ASX Announcement

WILUNA MINING

17 November 2020 ASX: WMX

DISCOVERY AND DRILLING RESULTS UPDATE

HIGHLIGHTS

JORC COMPLIANT EXPLORATION TARGETS DEFINED

Maiden Exploration targets defined for the East/West structures at the Wiluna Mining Centre

DRILLING HIGHLIGHTS

• Further results from drilling at Wiluna Mining Centre include:

BUUD0139: 3.14m @ 8.11g/t BUUD0149: 5.18m @ 10.97g/t

WURC0924: 4.00m @ 5.82g/t and 22.00m @ 2.68g/t incl. 1.00m @ 8.23g/t & 1.00m @ 8.64g/t

WURD0084: 3.58m @ 14.08g/t and 4.35m @ 6.14g/t

Broad mineralised zones include:

WURC0891: 62.00m @ 1.54g/t
WURC0924: 60.00m @ 1.79g/t
WURD0084: 60.45m @ 1.91g/t

- High-grade intervals up to 32.5g/t in previously un-sampled historical core
- Further 126 historical core samples assaying > 1g/t and 13 samples assaying > 5g/t, demonstrate high-grades in situ adjacent to previously assayed and mined zones, value extracted from previous owner's core

GROWTH AND DISCOVERY STRATEGY DEFINED FOR THE NEXT 18 MONTHS

- Wiluna resources and reserves for Sulphide Development
- Wiluna and Regent targeting discovery of new sulphide zones
- Regional discovery

About Wiluna Mining

Wiluna Mining Corporation (ASX: WMX) is a Perth based, ASX listed gold mining company that controls over 1,600 square kilometres of the Yilgarn Region in the Northern Goldfields of Western Australia.

The Yilgarn Region has a historic and current gold endowment of over 380 million ounces, making it one of most prolific gold regions in the world. The Company owns 100% of the Wiluna Gold Operation which is the 7th largest gold district in Australia under single ownership based on overall JORC Mineral Resource.

BOARD OF DIRECTORS

Milan Jerkovic — Executive Chair Neil Meadows- Operations Director Sara Kelly — Non-Executive Director Greg Fitzgerald — Non-Executive Director Tony James — Non-Executive Director

CORPORATE INFORMATION

100.5 M Ordinary Shares
2.52M Unquoted Options/ZEPO's

Level 3, 1 Altona Street, West Perth, WA 6005 PO Box 1412 West Perth WA 6872

T +61 8 9322 6418 **F** +61 8 9322 6429

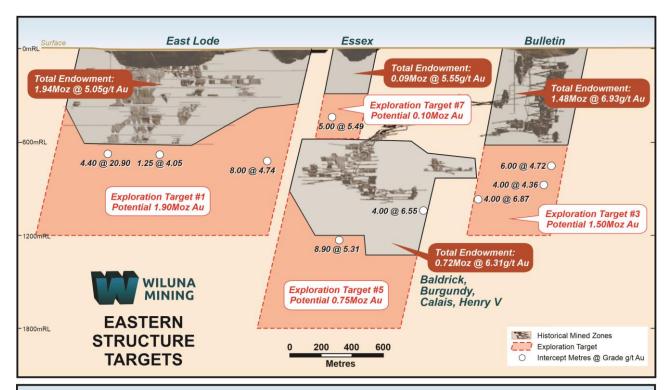
info@wilunamining.com.au wilunamining.com.au

Wiluna Mining Corporation Limited (ASX: WMX) (Wiluna Mining, WMC or the Company) is pleased to provide a Discovery and Drilling results update. The update will specifically report on;

- JORC Compliant Exploration targets defined for the East/West structure at the Wiluna Mining Centre;
- Reporting of further high-grade results from an additional 17 holes and 3,845m of resource development and discovery drilling at the Wiluna Mining Centre;
- Reporting of multiple significant intercepts from previously un-sampled mineralisation identified in the large core library at the Wiluna mine site; and
- The Company's exploration programme, our growth and discovery strategy and planning for the next 18 months.

Wiluna Mining's aggressive growth programme for the next 18 months has three key themes:

- 1. Focus on defining Ore Reserves for Stage 1 Sulphide Development for shallow, high-grade, low-cost mining.
 - o Targeting Ore Reserves in the depth range 0 to 600m below surface.
 - Increase sulphide Ore Reserves to support Stage 2 development with programmes from surface to a depth of 1,200m. The programme includes mine dewatering, rehabilitation, and installation of drill drives.
 - The programme is designed to maintain and grow the Indicated and Measured portion of the Mineral Resource on a rolling basis to replace depletion and provide further inventory for production planning and long-term Ore Reserves.
- 2. Discover new sulphide zones at Wiluna and reveal the full scale of the large gold system to 1,800m below surface; multiple targets "under the headframe" are to be drilled.
 - The historically mined Bulletin main shoot produced 900koz @ 8g/t for comparison. The Company's geologists have identified multiple targets where ore shoots may have formed, in a predictable structurally repeated pattern controlled by the steeply south-plunging shoot corridors in conjunction with conjugate north-plunging trends. High-grade +5g/t shoot discoveries could substantially enhance the front of the current mine plan.
 - Priority targets are located 0 to 600m below surface at Essex (lower), East Lode, West Lode, and Happy Jack North. Additional targets are located 600 to 1,800m below surface at Calvert, Happy Jack and the East and West lodes. These targets will be drilled from surface and underground positions.
- 3. Make a discovery within the wider 1,600km² Wiluna Gold Operation, with four gold deposit styles and multiple targets defined and excellent potential for long-term organic growth.


EXPLORATION TARGETS DEFINED

The JORC Compliant Exploration Target defined for the East/West structures at the Wiluna Mining Centre is approximately 35Mt to 40Mt @ 4.5g/t to 7g/t for 5Moz to 7Moz of gold. The Exploration Target potential does not pertain to a resource and is purely an indication of the potential of the Wiluna deposit beyond the current production areas and currently defined Mineral Resource. The potential quantity and grade of the Exploration Target is conceptual in nature and is therefore an approximation. There has been insufficient exploration drilling to estimate a Mineral Resource in the target areas, and it is uncertain if further exploration will result in the estimation of a Mineral Resource. In line with the Company's major ongoing resource and reserve development programme, drilling and geophysical work is planned over the next 1 to 5 years to systematically test these targets.

The total historical endowment of the East Structure (Figure 1) ranges in gold grade from 5.05g/t Au to 6.93g/t Au for 4.23 million ounces gold, so the Exploration Target over similar dimensions and gold grade is expected to range between 18Mt to 22Mt @ 5g/t to 7g/t for a total gold target of between 3Moz and 4Moz.

The total endowment of the West Structure (Figure 1) ranges in gold grade from 4.70g/t Au to 5.94/t Au for 2.76 million ounces gold, so the Exploration Target over similar dimensions and gold grade is expected to range between 15Mt to 17Mt @ 4g/t to 6g/t for a total gold target of between 2.2Moz and 3.0Moz.

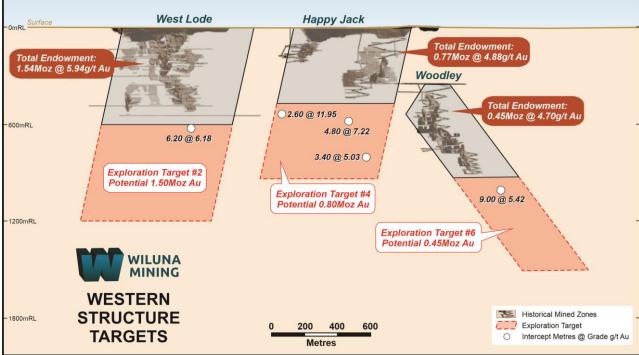


Figure 1: Long sections looking west of the two main mineralised structures within the Wiluna Mining Centre, showing total endowment (produced gold plus current Mineral Resource), historical intercepts and the Exploration Targets.

The Exploration Target is derived from the seven target endowments that are calculated from the recorded production and the current 2.5g/t cut off resource within the area shown in Figure 1. The same size area for each lode was extrapolated down-dip to show the potential. The Exploration Targets are based on extensive historical mining and drilling data and resource estimates, extrapolated into poorly tested areas where very wide-spaced previous drilling shows the structures do persist at depth, in places at similar grades (Figure 1). Previous drill holes, spaced several hundred metres apart, returned varying results, but are considered too broad-spaced to have properly tested for highgrade shoots that contain the bulk of ounces in the adjacent very large JORC-compliant resource and previously mined zones.

In early 2021, WMC has scheduled a 2-Dimensional trial seismic survey over the Wiluna main mineralisation to map the gold structures potentially to several kilometres below surface. If successful this will be followed up with a detailed 3-Dimensional survey over the entire Wiluna Mining Centre with a view to define drilling targets for future resource growth.

EXPLORATION PROGRAMME

Wiluna Mining's geological team has developed and ranked a pipeline of over thirty targets across the Company's 1,600km² of highly prospective and productive tenure (Figure 2).

There are at least four known styles of mineralisation, which have contributed to past historical production (Figure 3). Including:

- 1. Sulphide shear-hosted e.g. Wiluna & Regent
- 2. Shear-hosted e.g. Matilda
- 3. Granite-hosted e.g. Williamson of Lake Way
- 4. Quartz reef style e.g. Golden Age & Galaxy.

Detailed exploration programmes are in development and will be initiated in 2021 to systematically test these targets in conjunction with ongoing resource & reserve conversion.

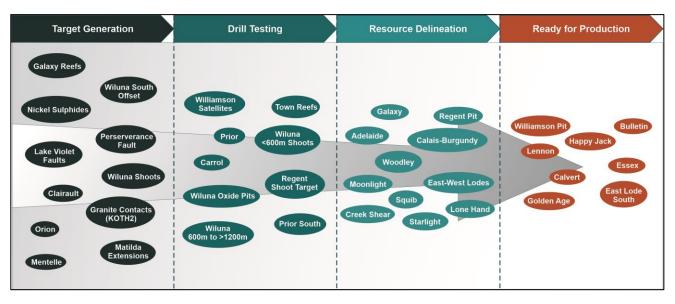


Figure 2: Wiluna Gold Operation Project Pipeline.

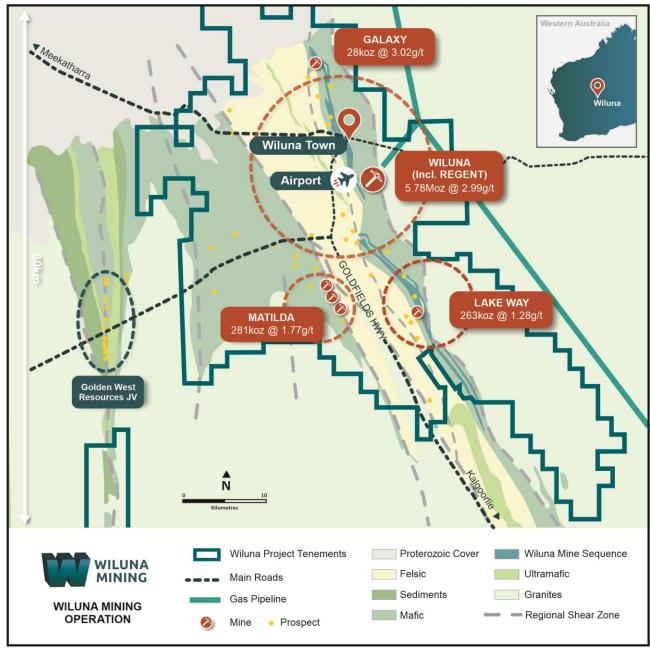


Figure 3: Map of the Wiluna Mining Operation and key Mining Centres.

Wiluna Mining Centre

Resource and reserve development programmes are designed to follow-up the extremely positive drilling results reported over the past 12 months. The drilling programme focuses on highest-value deposits scheduled for mining in the next 4 years to further enhance the sulphide expansion mine plan (Essex, Calvert, Bulletin, East Lode South and Happy Jack), with drilling at both surface and underground locations.

