
ISSAU0008	124859	722441	228	6	90	120
ISSAU0009	124814	722479	233	6	90	189
ISSAU0011	124747	722553	233	7	90	30
ISSAU0015	124548	722180	247	10	90	72
ISSAU0016	124581	722137	239	9	90	75
ISSAU0022	124259	721771	205	6	90	366
ISSAU0023	124231	721815	208	5	90	159
ISSAU0024	124182	721838	215	7	90	69
ISSAU0033	124096	720574	235	7	90	50
ISSAU0036	124329	720916	226	8	90	45
ISSAU0038	124398	720839	240	8	90	72
ISSAU0039	124433	720803	239	8	90	47
ISSAU0041	124495	720727	241	7	90	173
ISSAU0043	124723	721058	227	7	90	66
ISSAU0048	124900	720879	239	5	90	51
ISSAU0050	124961	720800	245	6	90	493
ISSAU0051	124997	720771	248	7	90	116
ISSAU0058	125509	720489	232	6	90	129
ISSAU0059	125543	720449	231	5	90	38
ISSAU0060	125574	720411	228	7	90	228
ISSAU0061	125611	720375	226	4	90	51
ISSAU0062	125642	720338	229	4	90	45
ISSAU0063	125669	720311	225	5	90	57
ISSAU0072	125111	719729	224	8	90	68
ISSAU0074	125178	719659	229	5	90	57
ISSAU0076	124575	719123	234	6	90	32
ISSAU0078	124518	719201	219	6	90	40
ISSAU0079	124478	719238	222	7	90	52
ISSAU0080	124441	719275	224	6	90	31
ISSAU0083	124344	719391	229	6	90	42
ISSAU0093	123246	719415	230	5	90	48
ISSAU0102	122782	719342	206	7	90	332
ISSAU0106	122916	719189	218	6	90	42
ISSAU0109	123033	719079	247	5	90	991
ISSAU0125	123915	718669	226	9	90	51
ISSAU0135	123183	718289	206	6	90	47

Hole ID	Easting (m)	Northing (m)	RL (m)	Depth (m)	Dip (°)	Gold ppb
ISSAU0137	123124	718358	203	6	90	96
ISSAU0142	122452	718509	224	6	90	31
ISSAU0143	122420	718548	223	8	90	71
ISSAU0144	122385	718586	225	7	90	96
ISSAU0145	122355	718622	210	6	90	44
ISSAU0147	122287	718697	203	9	90	40
ISSAU0148	122253	718728	199	5	90	35
ISSAU0150	122012	718504	211	6	90	33
ISSAU0152	122093	718450	213	7	90	44
ISSAU0153	122128	718414	211	9	90	70
ISSAU0156	122234	718306	216	6	90	42
ISSAU0183	121414	717871	241	7	90	95
ISSAU0186	121524	717751	201	7	90	122
ISSAU0188	121601	717680	203	6	90	38
ISSAU0204	120176	717759	220	7	90	100
ISSAU0206	120471	718021	210	6	90	152
ISSAU0207	120512	717993	216	6	90	175
ISSAU0225	120441	718661	204	7	90	31
ISSAU0308	124129	721775	227	9	90	47
ISSAU0309	124161	721738	229	7	90	718
ISSAU0310	124192	721703	227	10	90	133
ISSAU0315	124433	722044	242	9	90	44
ISSAU0317	124499	721961	238	10	90	1455
ISSAU0325	124709	722335	237	9	90	74
ISSAU0326	124738	722294	240	9	90	155
ISSAU0327	124778	722256	240	10	90	70
ISSAU0328	124806	722218	242	10	90	44
ISSAU0332	125178	722398	240	6	90	36
ISSAU0384	125280	721310	238	6	90	36
ISSAU0385	125139	721196	261	5	90	36
ISSAU0396	125364	720005	220	10	90	75
ISSAU0397	125395	719966	217	9	90	79
ISSAU0398	125425	719929	214	7	90	42
ISSAU0416	124560	720960	222	9	90	41
ISSAU0438	124645	719304	212	9	90	35
ISSAU0440	124572	719360	207	4	90	44
ISSAU0442	124494	719436	211	6	90	41
ISSAU0454	124133	718968	232	10	90	111

