ASX Announcement

17 August 2021 ASX: WMC

WILUNA NICKEL PROJECT

HIGHLIGHTS

• Historical drilling intersected nickel sulphides with elevated cobalt, copper and platinum-group elements at the Wiluna Nickel Project, including:

RWD00014:	0.3m @ 6.64% Ni + 0.09% Co + 0.26% Cu from 88.6m
WILRC001:	1m @ 6.38% Ni + 0.11% Co + 0.50% Cu + 2.48g/t (Pt +Pd) from 72m
WILRC002:	1m @ 2.67% Ni + 0.05% Co + 0.38% Cu + 1.42g/t (Pt +Pd) from 92m
95WJVP251:	2m @ 2.15% Ni + 1.00g/t (Pt +Pd) from 74m

- Wiluna Mining owns 100% of sulphide rights over 40km of strike on the prospective Perseverance ultramafics in the Wiluna Greenstone Belt.
- Multiple exploration targets are identified from various geological, geochemical, geophysical and drilling data sets, including several nickel sulphide showings and various untested targets.
- Wilconi Joint Venture with A-Cap Energy Ltd in place to explore and develop laterite deposits of nickel, cobalt and associated metals, includes laterite Mineral Resource of 78.8Mt @ 0.74% Ni + 0.07% Co.
- A-Cap is currently advancing a Definitive Feasibility Study into development of a Ni-Co laterite operation taking advantage of new materials processing and refining technologies to supply critical materials to the global electric vehicle market.
- The Company is evaluating options for exploration at the Wiluna Nickel Project.

Wiluna Mining Corporation Limited (ASX: WMC) (Wiluna Mining, WMC or the Company) is pleased to announce highly encouraging results of a review of nickel, cobalt and platinum group element prospectivity at the Company's 1,600km² Wiluna Mining Operation.

While the Company's firm focus remains on its two-stage gold development program to reach annualised production of 250,000oz per annum in 2024, the Wiluna project tenure is highly prospective for nickel and other critical battery metals, and the Company is committed to unlocking the significant value held in these high-quality exploration assets.

Wiluna Mining Corporation's tenure in the richly endowed Agnew-Wiluna greenstone belt comprises 40km of strike extent of the Perseverance ultramafic sequence that is prospective for tier-1 nickel-cobalt-platinum group element discoveries (Ni-Co-PGE). Wiluna Mining owns 100% of the mineral rights to Ni-Co-PGE sulphides in the project tenure.

The Agnew-Wiluna greenstone belt hosts world-class deposits including Honeymoon Well (BHP Group Ltd), Mount Keith (BHP) and Cosmos (Western Areas Ltd), all located in the southern Agnew part of the ultramafic belt where BHP holds the dominant position.

The northern ultramafics at Wiluna have not yet yielded similar economic discoveries, owing in part to the focus of previous operators on gold, and multiple changes in project ownership over the past 20 years. However, Ni sulphide was discovered at shallow depths at Bodkin prospect in 1995, with grades up to **2m @ 2.15% Ni + 1.00** g/t Pt + Pd. This discovery was followed up in 2005 with a scissor diamond hole that intersected **0.3m @ 6.64%** Ni + 0.09% Co + 0.26% Cu, within a thermally eroded footwall basalt unit that is surrounded by an extensive zone of disseminated sulphide over 200m wide and up to 10m thick with lower tenor intersections. The discovery at Bodkin was the first recorded massive sulphide occurrence in the Wiluna ultramafics and greatly enhances the prospectivity of the immediate area and the ultramafic stratigraphy of the wider Wiluna district.

Figure 1: Wiluna Nickel Project tenure and prospective ultramafic host geology.

Figure2: Bodkin prospect cross section, nickel sulphide accumulation in thermally-eroded ultramafic footwall.

Additional prospects include Longbow, where the interpretation of geophysical magnetic features as being prospective komatiitic flows within a package of basalts and sulphidic sediments led to the recognition of potential for Kambalda-style discoveries. Elevated Ni grades up to **12m @ 0.62% Ni** are associated with disseminated pyrrhotite-bearing magmatic sulphides.

In 2006, Independence Group Ltd joint ventured into the project, and in 2007 drilled **1m @ 6.38% Ni + 0.11% Co** + **0.50% Cu + 2.48g/t Pt + Pd**, **1m @ 2.67% Ni + 0.05% Co + 0.38% Cu + 0.14g/t Pt + Pd**, and **0.25m @ 1.11% Ni** + **0.57g/t Pt + Pd** at Bodkin.

Despite the presence of numerous Ni sulphide occurrences, with the onset of the Global Financial Crisis in 2009 and lower metal prices, Independence Group withdrew from the joint venture, ownership of the project has changed hands several times and no further exploration has since been undertaken.

EXPLORATION PROGRAM

The Company is evaluating options to unlock value from the project, including an exploration program with the first steps being a detailed geophysical review of all Electromagnetic (EM) data previously acquired across the project to:

- Gauge effectiveness of past exploration with EM, with potential for re-interpretation of existing datasets given advances in EM data processing since data acquisition
- Identify areas to be surveyed or resurveyed with modern EM data acquisition systems

Subsequently, an airborne EM survey over the entire project may proceed to:

- o Detect massive Ni-Cu-Co-PGE sulphides in areas not previously tested
- Map the distribution of sedimentary sulphide horizons and potential points of interaction between such units and komatiite flows that could lead to sulphide formation

Since exploration has not advanced since 2009, opportunity lies in examining the exploration techniques previously employed and their relative effectiveness for discovery of highly conductive magmatic sulphide systems given technological innovation and mineral system knowledge advances since that time.

There are multiple generations of geophysical survey acquired over many of the known prospects prior to 2009. For example, Agincourt Resources Ltd and Independence Group Ltd conducted multiple generations of EM survey between 2004 and 2008 (MLEM, FLEM, DHEM), where subsequently conductors either were modified with reprocessing, discounted, or confirmed with resurvey, and several were drilled without intersecting modelled conductors, leading to recommendations for resurvey. A critical review of all previous geophysical work is therefore intended before any further exploration activities are planned.

The geophysical review may, together with acquisition of a suitable modern airborne EM survey, serve two main aims:

1. Directly detect massive magmatic Ni-Cu-Co-PGE sulphides

2. Map in detail across the project:

I) magnetic stratigraphy potentially indicative of thick sequences of prospective ultramafic and komatiite rocks; and

II) regionally continuous conductive horizons potentially indicative of sulphide bearing sedimentary horizons below the komatiite sequences; and

III) any potential points of convergence between the komatiites and such stratigraphic sulphide bearing sedimentary sequences, giving the right geological environment for the formation of magmatic Ni-Cu-Co-PGE sulphides.

Targets would then be followed up with a suitable ground-based EM survey, which may enhance detection of disseminated sulphides or detect plunging sulphide deposits at greater depths than airborne EM.

The Bodkin target with its known high-grade Ni sulphides (+Co-Cu-PGE) represents the highest priority for exploration. While there are untested geophysical conductivity targets at Bodkin, a detailed review of all geophysics is planned prior to any drilling. In addition, a modern ground-based EM survey may be completed to confirm whether the current conductors represent the core of the system or alternatively whether the best drill targets are located further along the Bodkin trend.

At Longbow, the presence of moderate tenor disseminated magmatic Ni-Co-Cu sulphides is significant as it shows the komatiite sequence is fertile and further komatiite horizons are yet to be tested. As discussed above, an airborne EM survey over the whole project area should serve to map the most prospective horizons.

NICKEL-COBALT LATERITE (WMC 80%)

In December 2018, WMC entered a Farm-in and Joint Venture agreement with A-Cap Energy Ltd (ASX release 20 December 2018) to explore and develop laterite deposits of Ni, Co and associated metals of the Wiluna Nickel-Cobalt Project (Wilconi Project).

A-Cap as manager of the Joint Venture is currently drilling at the Project and advancing a Definitive Feasibility Study into development of a Ni-Co laterite operation to supply critical materials to the global electric vehicle market, taking advantage of new materials processing and refinery technologies in production of Ni and Co sulphate products used directly in battery manufacture.

Earn-in milestones of the Joint Venture are currently as follows:

- 1. 20% Initial Interest (completed) for payment of \$2,800,000 cash to WMC.
- 55% Participating Interest for 2a) payment of \$500,000 cash to WMC on or before 20/12/2020 (completed), and 2b) project expenditure of not less than \$5,000,000 on or before 20/12/2022 (pending).
- 75% Participating Interest (pending) by completing prior to 20/4/2024, 3a) a Definitive Feasibility Study, 3b) payment of \$1,000,000 cash to WMC, and 3c) within 30 days of completing the Definitive Feasibility Study issuing to WMC \$1,500,000 value in A-Cap shares.

In September 2019, A-Cap Energy updated the laterite Resource Estimate to 78.8Mt @ 0.74% Ni and 0.07 % Co, including a high-grade Co zone of 29Mt @ 0.11% Co (ASX:ACB release 17 September 2019). Significant opportunities exist to expand and upgrade the resource from Inferred to Indicated category with further drilling underway in 2021.