The success of Wiluna Mining's drilling strategy in the past 12 months, with multiple thick high-grade intervals defined at shallow levels, close to previously-mined zones with available access and infrastructure (Figure 4), allows for rapid low-cost development.

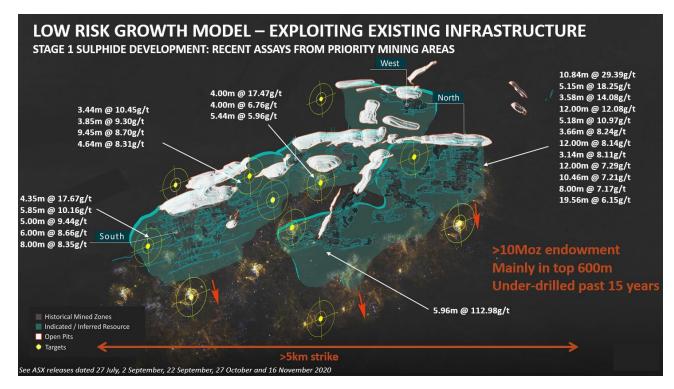


Figure 4: Wiluna Mining Centre- shallow targets for resource growth leveraging existing mine development. Multiple high-grade intercepts reported from all drill target locations since 1 July 2020.

The Wiluna Mining Centre gold Mineral Resource has increased to **60.2Mt @ 2.99g/t for 5.78Moz** (above 1.0g/t cutoff), including a **high-grade core of 26.9Mt @ 4.89g/t for 4.24Moz** (above 2.5g/t cut-off) with 50% in the Measured and Indicated categories and 50% in the Inferred category (see ASX release dated 5 November 2020). The drilling programme is aimed at defining reserves ahead of production, through progressive infill and extensional drilling and conversion of the current Inferred component of 2.10Moz @ 4.57g/t (above 2.5g/t cut-off).

Including historical production of over 4Moz, Wiluna's total endowment is over 10Moz which ranks Wiluna alongside an exclusive peer group of large-scale, long-life mining centres in the Western Australian gold fields. Most historical production and existing resources occur in the upper 600m, with limited drilling during the past 15 years at depth on Wiluna Mining's identified high-grade shoot targets, which Wiluna Mining will systematically drill out to complete the resource and reserve development programme in the 18 months ahead.

At Wiluna, the bulk of the ounces are hosted within high-grade shoots within steeply-dipping gold shear zones, with the two most prominent being the East and West structures and a third sub-parallel structure called Adelaide-Moonlight, with a combined strike length of over 10km. In addition, numerous linking structures and splays are also mineralised, and free-milling high-grade quartz reefs continue to be drilled. Prior to Wiluna Mining's ownership, historical intercepts drilled below the deepest mine workings, which are just 1,000m below surface, confirmed that high-grade extensions continue to greater depths.

Drilling has commenced targeting new sulphide shoots around the East and West structures, and further targets will be accessible for underground drilling in 2021 with new drill drives to be installed to systematically drill out the gold structures.

The Wiluna eastern structure lodes comprise; East Lode, Essex, Baldrick/Burgundy/Calais/ Henry V and Bulletin with the Wiluna western structure lodes comprising; West Lode, Happy Jack and Woodley. These two structures have a total endowment (produced gold plus current resource at a 2.5 g/t cut off) of 7 million ounces of gold.

The lodes that comprise the two main structures within the Wiluna deposit have very limited drilling below the level of production, but the drilling that has been completed shows the same mineralisation style at similar grade and width intersections as observed within the production envelopes. This gives confidence that mineralisation extends well beneath the currently known depth extents of each lode.

Starting in 2021, exploration drilling will commence to target the lodes beneath the currently defined depth extents with the aim of substantially growing the global Wiluna deposit resource.

Sulphide Shoot Targets

Wiluna Mining is targeting high-grade shoot discoveries at shallow depth, for example beneath the Starlight shallow open pit (Figure 5) which is close to the existing underground mine infrastructure, for rapid and low-cost development.

The Company is targeting high-grade zones to bring into the front of the mine plan, because every increase in head grade of 1g/t equates to approximately 25kozpa additional ounces during Stage 1 production and 50kozpa during Stage 2 of the Sulphide Development plan.

Shallow shoot targets are scheduled to be drilled beneath the recently mined Starlight and Creek Shear open pits, and beneath the Squib and Lonehand historical pits as well as multiple targets across the Wiluna Mining Centre.

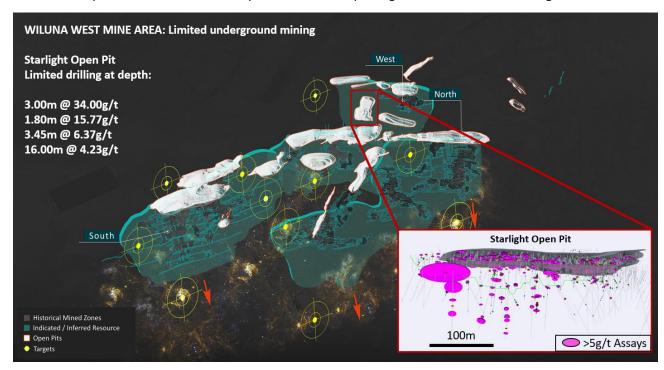


Figure 5: Wiluna West Mine Area: Starlight deposit with high-grade shoot potential beneath open pit.

Regent Mining Centre

Regent is an advanced resource development project located 8km from the Wiluna processing plant and close to the existing Williamson haul road. The deposit comprises an oxide, transitional, and fresh Mineral Resource in Inferred and Indicated categories of **6.15Mt @ 1.27g/t for 252,000oz** (Figure 6 & 7).

Regent remains open at depth and along strike to the north and south, with historical intercepts to be followed up including: 24m @ 5.9g/t, 8m @ 6.1g/t, 15m @ 5.08g/t, 6m @ 17.6g/t, 2m @ 9.42g/t, and 24m @ 6.2g/t.

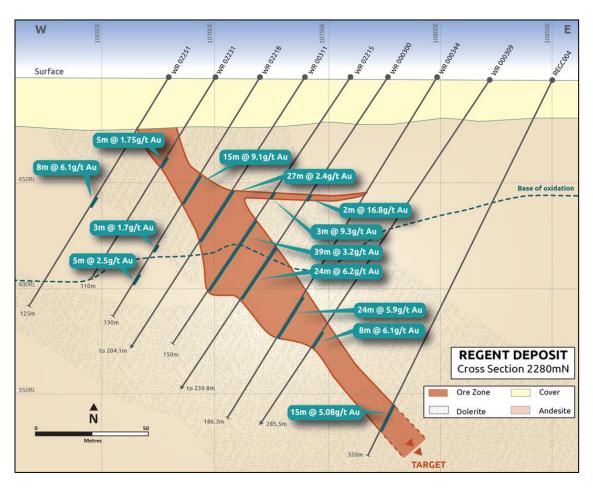


Figure 6: Regent cross section showing thick, high-grade sulphide mineralisation remains open at depth.

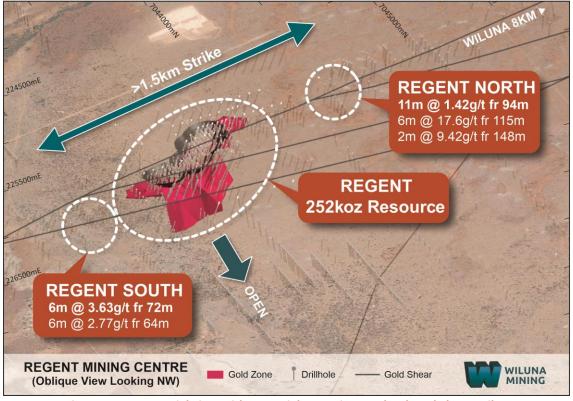


Figure 7: Regent aerial view with potential extensions at depth and along strike.

At Regent, drilling is planned to reveal the full scale of the Regent gold system at depth and along strike. Resource and reserve development drilling will target both free-milling open pit and underground sulphide mineralisation to feed to the Wiluna concentrator in Stage 2 of the Sulphide Development plan.

Regent is geologically similar to the Wiluna sulphide deposits, with a thick high-grade, free-milling oxidised cap overlying a Wiluna-style sulphide zone. The deposit is overlain by 30m of barren soil cover, which has precluded geochemical exploration in the past. However, detailed magnetic geophysics imagery reveals that Regent occurs in the same favourable structural setting within identical rock types to Wiluna (Figure 8) with considerable potential for resource extensions and discoveries in the immediate vicinity and the structural corridor linking between Regent and Wiluna.

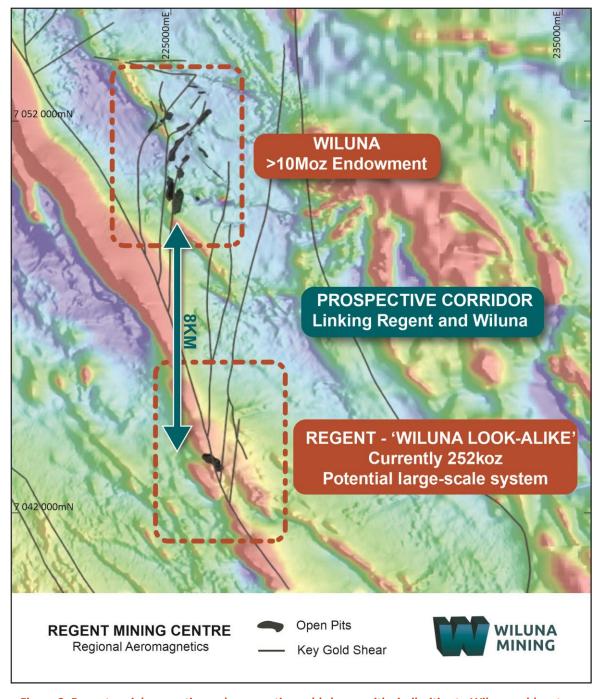


Figure 8: Regent aerial magnetics and prospective gold shears with similarities to Wiluna gold system.

Lake Way Mining Centre

Lake Way presents multiple exciting exploration targets which have the potential to host large-scale bulk-mining deposits (Figure 9). Williamson is a style of gold deposit that shares geological similarities with "Thunderbox" (Saracen Mineral Holdings Ltd) and "Gruyere" (Gold Road Resources Ltd), which shows that Lake Way and Williamson itself has the potential to be a very large gold system.

Free-milling programmes at the Lake Way Mining Centre are on hold while the Stage 1 and Stage 2 Sulphide Development plan is in progress. Drilling is planned to resume within the next 18 months to define additional free-milling Ore Reserves, with a planned restart date for the existing free-milling circuit from late 2023 / early 2024 coinciding with the start of Stage 2 sulphides production.

Wiluna Mining's past exploration in the area has included a detailed ground gravity geophysical survey, reconnaissance Aircore drilling, and resource definition RC and DD drilling. Combined with historical exploration data, the Company has delivered a maiden Inferred Resource estimate for Carrol and Prior deposits of 90koz @ 1.02g/t (see ASX release dated 30 September 2020).

Williamson open pit provides the bulk of free-milling mill feed until the transition to Stage 1 sulphides production from October 2021, and is based upon a Measured, Indicated and Inferred Mineral Resource of 3.5Mt @ 1.47g/t for 167koz (see ASX release dated 30 September 2020). Future drilling will target extensions to the open pit along strike and at depth and will aim to define the scale of the potential resource that may be amenable to bulk underground mining opportunity.

Williamson extensions and Carrol and Prior deposits require further extensional drilling to reveal their true scale, with the potential for large tonnage, bulk mining opportunities and a potential to provide baseload feed to the Wiluna free-milling plant or operate as a standalone mining and processing centre.