Hole ID	Easting (m)	Northing (m)	RL (m)	Depth (m)	Dip (°)	Gold ppb
ISSAU0455	124167	718937	234	10	90	95
ISSAU0480	122795	719151	206	7	90	33
ISSAU0481	122763	719191	205	6	90	63
ISSAU0492	123685	718579	215	10	90	30
ISSAU0500	123066	718073	236	10	90	126
ISSAU0504	122939	718217	223	9	90	31
ISSAU0514	122912	717954	225	12	90	201
ISSAU0516	122830	717793	214	9	90	40
ISSAU0526	122583	718639	211	7	90	93
ISSAU0527	122539	718664	211	9	90	411
ISSAU0528	122491	718681	212	7	90	73
ISSAU0531	122111	718574	216	6	90	37
ISSAU0532	122130	718534	217	6	90	817
ISSAU0533	122173	718503	218	6	90	102
ISSAU0534	122213	718460	221	6	90	61
ISSAU0536	122280	718389	225	8	90	40
ISSAU0543	121610	717947	221	10	90	31
ISSAU0557	120448	717721	228	12	90	36

Hole ID	Easting (m)	Northing (m)	RL (m)	Depth (m)	Dip (°)	Gold ppb
ISSAU0687	120138	717476	226	10	90	370
ISSAU1017	122718	720405	210	7	90	79
ISSAU1018	122684	720438	216	6	90	32
ISSAU1019	122648	720481	224	9	90	30
ISSAU1032	123608	719727	229	7	90	189
ISSAU1040	123853	718998	226	9	90	70
ISSAU1050	124397	719015	243	8	90	42
ISSAU1051	124366	719049	234	9	90	79
ISSAU1061	125529	720107	215	6	90	31
ISSAU1071	125163	720523	240	8	90	33
ISSAU1095	124915	719793	217	7	90	91
ISSAU1101	124361	720695	239	10	90	73
ISSAU1103	124298	720765	237	10	90	31
ISSAU1112	124514	720873	229	10	90	52
ISSAU1113	124543	720829	234	9	90	30
ISSAU1126	124343	721972	224	7	90	50
ISSAU1127	124380	721938	226	8	90	71

what method, etc).

Appendix 4. JORC Table 1 Reporting

		Commentary
Criteria Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation (RC) drilling was completed using a dedicated RC rig. RC samples were collected from the drill rig cyclone over 1 m down-hole intervals and subsampled by cone-splitting; full length of the drill holes was sampled. Samples are typically circa 2-4kg weight. A duplicate sample was retained on site for future reference. Diamond drilling was completed using a dedicated diamond rig. Drillholes were angled at -60° from surface. Diamond core was cut in half using a core saw. Sampling intervals are decided by a Company Geologist, based on the lithological contacts and on any change in alteration or mineralisation style. Core sample length vary between 0.5m and 1.4m. The half core sampling is done by a Company Geologist. Auger Samples were collected using auger drill rigs, using 1.5m rods of 90mm diameter. Two samples are generally collected per auger hole, which are determined by the supervising geologist: a first sample at the base of the lateritic profile, where supergene gold enrichment could be expected and a second sample at the end of the hole, in the upper saprolite horizon. Max depth of the holes varies between 3m and 15m, depending on the regolith profile intersected, with an average depth of 8m. Field duplicates, CRMs or blank material inserted every 10 samples – QAQC samples represent 10% of the sampling. Samples despatched to the Bureau Veritas laboratory in Abidjan. Sample preparation includes drying entire sample, crushing to 70% passing 2mm, riffle splitting and
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc)	 RC drilling was carried out using a 140mm (5.5 inch) face sampling hammer. Coring was completed using HQ size from surface. All core is oriented using Reflex digital system

Auger rigs use 1.5m rods of 90mm diameter; maximum depth varies depending on the regolith profile intersected but does not exceed 20m