	Mineral Resource Estimate for the Wilconi Deposit - September, 2019													
				l	nferred									
Domain	Cut-Off (All cut offs are exclusive)	Tonnes (Mt)	Ni %	Co %	MgO %	Nickel Metal (Tonnes)	Cobalt Metal (Tonnes)							
Co (%)	>600 ppm Co (Low MgO, <0.5% Ni)	7.0	0.39	0.10	5.7	27,000	7,000							
Ni (%)	>0.5% Ni (Low MgO, >600 ppm Co)	22.0	0.87	0.12	4.4	191,000	27,000							
Ni (%)	>0.5% Ni (Low MgO, <600 ppm Co)	18.9	0.73	0.04	6.9	139,000	7,000							
Ni (%)	>0.5% Ni (High MgO)	30.8	0.74	0.04	14.8	228,000	12,000							
	Total	78.8	0.74	0.07	9.2	585,000	53,000							

The preceding statements of Mineral Resources conforms to the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) 2012 edition. All tonnages reported are dry metric tonnes. Minor discrepancies may occur due to rounding to appropriate significant figures.

Table 1: Wilconi nickel-cobalt laterite resource summary September 2019.

SUMMARY OF PREVIOUS EXPLORATION

The Agnew-Wiluna region has been explored for Ni intermittently since the famous discoveries at Kambalda triggered a Ni exploration boom in the late 1960's. Historically, the northern ultramafics at Wiluna have not yielded the same number of tier-1 economic discoveries as in the southern ultramafics around Agnew, and until the mid-1990's the northern ultramafics were considered infertile. However, the discovery in 1995 of Ni massive sulphides at Bodkin prospect, within an interpreted thermally eroded footwall basalt unit, had major positive implications for the prospectivity of the immediate Bodkin area and the wider ultramafic stratigraphy of the Wiluna region.

Exploration through to the late-2000's resulted in additional high-grade Ni sulphide intersections in drilling at Bodkin and further EM anomalies for testing. However, since the Global Financial Crisis in 2009 no further work has occurred, and the previous discoveries remain to be followed-up.

A summary of past exploration efforts, demonstrating the substantial available exploration datasets, follows:

In 1968, Delphi Australian Petroleum Ltd conducted initial costeaning and sampling for Ni gossans seeking Kambalda-type Ni sulphide discoveries. Numerous assays of greater than 2% Ni were returned from laterite.

In 1969-1972, Kennecott Explorations Australia Pty Ltd completed further soil sampling and pit sampling which identified coincident Ni-Cu anomalies. Follow-up included an RC drilling program that covered several kilometres of strike length with 850 holes to a typical depth of 10-15m, which confirmed the previously identified soil geochemical targets.

Kennecott conducted extensive RC drilling of the laterite profile, which partly defines the Wilconi Ni-Co laterite resource. Kennecott followed up by drilling two diamond holes testing for Mount Keith-style Ni sulphides, which appear to have failed to test the targeted ultramafic basal contact, due to structural complexity. Despite failing to directly detect the targeted Mount Keith-style mineralisation, this drilling does not preclude the possibility that some laterite Ni mineralisation has resulted from weathering of an underlying Ni sulphide body.

During 1973-1976, Western Mining Corporation Ltd followed up with Induced Polarisation (IP) and EM geophysical surveys and drilled 4 further RC holes and 1 diamond hole testing the resulting geophysical anomalies, though no significant assays were reported.

In 1993-1994, the CSIRO and Asarco Australia Ltd conducted mapping and petrographic analysis of ultramafic rocks at several prospects. These researchers recommended further drilling to determine whether the Perseverance ultramafics were emplaced as extrusive lavas or intrusive magma bodies like the mineralised host rocks around Agnew-Leinster, and therefore prospective for Ni sulphide deposits.

In 1995, Wiluna Mines Ltd drilled Ni sulphide and PGE mineralisation of up to **2m @ 2.15% Ni + 1.00g/t Pd + Pt** from 74m in hole 95WJVP251 at Bodkin prospect, confirming the Ni sulphide fertility of the ultramafic rocks.

Between 1995 and 1997, Wiluna Mines and Great Central Mines Ltd flew high-resolution 50m-line spaced aeromagnetics over the entire Wiluna Greenstone Belt to map the ultramafic stratigraphy. Wiluna Mines also completed resource definition drilling to further define the Ni laterite mineralisation.

In 2005-2006, Agincourt Resources Ltd completed EM surveys over several prospects including Abercrombie, Bodkin, Lake Way South, Longbow and Prodo. A moderate EM response was detected at Bodkin over the known Ni sulphide occurrence and further anomalism was delineated along strike. Agincourt drilled a scissor diamond hole to 95WJVP251 and intersected massive sulphide assaying **0.3m @ 6.64% Ni + 0.09% Co + 0.26% Cu** from 88.6m in RWD00014.

In 2006 Independence Group joint ventured into the project, and in 2007 the JV followed up with **1m @ 6.38%** Ni + 0.11% Co + 0.50% Cu 2.48g/t Pt+Pd from 72m in WILRC001, **1m @ 2.67% Ni + 0.05% Co + 0.38% Cu + 1.42g/t Pt+Pd** from 92m in WILRC002, and **0.25m @ 1.11% Ni + 0.57g/t Pt+Pd** in RWD00026.

The massive sulphide mineralisation was then targeted with ground-based and downhole EM. SQUID TEM successfully delineated the known massive Ni sulphide mineralisation and identified larger anomalies 300-400m southeast of Bodkin that remain to be drilled. The SQUID anomalies are associated with gossanous outcrop along the ultramafic contact. The known high-grade massive sulphide intercepts are from just two drill sections, and the prospective ultramafic contact is largely untested along strike to the southeast and northwest.

Agincourt also re-assessed the Ni potential of the stratigraphy west of the Perseverance ultramafics including Longbow, recognising that numerous high-intensity features indicated in the aeromagnetic data are possible komatiites with magmatic sulphide potential. Drilling at Longbow intersected broad zones of moderate tenor disseminated Ni sulphide mineralisation and the Joint Venture conducted multiple ground-based SQUID and EM surveys. The western ultramafics remain relatively underexplored.

END

This announcement has been approved for release by the Executive Chair of Wiluna Mining Corporation Limited. For further information on Wiluna Mining please contact:

Milan Jerkovic	Jim Malone	Dannika Warburton
Executive Chair	General Manager Investor Relations	Media & Communications
+61 8 9322 6418	+61 419 537 714	+61 401 094 261

Forward Looking Statements

This announcement includes certain statements that may be deemed 'forward looking statements'. All statements that refer to any future production, resources or reserves, exploration results and events or production that Wiluna Mining Corporation Ltd expects to occur are forward looking statements. Although the Company believes that the expectations in those forward looking statements are based upon reasonable assumptions, such statements are not a guarantee of future performance and actual results or developments may differ materially from the outcomes. This may be due to several factors, including market prices, exploration and exploitation success, and the continued availability of capital and financing, plus general economic, market or business conditions. Investors are cautioned that any such statements are not guarantees of future performance, and actual results or performance may differ materially from those projected in the forward looking statements. The Company does not assume any obligation to update or revise its forward looking statements, whether as a result of new information, future events or otherwise.

Competent Persons Statement

Information in this report relating to Mineral Resources is based on information compiled by Mr Stephen Godfrey, Principal Consultant with Resources Evaluation Services. Mr Godfrey is a Fellow of the AusIMM and a Member of the AIG. Mr Godfrey has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person under the 2012 Edition of the Australasian Code for reporting of Exploration Results Mineral Resources and Ore Reserves. Mr Godfrey consents to the inclusion of the data in the form and context in which it appears.

The information contained in the report that relates to Exploration Targets and Exploration Results at the Matilda Wiluna Gold Operation ("Operation") is based on information compiled or reviewed by Mr Cain Fogarty, who is a fulltime employee of the Company. Mr Fogarty is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Fogarty has given consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the relevant ASX releases and the form and context of the announcement has not materially changed. The Company confirms that the form and context in which the Competent Persons findings are presented have not been materially modified from the original market announcements.

Table 2. Significant intercepts Wiluna Nickel Project. Minimum significant intercept >0.50% Ni, maximum 4m contiguous internal dilution, no minimum width. ETW = estimated true width. NSI = No Significant Intercepts. *Grid MGA94_Zone51S with RL in Australian Height Datum. Inclusion of the entire database is not feasible, only full results from the generations of drilling discussed in this report are tabulated.

Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Ni (%)	Co (%)	Cu (%)	Pt + Pd (g/t)	ETW (m)
92WJVD001	216031	7062529	500	232	-60	248	39	49	10	0.79	0.05	0.00	0.01	6.7
92WJVD002	215202	7063431	507	375.2	-60	248	28	30	2	0.65	0.06	0.02	0.05	1.3
92WJVP001	215820	7062406	500	113	-60	248	NSI							
92WJVP002	215926	7062466	500	119	-60	248	31	45	14	0.98	0.06	0.00	0.04	9.3
92WJVP004	215493	7063139	507	119	-60	248	36	50	14	1.00	0.05	0.00	0.04	9.3
92WJVP005	215603	7063194	507	116	-60	248	25	35	10	1.04	0.07	0.00	0.01	6.7
92WJVP007	215304	7063488	507	119	-60	248	10	38	28	0.65	0.03	0.00	0.02	18.7
92WJVP008	215309	7063025	507	119	-60	248	NSI							
92WJVP009	215396	7063074	507	119	-60	248	33	35	2	0.62	0.03	0.00	0.02	1.3
92WJVP010	215160	7063870	507	119	-60	248	21	33	12	1.05	0.07	0.04	0.03	8.0
92WJVP011	215042	7063800	507	119	-60	248	26	36	10	0.67	0.06	0.11	0.85	6.7
95WJVP026	234708	7030701	500	78	-60	248	NSI							
95WJVP027	234838	7030752	500	120	-60	248	NSI							
95WJVP028	234931	7030789	500	118	-60	248	NSI							
95WJVP031	234855	7030329	500	141	-60	248	NSI							
95WJVP038	235225	7030045	500	115	-60	248	NSI							
95WJVP047	235500	7029293	500	66	-60	248	NSI							
95WJVP049	234689	7028650	500	56	-60	248	NSI							
95WJVP050	234801	7028694	500	75	-60	248	NSI							
95WJVP051	234913	7028739	500	81	-60	248	NSI							
95WJVP052	220719	7052926	500	127	-60	248	NSI							
95WJVP053	220831	7052970	500	107	-60	248	NSI							
95WJVP054	220942	7053014	500	123	-60	248	60	67	7	0.66	0.10	0.01	0.02	4.7
95WJVP055	221054	7053058	500	123	-60	248	NSI							
95WJVP056	221166	7053102	500	129	-60	248	NSI							
95WJVP057	221277	7053146	500	117	-60	248	NSI							
95WJVP058	221389	7053190	500	117	-60	248	50	65	15	1.04	0.11	0.00	0.01	10.0
95WJVP059	221501	7053234	500	117	-60	248	NSI							
95WJVP060	221612	7053278	500	129	-60	248	NSI							
95WJVP061	220341	7053637	500	159	-60	248	33	39	6	0.76	0.10	0.01	0.02	4.0
95WJVP061							55	57	2	0.52	0.03	0.01	0.03	1.3
95WJVP062	220453	7053681	500	99	-60	248	37	39	2	0.64	0.04	0.00	0.01	1.3
95WJVP062							27	29	2	0.57	0.05	0.02	0.01	1.3
95WJVP063	220565	7053725	500	99	-60	248	NSI							