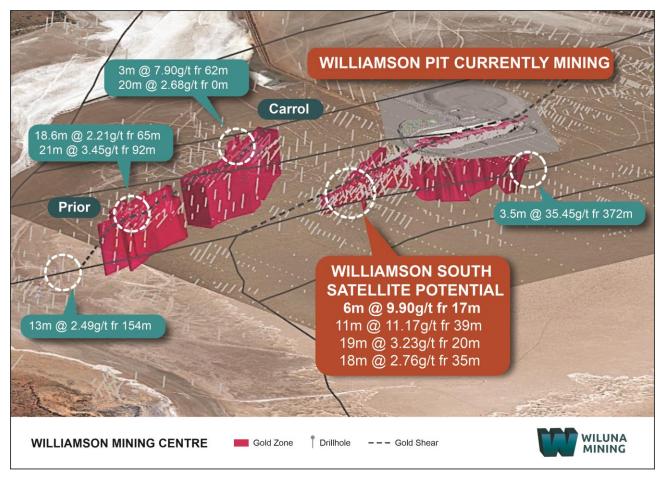


Figure 9: Lake Way targets include extensions to Williamson, Carrol and Prior.

Greenfields Conceptual Targets

The Wiluna Gold Operation offers excellent exploration prospectivity for long-term organic growth. The potential for significant +1Moz discoveries remains high given that little regional exploration has occurred since Great Central Mines / Normandy Mining in the late 1990's and the early 2000's, meanwhile exploration and analytical techniques have improved in the intervening period. Priority targets include Perseverance Fault, King of the Hills #2 (KOTH2), Mentelle, Matilda North, Regent extensions, and Lake Way extensions (Williamson, Carrol and Prior).

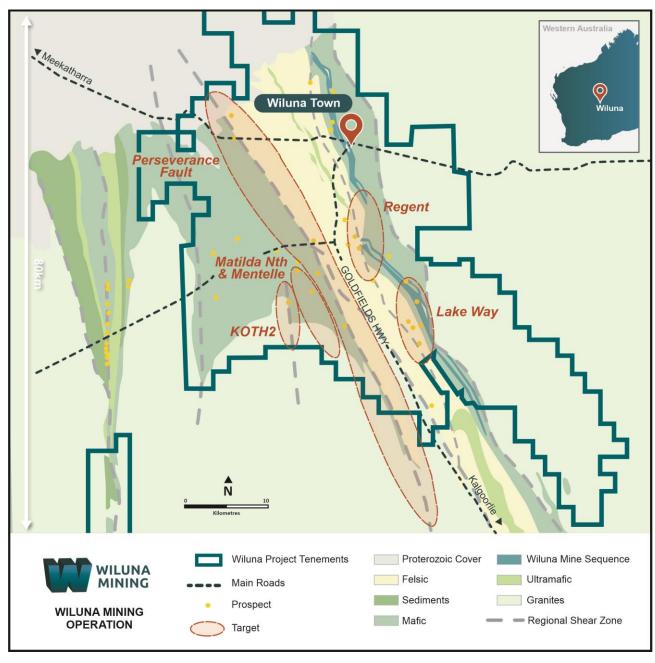


Figure 10: Regional greenfields and brownfields targets at the Wiluna Gold Operation.

DRILLING HIGHLIGHTS

The Company has currently deployed four rigs at the Wiluna operation, and drilling is scheduled to accelerate in January 2021. Further updates to our Mineral Resource and Ore Reserve are expected in the first half of 2021. Drilling has recently focused on the Bulletin zone that has continued to increase the Stage 1 development of shallow, high-grade, and high-priority mining zones.

The ongoing programme at the Bulletin zone, in the Wiluna North Mine area, is designed to infill the Inferred Resource within preliminary stope designs, with the aim to upgrade geological confidence to Indicated category. Excellent results were achieved from this programme (Figure 11):

BUDD0139: 3.14m @ 8.11g/t Au

BUUD0149: 5.18m @ 10.97g/t Au

WURC0924: 4.00m @ 5.82g/t Au and 22.00m @ 2.68g/t Au (within a broad halo intercept of 60.00m @ 1.79g/t Au)

WURC0927: 3.00m @ 5.56g/t Au

WURC0929: 7.00m @ 4.00g/t Au

WURD0084: 3.58m @ 14.08g/t Au and 4.35m @ 6.14g/t Au (within a broad halo intercept of 60.45m @ 1.91g/t Au)

WURD0101: 6.00m @ 4.45g/t Au

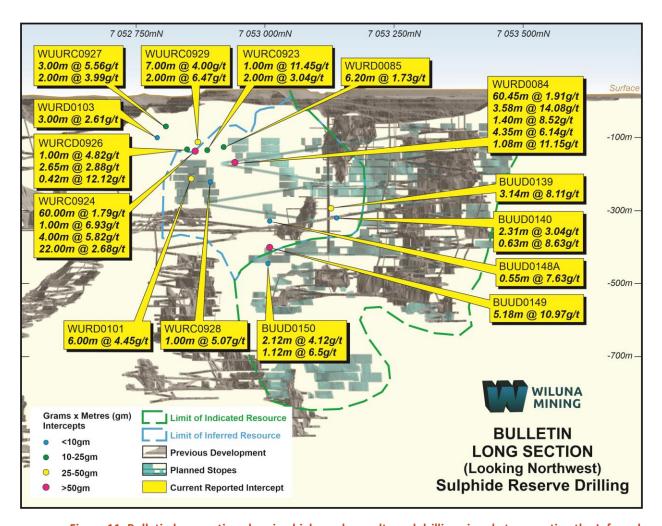


Figure 11: Bulletin long section showing high-grade results and drilling aimed at converting the Inferred Resource area to Indicated category.

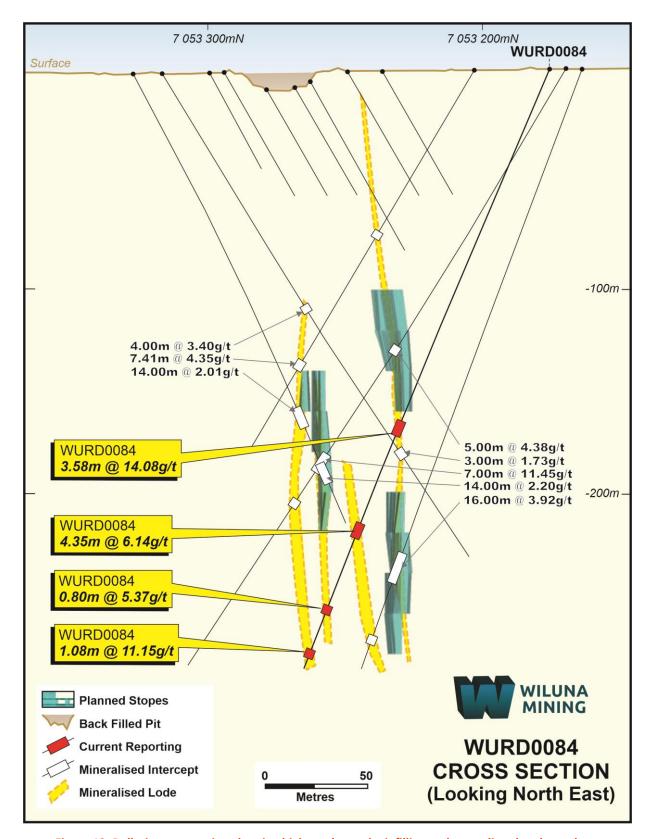


Figure 12: Bulletin cross section showing high-grade results infilling and extending the planned stope areas.

The current drilling programme is designed to increase the geological confidence in sulphide resources that underpin the staged Sulphide Development plan. This drilling has focussed on high-grade (+5g/t) sulphide zones located close to surface and close to existing infrastructure, which allows for rapid and low-cost development.

In the 2020 Financial Year (July 2019 to June 2020), the Company drilled over 45,000m of infill and extension drilling at the Wiluna Mining Centre to define and grow the very large sulphide resource and free-milling resources at Golden Age and Lennon zones. A further 4,700m was completed at the Lake Way and Regent Mining Centres, leading to a comprehensive update to total JORC-compliant Mineral Resource to **154Mt @ 1.63g/t for 8.04Moz**, including a very large high-grade component of **26.9Mt @ 4.89g/t for 4.24Moz** (above 2.5g/t cut-off) which will underpin the Company's staged Sulphide Development plan (see ASX releases dated 30 September and 5 November 2020).

The Company reported substantial updates to Mineral Resource Estimates (see ASX releases 30 September and 5 November 2020), which form the basis for current mine planning and Ore Reserve estimation work currently in progress, with a view to updating Ore Reserves in January 2021. The Company has completely overhauled its Mineral Resource estimates for the Wiluna Gold Operation, including at the Wiluna Mining Centre (combined with the Regent deposit), taking a standardised approach to modelling and reducing the historical eleven separately modelled areas to just five. Maiden resource estimates were also published for the Carrol and Prior projects at the Lake Way Mining Centre, which represents a medium-term exploration target for large-scale bulk mining and free-milling operations.

The Company aims to continue adding sulphide resource ounces at a very competitive cost per ounce, by leveraging the operating mine infrastructure, and the historical drilling database which comprises over 3,000,000 metres of drilling data across the wider Wiluna Gold Operation.

The true scale and potential of the Wiluna Mining Centre is yet to be revealed. The Wiluna gold system has a currently defined endowment of over 10,000 ounces per vertical metre with most of the past production and current resource in the top 600 metres. The Company's resource development drilling has only explored the Wiluna upper zone to 600m depth, while limited historical drilling to 1,200m below surface indicates that the highly continuous gold structures remain open with considerable opportunities for further growth of resources.

The main mineralisation is not closed off along strike or down dip and the gold endowment of cross cutting structures both within the main mineralisation and peripheral to it has yet to be fully assessed. The potential for mining of high-grade shoots as previously interpreted and exploited, or wider shear zones potentially lending themselves to bulk mining methods has yet to be fully tested.

HISTORIC DRILL CORE ASSAYS DEMONSTRATE HIGH GRADES ADJACENT TO MINED ZONES

The Company's approach is to leverage the large amount of historically sunk capital, including existing mine development and over 800,000m of diamond core previously drilled at the project that was only selectively sampled by previous operators. New intersections include 13 intervals above 5g/t and 126 assays above 1g/t.

The historic diamond drill core drilled by the previous owners of the project has been reviewed looking to define these wider zones of mineralisation. Over 20,000m of historic core has been identified to assess both halo mineralisation and missed high-grade zones exist in the historic core.

Progress to date has seen over 8,000m of historic diamond core sampled and assayed. Numerous exceptional bulk intersections have now been realised combining the new assay intervals together with the historic assays:

WDH00926: 47.10m @ 3.71g/t Au
CADH01131A: 27.10m @ 4.16g/t Au

CADH01111: 10.50m @ 3.37g/t Au

ELN0081: 11.35m @ 2.80g/t Au WDH00886: 11.40m @ 2.90g/t Au

WDH00708: 36.74m @ 2.58g/t Au and 20.50m @ 1.45g/t Au

WDH00913: 23.60m @ 1.83g/t Au WDH0912: 20.00m @ 1.55g/t Au

SULPHIDE DEVELOPMENT PLAN

Williamson open pit mine will continue to provide the bulk of free-milling feed through to sulphides production. Underground mining at Golden Age and Lennon are also contributing valuable high-grade, free-milling feed to the process plant, while rehabilitation and mine development is well underway to access stoping blocks for initial sulphide mining.

Stage 1 of the sulphide development plan will see the Company transition from its current production profile of 62koz in FY 2021 using the current 2.1 Mtpa free-milling processing facility, to initially producing on completion and fully ramped up approximately 120kozpa of gold and gold in concentrate. This will be implemented using the current crushing and milling circuit and a new 750ktpa concentrator by October 2021.

The feasibility study into Stage 2 Sulphide Development has commenced and is targeted for completion before the end of 2021. Wiluna Mining's resource and reserve development drilling and mine planning work to date provides confidence in the scale and grade of the mineralisation to support an expansion in production through a Stage 2 plant upgrade to a nominal 1.5 Mtpa treatment rate to produce over 250kozpa in gold doré and gold concentrate, and potentially higher. Very few gold projects at one location, under the control of one company, have the potential for this scale of production in a Tier 1 location.