Criteria	JORC Code explanation	Commentary
		depth.Auger holes are drilled vertically, samples are considered as sub-surface geochemical samples.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC recoveries were determined by weighting each drill metre bag. Samples are sieved and logged by supervising Geologist; sample weight, quality, moisture and any contamination are recorded. RC samples quality and recovery was excellent, with dry samples and consistent weight obtained. Drill core recoveries were recorded at the drill rig. Core recoveries were excellent for all the drill program. Sample bias is not expected with the cut core. Auger drilling is a sub-surface geochemical method and is considered a reconnaissance method only
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill holes were logged in the field by Company Geologists. On the RC holes, lithologies, alteration, minerals were recorded. Samples chips are collected and sorted into chip trays for future geological references. On the diamond holes, lithologies, alteration, minerals geotechnical measurements and structural data were recorded and uploaded into the Company database. Photography was taken on dry and wet core and on plain and cut core for further references. Drill holes were logged in full. Logging was qualitative and quantitative in nature.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The RC samples were collected from the rig cyclone and passed through a riffle splitter to reduce sample weight to a circa 2-4kg. The sampling technique is considered industry standard and effective for this style of drilling. Samples were crushed and pulverized at the ALS laboratory in Okahandja before being shipped to Johannesburg for assay. RC samples were assayed using method Au-AA24 for gold. The sample preparation procedures carried out are considered acceptable. Blanks, standards (CRM) and duplicates are used to monitor Quality Control and representativeness of samples. The diamond core was cut longitudinally using a core saw. Half core samples were collected by a Company Geologist and sent off to the laboratory for assay. Half core samples were crushed and pulverized at the ALS laboratory in Okahandja before being shipped to Johannesburg for assay.

• Drilling samples were assayed using methods Au-

Criteria	JORC Code explanation	Commentary
Officia	ooko oode explanation	
		 AA24 for gold. The sample preparation procedures carried out are considered acceptable. Blanks and standards (CRM) are used to monitor Quality Control and representativeness of samples.
		 The entire auger sample is quartered in the field, to reach a weight of 2 to 2.5 kg.
		 Field duplicates, CRMs or blank material inserted every 10 samples – QAQC samples represent 10% of the sampling.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 RC samples and half core samples were assayed by 50g Lead collection fire assay in new pots and analysed by Atomic Absorption Spectroscopy (AAS) for gold. Industry best practice procedures were followed and included submitting blanks, field duplicates and Certified Reference Material. Acceptable levels of accuracy and precision have been confirmed. Auger samples were despatched to the Bureau Veritas laboratory in Abidjan Auger samples preparation includes drying entire sample, crushing to 70% passing 2mm, riffle splitting and pulverizing 1kg to 85% passing 75µm. Analysis of gold is by fire assay using a 50g charge with analysis by AAS finish yielding a detection limit of 2 parts per billion (ppb). Company QAQC samples and Lab inserted QAQC regular reviews suggest the laboratory is performing within acceptable precision.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 At this stage, the intersections have been verified by the Company Geologists. All field data is manually collected, entered into excel spreadsheets, validated and loaded into a database. Electronic data is stored on a cloud server and routinely backed up. Data is exported from the database for processing in a number of software packages.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes collar locations were recorded at the completion of each hole by hand-held GPS. Coordinates collected in Namibia are in the WGS84 Zone 33S grid system Coordinates collected in Côte d'Ivoire are in the WGS84 Zone 30N grid system
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade 	 RC drill holes and diamond drill holes reported here were planned on a set grid with spacing of 100m in plan view and 50m between holes on sections. The data spacing and distribution of sampling is