1		I	1	1	I	I	1	1	i i	1	1	I	1	1
95WJVP064	220937	7053872	500	87	-60	248	NSI							
95WJVP065	221048	7053916	500	111	-60	248	NSI							
95WJVP066	221160	7053960	500	111	-60	248	59	67	8	0.75	0.04	0.00	0.01	5.3
95WJVP067	221272	7054004	500	99	-60	248	59	65	6	0.69	0.04	0.00	0.02	4.0
95WJVP068	221374	7054045	500	123	-60	248	NSI							
95WJVP069	219889	7054319	500	69	-60	248	NSI							
95WJVP070	220001	7054363	500	81	-60	248	NSI							
95WJVP071	220113	7054407	500	105	-60	248	NSI							
95WJVP072	220699	7054639	500	75	-60	248	NSI							
95WJVP073	220810	7054683	500	75	-60	248	15	27	12	0.57	0.03	0.00	0.02	8.0
95WJVP074	220922	7054727	500	75	-60	248	11	29	18	0.63	0.04	0.00	0.02	12.0
95WJVP075	221015	7054763	500	123	-60	248	28	82	54	1.09	0.06	0.00	0.01	36.0
95WJVP076	221145	7054815	500	123	-60	248	NSI							
95WJVP077	219315	7056673	500	96	-60	248	44	80	36	1.06	0.07	0.01	0.03	24.0
95WJVP078	219427	7056717	500	147	-60	248	NSI							
95WJVP079	219538	7056762	500	87	-60	248	22	26	4	0.51	0.04	0.00	0.01	2.7
95WJVP080	219650	7056806	500	105	-60	248	NSI							
95WJVP081	219761	7056850	500	117	-60	248	NSI							
95WJVP082	220167	7056149	500	201	-60	248	33	43	10	0.53	0.03	0.00	0.01	6.7
95WJVP083	220055	7056105	500	87	-60	248	NSI							
95WJVP084	220279	7056193	500	87	-60	248	NSI							
95WJVP085	218593	7057249	500	99	-60	248	57	73	16	0.90	0.07	0.01	0.07	10.7
95WJVP086	218705	7057293	500	23	-60	248	NSI							
95WJVP087	218705	7057293	500	99	-60	248	49	53	4	0.60	0.03	0.01	0.02	2.7
95WJVP088	218816	7057337	500	96	-60	248	NSI							
95WJVP089	217853	7057817	500	63	-60	248	NSI							
95WJVP090	217964	7057861	500	105	-60	248	NSI							
95WJVP091	218076	7057905	500	99	-60	248	NSI							
95WJVP092	218187	7057949	500	75	-60	248	47	51	4	0.65	0.02	0.00	0.01	2.7
95WJVP093	218299	7057993	500	81	-60	248	NSI							
95WJVP094	217410	7058502	500	81	-60	248	8	10	2	0.60	0.02	0.00	0.01	1.3
95WJVP095	217512	7058543	500	99	-60	248	NSI							
95WJVP096	217987	7058730	500	105	-60	248	32	52	20	0.67	0.04	0.01	0.05	13.3
95WJVP097	218098	7058774	500	99	-60	248	51	55	4	0.94	0.05	0.00	0.02	2.7
95WJVP098	218201	7058815	500	111	-60	248	NSI							
95WJVP099	218322	7058862	500	117	-60	248	NSI							
95WJVP100	217069	7059229	500	87	-60	248	NSI							
95WJVP101	217181	7059273	500	99	-60	248	NSI							
95WJVP102	217693	7059475	500	117	-60	248	44	58	14	0.88	0.09	0.00	0.08	9.3
95WJVP103	217800	7059517	500	117	-60	248	57	63	6	0.77	0.06	0.00	0.01	4.0
95WJVP104	217916	7059563	500	129	-60	248	NSI							
95WJVP105	218028	7059607	500	129	-60	248	NSI							
95WJVP106	216655	7059925	500	81	-60	248	36	38	2	0.58	0.05	0.01	0.04	1.3

95WJVP106							58	60	2	0.51	0.04	0.02	0.03	1.3
95WJVP107	216766	7059969	500	99	-60	248	29	47	18	0.66	0.03	0.00	0.02	12.0
95WJVP108	217194	7060138	500	99	-60	248	35	47	12	0.70	0.06	0.00	0.09	8.0
95WJVP109	217306	7060182	500	117	-60	248	50	58	8	0.81	0.11	0.00	0.05	5.3
95WJVP110	217413	7060224	500	117	-60	248	58	68	10	1.13	0.13	0.01	0.02	6.7
95WJVP111	215914	7060493	500	159	-60	248	NSI							
95WJVP112	216342	7060662	500	81	-60	248	NSI							
95WJVP113	216454	7060706	500	81	-60	248	19	25	6	0.60	0.10	0.01	0.03	4.0
95WJVP114	215691	7060405	500	99	-60	248	NSI							
95WJVP115	215803	7060449	500	117	-60	248	15	21	6	0.66	0.03	0.00	0.03	4.0
95WJVP116	216854	7060864	500	99	-60	248	NSI							
95WJVP117	216975	7060912	500	111	-60	248	43	57	14	1.23	0.05	0.00	0.03	9.3
95WJVP118	217077	7060952	500	117	-60	248	53	75	22	0.67	0.05	0.00	0.03	14.7
95WJVP119	219521	7055034	500	81	-60	248	NSI							
95WJVP120	220349	7055361	500	69	-60	248	NSI							
95WJVP121	220461	7055405	500	110	-60	248	2	16	14	0.78	0.03	0.00	0.03	9.3
95WJVP122	220572	7055449	500	129	-60	248	6	14	8	0.78	0.19	0.01	0.03	5.3
95WJVP123	220684	7055493	500	111	-60	248	44	46	2	0.55	0.03	0.00	0.02	1.3
95WJVP124	220796	7055537	500	93	-60	248	NSI							
95WJVP125	221013	7052181	500	81	-60	248	NSI							
95WJVP126	221124	7052226	500	60	-60	248	NSI							
95WJVP127	221236	7052270	500	99	-60	248	27	35	8	1.52	0.24	0.00	0.05	5.3
95WJVP127							43	57	14	0.98	0.07	0.00	0.04	9.3
95WJVP128	221618	7052420	500	81	-60	248	29	39	10	0.69	0.07	0.00	0.03	6.7
95WJVP129	221729	7052464	500	99	-60	248	37	59	22	1.30	0.17	0.00	0.01	14.7
95WJVP130	221841	7052508	500	99	-60	248	38	52	14	0.96	0.07	0.00	0.01	9.3
95WJVP131	221953	7052552	500	73	-60	248	31	35	4	0.66	0.06	0.00	0.02	2.7
95WJVP132	222064	7052596	500	99	-60	248	38	46	8	0.56	0.03	0.00	0.02	5.3
95WJVP133	223160	7049588	500	81	-60	248	18	20	2	0.61	0.10	0.00	0.20	1.3
95WJVP134	223277	7049634	500	93	-60	248	10	20	10	0.67	0.06	0.00	0.07	6.7
95WJVP135	223388	7049678	500	93	-60	248	12	28	16	0.79	0.06	0.00	0.01	10.7
95WJVP135							50	52	2	0.54	0.10	0.00	0.01	1.3
95WJVP136	223500	7049722	500	81	-60	248	NSI							
95WJVP137	223612	7049766	500	93	-60	248	NSI							
95WJVP138	223552	7048882	500	80	-60	248	NSI							
95WJVP139	223664	7048926	500	93	-60	248	4	14	10	0.73	0.08	0.01	0.03	6.7
95WJVP140	223775	7048970	500	99	-60	248	6	24	18	0.89	0.09	0.00	0.01	12.0
95WJVP140							32	34	2	0.53	0.02	0.00	0.00	1.3
95WJVP141	223887	7049014	500	93	-60	248	29	45	16	0.74	0.05	0.00	0.01	10.7
95WJVP142	223999	7049058	500	93	-60	248	NSI							
95WJVP143	224034	7048642	500	93	-60	248	15	29	14	0.96	0.05	0.00	0.06	9.3
95WJVP144	224146	7048686	500	87	-60	248	12	36	24	0.87	0.05	0.00	0.01	16.0
95WJVP145	224257	7048730	500	44	-60	248	12	20	8	0.67	0.02	0.00	0.01	5.3