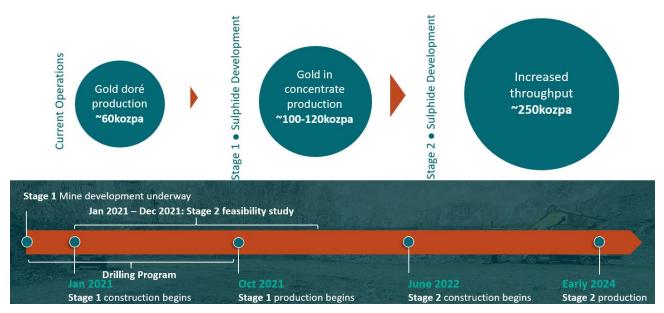


Figure 13: Staged Sulphide Development timeline.

This announcement has been approved for release by the Executive Chair of Wiluna Mining Corporation Limited.

For further information on Wiluna Mining please contact:

Milan Jerkovic	Jim Malone	Dannika Warburton
Executive Chair	General Manager Investor Relations	Media & Communications
+61 8 9322 6418	+61 419 537 714	+61 401 094 261

Wiluna at 1.0g/t

	Wiluna Mining Corporation Mineral Resource Summary													
					TOTA	L MINER	RAL RESC	OURCES						
Mining Centre		Measur	ed	1	ndicated	d		Inferred		To	otal 100	%		
	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au		
Wiluna	0.14	5.2	24	22.69	3.59	2,618	37.34	2.62	3,141	60.17	2.99	5,782		
Matilda	-	-	-	3.51	1.51	170	1.41	2.43	110	4.93	1.77	281		
Lake Way	1.93	1.28	80	0.94	1.61	48	3.53	1.19	135	6.40	1.28	263		
Galaxy	-	-	-	0.13	3.08	12	0.16	2.98	15	0.28	3.02	28		
SUB TOTAL	2.08	1.55	103	27.27	3.25	2,849	42.44	2.49	3,401	71.78	2.75	6,354		
				TAILIN	IGS AND	э ѕтоскі	PILES							
Tailings	-	-	-	33.16	0.57	611	-	-	-	33.16	0.57	611		
Stockpiles	0.51	0.9	15	2.16	0.51	35	-	-	-	2.67	0.58	50		
SUB TOTAL	0.51	0.89	15	35.32	0.57	646				35.83	0.57	661		
GLOBAL TOTAL	2.59	1.42	118	62.59	1.74	3,495	42.44	2.49	3,401	107.61	2.03	7,015		

	Wiluna Mining Corporation Mineral Resource Summary													
			TO	OTAL MII	NERAL R	ESOURC	ES (WILL	INA DEP	OSITS O	NLY)				
Reporting Cut-0	Off	Measu	red	١	Indicated			Inferred	l	To	otal 100	%		
g/t Au	M	g/t Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au		
0.4	0.	3 3.0	27	39.01	2.37	2,970	66.77	1.77	3,808	106.06	2.00	6,805		
1.0	0.	1 5.2	24	22.69	3.59	2,618	37.34	2.62	3,141	60.17	2.99	5,782		
2.5	0.	1 6.5	22	12.53	5.25	2,114	14.29	4.57	2,100	26.93	4.89	4,237		

Table 1: Mineral Resources -October 2020, Wiluna > 1.0 g/t cut-off.

Notes Table 1:

- 1. See ASX releases dated 30 September and 5 November for further details.
- 2. Mineral Resources are reported inclusive of Ore Reserves.
- 3. Tonnes are reported as million tonnes (Mt) and rounded to the nearest 10,000; gold (Au) ounces are reported as thousands rounded to the nearest 1,000.
- 4. Data is rounded to reflect appropriate precision in the estimate which may result in apparent summation differences between tonnes, grade, and contained metal content.
- 5. Wiluna Mineral Resource includes deposits within the Wiluna Mining Centre and the Regent deposit and are reported at a 1.0g/t Au cut-off.
- 6. Matilda Mineral Resource is a summation of 8 separate Matilda deposits each reported at 0.4g/t Au cut-off within an A\$2,900/oz shell and at 2.5g/t below the pit shell, and the shallow Coles Find deposit which has been reported at a 0.4g/t Au cut-off.
- 7. Lake Way Mineral Resource includes the Carrol, Prior, Williamson South deposits, and the operating Williamson deposit. Each deposit has been reported at 0.4g/t Au cut-off within an A\$2,900/oz shell and at 2.5g/t below the pit shell.
- 8. Tailings Mineral Resource includes material in Dam C, Dam H, and backfilled pits at Adelaide, Golden Age, Moonlight, and Squib.
- 9. Competent Persons: Graham de la Mare, Marcus Osiejak (refer to Competent Persons statement).

Table 2. Significant intercepts Wiluna Mining Centre

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azimuth	From	То	Width (m)	Au g/t	True Width (m)
Bulletin	BUUD0139	225751	7053529	193	101.49	18.8	236	51.60	54.74	3.14	8.11	3.14
Bulletin	BUUD0140	225751	7053529	192	59.68	-14.2	231	34.67	36.98	2.31	3.04	2.30
Bulletin	BUUD0140						incl.	34.67	35.30	0.63	8.63	0.60
Bulletin	BUUD0147	225681	7053296	160	78.05	43.65	317	NSI				0.00
Bulletin	BUUD0148A	225681	7053296	158	54.05	23.94	314	42.95	43.50	0.55	7.63	0.55
Bulletin	BUUD0149	225681	7053296	155	120.00	-41.8	313	45.87	46.32	0.45	11.05	0.41
Bulletin	BUUD0149							74.82	80.00	5.18	10.97	4.93
Bulletin	BUUD0149							85.60	89.42	3.82	1.14	3.63
Bulletin	BUUD0149							92.00	99.00	7.00	1.21	6.66
Bulletin	BUUD0150	225681	7053296	155	167.80	-	309	108.59	109.11	0.52	6.84	0.38
Bulletin	BUUD0150							131.10	139.00	7.90	1.67	7.51
Bulletin	BUUD0150						incl.	131.10	131.52	0.42	11.05	0.40
Bulletin	BUUD0150							151.00	153.12	2.12	4.12	2.02
Bulletin	BUUD0150						incl.	152.00	153.12	1.12	6.50	1.07
Bulletin	BUUD0175	225526	7052284	-	522.2	30.44	272	81.00	82.60	1.60	5.26	1.56
Bulletin	BUUD0175							86.32	86.70	0.38	6.00	0.36
Bulletin	BUUD0175							167.56	168.44	0.88	4.31	0.84
Bulletin	BUUD0175							519.26	521.74	2.48	2.88	2.36
Bulletin	WURC0923	225635	7053106	510	227	-59	312	164.00	165.00	1.00	11.45	0.75
Bulletin	WURC0923			_			_	168.00	170.00	2.00	3.04	1.90
Bulletin	WURC0924	225623	7053075	512	269	-60	317	150.00	210.00	60.00	1.79	44.59
Bulletin	WURC0924							114.00	116.00	2.00	1.56	1.90
Bulletin	WURC0924							150.00	152.00	2.00	2.07	1.90
Bulletin	WURC0924							162.00	165.00	3.00	3.07	2.85
Bulletin	WURC0924						incl.	162.00	163.00	1.00	6.93	0.95
Bulletin	WURC0924							169.00	173.00	4.00	5.82	3.80
Bulletin	WURC0924						to al	188.00	210.00	22.00	2.68	20.92
Bulletin	WURC0924						incl.	190.00	191.00	1.00	8.23	0.95
Bulletin	WURC0924						and	196.00	197.00	1.00	8.64	0.95
Bulletin	WURC0924 WURC0927	225471	7052105	F06	257	Ε0	121	235.00	240.00	5.00	1.50	4.76
Bulletin Bulletin	WURC0927 WURC0927	225471	7053105	506	257	-59	131	14.00 20.00	15.00 21.00	1.00	7.97 4.08	0.76
										1.00		
Bulletin Bulletin	WURC0927 WURC0927						incl.	87.00 87.00	90.00	3.00 1.00	5.56 7.82	2.85 0.95
Bulletin	WURC0927 WURC0927	1					IIICI.	209.00	212.00	3.00	1.31	2.85
Bulletin	WURC0927 WURC0927							215.00	217.00	2.00	3.99	1.90
Bulletin	WURC0927 WURC0927	1					incl.	215.00	217.00	1.00	5.54	0.95
Bulletin	WURC0927 WURC0928	225646	7053093	510	265	-67	316	249.00	250.00	1.00	5.07	0.95
Bulletin	WURC0928	223040	1033033	210	203	-07	210	262.00	265.00	3.00	1.56	2.85
Bulletin	WURC0928	225608	7053099	510	300	-63	312	132.00	139.00	7.00	4.00	4.94
Bulletin	WURC0929	223000	1033033	210	300	03	incl.	132.00	133.00	1.00	9.33	0.95
Bulletin	WURC0929						and	137.00	139.00	2.00	6.47	1.90
Bulletin	WURC0929						allu	146.00	151.00	5.00	1.09	4.76
Builetin	VVUKCU929							140.00	151.00	5.00	1.09	4./0

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azimuth	From	То	Width (m)	Au g/t	True Width (m)
Bulletin	WURC0929							187.00	191.00	4.00	1.59	3.80
Bulletin	WURCD0926	225602	7053068	512	309.9	-60	315	83.00	86.00	3.00	2.24	2.23
Bulletin	WURCD0926							167.00	168.00	1.00	4.82	0.95
Bulletin	WURCD0926							190.00	192.00	2.00	1.58	1.90
Bulletin	WURCD0926							212.70	215.35	2.65	2.88	2.52
Bulletin	WURCD0926						incl.	212.70	213.12	0.42	12.20	0.40
Bulletin	WURD0084	225660	7053181	509	311.23	-66	315	187.55	248.00	60.45	1.91	40.45
Bulletin	WURD0084							187.55	191.13	3.58	14.08	3.40
Bulletin	WURD0084							202.00	204.00	2.00	3.84	1.90
Bulletin	WURD0084						incl.	203.00	203.50	0.50	6.57	0.48
Bulletin	WURD0084							212.40	213.80	1.40	8.52	1.33
Bulletin	WURD0084							218.60	224.40	5.80	1.95	5.52
Bulletin	WURD0084						incl.	221.60	223.90	2.30	3.96	2.19
Bulletin	WURD0084							243.65	248.00	4.35	6.14	4.14
Bulletin	WURD0084						incl.	243.96	246.00	2.04	11.49	1.94
Bulletin	WURD0084							282.90	283.70	0.80	5.37	0.76
Bulletin	WURD0084							307.98	309.06	1.08	11.15	1.03
Bulletin	WURD0085	225653	7053152	509	339.95	-57	315	0.00	1.00	1.00	2.68	0.78
Bulletin	WURD0085							154.80	161.00	6.20	1.73	5.90
Bulletin	WURD0085							218.30	220.52	2.22	0.97	2.11
Bulletin	WURD0085							241.67	242.30	0.63	6.17	0.60
Bulletin	WURD0101	225604	7053066	512	320.06	-66	319	142.00	146.00	4.00	1.75	2.67
Bulletin	WURD0101							174.00	175.75	1.75	3.10	1.66
Bulletin	WURD0101							184.10	185.00	0.90	2.63	0.86
Bulletin	WURD0101							193.00	194.50	1.50	3.33	1.43
Bulletin	WURD0101							217.12	219.48	2.36	1.49	2.24
Bulletin	WURD0101							228.00	232.00	4.00	1.08	3.80
Bulletin	WURD0101							242.00	248.00	6.00	4.45	5.71
Bulletin	WURD0101						incl.	243.00	243.73	0.73	17.70	0.69
Bulletin	WURD0101						and	246.32	246.93	0.61	13.30	0.58
Bulletin	WURD0101							252.00	253.93	1.93	2.01	1.84
Bulletin	WURD0101							260.00	261.06	1.06	2.15	1.01
Bulletin	WURD0103	225459	7053095	508	143	-51	137	135.00	138.00	3.00	2.61	2.51

^{*}Grid MGA94_Zone51S with RL in Australian Height Datum (surface level is approx. 500m AHD; "Mine RL" is AHD + 1,000m). Minimum intercept 2m @ 1.0g/t and 2.0gm (gram x metres), maximum 2m contiguous internal dilution. NSI = No significant intercept. Results >5g/t highlighted red. Rows highlighted in blue show bulked intersection with greater than 2m internal dilution.