Criteria	JORC Code explanation	Commentary
	continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied.	 sufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource estimation procedures. Auger holes are drilled on a 25m x 100m grid by targets The methods are not applicable for any resource estimation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes were positioned using geological information collected from the trenches and from the detailed mapping completed over the prospect. They are positioned perpendicular to the main schistosity and so to the inferred mineralisation main controls. Auger holes sampling grids are positioned perpendicular to the major structural trends interpreted from the field mapping and from the geophysical imagery.
Sample security	The measures taken to ensure sample security.	Sampling is supervised by a Company Geologist and all samples are delivered to the laboratory in Okahandja by company staff, for the Namibian samples, and to the Bureau Veritas laboratory in Abidjan for the Côte d'Ivoire samples
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No reviews or audits have been conducted on the drilling reported in this report.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 In Namibia, the Damaran Project comprises 11 exclusive prospecting licenses (EPLs 6226, 4833, 8039, 7246, 4818, 4953, 6534, 6535, 8249,8709,7980) and located in central Namibia. EPL6226 is 100% held by Wia Gold in the name of Aloe Investments One Hundred and Ninety Two (Pty) Ltd. EPL4833, 4818, 7246, 8039 and 8249 are held under an 80% earn-in and join venture agreement with Epangelo Mining Limited, a private mining investment company with the Government of the Republic of Namibia as the sole shareholder. EPL6534, 6535, and 4953 are held under a company called Gazina Investments which is owned 90% by Wia and 10% by the vendor. EPL7980 and 8709 are 100% held by WiaGold in the name of Damaran Exploration Namibia (PTY) Ltd. EPL8738 is under an agreement with an exclusive option to acquire the permit under a NewCo at Wia election. All granted tenements are in good standing and there are no material issues affecting the tenements.

Criteria	JORC Code explanation	Commentary
		 In Côte d'Ivoire, the Bocanda Nord licence (granted under the unique ID PR844) is held under Ivoirian Resources which is a local subsidiary of Predictive Discovery. The Bouaflé Sud licence is granted under the unique ID PR861 and the Bouaflé Nord licence is granted under the unique ID PR822. Both the licences, plus the Zenoula application which make the Bouaflé Project are respectively held under Rampage Resources which is a local subsidiary of West African Venture Investments. The Mankono Ouest licence is granted under the unique ID PR871. The licence and the other permit applications of Mankono Est, Bouandougou and Kouata are held under Moaye Resources which is a local subsidiary of West African Venture Investments. The Issia licence is granted under the unique ID PR880, is held under Ivoirian Resources which is a local subsidiary of Predictive Discovery. Further details of the joint ventures can be found in the ASX announcement of 8 September 2020. All granted tenements are in good standing and there are no material issues affecting the tenements.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Work completed prior to WiaGold in Namibia includes stream sediment sampling, mapping, soil and rock chip sampling by Teck Cominco Namibia but data is unavailable. This work did not cover the Okombahe permit, host of the Kokoseb gold discovery. Work completed prior to Wia Gold in Côte d'Ivoire includes soils sampling, aircore drilling and diamond drilling, completed by Newcrest Mining Limited under their in-country subsidiary Equigold. This, on both the Mankono Ouest and the Bouaflé Sud licences.
Geology	Deposit type, geological setting and style of mineralisation.	 The Kokoseb Gold Project lies withing the Northern Central Zone of the Pan-African Damaran Orogenic Belt. The project area is underlain by neo-Proterozoic metasediments, including the Kuiseb schist formation, host of most of the known gold mineralisation in Namibia. Known gold deposits, including Kokoseb, are orogenic type deposits by nature. Kokoseb gold mineralisation is hosted by the Kuiseb schist formation, biotite-schists (metasediments) which have been intruded by several granitic phases. The gold mineralised zone appears as a contact like aureole of the central granitic pluton, with a diameter of approximately 3km in each direction. Gold mineralisation is present as native gold grains and lesser silver bearing gold grains been spacially associated with sulphides dominated by pyrrhotite, löllingite and arsenopyrite. Gold grains

Criteria	JORC Code explanation	Commentary
		 have developed at the contact between löllingite and arsenopyrite following a retrograde reaction. The gold mineralisation at the Côte d'Ivoire Projects generally fits the Orogenic hosted Gold deposit model as applied to the Birimian systems of West Africa.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• see tables in the appendix.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 RC and core reported intercepts are calculated using weighted average at a cut-off grade of 0.5 g/t Au and allowing internal dilution of maximum 2m consecutive low-grade material. All significant gold in auger results are reported in the appendix tables.
Relationshi p between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drill holes are inclined at around 55 to 60 degrees, with azimuths generally perpendicular to local mineralisation trends, implying a true thickness around half the down-hole intercept lengths. Intercepts are reported as they appear from the sampling. Auger results reported in this report are considered to be of an early stage in the exploration of the Projects.