95WJVP146	224369	7048774	500	123	-60	248	NSI							
95WJVP147	221348	7052314	500	99	-60	248	NSI							
95WJVP148	220580	7055022	500	57	-60	248	NSI							
95WJVP149	220691	7055066	500	99	-60	248	12	24	12	0.82	0.09	0.00	0.05	8.0
95WJVP150	220803	7055110	500	105	-60	248	10	37	27	0.81	0.04	0.00	0.02	18.0
95WJVP151	220915	7055154	500	99	-60	248	50	52	2	0.54	0.03	0.00	0.02	1.3
95WJVP152	220128	7055758	500	81	-60	248	NSI							
95WJVP153	220240	7055802	500	99	-60	248	5	15	10	0.63	0.07	0.00	0.03	6.7
95WJVP154	220348	7055855	500	105	-60	248	28	32	4	0.68	0.03	0.00	0.01	2.7
95WJVP154							10	22	12	0.65	0.04	0.00	0.01	8.0
95WJVP154							40	48	8	0.50	0.02	0.00	0.00	5.3
95WJVP155	220463	7055890	500	105	-60	248	NSI							
95WJVP156	220575	7055934	500	81	-60	248	NSI							
95WJVP157	218628	7056833	500	111	-60	248	NSI							
95WJVP158	218740	7056877	500	129	-60	248	NSI							
95WJVP159	218852	7056921	500	93	-60	248	NSI							
95WJVP160	218963	7056965	500	123	-60	248	67	71	4	0.62	0.02	0.00	0.04	2.7
95WJVP161	219075	7057009	500	129	-60	248	76	98	22	0.69	0.03	0.00	0.01	14.7
95WJVP162	219187	7057053	500	129	-60	248	NSI							
95WJVP163	219298	7057097	500	123	-60	248	NSI							
95WJVP164	219410	7057141	500	117	-60	248	NSI							
95WJVP165	219521	7057185	500	105	-60	248	NSI							
95WJVP166	219633	7057229	500	87	-60	248	NSI							
95WJVP167	216080	7060128	500	99	-60	248	4	14	10	0.63	0.03	0.00	0.02	6.7
95WJVP168	215856	7060040	500	69	-60	248	NSI							
95WJVP169	215968	7060084	500	99	-60	248	NSI							
95WJVP170	216191	7060172	500	117	-60	248	NSI							
95WJVP171	216303	7060217	500	135	-60	248	NSI							
95WJVP172	216489	7060290	500	99	-60	248	28	38	10	0.64	0.06	0.00	0.02	6.7
95WJVP173	216601	7060334	500	99	-60	248	NSI							
95WJVP174	216954	7060474	500	81	-60	248	NSI							
95WJVP175	217066	7060518	500	99	-60	248	41	55	14	1.10	0.06	0.00	0.04	9.3
95WJVP176	217178	7060562	500	111	-60	248	42	50	8	0.87	0.04	0.01	0.02	5.3
95WJVP177	217289	7060606	500	135	-60	248	NSI							
95WJVP178	216026	7060537	500	129	-60	248	NSI							
95WJVP179	215702	7060840	500	99	-60	248	NSI							
95WJVP180	215963	7060943	500	81	-60	248	NSI							
95WJVP181	216074	7060987	500	99	-60	248	NSI							
95WJVP182	216186	7061031	500	108	-60	248	NSI							
95WJVP183	216298	7061075	500	90	-60	248	NSI							
95WJVP184	216698	7061233	500	93	-60	248	NSI							
95WJVP185	216809	7061277	500	141	-60	248	49	65	16	0.71	0.03	0.00	0.04	10.7
95WJVP186	216921	7061321	500	123	-60	248	NSI							

95WJVP187	216576	7059034	500	74	-60	248	NSI							
95WJVP188	217821	7056944	500	81	-60	248	NSI							
95WJVP189	217932	7056988	500	81	-60	248	NSI							
95WJVP190	218403	7056313	500	117	-60	248	NSI							
95WJVP191	218515	7056358	500	123	-60	248	NSI							
95WJVP192	220572	7053298	500	99	-60	248	NSI							
95WJVP193	220684	7053342	500	111	-60	248	49	55	6	1.02	0.09	0.00	0.02	4.0
95WJVP194	220795	7053386	500	115	-60	248	NSI							
95WJVP195	220907	7053430	500	99	-60	248	NSI							
95WJVP196	221233	7053559	500	129	-60	248	59	75	16	0.84	0.08	0.00	0.10	10.7
95WJVP197	221344	7053603	500	111	-60	248	45	57	12	0.92	0.04	0.00	0.01	8.0
95WJVP198	221456	7053647	500	111	-60	248	NSI							
95WJVP199	221005	7052609	500	74	-60	248	NSI							
95WJVP200	221117	7052653	500	99	-60	248	32	50	18	0.66	0.03	0.00	0.02	12.0
95WJVP201	221229	7052697	500	123	-60	248	NSI							
95WJVP202	221424	7052774	500	105	-60	248	19	35	16	0.77	0.04	0.00	0.03	10.7
95WJVP203	221536	7052818	500	15	-60	248	NSI							
95WJVP204	221537	7052818	500	99	-60	248	46	50	4	0.84	0.06	0.00	0.02	2.7
95WJVP204							40	41	1	0.63	0.04	0.00	0.04	0.7
95WJVP205	221647	7052862	500	99	-60	248	36	52	16	1.16	0.04	0.00	0.02	10.7
95WJVP206	221759	7052906	500	105	-60	248	NSI							
95WJVP207	221173	7052675	500	99	-60	248	22	48	26	0.86	0.07	0.01	0.10	17.3
95WJVP208	221392	7051901	500	111	-60	248	40	58	18	1.03	0.10	0.00	0.06	12.0
95WJVP209	221504	7051945	500	105	-60	248	43	59	16	0.73	0.06	0.00	0.04	10.7
95WJVP210	221616	7051989	500	123	-60	248	NSI							
95WJVP211	221978	7052132	500	99	-60	248	35	49	14	0.98	0.05	0.00	0.01	9.3
95WJVP212	222090	7052177	500	111	-60	248	35	41	6	1.06	0.14	0.00	0.01	4.0
95WJVP213	222202	7052221	500	99	-60	248	17	37	20	0.80	0.05	0.00	0.02	13.3
95WJVP214	222313	7052265	500	129	-60	248	NSI							
95WJVP215	222981	7049947	500	105	-60	248	NSI							
95WJVP216	223093	7049991	500	111	-60	248	40	52	12	0.97	0.10	0.00	0.02	8.0
95WJVP216							84	86	2	0.85	0.01	0.01	1.23	1.3
95WJVP217	223204	7050035	500	99	-60	248	35	47	12	0.74	0.05	0.00	0.01	8.0
95WJVP218	223316	7050079	500	99	-60	248	NSI							
95WJVP219	223442	7049269	500	105	-60	248	11	19	8	0.56	0.08	0.00	0.07	5.3
95WJVP220	223554	7049313	500	105	-60	248	10	26	16	0.82	0.05	0.00	0.01	10.7
95WJVP221	223666	7049357	500	93	-60	248	28	44	16	0.60	0.02	0.00	0.01	10.7
95WJVP222	223777	7049401	494.92	75	-60	248	NSI							
95WJVP223	220176	7054002	500	105	-60	248	20	30	10	0.76	0.06	0.00	0.04	6.7
95WJVP224	220287	7054046	500	99	-60	248	NSI							
95WJVP225	220399	7054090	500	81	-60	248	NSI							
95WJVP226	220939	7054303	500	87	-60	248	NSI							
95WJVP227	221050	7054347	500	117	-60	248	48	56	8	1.01	0.13	0.00	0.03	5.3