Table 3. Significant Intercepts from Assaying Historical Core. New assays and historical intervals shown to derive new total intercepts.

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	True Width (m)
2020	AWD0359	225310	7051440	322	322.75	-42.2	351.2	20.60	21.00	0.40	0.72	0.3
Assays 2020 Assays	AWD0359							25.25	25.60	0.35	1.90	0.2
2020 Assays	AWD0359							138.00	138.85	0.85	0.54	0.6
2020 Assays	AWD0397	225138	7051953	500	436.2	-77.0	285.8	375.00	376.00	1.00	0.81	0.7
2020 Assays	AWD0397							381.00	381.85	0.85	0.57	0.6
2020 Assays	AWD0490	225228	7051605	296	206.7	-5.2	28.2	165.15	165.71	0.56	0.56	0.4
2020 Assays	AWD0490							169.00	169.86	0.86	0.85	0.6
2020 Assays	AWD0490							183.92	184.40	0.48	0.52	0.3
2020 Assays	AWD0491	225228	7051605	296	155.7	-3.2	31.4	144.00	145.00	1.00	1.37	0.7
2020 Assays	CADH00863	225468	7052327	-340	272.6	-60.8	247.7	191.00	191.30	0.30	0.04	0.2
2020 Assays	CADH00863							191.30	192.30	1.00	6.51	0.7
2020 Assays	CADH00863							192.30	193.00	0.70	1.07	0.5
2020 Assays	CADH00863							193.00	194.00	1.00	0.20	0.7
2020 Assays	CADH00863							194.00	195.00	1.00	0.03	0.7
2020 Assays	CADH00863							195.00	196.00	1.00	0.03	0.7
2020 Assays	CADH00863							196.00	197.00	1.00	0.04	0.7
2020 Assays	CADH00892	225557	7052615	-413	76.4	-48.7	286.6	48.55	49.00	0.45	1.27	0.3
2020 Assays	CADH00892A	225558	7052614	-413	131.5	-79.7	289.0	101.95	103.00	1.05	0.73	0.7
2020 Assays	CADH00892A							115.00	116.00	1.00	0.82	0.7
2020 Assays	CADH00908	225526	7052279	-113	356.4	-30.2	225.5	228.00	229.00	1.00	1.14	0.7
2020 Assays	CADH00908							304.00	304.70	0.70	4.74	0.5
2020 Assays	CADH01087	225575	7052560	-408	287.5	-42.2	236.8	256.26	256.70	0.44	2.11	0.3
Bulk Intersection	CADH01111	255498	7052490	-314	466.9	-26.8	315.5	353.20	363.70	10.50	3.37	7.0
Historical Assays	CADH01111							352.50	353.20	0.70	0.01	0.5
Historical Assays	CADH01111							353.20	354.10	0.90	3.17	0.6
Historical Assays	CADH01111							354.10	354.40	0.30	17.20	0.2
Historical Assays	CADH01111							354.40	355.00	0.60	1.16	0.4
Historical Assays	CADH01111							355.00	355.80	0.80	0.31	0.5
Historical Assays	CADH01111							355.80	356.10	0.30	5.22	0.2
Historical Assays	CADH01111							356.10	357.00	0.90	0.04	0.6
Historical Assays	CADH01111							357.00	358.00	1.00	0.02	0.7
Historical Assays	CADH01111							358.00	358.70	0.70	0.16	0.5
Historical Assays	CADH01111							358.70	359.30	0.60	0.67	0.4
Historical Assays	CADH01111							359.30	359.70	0.40	14.00	0.3
Historical Assays	CADH01111							359.70	360.50	0.80	0.21	0.5

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	True Width (m)
2020 Assays	CADH01111							360.50	361.00	0.50	0.03	0.3
2020 Assays	CADH01111							361.00	362.00	1.00	0.01	0.7
2020 Assays	CADH01111							362.00	362.65	0.65	0.01	0.4
2020 Assays	CADH01111							362.65	363.20	0.55	32.50	0.4
2020 Assays	CADH01111							363.20	363.70	0.50	1.25	0.3
2020 Assays	CADH01111							363.70	364.10	0.40	0.25	0.3
2020 Assays	CADH01111							364.10	364.40	0.30	0.30	0.2
2020 Assays	CADH01111							364.40	364.90	0.50	0.69	0.3
2020 Assays	CADH01111							364.90	365.20	0.30	0.22	0.2
2020	CADH01111							365.20	366.00	0.80	0.02	0.5
Assays 2020 Assays	CADH01111							366.00	367.00	1.00	0.16	0.7
Historical Assays	CADH01111							369.00	369.50	0.50	2.99	0.3
Historical	CADH01111							369.50	370.00	0.50	0.55	0.3
Assays Historical	CADH01111							370.00	370.50	0.50	0.05	0.3
Assays Historical	CADH01111							370.50	371.00	0.50	0.52	0.3
Assays 2020	CADH01111							371.00	371.30	0.30	0.01	0.2
Assays 2020	CADH01111							371.30	371.80	0.50	0.34	0.3
Assays 2020	CADH01111							371.80	372.50	0.70	0.24	0.5
Assays 2020	CADH01111							375.80	376.50	0.70	2.08	0.5
Assays 2020	CADH01111							397.00	397.80	0.80	0.65	0.5
Assays 2020	CADH01111							422.10	422.50	0.40	0.62	0.3
Assays Bulk Intersection	CADH01131A	225582.37	7052572.67	-407	365.7	-65.7	359.8	260.00	287.10	27.10	4.16	18.1
Historical Assays	CADH01131A							260.00	260.80	0.80	1.80	0.5
Historical Assays	CADH01131A							260.80	261.70	0.90	18.85	0.6
Historical Assays	CADH01131A							261.70	262.55	0.85	3.25	0.6
Historical Assays	CADH01131A							262.55	263.50	0.95	0.25	0.6
Historical Assays	CADH01131A							263.50	264.00	0.50	0.37	0.3
Historical Assays	CADH01131A							264.00	264.50	0.50	0.12	0.3
2020 Assays	CADH01131A							264.50	265.00	0.50	0.92	0.3
2020	CADU01131A							265.00	266.00	1.00	0.71	0.7
Δεεανε	CADH01131A							1		1		
Assays 2020	CADH01131A CADH01131A							266.00	267.00	1.00	2.25	0.7
2020 Assays 2020								266.00 267.00	267.00 268.00	1.00	2.25	0.7
2020 Assays 2020 Assays 2020	CADH01131A											
2020 Assays 2020 Assays 2020 Assays 2020	CADH01131A CADH01131A							267.00	268.00	1.00	2.44	0.7
2020 Assays 2020 Assays 2020 Assays 2020 Assays 2020 Assays 2020	CADH01131A CADH01131A CADH01131A							267.00 268.00	268.00 269.00	1.00	2.44	0.7
2020 Assays 2020 Assays 2020 Assays 2020 Assays	CADH01131A CADH01131A CADH01131A CADH01131A							267.00 268.00 269.00	268.00 269.00 270.00	1.00 1.00 1.00	2.44 2.52 2.55	0.7 0.7 0.7

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	True Width (m)
2020	CADH01131A							273.00	274.00	1.00	5.07	0.7
Assays 2020	CADH01131A							274.00	275.00	1.00	0.79	0.7
Assays 2020	CADH01131A							275.00	276.00	1.00	0.28	0.7
Assays 2020	CADH01131A							276.00	276.50	0.50	0.02	0.3
Assays Historical	CADH01131A							276.50	277.20	0.70	0.01	0.5
Assays Historical	CADH01131A							277.20	278.00	0.80	11.85	0.5
Assays Historical Assays	CADH01131A							278.00	278.45	0.45	13.65	0.3
Historical	CADH01131A							278.45	279.40	0.95	0.38	0.6
Assays Historical	CADH01131A							279.40	280.40	1.00	7.56	0.7
Assays Historical	CADH01131A							280.40	281.40	1.00	0.18	0.7
Assays Historical	CADH01131A							281.40	281.80	0.40	5.84	0.3
Assays Historical	CADH01131A							281.80	282.50	0.70	6.51	0.5
Assays Historical	CADH01131A							282.50	283.50	1.00	6.20	0.7
Assays Historical	CADH01131A							283.50	284.50	1.00	9.15	0.7
Assays Historical	CADH01131A							284.50	285.00	0.50	10.10	0.3
Assays Historical	CADH01131A							285.00	286.00	1.00	7.12	0.7
Assays Historical	CADH01131A							286.00	286.75	0.75	3.52	0.5
Assays Historical	CADH01131A							286.75	287.10	0.35	2.48	0.2
Assays Historical Assays	CADH01131A							287.10	288.00	0.90	0.11	0.6
Historical	CADH01131A							288.00	288.50	0.50	0.16	0.3
Assays 2020 Assays	CADH01132	225582	7052572	-408	314	-60.5	1.1	256.00	257.00	1.00	1.12	0.7
2020	CADH01132							257.00	258.00	1.00	1.21	0.7
Assays 2020	CADH01170	225478	7052704	-27	314.6	-28.9	280.9	85.80	86.62	0.82	0.94	0.5
Assays 2020	CADH01170							241.00	242.00	1.00	1.18	0.7
Assays 2020	CADH01170							242.69	250.00	7.31	0.72	4.9
Assays 2020	CADH01176	225480	7052706	-27	446.6	-38.5	264.8	246.00	246.50	0.50	0.95	0.3
Assays 2020	CADH01176							307.00	308.00	1.00	1.14	0.7
Assays 2020	CADH01176							316.00	317.00	1.00	0.71	0.7
Assays 2020	CADH01190	225463	7052323	-289	139.34	-20.1	249.8	45.00	46.00	1.00	1.76	0.7
Assays 2020	CADH01190							69.00	70.00	1.00	1.26	0.7
Assays 2020	CADH01190							70.00	70.55	0.55	1.76	0.4
Assays 2020	CADH01190							84.00	85.00	1.00	0.57	0.7
Assays 2020	CADH01191	225385	7052537	-124	286.8	-5.3	263.6	242.60	243.00	0.40	0.71	0.3
Assays 2020	CADH01191							247.35	247.70	0.35	1.20	0.2
Assays 2020	CADH01191							247.70	248.60	0.90	0.96	0.6
Assays 2020	CVT0007	225156	7051955	499	447.8	-74.7	274.4	381.00	382.00	1.00	0.83	0.7
Assays 2020 Assays	CVT0007							396.00	397.00	1.00	1.68	0.7