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Plan view maps of all drillhole are included.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All samples with assays have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data is being reported at this time.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Refer to the text in the report for information on follow-up and/or next work programs.

Appendix 5B

Mining exploration entity or oil and gas exploration entity quarterly cash flow report

Name of entity

Wia Gold Limited	
ABN	Quarter ended ("current quarter")
41 141 940 230	30 September 2024

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date (3 months) \$A'000
1.	Cash flows from operating activities		
1.1	Receipts from customers	-	-
1.2	Payments for		
	(a) exploration & evaluation	-	-
	(b) development	-	-
	(c) production	-	-
	(d) staff costs	(118)	(118)
	(e) administration and corporate costs	(178)	(178)
1.3	Dividends received (see note 3)	-	-
1.4	Interest received	38	38
1.5	Interest and other costs of finance paid	-	-
1.6	Income taxes paid	-	-
1.7	Government grants and tax incentives	-	-
1.8	Other (provide details if material)	-	-
1.9	Net cash from / (used in) operating activities	(258)	(258)

2.	Ca	sh flows from investing activities		
2.1	Pay	yments to acquire or for:		
	(a)	entities	-	-
	(b)	tenements	-	-
	(c)	property, plant and equipment	(1)	(1)
	(d)	exploration & evaluation	(3,847)	(3,847)
	(e)	investments	-	-
	(f)	other non-current assets	-	-

ASX Listing Rules Appendix 5B (17/07/20)

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date (3 months) \$A'000
2.2	Proceeds from the disposal of:		
	(a) entities	-	-
	(b) tenements	-	-
	(c) property, plant and equipment	-	-
	(d) investments	-	-
	(e) other non-current assets	-	-
2.3	Cash flows from loans to other entities	-	-
2.4	Dividends received (see note 3)	-	-
2.5	Other (provide details if material)	-	-
2.6	Net cash from / (used in) investing activities	(3,848)	(3,848)

3.	Cash flows from financing activities		
3.1	Proceeds from issues of equity securities (excluding convertible debt securities)	1,741	1,741
3.2	Proceeds from issue of convertible debt securities	-	-
3.3	Proceeds from exercise of options	-	-
3.4	Transaction costs related to issues of equity securities or convertible debt securities	(37)	(37)
3.5	Proceeds from borrowings	-	-
3.6	Repayment of borrowings	-	-
3.7	Transaction costs related to loans and borrowings	-	-
3.8	Dividends paid	-	-
3.9	Other (provide details if material)	-	-
3.10	Net cash from / (used in) financing activities	1,704	1,704

4.	Net increase / (decrease) in cash and cash equivalents for the period		
4.1	Cash and cash equivalents at beginning of period	15,178	15,178
4.2	Net cash from / (used in) operating activities (item 1.9 above)	(258)	(258)
4.3	Net cash from / (used in) investing activities (item 2.6 above)	(3,848)	(3,848)
4.4	Net cash from / (used in) financing activities (item 3.10 above)	1,704	1,704

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date (3 months) \$A'000
4.5	Effect of movement in exchange rates on cash held	(7)	(7)
4.6	Cash and cash equivalents at end of period	12,769	12,769

5.	Reconciliation of cash and cash equivalents at the end of the quarter (as shown in the consolidated statement of cash flows) to the related items in the accounts	Current quarter \$A'000	Previous quarter \$A'000
5.1	Bank balances	12,749	704
5.2	Call deposits	-	14,454
5.3	Bank overdrafts	-	-
5.4	Other (provide details)	20	20
5.5	Cash and cash equivalents at end of quarter (should equal item 4.6 above)	12,769	15,178

6.	Payments to related parties of the ent associates	ity and their	Current quarter \$A'000
6.1	Aggregate amount of payments to related pa associates included in item 1	arties and their	30
7026 .2	Aggregate amount of payments to related pa associates included in item 2	arties and their	-
Fees,	salaries and superannuation paid to Directors.		
7.	Financing facilities Note: the term "facility' includes all forms of financing arrangements available to the entity. Add notes as necessary for an understanding of the sources of finance available to the entity.	Total facility amount at quarter end \$A'000	Amount drawn at quarter end \$A'000
7.1	Loan facilities	-	-
7.2	Credit standby arrangements	-	-
7.3	Other (please specify)	-	-
7.4	Total financing facilities	-	-
7.5	Unused financing facilities available at qu	uarter end	
7.6	Include in the box below a description of each rate, maturity date and whether it is secured facilities have been entered into or are proposinclude a note providing details of those facilities.	or unsecured. If any add osed to be entered into af	itional financing