95\W/I\/P228	221162	7054391	500	117	-60	248	44	52	8	0.58	0.02	0.00	0.01	53
95WIVP229	221102	7054435	500	93	-60	248	NSI	52	0	0.50	0.02	0.00	0.01	5.5
95WIVP230	221385	7054479	500	123	-60	248	NSI							
95WIVP231	221149	7053096	500	177	-60	248	NSI							
95WIVP232	220405	7055383	500	219	-60	248	NSI							
95W/IVP233	219999	7056083	500	201	-60	248	NSI							
95WIVP234	219629	7056367	500	120	-60	248	52	68	16	0 79	0.04	0.00	0.03	10.7
95WJVP235	219029	7056419	500	120	-60	240	NSI	00	10	0.75	0.04	0.00	0.05	10.7
95WJVP236	219700	7056463	500	93	-60	240	17	21	Д	0.69	0.05	0.01	0.03	27
95WJVP236	215071	7030403	500	55	00	240	35	37	2	0.05	0.03	0.01	0.03	13
95WJVP237	219983	7056507	500	97	-60	248	NSI	57	2	0.55	0.02	0.01	0.02	1.5
05\////0228	219903	7057480	500	91	-60	240	NSI							
95W/IV/P239	210111	7057533	500	77	-60	240	NSI							
051/11/0240	210223	7057555	500	00	-00	240	20	47	10	0.00	0.00	0.00	0.02	12.0
05WJVP240	210554	7037377	500	99	-00	240	29 60	71	2	0.69	0.08	0.00	0.02	12.0
05WJVP240	219446	7057621	500	01	60	240	NSI	/1	2	0.55	0.02	0.00	0.01	1.5
950010241	210440	7057621	500	01	-00	240	NCI							
951017242	218558	7059134	500	01	-60	248	122	25	2	0.52	0.02	0.01	0.02	1.2
95WJVP243	217566	7058134	500	81	-60	248	23	25	2	0.53	0.03	0.01	0.03	1.3
951010244	21/6/8	7058178	500	81	-60	248	INSI							
95WJVP245	217789	7058222	500	60	-60	248	NSI							
95WJVP246	21/994	7058303	500	81	-60	248	NSI 22	50	26	0.00	0.04	0.00	0.00	47.2
95WJVP247	218106	7058347	500	99	-60	248	33	59	26	0.60	0.04	0.00	0.03	17.3
95WJVP248	218217	7058391	500	111	-60	248	45	59	14	0.71	0.05	0.00	0.01	9.3
95WJVP249	218329	7058435	500	123	-60	248	NSI							
95WJVP250	217002	/058//2	500	81	-60	248	NSI							
95WJVP251	217100	7058810	502	120	-60	248	74	76	2	2.15	0.04	0.09	1.00	1.3
95WJVP251							2	4	2	0.50	0.02	0.01	0.04	1.3
95WJVP252	217226	7058860	504	90	-60	248	NSI							
95WJVP253	217337	7058904	502	99	-60	248	NSI							
95WJVP254	217821	7059095	500	99	-60	248	NSI							
95WJVP255	217933	7059139	500	111	-60	248	49	59	10	1.11	0.10	0.00	0.02	6.7
95WJVP256	218044	7059183	500	123	-60	248	47	61	14	0.81	0.04	0.00	0.02	9.3
95WJVP257	218156	7059227	500	57	-60	248	NSI							
95WJVP258	216967	7059188	500	99	-60	248	NSI							
95WJVP259	216792	7059549	500	93	-60	248	30	66	36	0.70	0.06	0.00	0.04	24.0
95WJVP260	216904	7059593	500	111	-60	248	27	39	12	0.60	0.23	0.00	0.07	8.0
95WJVP261	217016	7059637	500	93	-60	248	NSI							
95WJVP262	217425	7059799	500	111	-60	248	NSI							
95WJVP263	217537	7059843	500	117	-60	248	44	60	16	0.82	0.05	0.00	0.05	10.7
95WJVP264	217648	7059887	500	123	-60	248	54	66	12	0.59	0.03	0.01	0.03	8.0
95WJVP265	217760	7059931	500	117	-60	248	57	63	6	0.64	0.06	0.00	0.02	4.0
95WJVP266	216329	7059797	500	74	-60	248	NSI							
95WJVP267	216441	7059841	500	81	-60	248	NSI							

95WJVP268 215955 7061370 500 81 -60 248 NSI	
95WJVP270 216495 7061583 500 117 -60 248 45 53 8 0.78 0.05 0.00 0.02	5.3
95WJVP2/1 216607 7061627 500 99 -60 248 42 66 24 0.81 0.06 0.00 0.03	16.0
95WJVP272 216718 7061671 500 99 -60 248 58 72 14 0.74 0.03 0.01 0.02	9.3
95WJVP273 234467 7030821 500 24 -60 248 NSI	
95WJVP274 234523 7030843 500 135 -60 248 NSI	
95WJVP275 234579 7030865 500 144 -60 248 NSI	
95WJVP280 234652 7030679 500 31 -60 248 NSI	
95WJVP281 234745 7030716 500 140 -60 248 NSI	
95WJVP282 234670 7030471 500 73 -60 248 NSI	
95WJVP284 234782 7030515 500 177 -60 248 NSI	
95WJVP286 234799 7030307 500 78 -60 248 NSI	
96WJVD003 216966 7060908 500 283.2 -60 248 45 61.4 16.4 0.82 0.03 0.01 0.02	10.9
96WJVD004 217031 7060934 500 325 -60 248 42 72 30 0.66 0.03 0.00 0.02	20.0
96WJVD005 220600 7055460 500 250 -60 248 10 14 4 0.87 0.08 0.00 0.03	2.7
96WJVD006 215858 7060471 500 229 -60 248 NSI	
96WJVD007 215961 7060512 500 298 -60 248 NSI	
96WJVD008 217151 7058831 500 196 -60 248 12 26 14 0.75 0.05 0.00 0.04	9.3
96WJVD008 66.3 68.1 1.8 0.51 0.01 0.03 0.00	1.2
96WJVD009 218015 7058741 500 175.7 -60 248 42 68 26 0.85 0.04 0.00 0.05	17.3
96WJVP289 215699 7062129 500 99 -60 248 NSI	
96WJVP290 215810 7062173 500 87 -60 248 NSI	
96WJVP291 215922 7062217 500 87 -60 248 NSI	
96WJVP292 216034 7062261 500 99 -60 248 38 52 14 0.97 0.11 0.00 0.05	9.3
96WJVP293 216145 7062305 500 123 -60 248 44 60 16 0.86 0.07 0.00 0.04	10.7
96WJVP294 216255 7062354 500 113 -60 248 NSI	
96WJVP295 215626 7062530 500 60 -60 248 NSI	
96WJVP296 215738 7062575 500 159 -60 248 36 38 2 0.64 0.04 0.00 0.02	1.3
96WJVP296 24 28 4 0.59 0.03 0.01 0.06	2.7
96WJVP297 215850 7062619 500 117 -60 248 NSI	
96WJVP298 215961 7062663 500 123 -60 248 36 46 10 0.67 0.03 0.00 0.01	6.7
96WJVP299 216073 7062707 500 123 -60 248 NSI	
96WJVP300 215405 7062873 500 99 -60 248 NSI	
96WJVP301 215516 7062917 500 99 -60 248 30 36 6 0.66 0.04 0.00 0.03	4.0
96WJVP302 215628 7062961 500 123 -60 248 36 40 4 0.91 0.05 0.00 0.03	2.7
96WJVP302 56 58 2 0.52 0.02 0.00 0.01	1.3
96WJVP303 215737 7063011 500 115 -60 248 26 42 16 0.76 0.07 0.00 0.01	10.7
96WJVP304 215851 7063050 500 123 -60 248 NSI	
96WJVP305 215165 7063209 500 81 -60 248 NSI	
96WJVP306 215277 7063253 500 99 -60 248 18 36 18 0.52 0.04 0.02 0.05	12.0
96WJVP307 215388 7063297 500 141 -60 248 34 42 8 0.86 0.05 0.02 0.03	5.3
96WIVP308 215497 7063345 500 111 -60 248 19 37 18 0.72 0.04 0.00 0.02	12.0

96WJVP309	215612	7063385	500	99	-60	248	NSI							
96WJVP310	214962	7063559	500	63	-60	248	NSI							
96WJVP311	215074	7063603	500	81	-60	248	NSI							
96WJVP312	215185	7063647	500	135	-60	248	18	34	16	0.60	0.03	0.01	0.03	10.7
96WJVP313	215295	7063697	500	111	-60	248	21	29	8	0.92	0.03	0.00	0.02	5.3
96WJVP314	215406	7063740	500	90	-60	248	NSI							
96WJVP315	215961	7062663	500	93	-60	68	36	50	14	0.70	0.04	0.01	0.01	9.3
96WJVP316	216964	7060477	500	147	-60	68	45	63	18	0.91	0.12	0.00	0.03	12.0
96WJVP317	217269	7060168	500	147	-60	68	28	63	35	0.80	0.05	0.00	0.05	23.3
96WJVP318	217416	7059795	500	147	-60	68	NSI							
96WJVP319	217563	7059423	500	147	-60	68	NSI							
96WJVP320	217473	7058097	500	147	-60	68	NSI							
96WJVP321	217769	7057784	500	147	-60	68	NSI							
96WJVP322	219212	7056633	500	123	-60	68	50	62	12	0.69	0.02	0.01	0.02	8.0
96WJVP323	219508	7056320	500	147	-60	68	43	51	8	0.88	0.09	0.00	0.02	5.3
96WJVP324	216891	7058728	500	75	-60	248	NSI							
96WJVP325	217281	7058882	500	111	-60	248	10	20	10	0.57	0.06	0.00	0.05	6.7
96WJVP326	220843	7054271	500	135	-60	68	NSI							
96WJVP327	221102	7053507	500	147	-60	68	55	59	4	1.05	0.18	0.00	0.02	2.7
96WJVP328	221271	7051853	500	147	-60	68	42	54	12	0.63	0.06	0.01	0.09	8.0
96WJVP329	223331	7049225	500	141	-60	68	NSI							
96WJVP330	223932	7048602	500	135	-60	68	2	16	14	0.67	0.06	0.00	0.08	9.3
96WJVP331	226752	7041974	500	135	-60	248	NSI							
96WJVP332	226863	7042018	500	129	-60	248	NSI							
96WJVP333	226976	7042060	500	135	-60	248	NSI							
96WJVP334	226292	7042650	493	99	-60	248	42	44	2	0.62	0.02	0.02	0.02	1.3
96WJVP334							52	62	10	0.58	0.07	0.01	0.03	6.7
96WJVP335	226403	7042694	492.6	111	-60	248	NSI							
96WJVP336	226515	7042738	500	111	-60	248	NSI							
96WJVP337	225793	7043314	496	105	-60	248	46	52	6	0.59	0.09	0.01	0.02	4.0
96WJVP338	225905	7043358	496	87	-60	248	NSI							
96WJVP339	225816	7044183	492.6	56	-60	248	NSI							
96WJVP340	225820	7044185	492.6	130	-60	248	NSI							
96WJVP341	225615	7044964	500	126	-60	248	NSI							
96WJVP342	224754	7047636	500	111	-60	248	37	49	12	0.95	0.07	0.02	0.20	8.0
96WJVP343	225321	7045709	500	141	-60	248	NSI							
96WJVP344	225433	7045753	500	141	-60	248	NSI							
96WJVP345	225669	7044555	500	141	-60	248	91	117	26	0.74	0.03	0.05	0.11	17.3
96WJVP346	225780	7044599	500	159	-60	248	124	126	2	0.59	0.02	0.01	0.04	1.3
96WJVP346							134	136	2	0.52	0.02	0.01	0.06	1.3
96WJVP347	225927	7044227	493	159	-60	248	135	137	2	0.52	0.01	0.02	0.07	1.3
97WP348	224719	7048052	500	111	-60	248	NSI							
97WP349	224830	7048096	500	90	-60	248	NSI							