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	True Width (m)
2020	CVT0007							397.00	398.00	1.00	0.80	0.7
Assays 2020	CVT0007							431.00	432.00	1.00	1.10	0.7
Assays 2020	ELDH00037	225088	7050807	355	141.2	11.8	166.5	135.00	136.00	1.00	1.22	0.7
Assays 2020	ELDH00037							136.00	137.25	1.25	1.84	0.8
Assays 2020	ELDH00037							137.25	138.00	0.75	0.64	0.5
Assays 2020	ELDH00055A	225095	7050799	328	131.9	-45.5	111.0	116.00	117.00	1.00	1.10	0.7
Assays 2020	ELN0071	225400	7051612	500	383.9	-77.7	26.5	343.20	344.00	0.80	0.62	0.5
Assays 2020	ELN0074	225400	7051614	500	340.1	-73.0	291.0	278.00	279.00	1.00	0.50	0.7
Assays 2020	ELN0074							279.00	280.00	1.00	0.52	0.7
Assays 2020	ELN0074							284.00	285.00	1.00	0.51	0.7
Assays 2020	ELN0074							285.00	286.00	1.00	0.85	0.7
Assays 2020	ELN0074							287.60	287.90	0.30	0.73	0.2
Assays 2020	ELN0074							287.90	289.00	1.10	0.66	0.7
Assays 2020	ELN0074							292.00	293.00	1.00	0.72	0.7
Assays 2020	ELN0074							293.00	294.00	1.00	0.82	0.7
Assays 2020	ELN0080	225388	7051670	499	214	-56.3	242.1	167.00	167.65	0.65	0.60	0.4
Assays 2020	ELN0080							167.65	168.10	0.45	1.00	0.3
Assays 2020	ELN0082	225342	7051029	496	290	-58.9	263.9	230.00	231.00	1.00	0.93	0.7
Assays Historical	ELN0082							231.00	232.00	1.00	0.02	0.7
Assays Historical	ELN0082							232.00	233.00	1.00	0.35	0.7
Assays Historical	ELN0082							233.00	234.00	1.00	1.84	0.7
Assays Historical	ELN0082							234.00	234.50	0.50	5.92	0.3
Assays Historical	ELN0082							234.50	235.50	1.00	1.99	0.7
Assays Historical	ELN0082							235.50	236.50	1.00	0.36	0.7
Assays 2020	ELN0082							236.50	237.00	0.50	0.20	0.7
Assays 2020	ELN0082							237.00	238.00	1.00	0.20	0.5
Assays 2020	ELN0082							238.00	239.00		0.03	0.7
Assays 2020	ELN0082 ELN0082									1.00		0.7
Assays								239.00	240.00	1.00	0.01	
Assays	ELN0082							240.00	241.00	1.00	0.03	0.7
2020 Assays	ELN0082							241.00	241.85	0.85	0.02	0.6
2020 Assays	ELN0082							241.85	242.25	0.40	10.25	0.3
2020 Assays	ELN0082							242.25	243.00	0.75	1.12	0.5
2020 Assays	ELN0082							243.00	244.00	1.00	0.16	0.7
2020 Assays	ELN0082							244.00	245.00	1.00	2.11	0.7
2020 Assays	ELN0082							245.00	246.00	1.00	0.17	0.7
2020 Assays	ELN0082							246.00	247.00	1.00	0.03	0.7
2020 Assays	ELN0082							247.00	248.00	1.00	0.01	0.7

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	True Width (m)
2020	ELN0082							248.00	249.00	1.00	0.01	0.7
Assays 2020	ELN0082							249.00	250.00	1.00	0.01	0.7
Assays 2020	ELN0082							250.00	251.00	1.00	0.09	0.7
Assays 2020	ELN0082							251.00	252.00	1.00	0.57	0.7
Assays 2020	ELN0082							252.00	253.15	1.15	0.94	0.8
Assays 2020	ELN0082							253.15	253.63	0.48	5.04	0.3
Assays 2020	ELN0082							253.63	254.00	0.37	0.47	0.2
Assays 2020	ELN0082							254.00	255.00	1.00	4.32	0.7
Assays 2020	ELN0082							255.00	256.00	1.00	0.05	0.7
Assays 2020	ELN0082							256.00	257.00	1.00	0.24	0.7
Assays 2020	ELN0082							257.00	258.00	1.00	0.03	0.7
Assays 2020	ELN0082							258.00	259.00	1.00	0.13	0.7
Assays 2020	ELN0082							259.00	260.00	1.00	0.03	0.7
Assays 2020	ELN0082	225336	7051049	497	290	-57.0	297.4	178.00	179.00		0.60	0.7
Assays		225330	7051049	497	290	-57.0	297.4			1.00		
2020 Assays	ELN0083							199.00	200.00	1.00	0.55	0.7
2020 Assays	ELN0083							226.00	227.00	1.00	0.69	0.7
2020 Assays	ELN0085	225335	7051099	497	265.9	-60.7	265.4	222.45	222.90	0.45	0.80	0.3
2020 Assays	ELN0085							224.00	225.00	1.00	0.93	0.7
2020 Assays	ELN0085							230.63	231.05	0.42	2.31	0.3
2020 Assays	ELN0085							235.00	236.00	1.00	0.97	0.7
2020 Assays	ELN0085							238.40	239.00	0.60	2.07	0.4
2020 Assays	HNDH00068	225166	7052901	317	182	-36.0	142.0	11.50	12.00	0.50	3.47	0.3
2020 Assays	HNDH00068							57.00	58.00	1.00	0.81	0.7
2020	HNDH00068							73.00	74.00	1.00	0.66	0.7
Assays 2020	HNDH00068							83.00	84.00	1.00	0.65	0.7
Assays 2020	HNDH00068							85.00	85.90	0.90	3.97	0.6
Assays 2020	HNDH00068							88.50	89.00	0.50	1.50	0.3
Assays 2020	HNDH00076	225165	7052901	317	161.1	-20.5	156.5	107.53	108.41	0.88	0.88	0.6
Assays 2020	HNDH00076							108.41	109.30	0.89	13.05	0.6
Assays 2020	HNDH00121	225165	7052903	317	166	-9.0	91.0	14.50	15.17	0.67	0.90	0.4
Assays 2020	HNDH00121							15.17	16.00	0.83	0.66	0.6
Assays 2020	HNDH00121							16.00	17.00	1.00	0.80	0.7
Assays 2020	HNDH00121							66.00	67.00	1.00	1.05	0.7
Assays 2020	WDH00736	225500	7053386	-220.3	402	-39.1	69.9	170.25	171.00	0.75	1.59	0.5
Assays 2020		223300	7033300	-220.5	402	-33.1	03.3					
Assays	WDH00736							223.50	224.08	0.58	1.73	0.4
2020 Assays	WDH00736						95.	224.08	224.70	0.62	2.63	0.4
Bulk Intersection	WDH00912	225654	7053390	-337	76.6	-24.5	92.0	43.00	63.00	20.00	1.55	13.3

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	True Width (m)
Historical Assays	WDH00912							42.00	43.00	1.00	0.18	0.7
Historical Assays	WDH00912							43.00	44.00	1.00	3.28	0.7
Historical Assays	WDH00912							44.00	45.00	1.00	2.90	0.7
Historical Assays	WDH00912							45.00	46.00	1.00	0.28	0.7
Historical Assays	WDH00912							46.00	47.00	1.00	0.02	0.7
Historical Assays	WDH00912							47.00	48.00	1.00	0.13	0.7
Historical Assays	WDH00912							48.00	49.00	1.00	0.63	0.7
Historical Assays	WDH00912							49.00	50.00	1.00	1.12	0.7
Historical Assays	WDH00912							50.00	51.00	1.00	2.96	0.7
Historical Assays	WDH00912							51.00	52.00	1.00	2.38	0.7
Historical Assays	WDH00912							52.00	53.00	1.00	0.56	0.7
2020 Assays	WDH00912							53.00	54.00	1.00	0.01	0.7
2020 Assays	WDH00912							54.00	54.50	0.50	0.69	0.3
2020 Assays	WDH00912							54.50	55.00	0.50	0.48	0.3
2020 Assays	WDH00912							55.00	56.00	1.00	4.59	0.7
2020 Assays	WDH00912							56.00	57.00	1.00	5.61	0.7
2020 Assays	WDH00912							57.00	57.57	0.57	2.84	0.4
2020 Assays	WDH00912							57.57	58.00	0.43	0.69	0.3
2020 Assays	WDH00912							58.00	58.50	0.50	0.76	0.3
2020 Assays	WDH00912							58.50	59.00	0.50	0.25	0.3
2020 Assays	WDH00912							59.00	59.46	0.46	0.16	0.3
2020 Assays	WDH00912							59.46	59.89	0.43	0.04	0.3
2020 Assays	WDH00912							59.89	60.80	0.91	0.52	0.6
2020 Assays	WDH00912							60.80	61.45	0.65	2.25	0.4
2020 Assays	WDH00912							61.45	62.45	1.00	0.39	0.7
2020 Assays	WDH00912							62.45	63.00	0.55	2.35	0.4
2020 Assays	WDH00912							63.00	64.00	1.00	0.26	0.7
Historical Assays	WDH00912							64.00	65.00	1.00	0.31	0.7
Historical Assays	WDH00912							65.00	66.00	1.00	0.04	0.7
Historical Assays	WDH00912							66.00	66.80	0.80	0.08	0.5
Historical Assays	WDH00912							66.80	67.50	0.70	0.06	0.5
Historical Assays	WDH00912							67.50	68.00	0.50	0.01	0.3
Historical Assays	WDH00912							68.00	69.00	1.00	0.02	0.7
Historical Assays	WDH00912							69.00	69.80	0.80	0.17	0.5
Historical Assays	WDH00912							69.80	70.80	1.00	0.50	0.7
Historical Assays	WDH00912							70.80	71.50	0.70	0.70	0.5
Historical Assays	WDH00912			1				71.50	72.50	1.00	4.97	0.7

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	True Width (m)
Historical Assays	WDH00912							72.50	73.50	1.00	2.93	0.7
Historical	WDH00912							73.50	74.00	0.50	1.35	0.3
Assays 2020	WDH00912							74.00	75.00	1.00	0.03	0.7
Assays 2020	WDH00912							75.00	76.00	1.00	0.07	0.7
Assays 2020	WDH00912							76.00	76.40	0.40	0.06	0.3
Assays 2020	WDH00919	225580	7053504	-324	332.6	-26.8	60.9	111.00	112.00	1.00	0.66	0.7
Assays 2020	WDH00919							120.30	120.68	0.38	0.50	0.3
Assays 2020	WDH00919							138.55	139.00	0.45	2.00	0.3
Assays 2020	WDH00919							141.60	142.00	0.40	1.42	0.3
Assays 2020	WLDH00003	225178	7051244	361	210	-29.0	248.0	145.60	146.00	0.40	2.21	0.3
Assays 2020	WLDH00009	225205	7051301	360	275.7	-40.0	286.0	146.95	147.65	0.70	1.03	0.5
Assays 2020	WLDH00010							142.00	142.75	0.75	1.27	0.5
Assays 2020	WLDH00010							185.00	186.00	1.00	0.55	0.7
Assays 2020	WLDH00010							204.30	204.74	0.44	0.29	0.3
Assays 2020	WLDH00010							204.74	205.45	0.71	0.06	0.5
Assays 2020	WLDH00010							205.45	206.31	0.86	0.08	0.6
Assays 2020	WLDH00010							206.31	207.00	0.69	0.04	0.5
Assays 2020	WLDH00010							207.00	208.00	1.00	0.06	0.7
Assays 2020	WLDH00010							208.00	208.43	0.43	0.23	0.3
Assays 2020	WLDH00010							208.43	209.00	0.57	4.20	0.4
Assays 2020	WLDH00010							209.00	209.40	0.40	0.95	0.3
Assays 2020	WLDH00010							209.40	210.00	0.60	0.17	0.4
Assays 2020	WLDH00010							210.00	210.73	0.73	0.26	0.5
Assays 2020	WLDH00010							210.73	211.46	0.73	1.58	0.5
Assays 2020	WLDH00010							211.46	212.00	0.54	0.57	0.4
Assays 2020	WLDH00010							212.00	212.95	0.95	0.06	0.6
Assays 2020	WLDH00010							212.95	214.00	1.05	0.09	0.7
Assays 2020	WLDH00010							214.00	215.00	1.00	0.03	0.7
Assays 2020	WLDH00010							215.00	215.45	0.45	0.03	0.3
Assays 2020	WLDH00010							215.45	216.00	0.55	0.91	0.4
Assays Historical	WLDH00010							216.00	217.00	1.00	0.42	0.7
Assays Historical	WLDH00010							217.00	217.70	0.70	2.55	0.5
Assays Historical	WLDH00010							217.70	218.50	0.80	4.67	0.5
Assays Historical	WLDH00010							218.50	219.00	0.50	2.10	0.3
Assays Bulk	ELN0081	225332	7050959	495	300	-60.9	284.5	126.50	137.85	11.35	2.80	7.6
Intersection Historical	ELN0081							126.50	127.50	1.00	7.71	0.7
Assays Historical	ELN0081							127.50	128.50	1.00	5.71	0.7
Assays												