8.	Estim	ated cash available for future operating activities	\$A'000
8.1	Net ca	sh from / (used in) operating activities (item 1.9)	(258)
8.2		ents for exploration & evaluation classified as investing es) (item 2.1(d))	(3,847)
8.3	Total re	elevant outgoings (item 8.1 + item 8.2)	(4,105)
8.4	Cash a	and cash equivalents at quarter end (item 4.6)	12,769
8.5	Unuse	d finance facilities available at quarter end (item 7.5)	-
8.6	Total a	vailable funding (item 8.4 + item 8.5)	12,769
8.7	Estima	ated quarters of funding available (item 8.6 divided by3)	3.11
		he entity has reported positive relevant outgoings (ie a net cash inflow) in item 8. se, a figure for the estimated quarters of funding available must be included in it	
8.8	If item 8.7 is less than 2 quarters, please provide answers to the following questions:		
	8.8.1	Does the entity expect that it will continue to have the current I cash flows for the time being and, if not, why not?	evel of net operating
	8.8.1 Answe	cash flows for the time being and, if not, why not?	evel of net operating
	[cash flows for the time being and, if not, why not?	steps, to raise further
	Answe	cash flows for the time being and, if not, why not? r: N/A Has the entity taken any steps, or does it propose to take any cash to fund its operations and, if so, what are those steps and believe that they will be successful?	steps, to raise further
	Answe 8.8.2	cash flows for the time being and, if not, why not? r: N/A Has the entity taken any steps, or does it propose to take any cash to fund its operations and, if so, what are those steps and believe that they will be successful?	steps, to raise further d how likely does it
	Answe 8.8.2	cash flows for the time being and, if not, why not? r: N/A Has the entity taken any steps, or does it propose to take any cash to fund its operations and, if so, what are those steps and believe that they will be successful? r: N/A Does the entity expect to be able to continue its operations and objectives and, if so, on what basis?	steps, to raise further d how likely does it

Compliance statement

- 1 This statement has been prepared in accordance with accounting standards and policies which comply with Listing Rule 19.11A.
- 2 This statement gives a true and fair view of the matters disclosed.

Date:	28 October 2024
Authorised by:	Scott Funston - CFO
,	(Name of body or officer authorising release – see note 4)

Notes

1. This quarterly cash flow report and the accompanying activity report provide a basis for informing the market about the entity's activities for the past quarter, how they have been financed and the effect this has had on its cash position. An

- entity that wishes to disclose additional information over and above the minimum required under the Listing Rules is encouraged to do so.
- 2. If this quarterly cash flow report has been prepared in accordance with Australian Accounting Standards, the definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report. If this quarterly cash flow report has been prepared in accordance with other accounting standards agreed by ASX pursuant to Listing Rule 19.11A, the corresponding equivalent standards apply to this report.
- 3. Dividends received may be classified either as cash flows from operating activities or cash flows from investing activities, depending on the accounting policy of the entity.
- 4. If this report has been authorised for release to the market by your board of directors, you can insert here: "By the board". If it has been authorised for release to the market by a committee of your board of directors, you can insert here: "By the [name of board committee eg Audit and Risk Committee]". If it has been authorised for release to the market by a disclosure committee, you can insert here: "By the Disclosure Committee".
- 5. If this report has been authorised for release to the market by your board of directors and you wish to hold yourself out as complying with recommendation 4.2 of the ASX Corporate Governance Council's *Corporate Governance Principles and Recommendations*, the board should have received a declaration from its CEO and CFO that, in their opinion, the financial records of the entity have been properly maintained, that this report complies with the appropriate accounting standards and gives a true and fair view of the cash flows of the entity, and that their opinion has been formed on the basis of a sound system of risk management and internal control which is operating effectively.