97\//2350	224607	7048008	500	117	-60	2/18	10	33	23	0.65	0.02	0.01	0.02	15.3
97WP351	224007	7047964	500	123	-60	240	NSI	55	25	0.05	0.02	0.01	0.02	15.5
97W/9352	224455	7048074	500	150	-60	240	NSI							
97W/9353	224/74	7048380	500	00	-60	240	NSI							
97WP354	224400	7048336	500	99	-60	240	NSI							
97\N/P355	224340	7048292	500	93	-60	240	NSI							
97\//2356	224237	7047661	500	105	-60	240	NSI							
07\\/D257	224013	7047584	500	27	-60	240	NSI							
97WP357	224024	7047384	500	201	-60	240	NSI							
97W/9359	224577	7047724	500	117	-60	240	NSI							
97\\/P360	223003	7047304	500	75	-60	240	NSI							
97WP261	224071	7047200	500	140	-60	240	NSI							
97WF301	224921	7047702	500	120	-60	240	NSI							
07WP302	225115	7040917	500	176	-00	240	NCI							
97 WP 303	225224	7040901	500	122	-00	240	NCI							
07WD26E	225115	7047346	500	110	-00	240	105	107	2	0.77	0.07	0.02	0.11	1 2
97 WP 303	225204	7040525	500	119	-00	240		107	2	0.77	0.07	0.05	0.11	1.5
97 WP 300	225409	7046604	500	105	-60	248								
97 WP307	225092	7046479	500	105	-60	248	INSI NCI							
97009308	225332	7040143	500	105	-60	248	INSI NCI							
97WP369	225555	7046231	500	123	-60	248	NSI							
97WP370	225144	7045639	500	135	-60	248	NSI							
97WP371	225514	7045355	500	115	-60	248	NSI							
97WP372	225626	7045399	500	136	-60	248	NSI							
9/WP3/3	225403	7045311	500	69	-60	248	NSI							
97WP374	225701	7043600	496	117	-60	248	NSI							
97WP375	225813	7043644	496	159	-60	248	NSI							
97WP376	225590	7043556	496	129	-60	248	NSI							
97WP377	225757	7043622	496	135	-60	248	NSI							
97WP378	226089	7043000	496	81	-60	248	NSI							
97WP379	226200	7043044	496	129	-60	248	NSI							
97WP380	226606	7042344	500	141	-60	248	NSI							
97WP381	226699	7042381	500	135	-60	248	23	28	5	0.96	0.02	0.04	0.01	3.3
97WP382	227201	7042579	500	129	-60	248	NSI							
97WP383	227295	7042616	500	111	-60	248	NSI							
97WP384	227534	7042281	500	57	-60	248	NSI							
97WP385	227628	7042317	500	69	-60	248	NSI							
97WP386	226743	7041861	500	99	-60	248	NSI							
97WP387	226836	7041897	500	123	-60	248	NSI							
97WP388	227011	7041644	500	111	-60	248	NSI							
97WP389	227105	7041681	500	147	-60	248	NSI							
97WP390	226946	7041618	500	90	-60	248	NSI							
97WP391	227415	7040513	500	87	-60	248	12	20	8	0.69	0.03	0.01	0.06	5.3
97WP391							29	37	8	0.63	0.05	0.02	0.06	5.3

0714/0202	2275.09	7040540	500	01	60	240	26	44		0.52	0.04	0.00	0.02	F 2
97 WP 392	227508	7040549	500	152	-00	240	NICI	44	0	0.55	0.04	0.00	0.02	5.5
97 WP 393	227601	7040580	500	111	-00	240	NCI							
97002394	227008	7040159	500	117	-60	248								
97007395	227701	7040196	500	07	-60	248	INSI NCI							
97WP396	227073	7040808	500	87	-60	248	1151	20		0.56	0.00	0.00	0.00	5.2
97WP397	22/166	7040844	500	80	-60	248	30	38	8	0.56	0.06	0.00	0.02	5.3
97WP398	227259	7040881	500	135	-60	248	NSI				0.07			5.0
97WP399	228280	7038703	500	69	-60	248	9	17	8	0.54	0.07	0.02	0.00	5.3
97WP400	228373	7038740	500	129	-60	248	NSI							
97WP401	22/9/5	7039013	500	99	-60	248	NSI							
97WP402	228068	7039050	500	165	-60	248	NSI							
97WP403	229044	7038144	500	123	-60	248	85	89	4	0.65	0.02	0.03	0.06	2.7
97WP405	221703	7050841	500	39	-60	248	NSI							
97WP406	221796	7050878	500	45	-60	248	NSI							
97WP407	221889	7050914	500	45	-60	248	NSI							
97WP408	221491	7051080	500	99	-60	248	NSI							
97WP409	221584	7051116	500	75	-60	248	NSI							
97WP410	221640	7051138	500	105	-60	248	NSI							
97WP411	221409	7051477	500	69	-60	248	NSI							
97WP412	221502	7051514	500	87	-60	248	NSI							
97WP413	221595	7051551	500	135	-60	248	NSI							
97WP414	228955	7038109	500	80	-60	248	NSI							
97WP415	234441	7029090	500	45	-60	248	NSI							
97WP416	234534	7029127	500	99	-60	248	NSI							
97WP417	234627	7029163	500	129	-60	248	NSI							
97WP418	234763	7028572	500	135	-60	248	NSI							
97WP419	234856	7028609	500	87	-60	248	NSI							
97WP420	228021	7039031	500	140	-60	248	NSI							
97WP421	227985	7039124	500	129	-60	248	NSI							
97WP422	228244	7038904	500	159	-60	248	NSI							
97WP423	228558	7038598	500	87	-60	248	NSI							
97WP424	227831	7040031	500	87	-60	248	NSI							
97WP425	227868	7040046	500	99	-60	248	NSI							
97WP426	227656	7040393	500	123	-60	248	NSI							
97WP427	227379	7040713	500	150	-60	248	NSI							
97WP428	226038	7044056	496	153	-60	248	NSI							
97WP429	225849	7044411	500	113	-60	248	NSI							
97WP430	225086	7047121	500	135	-60	248	NSI							
97WP431	225060	7047541	500	135	-60	248	NSI							
97WP432	224608	7048223	500	111	-60	248	NSI							
97WP433	224368	7048559	500	51	-60	248	NSI							
97WP434	224410	7048575	500	87	-60	248	NSI							
97WP435	224820	7047877	500	141	-60	248	NSI							

97WP436	225260	7046545	500	136	-60	248	NSI							
97WP437	216947	7058750	500	171	-60	248	NSI							
RWD00009	214567	7064249	500	252.9	-60	80	NSI							
RWD00011	217422	7060011	500	348	-50	69	NSI							
RWD00012	210084	7049337	500	273.3	-48	73	NSI							
RWD00013	210244	7048889	500	288.3	-48	85	NSI							
RWD00014	217020	7058779	527	101	-53	91	88.6	88.9	0.3	6.64	0.09	0.26	0.00	0.2
RWD00026	217166	7058796	500	111.6	-90	249	16	28	12	0.55	0.03	0.00	0.00	12.0
RWD00026							75	79.25	4.25	0.47	0.01	0.03	0.23	4.2
RWD00026						Incl.	79	79.25	0.25	1.11		0.11	0.57	0.2
RWD00027	217320	7058816	500	138.5	-60	249	NSI							
RWD00028	217319	7058846	500	171.8	-80	249	NSI							
RWD00029	209803	7049576	517.74	399.1	-58	75	NSI							
RWR00001	209219	7038692	490.8	272	-61	92	NSI							
RWR00002	209218	7038794	490.8	204	-59	89	NSI							
RWR00003	208232	7038693	490.8	268	-61	90	NSI							
RWR00008	228716	7032234	516.6	96	-60	226	NSI							
RWR00009	228696	7032281	515.3	120	-61	228	NSI							
RWR00010	234947	7028541	500	234	-60	248	NSI							
RWR00011	210415	7049467	515.85	316	-60	248	NSI							
RWR00016	214138	7065240	589.5	360	-60	248	NSI							
RWR00017	214996	7063841	560.8	370	-60	248	NSI							
RWR00018	214567	7064249	580.2	118	-60	270	NSI							
RWR00019	214657	7062569	570	132	-60	270	NSI							
RWR00154	214944	7062509	500	78	-60	248	NSI							
RWR00155	210087	7049338	520	76	-60	248	16	28	12	0.66	0.03	0.01	0.00	8.0
RWR00159	217064	7058878	528	24	-50	90	12	20	8	0.63	0.02	0.02	0.00	5.3
RWR00160	217177	7058684	530.49	168	-90	90	NSI							
RWR00161	217116	7058736	529	240	-50	98	126	127	1	0.54	0.01	0.05	0.00	0.7
RWR00162	216726	7058581	524.31	210	-50	90	NSI							
RWR00163	216729	7058824	527.01	228	-50	90	NSI							
RWR00164	217143	7059202	530.12	221	-55	90	NSI							
RWR00165	216955	7058823	527	60	-90	0	24	31	7	0.45	0.02	0.01	0.00	7.0
RWR00167	217166	7058756	531	186	-50	90	4	24	20	0.68	0.06	0.00	0.00	20.0
RWR00167							107	108	1	0.87	0.02	0.06	0.00	0.7
RWR00168	216829	7058864	527.36	78	-60	90	NSI							
RWR00169	216829	7058864	527.36	102	-70	90	NSI							
RWR00170	216899	7058653	525.96	144	-70	248	NSI							
RWR00171	217217	7058775	532.44	120	-50	90	NSI							
RWR00172	216943	7058788	532	90	-90	90	NSI							
RWR00173	217087	7058765	532	106	-90	90	NSI							
RWR00174	216994	7058728	530	88	-60	90	28	40	12	0.62	0.03	0.01	0.05	8.0
RWR00180	217163	7059157	530	258	-60	248	12	16	4	0.72	0.05	0.00	0.00	2.7