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	True Width
					(,					(,	6/ -	(m)
Historical	ELN0081							128.50	129.50	1.00	2.08	0.7
Assays Historical	ELN0081							129.50	130.50	1.00	1.82	0.7
Assays Historical	ELN0081							130.50	131.50	1.00	2.64	0.7
Assays Historical	ELN0081							131.50	132.50	1.00	3.66	0.7
Assays 2020	ELN0081							132.50	133.50	1.00	3.28	0.7
Assays 2020	ELN0081							133.50	134.00	0.50	3.11	0.3
Assays 2020	ELN0081							134.00	135.00	1.00	0.09	0.7
Assays 2020	ELN0081							135.00	136.00	1.00	1.22	0.7
Assays 2020	ELN0081							136.00	137.00	1.00	0.91	0.7
Assays 2020												
Assays	ELN0081							137.00	137.85	0.85	1.30	0.6
2020 Assays	ELN0081							163.00	163.55	0.55	2.69	0.4
2020 Assays	ELN0081							163.55	164.20	0.65	6.61	0.4
2020 Assays	ELN0081							164.20	165.20	1.00	1.10	0.7
2020 Assays	ELN0081							165.20	166.20	1.00	1.03	0.7
2020 Assays	ELN0081							166.20	167.00	0.80	0.03	0.5
2020 Assays	ELN0081							167.00	168.00	1.00	0.04	0.7
2020	ELN0081							168.00	168.70	0.70	4.86	0.5
Assays 2020	ELN0081							168.70	169.70	1.00	4.60	0.7
Assays 2020	ELN0081							223.70	224.00	0.30	2.37	0.2
Assays 2020	ELN0081							229.90	230.25	0.35	1.92	0.2
Assays 2020	ELN0081							231.00	232.00	1.00	0.57	0.7
Assays Bulk	WDH00708	225500	7053386	-220	271.7	-22.0	92.9	91.40	112.00	20.60	1.45	13.7
Intersection Bulk	WDH00708		7 000000		2, 2		32.3	204.00	240.74	36.74	2.58	24.5
Intersection Historical												
Assays	WDH00708							91.40	92.00	0.60	3.48	0.4
Historical Assays	WDH00708							92.00	93.00	1.00	2.64	0.7
Historical Assays	WDH00708							93.00	94.00	1.00	4.74	0.7
Historical Assays	WDH00708							94.00	95.00	1.00	3.43	0.7
Historical Assays	WDH00708							95.00	96.00	1.00	1.60	0.7
Historical Assays	WDH00708							96.00	97.00	1.00	2.15	0.7
Historical Assays	WDH00708							97.00	98.00	1.00	0.63	0.7
Historical	WDH00708							98.00	99.00	1.00	0.61	0.7
Assays Historical	WDH00708							99.00	100.00	1.00	2.90	0.7
Assays Historical	WDH00708							100.00	101.00	1.00	0.22	0.7
Assays Historical	WDH00708							101.00	102.00	1.00	0.17	0.7
Assays Historical	WDH00708							102.00	103.00	1.00	0.06	0.7
Assays Historical	WDH00708							103.00	103.45	0.45	0.15	0.3
Assays Historical	WDH00708							103.45	104.55	1.10	0.40	0.7
Assays								103.43	10 7.55	1.10	0.40	0.7

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	True Width (m)
Historical Assays	WDH00708							104.55	105.50	0.95	2.68	0.6
Historical Assays	WDH00708							105.50	106.40	0.90	0.13	0.6
2020	WDH00708							106.50	107.00	0.50	0.52	0.3
Assays 2020	WDH00708							107.00	108.00	1.00	0.01	0.7
Assays 2020 Assays	WDH00708							108.00	109.00	1.00	1.03	0.7
2020	WDH00708							109.00	110.00	1.00	1.19	0.7
Assays 2020	WDH00708							110.00	111.00	1.00	0.22	0.7
Assays 2020	WDH00708							111.00	112.00	1.00	2.71	0.7
Assays 2020	WDH00708							112.00	113.00	1.00	1.02	0.7
Assays 2020 Assays	WDH00708							113.00	114.00	1.00	0.96	0.7
2020	WDH00708							117.00	118.00	1.00	1.02	0.7
Assays 2020	WDH00708							120.00	120.89	0.89	3.10	0.6
Assays 2020	WDH00708							120.89	122.00	1.11	0.95	0.7
Assays 2020	WDH00708							122.00	122.70	0.70	0.45	0.5
Assays Historical	WDH00708							204.00	205.00	1.00	1.35	0.7
Assays Historical	WDH00708							205.00	206.00	1.00	1.58	0.7
Assays Historical	WDH00708							206.00	207.00	1.00	4.42	0.7
Assays Historical	WDH00708							207.00	208.00	1.00	4.61	0.7
Assays Historical	WDH00708							208.00	209.00	1.00	3.76	0.7
Assays Historical	WDH00708							209.00	210.00	1.00	4.42	0.7
Assays Historical	WDH00708							210.00	211.00	1.00	7.75	0.7
Assays Historical	WDH00708							211.00	212.00	1.00	8.49	0.7
Assays Historical	WDH00708							212.00	213.00	1.00	2.13	0.7
Assays Historical	WDH00708							213.00	214.00	1.00	3.84	0.7
Assays Historical	WDH00708							214.00	215.00	1.00	7.75	0.7
Assays Historical	WDH00708							215.00	216.00	1.00	4.85	0.7
Assays Historical	WDH00708							216.00	217.00	1.00	2.49	0.7
Assays Historical	WDH00708							217.00	218.00	1.00	0.58	0.7
Assays Historical	WDH00708							218.00	219.00	1.00	6.27	0.7
Assays Historical	WDH00708							219.00	220.00	1.00	3.13	0.7
Assays Historical	WDH00708							220.00	221.00	1.00	6.13	0.7
Assays Historical	WDH00708							221.00	222.00	1.00	0.29	0.7
Assays Historical	WDH00708							222.00	223.00	1.00	0.97	0.7
Assays Historical	WDH00708							223.00	224.00	1.00	0.58	0.7
Assays Historical	WDH00708							224.00	224.40	0.40	2.17	0.3
Assays Historical	WDH00708							224.40	225.10	0.70	1.34	0.5
Assays Historical	WDH00708							225.10	226.00	0.90	1.15	0.6

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	True Width (m)
Historical Assays	WDH00708							226.00	227.00	1.00	0.88	0.7
2020 Assays	WDH00708							227.00	228.00	1.00	0.33	0.7
2020	WDH00708							228.00	229.00	1.00	1.17	0.7
Assays 2020	WDH00708							229.00	229.69	0.69	0.31	0.5
Assays 2020 Assays	WDH00708							229.69	230.00	0.31	1.01	0.2
2020	WDH00708							230.00	231.00	1.00	4.35	0.7
Assays 2020	WDH00708							231.00	232.00	1.00	0.74	0.7
Assays 2020	WDH00708							232.00	233.00	1.00	1.34	0.7
Assays 2020	WDH00708							233.00	234.00	1.00	0.82	0.7
Assays 2020	WDH00708							234.00	235.00	1.00	0.72	0.7
Assays 2020	WDH00708							235.00	235.80	0.80	0.06	0.5
Assays 2020	WDH00708							235.80	236.10	0.30	2.41	0.2
Assays 2020	WDH00708							236.10	236.60	0.50	2.10	0.3
Assays 2020	WDH00708							236.60	237.28	0.68	0.76	0.5
Assays 2020	WDH00708							237.28	237.63	0.35	3.36	0.2
Assays 2020	WDH00708							237.63	238.00	0.37	1.84	0.2
Assays 2020	WDH00708							238.00	239.00	1.00	0.44	0.7
Assays 2020	WDH00708							239.00	240.20	1.20	0.43	0.8
Assays 2020	WDH00708							240.20	240.74	0.54	1.02	0.4
Assays 2020	WDH00708							243.00	244.00	1.00	0.51	0.7
Assays 2020	WDH00708							247.24	247.95	0.71	0.81	0.5
Assays 2020	WDH00708							253.00	254.00	1.00	0.51	0.7
Assays Bulk	WDH00886	225636	7053476	-297	203.4	-55.0	85.0	147.30	158.70	11.40	2.90	7.6
Intersection 2020	WDH00886							29.60	30.00	0.40	0.87	0.3
Assays 2020	WDH00886							87.20	88.00	0.80	1.19	0.5
Assays Historical	WDH00886							147.30	147.50	0.20	6.90	0.1
Assays Historical	WDH00886							147.50	148.10	0.60	1.16	0.4
Assays Historical	WDH00886							148.10	148.90	0.80	3.73	0.5
Assays Historical	WDH00886							148.90	150.00	1.10	1.73	0.7
Assays Historical	WDH00886							150.00	150.90	0.90	3.81	0.6
Assays Historical	WDH00886							150.90	151.15	0.25	0.43	0.2
Assays 2020	WDH00886							151.15	152.00	0.85	0.38	0.6
Assays 2020	WDH00886							152.00	153.00	1.00	1.03	0.7
Assays 2020	WDH00886							153.00	154.00	1.00	0.67	0.7
Assays 2020	WDH00886							154.00	155.00	1.00	2.90	0.7
Assays 2020	WDH00886							155.00	156.00	1.00	1.69	0.7
Assays	WDH00886		ļ	1	ļ			156.00	156.50	0.50	9.52	0.3

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	True Width (m)
Historical	WDH00886							156.50	157.00	0.50	14.00	0.3
Assays Historical Assays	WDH00886							157.00	157.30	0.30	4.59	0.2
Historical Assays	WDH00886							157.30	157.90	0.60	2.59	0.4
Historical Assays	WDH00886							157.90	158.70	0.80	1.69	0.5
Bulk Intersection	WDH00913	225654.585	7053390.688	-337	113.1	0.1	99.4	39.40	63.00	23.60	1.83	15.7
Historical Assays	WDH00913							39.40	39.70	0.30	5.93	0.2
Historical Assays	WDH00913							39.70	40.70	1.00	0.38	0.7
Historical Assays	WDH00913							40.70	41.00	0.30	3.07	0.2
Historical Assays	WDH00913							41.00	41.70	0.70	0.10	0.5
Historical Assays	WDH00913							41.70	42.50	0.80	3.01	0.5
Historical Assays	WDH00913							42.50	43.00	0.50	1.50	0.3
Historical Assays	WDH00913							43.00	44.00	1.00	3.80	0.7
Historical Assays	WDH00913							44.00	45.00	1.00	2.64	0.7
Historical Assays	WDH00913							45.00	45.50	0.50	3.67	0.3
Historical Assays	WDH00913							45.50	46.10	0.60	0.08	0.4
Historical Assays	WDH00913							46.10	46.60	0.50	0.06	0.3
2020	WDH00913							46.60	47.00	0.40	2.27	0.3
Assays 2020	WDH00913							47.00	48.00	1.00	2.02	0.7
Assays 2020	WDH00913							48.00	49.00	1.00	0.72	0.7
Assays 2020	WDH00913							49.00	49.90	0.90	0.89	0.6
Assays 2020	WDH00913							49.90	51.00	1.10	0.08	0.7
Assays 2020	WDH00913							51.00	52.00	1.00	0.11	0.7
Assays 2020	WDH00913							52.00	53.15	1.15	0.99	0.8
Assays 2020	WDH00913							53.15	54.00	0.85	0.67	0.6
Assays 2020	WDH00913							54.00	55.00	1.00	2.83	0.7
Assays 2020	WDH00913							55.00	56.00	1.00	2.39	0.7
Assays 2020	WDH00913							56.00	57.00	1.00	2.96	0.7
Assays 2020	WDH00913							57.00	58.00	1.00	3.39	0.7
Assays 2020	WDH00913							58.00	58.50	0.50	2.57	0.3
Assays 2020	WDH00913							58.50	58.80	0.30	2.45	0.2
Assays 2020	WDH00913							58.80	59.25	0.45	1.98	0.3
Assays 2020	WDH00913							59.25	60.00	0.75	2.55	0.5
Assays 2020	WDH00913							60.00	60.70	0.70	4.83	0.5
Assays 2020	WDH00913							60.70	61.05	0.35	1.37	0.2
Assays 2020	WDH00913							61.05	62.00	0.95	0.97	0.6
Assays 2020	WDH00913							62.00	63.00	1.00	1.08	0.7
Assays 2020	WDH00913							63.00	64.00	1.00	0.44	0.7
Assays	<u> </u>											