ASX Announcement 17 August 2021

RWR00181	217350	7058586	530	108	-60	248	4	12	8	0.56	0.06	0.00	0.04	5.3
RWR00181							20	28	8	0.60	0.03	0.00	0.03	5.3
WILRC001	217033	7058784	500	130	-80	248	72	73	1	6.38	0.11	0.50	2.48	0.9
WILRC002	217065	7058759	500	150	-80	248	92	93	1	2.67	0.05	0.38	1.42	0.9
WILRC003	217048	7058682	500	170	-80	248	NSI							
WILRC004	217094	7058702	500	150	-80	248	NSI							
WILRC005	220460	7053600	550	144	-80	90	40	60	20	0.85	0.07	0.00	0.01	18.0
WILRC006	221130	7052300	550	130	-80	270	NSI							
WILRC007	221280	7052300	550	150	-80	270	NSI							
WILRC008	215080	7063920	550	200	-60	250	NSI							
WILRC009	216880	7058600	550	150	-60	50	NSI							
WILRC010	217008	7058451	550	150	-60	250	NSI							
WILRC011	216960	7058440	550	150	-60	70	NSI							

Table 1 JORC Code, 2012 Edition.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	• Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as	 The WNP database comprises 70 Auger (AUG) holes for 465m, 1,479 Aircore (AC) holes for 99,213m, 11,614 Rotary Air Blast (RAB holes for 326,412m, 699 Reverse Circulation (RC) holes for 74,215m and 38 Diamond core (DD) holes for 8,735m. Samples used in the Wiluna Nickel-Cobalt Laterite
	limiting the broad meaning of sampling.	resource estimate include Reverse Circulation (RC) and Diamond drilling.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of 	The drilling results detailed in this report were from drilling undertaken by Wiluna Mines Ltd (Wiluna Mines) 1998, CRA Exploration Pty Ltd (CRAE) 1992 - 1997, Outokumpu Exploration Australia Pty Ltd (Outokumpu) 1998, Agincourt Resources Ltd
	mineralisation that are Material to the Public Report.	(Agincourt) 2005 – 2006, Independence Group NL (Independence) 2005 – 2009, and Oxiana Minerals (Oxiana) 2008.
	 In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Full analysis and discussion of the entire historical drilling database is not feasible nor considered material to the understanding of the current results. RC drill holes were sampled and geologically logged on 0.5m, 1m or 2m intervals. Wiluna Mines, Independence and Oxiana used a combination of riffle splitters or spears for collecting a sub-sample of drill chips for analysis. These companies did not record their method of sampling RC chips, however, it is expected that industry-standard practices were employed.
		intervals, with selective sampling at narrower intervals to geological/ mineralisation boundaries. Independence drilling utilised 4m composites with subsequent 1m resampling through higher-grade zones. Wiluna Mines (1998) used a diamond saw to cut core in half for sampling. Although not recorded, it is expected that CRAE all other later groups used a similar method.
		• The core sampling method and the RC sampling method is considered appropriate for the style mineralisation.
		Wiluna Mining has completed basic validation checks in Datashed and Micromine, which confirmed no

		critical errors such as holes missing survey data, holes missing co-ordinates, or intervals beyond the hole depth. It is not practical to comment in this table on all holes drilled by previous explorers, so only information relating to holes mentioned in this report will be discussed. RC and DD holes drilled at Bodkin were drilled on three sections spaced 50m apart, with holes on each section spaced from ~30 to 80m apart. Holes were drilled at various azimuths and dips which provides for good understanding of stratigraphic orientation. At Longbow prospect, RC and DD holes were drilled at various orientations though generally perpendicular to stratigraphic strike. On some sections only one hole was drilled. Regional RAB drilling across the prospect is on east-west and north- south oriented lines.
Drilling techniques	• Drill type (eg core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The WNP database comprises 13,895 holes with Ni assays, including 70 Auger (AUG) holes for 465m, 1,479 Aircore (AC) holes for 99,213m, 11,614 Rotary Air Blast (RAB holes for 326,412m, 699 Reverse Circulation (RC) holes for 74,432m and 38 Diamond core (DD) holes for 8,735m. It is not known, but assumed, that historical RC sampling used a face-sampling bit, nor whether diamond core was orientated.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 CRAE recorded recoveries of all RC samples. Recoveries were typically in the order of 100%. Other historical sampling procedures have not been sighted. Not recorded, historical sampling procedures have not been sighted. Such a relationship was not assessed owing to lack of historical data. Holes drilled testing the laterite mineralisation were generally very shallow and therefore samples are expected to have been mainly dry rather than wet, preventing preferential loss of fine / coarser material.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	• For CRA holes, lithology, weathering, mineralogy and colour has been logged on paper and lithology and colour are digitally captured, whereas for Agincourt drilling lithology and weathering data is available, and for Independence holes a range of geological data including lithology, colour, grain size, texture and mineralisation has been digitally captured. This level of detailed logging is sufficient for exploration stage. All holes were logged in full.

	• The total length and percentage of the relevant intersections logged.	
Subsampling techniques and sample	• If core, whether cut or sawn and whether quarter, half or all core taken.	 Drill sampling was predominantly half core and was cut using a diamond saw. Core diameter was NQ.
preparation	 If noncore, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	• RC and RAB samples were routinely composited in the field (Independence JV samples were tube- speared, splitting method unknown for other operators), with subsequent zones of mineralisation split on 1m intervals (splitting method not recorded). Moisture information is not recorded.
	 Quality control procedures adopted for all subsampling stages to maximise representivity of samples. 	Independence and Oxiana RC samples were tube- speared, Wiluna Mines used a combination of tube- spearing and riffle splitting of RC samples. Sampling and splitting methods are unknown for other operators.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling. Whether sample sizes are appropriate to the provincies of the material being superplad. 	Agincourt, Independence & Wiluna Mines used Amdel (Welshpool, Perth) for their geochemical analysis. On occasions Oxiana also used Genalysis, both ISO accredited labs. It is assumed that standard dual stage crushing and pulverisation was employed prior to acid digost
	grain size of the material being sampled.	 Not recorded. RAB and RC drilling is considered appropriate for 'first-pass' exploratory and resource definition drilling. The sampling to mineralisation boundaries in core holes, with either half core or full core sampling is preferred to RC 1m or composite sampling. It is assumed that standard dual stage crushing and pulverisation was employed prior to acid digest.
		 Not recorded, historical sampling procedures have not been sighted. However, it is expected that industry-standard practices were employed.
		• Details of QAQC procedures for DD drilling are included in some of the Annual Reports; diamond core in mineralised zones was sampled at two metre intervals and stopped at geological contacts or at changes in the tenor of mineralisation. In barren zones CRA collected samples at one metre in five to monitor background geochemical levels.
		 The sample sizes typically obtained from RAB, RC or DD drilling over 1m intervals are believed to be appropriate for the style of mineralisation being sampled. The 0.25m and 0.3m massive sulphide sample intervals in core are considered quite short and almost too short to provide sufficient sample quantity for analysis, however given the massive

		nature of the sulphides sampling to mineralisation boundaries is considered appropriate regardless of the sample length.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The project has a 30-year history since discovery which has included being managed by multiple separate companies. The changes in ownership mean that much of the past work, particularly prior to 1994, has often been poorly documented or archived. For CRA drilling, the laboratory used was Analabs, the method is not recorded though Ni analyses were to 10ppm lower detection limit. For Agincourt drilling the lab was Amdel and technique ICP, with parts per million accuracy. For Independence drilling, samples were analysed by Ultratrace using four acid digest and ICP/OES finish (technique ICP102) to part per million accuracy, which is considered suitable for exploratory drilling. These are considered partial extraction techniques. No geophysical tools were used to determine any element concentrations. Historical sampling procedures for most previous operators have not been sighted. For Agincourt, RC sampling, either a blank was inserted or a duplicate prepared every 1 in 20 samples. Oxiana inserted standards or prepared duplicates every 12 samples. Nickel assays were within 5% of recommended standard values and cobalt assays within 15% of recommended values. Oxiana duplicate samples showed a range from good to poor correlation. The lab used by CRA was Analabs, the assay method is not recorded.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative Company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intercepts are inherited from historical databases. The Database Manager and Competent Person validated the database. No twinned holes are present in the historical dataset, these are not considered routinely necessary at the exploration stage. Historical data collection procedures are not documented. Digital copies of historical annual Mines Department reports are stored on the WMC server. These contain photocopies of 'hard copy' logs of CRA RAB, RC and DD holes. More recent drilling data was downloaded from the DMIRS WAMEX site, and is also stored in a Datashed database on the WMC server. There has been no adjustment to lab assay data.

Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collar survey methods are not recorded in the database, though data appears at either mm or cm accuracy, which suggests that DGPS collar pick-ups were routinely obtained. Holes drilled by Wiluna Mines were surveyed downhole by a Reflex multishot instrument. Agincourt, Independence and Oxiana used an Eastman single shot down hole camera to survey the collar and base of their drill holes. Grid system used in this report are GDA 94 Zone 51 S. Drilling collars were originally surveyed in either AMG grid and converted in Datashed to MGA grid. Relative level co-ordinates do not appear to have been routinely collected; many holes were recorded at RL 500 so for simplicity all holes have been draped onto this level, given that topographical relief is very flat this is considered a reasonable approach to allow correlation between lithology and assays between holes. Previous operators have also draped collar points on to aeromagnetics-derived topography models.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC and DD holes drilled at Bodkin were drilled on three sections spaced 50m apart, with holes on each section spaced from ~30 to 80m apart. Holes were drilled at various azimuths and dips which provides for good understanding of stratigraphic orientation. At Longbow prospect, generally only one hole was drilled per section. Regional RAB drilling is on eastwest and north-south oriented lines. The drill spacing on average is approximately 400m by 100m over the laterite resource area. The mineralisation shows sufficient continuity of both geology and grade between holes to support geological and grade continuity to establish a mineral resource estimate. The mineralisation shows sufficient continuity of both geology and grade between holes to support geological interpretations, though resource estimates are not the subject of this report. RC samples have been composited at various times on 2m or 4m lengths, with subsequent re-splitting of samples on 1m intervals in anomalous zones.
Orientation of data in relation to	• Whether the orientation of sampling achieves unbiased sampling of possible	 RC and DD holes drilled at Bodkin were drilled at various azimuths and dips which provides for good understanding of stratigraphic orientation. At

geological structure	 structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Longbow prospect, RC and DD holes were drilled at various orientations though generally perpendicular to stratigraphic strike. The drill lines are located perpendicular to the strike of the ultramafic unit. The ultramafic unit is defined by some outcrop and by geophysical surveys. Drilling perpendicular to strike is intended to provide the least possible sampling bias, given that the expected mineralisation is parallel to stratigraphy.
		 No orientation-based sampling bias has been assessed, nor considered a likely problem owing to drilling mainly perpendicular to strike and the generally flat-lying mineralisation. For angled holes, the down hole intercept widths may be 1/3 longer than true widths, however there is not considered to be any bias in grade
Sample security	• The measures taken to ensure sample security.	 It is not known what measures were taken historically.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Historical drilling data have been validated in Datashed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section

Criteria	JORC Code explanation	Commentary
Criteria Mineral tenement and land tenure status	 JORC Code explanation Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 WMC and A-Cap Resources Ltd have entered into a definitive Farm-in and Joint Venture Agreement (JVA). Tenements in the JV consist of the following exploration tenements: E53/1794, E53/1645, E53/1908, E53/1803, E53/1864, E53/2048, E53/1644, E53/1852, E53/2050, E53/1791, E53/1853, E53/1912, E53/2050, E53/1791, E53/1853, E53/1912, E53/2054, E53/2053, P53/1560, R53/0001. Tenements in the JV consist of the following mining leases: M53/0092, M53/0139, M53/0026, M53/0024, M53/1098, M53/0049, M53/00041, M53/00131, M53/0034, M53/0052, M53/00041, M53/00188. All the JV tenements are held in the name of Kimba Resources Pty Ltd and Matilda Operations Pty Ltd both companies are subsidiaries of WMC Ltd All
		tenements are current except exploration permits

		 EL53/2053 and EL53/2054 which are pending grant. All tenements are contiguous and cover an 881 km² area around the town of Wiluna. The tenements are in good standing and no impediments exist. Franco Nevada Australia Pty Ltd hold a 2% net smelter return royalty over nickel metal produced from the existing mining leases only. The tenements are located on the traditional lands of the Tarlka people (NTA WR2016/001). WMC currently has an agreement with the traditional owners over a portion of the JV area that requires any areas within the relevant be cleared by cultural heritage survey prior to any surface disturbance. There are no known impediments to obtaining a license to operate in the area outside of standard landholder, traditional owner and Western Australia Department of Mines (DMIRS) regulations.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 The WNP has been explored by various operators from the late 1960's to the onset of the global financial crisis in 2009. The project comes with extensive geochemical, geophysical and drilling data sets. At various times focus has shifted from Kambalda style to Mount Keith to nickel laterite target styles, although no economic discoveries have yet been made numerous nickel sulphide occurrences have been identified, and many of these justify further work. Extensive nickel laterite mineralisation has been delineated over the ultramafic belt.

Geology	• Deposit type, geological setting and style of	•	The WMP is located on the north eastern edge of
	mineralisation.		the Archaean Yilgarn Block, in the Wiluna Greenstone Belt. The Wiluna Greenstone Belt can be divided into two metamorphic domains, the Wiluna domain in the east and the Matilda domain in the west. The major north west trending Perseverance Fault separates the domains.
			The Wiluna domain is a low grade, prehnite- pumpellyite facies, metamorphic terrain comprising mafic to ultramafic lavas with intercalated sedimentary units, felsic volcanics and dolerite sills overlain by a thick pile of felsic volcanics, tuffaceous sediments, and sedimentary rocks, interrupted by extrusion of a large volume of komatiitic lava. Primary igneous textures and structures are well preserved, and deformation is predominantly brittle.
			The Matilda domain is a medium to high grade, greenschist to lower amphibolite facies, metamorphic terrain with predominantly ductile deformation. It consists of a volcano sedimentary sequence in an interpreted major north west trending synclinal structure, with the axis close to the Perseverance Fault. The sequence comprises basal banded iron formation in the west, overlain by komatiitic volcanics with limited basal peridotite members. These grade upwards into high magnesium basalt and basalt with interflow chert and graphitic and sulphidic sediments. Metabasalt predominates in the project area. Felsic volcanic rocks and sediments are interpreted to form the core of the syncline.
			A number of granite plutons intruded both domains during the very latest stages of volcanism, or the earliest stages of subsequent compressional deformation and regional metamorphism. Emplacement was essentially along the contact between the greenstones and the unknown substrate.
			Exposure at the Wiluna Nickel-Cobalt Project ground is virtually non-existent and the geology of the Wiluna ultramafics has been largely determined from previous drilling results aided by an interpretation of magnetic surveys. Approximately 10km northwest of Wiluna the ultramafics are buried under Proterozoic cover.
			Drilling has shown that the ultramafics form the base part of a differentiated igneous intrusion which is represented by serpentised dunite, serpentinised peridotite, pyroxenite and gabbro.

		The intrusion appears to be conformable or slightly discordant and is thought to have been emplaced as a sill. Near Wiluna, this ultramafic sill is between 200-300m wide at the surface but thins rapidly south to less than 100m at the surface before disappearing under the surficial cover. The ultramafics are dislocated by a number of faults trending north and northeast. Nickel – cobalt mineralisation is concentrated in laterite profiles developed over units of the Perseverance ultramafic sequence. Previous drilling has shown that the mineralisation forms a thin, <5m thick laterally extensive blanket. Where cut by steep structures, intense lateritisation and mineralisation can extend to down to 120 metres depth. From the top of the profile magnesium levels typically increase from less than 1% to 20% at the saprock interface. This typically occurs within approximately 6 metres allowing an Mg discontinuity surface to be easily identified. This discontinuity is a redox front which forms between the reduced water table and the overlying oxidised saprolite. In many locations the nickel and cobalt peak values occur above this surface.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not 	 See data table Appendix to this report. Full reporting of the entire database is not considered reasonable or required for an understanding of the results in this report; for transparency, full program results are included for drilling discussed in this report.
	Justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the	

	report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cutoff grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 WNP significant intercepts calculated using the following parameters: Ni >0.5%, no minimum width, internal dilution up to 4m consecutive waste, length-weighted averages. Metal equivalents are not reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The Laterite is flat-lying and drilling is either vertical or at a 60 degree angle. The intersections are a reasonable approximation of the mineralization thickness.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• See diagrams in the body of this report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• The large volume of data makes reporting of all exploration results not practical. However, the full program results are included for generations of drilling discussed in this report, such that the distribution of mineralised and non-mineralised zones can therefore be determined
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations;	• Results of EM geophysical surveys are discussed in the body of this report, and reveal further untested anomalies. However, the results are not

geophysical survey results; geochemical considered to alter the interpretation of the herein survey results; bulk samples - size and reported exploration results. method of treatment; metallurgical test bulk density, results; groundwater, Ultramafic units in the Wiluna region are strongly ٠ geotechnical and rock characteristics; magnetic and show up as conspicuous linear potential deleterious or contaminating magnetic highs in the ground and airborne substances. magnetic survey data (see Figure below). The magnetic data highlights the continuity of the ultramafic units over which the cobalt and nickel rich laterite deposits are developed. AGNET NO Further work The nature and scale of planned further Review of geophysical datasets is required, and work (eg tests for lateral extensions or further EM surveying is likely to be recommended. depth extensions or largescale step-out Follow-up exploration drilling is likely, as sulphide drilling). mineralisation is interpreted to remain open along strike and along plunge. • Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.