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	True Width (m)
2020 Assays	WDH00913							64.00	65.00	1.00	0.65	0.7
2020	WDH00913							65.00	66.00	1.00	0.65	0.7
Assays 2020	WDH00913							66.00	67.00	1.00	0.74	0.7
Assays 2020	WDH00913							67.00	68.00	1.00	0.75	0.7
Assays 2020	WDH00913							68.00	69.00	1.00	0.77	0.7
Assays 2020	WDH00913							69.00	70.00	1.00	0.42	0.7
Assays 2020	WDH00913							70.00	70.75	0.75	0.77	0.5
Assays 2020	WDH00913							83.95	85.00	1.05	0.65	0.7
Assays 2020	WDH00913							90.00	91.00	1.00	0.60	0.7
Assays 2020	WDH00913							91.00	92.00	1.00	1.81	0.7
Assays 2020	WDH00913							102.00	103.00	1.00	1.43	0.7
Assays 2020	WDH00913							104.00	105.10	1.10	3.22	0.7
Assays Bulk	WDH00926	225640	7053477	-359	101.7	-70.6	157.6	39.40	86.50	47.10	3.71	31.4
Intersection 2020	WDH00926							39.40	40.00	0.60	1.94	0.4
Assays 2020	WDH00926							40.00	41.00	1.00	2.11	0.7
Assays 2020	WDH00926							41.00	42.00	1.00	0.79	0.7
Assays Historical	WDH00926							42.00	42.50	0.50	0.15	0.3
Assays Historical	WDH00926							42.50	43.30	0.80	0.15	0.5
Assays Historical	WDH00926							43.30	44.20	0.90	0.21	0.6
Assays Historical	WDH00926							44.20	44.70	0.50	0.03	0.3
Assays Historical	WDH00926							44.70	45.70	1.00	0.17	0.7
Assays Historical	WDH00926							45.70	46.50	0.80	0.01	0.5
Assays Historical	WDH00926							46.50	47.00	0.50	0.01	0.3
Assays 2020	WDH00926							47.00	48.00	1.00	0.96	0.7
Assays 2020	WDH00926							48.00	48.50	0.50	2.32	0.3
Assays 2020	WDH00926							48.50	49.10	0.60	0.70	0.4
Assays Historical	WDH00926							49.10	50.00	0.90	0.01	0.6
Assays Historical	WDH00926							50.00	51.00	1.00	0.01	0.7
Assays Historical	WDH00926							51.00	52.00	1.00	0.02	0.7
Assays Historical	WDH00926							52.00	53.00	1.00	0.01	0.7
Assays Historical	WDH00926							53.00	54.00	1.00	0.21	0.7
Assays Historical	WDH00926							54.00	54.90	0.90	0.01	0.6
Assays Historical	WDH00926							54.90	55.40	0.50	2.02	0.3
Assays Historical	WDH00926							55.40	56.00	0.60	8.98	0.4
Assays Historical	WDH00926							56.00	57.00	1.00	7.05	0.7
Assays Historical	WDH00926							57.00	58.00	1.00	8.15	0.7
Assays Historical	WDH00926							58.00	59.00	1.00	9.26	0.7
Assays	***************************************							30.00	33.00	2.00	5.20	0.7

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	True Width (m)
Historical Assays	WDH00926							59.00	60.00	1.00	2.53	0.7
Historical Assays	WDH00926							60.00	61.00	1.00	4.51	0.7
Historical Assays	WDH00926							61.00	61.90	0.90	2.47	0.6
Historical Assays	WDH00926							61.90	62.50	0.60	18.70	0.4
Historical	WDH00926							62.50	63.00	0.50	15.90	0.3
Assays Historical	WDH00926							63.00	64.00	1.00	6.97	0.7
Assays Historical	WDH00926							64.00	65.00	1.00	1.83	0.7
Assays Historical	WDH00926							65.00	65.50	0.50	0.65	0.3
Assays Historical	WDH00926							65.50	66.20	0.70	0.58	0.5
Assays Historical	WDH00926							66.20	67.00	0.80	7.86	0.5
Assays Historical	WDH00926							67.00	68.00	1.00	7.48	0.7
Assays Historical	WDH00926							68.00	69.00	1.00	4.30	0.7
Assays Historical	WDH00926							69.00	70.00	1.00	7.05	0.7
Assays Historical	WDH00926							70.00	71.00	1.00	4.32	0.7
Assays Historical	WDH00926							71.00	72.00	1.00	6.64	0.7
Assays Historical	WDH00926							72.00	73.00	1.00	2.84	0.7
Assays Historical	WDH00926							73.00	74.00	1.00	6.59	0.7
Assays Historical	WDH00926							74.00	75.00	1.00	8.99	0.7
Assays									76.00		7.72	0.7
Assays	WDH00926							75.00		1.00		
Assays	WDH00926							76.00	77.00	1.00	7.76	0.7
Assays	WDH00926							77.00	78.00	1.00	6.32	0.7
Historical Assays	WDH00926							78.00	79.00	1.00	4.27	0.7
Historical Assays	WDH00926							79.00	80.00	1.00	1.25	0.7
Historical Assays	WDH00926							80.00	81.00	1.00	2.14	0.7
Historical Assays	WDH00926							81.00	82.00	1.00	0.67	0.7
Historical Assays	WDH00926							82.00	83.00	1.00	8.98	0.7
Historical Assays	WDH00926							83.00	83.50	0.50	0.25	0.3
2020 Assays	WDH00926							83.50	83.80	0.30	0.60	0.2
2020 Assays	WDH00926							83.80	84.50	0.70	0.10	0.5
2020 Assays	WDH00926							84.50	84.80	0.30	5.10	0.2
2020 Assays	WDH00926							84.80	85.15	0.35	0.55	0.2
2020	WDH00926							85.15	85.80	0.65	2.55	0.4
Assays 2020	WDH00926							85.80	86.50	0.70	1.70	0.5
Assays 2020	WDH00926							92.00	93.00	1.00	0.55	0.7

^{*}Grid MGA94_Zone51S with RL in Australian Height Datum (surface level is approx. 500m AHD; "Mine RL" is AHD + 1,000m). Results >5g/t highlighted red. Rows highlighted in blue show bulked intersection with greater than 2m internal dilution. Rows highlighted in green show revised intersection using the historic assays and the current 2020 assays.

Forward Looking Statements

This announcement includes certain statements that may be deemed 'forward-looking statements'. All statements that refer to any future production, resources or reserves, exploration results and events or production that Wiluna Mining Corporation Ltd expects to occur are forward-looking statements. Although the Company believes that the expectations in those forward-looking statements are based upon reasonable assumptions, such statements are not a guarantee of future performance and actual results or developments may differ materially from the outcomes. This may be due to several factors, including market prices, exploration and exploitation success, and the continued availability of capital and financing, plus general economic, market or business conditions. Investors are cautioned that any such statements are not guarantees of future performance, and actual results or performance may differ materially from those projected in the forward-looking statements. The Company does not assume any obligation to update or revise its forward-looking statements, whether as a result of new information, future events or otherwise.

Competent Persons Statement

The information contained in the report that relates to Exploration Targets and Exploration Results at the Matilda-Wiluna Gold Operation ("Operation") is based on information compiled or reviewed by Mr Cain Fogarty, who is a full-time employee of the Company. Mr Fogarty is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Fogarty has given consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

The information in the report to which this statement is attached that relates to Mineral Resources for the Wiluna, Lake Way and Regent Mining Centres is based on information compiled or reviewed by Mr Graham de la Mare, a Competent Person who is a Fellow of the Australian Institute of Geoscientists. Graham de la Mare is a full-time employee of Wiluna Mining Corporation and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Graham de la Mare consents to the inclusion in this announcement of statements based on this information in the form and context in which it appears.

The information in the report to which this statement is attached that relates to Mineral Resources for the Matilda, Galaxy and WilTails Mining Centres is based on information compiled or reviewed by Mr Marcus Osiejak, a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy. Marcus Osiejak is a full-time employee of Wiluna Mining Corporation and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Results, Mineral Resources and Ore Reserves'. Marcus Osiejak consents to the inclusion in this announcement of statements based on this information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the relevant ASX releases and the form and context of the announcement has not materially changed. The Company confirms that the form and context in which the Competent Persons findings are presented have not been materially modified from the original market announcements.

Table 1 JORC Code, 2012 Edition.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria
Sampling
techniques

JORC Code explanation

- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.
- Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.
- Aspects of the determination of mineralisation that are Material to the Public Report.
- In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.

Commentary

- Wiluna Mining has used i) reverse circulation drilling to obtain 1m samples from which ~3kg samples were collected using a cone splitter connected to the rig, ii) HQ, NQ2 or LTK60 with ½ core sampling, or iii) LTK60 with full core sampling.
- Full analysis and discussion of the entire historical drilling database of over 80,000 holes is not feasible nor considered material to the understanding of the current results. Historical core in this report is either NQ2 or LTK60, predominantly drilled in the mid to late 2000's by Agincourt Resources and Apex Minerals. Apex Minerals alone drilled 1,024 diamond holes for 222,170m with selective sampling of target zones.
- Wiluna Mining's sampling procedures are in line with standard industry practice to ensure sample representivity. Core samples are routinely taken using an automatic core saw from the right-hand-side of the cut line. For Wiluna Mining's RC drilling, the drill rig (and cone splitter) is always jacked up so that it is level with the earth to ensure even splitting of the sample. Face samples are taken across the face, with sample intervals matched to varying intensity of mineralisation as indicated by shearing and sulphides.
- Historically (pre-Wiluna Mining), drill samples were taken at predominantly 1m intervals in RC holes, or as 2m or 4m composites in AC holes. Historical core sampling is at various intervals and it appears that sampling was based on geological observations at intervals determined by the logging geologist.
- At the laboratory, samples >3kg were 50:50 riffle split to become <3kg. The <3kg splits were crushed to <2mm in a Boyd crusher and pulverized via LM5 to 85% passing 75μm to produce a 50g charge for fire assay. Historical assays were obtained using either aqua regia digest or fire assay, with AAS readings.
- Wiluna Mining analysed RC and DD samples using ALS laboratories in Perth. Analytical method was Fire Assay with a 50g charge and AAS finish. Golden Age and Lennon holes were also analysed at the Wiluna Mine site laboratory for preliminary results (not reported here), pulverized in an LM5 bowl to produce a 30g charge for assay by Fire Assay with AAS finish.
- Historical core samples were assayed at independent external laboratories Genalysis and ALS in Perth, using the same preparation method described above with either 30g or 50g charge. Analytical procedures associated with data generated by Apex and Agincourt are consistent with current industry practise

	1	
		and are considered acceptable for the style of mineralisation identified at Wiluna.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Wiluna Mining data reported herein is RC 5.5" diameter holes. Diamond drilling is oriented HQ, NQ2 or LTK60 core. Historical drilling data contained in this report includes RC, AC, RAB and DD core samples. RC sampling utilized face-sampling hammer of 4.5" to 5.5" diameter, AC and RAB sampling utilized open-hole blade or hammer sampling, and DD sampling utilized NQ2 and LTK60 half core samples. It is unknown if all historical core was orientated, though it is not material to this report. All Wiluna Mining RC drilling used a face-sampling bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 For Wiluna Mining RC drilling, chip sample recovery is visually estimated by volume for each 1m bulk sample bag and recorded digitally in the sample database. For DD drilling, recovery is measured by the drillers and Wiluna Mining geotechnicians and recorded into the digital database. Recoveries were typically 100% except for the non-mineralised upper 3 or 4m in RC holes, and the weathered upper 50 to 80m of DD holes that is generally more broken and fractured. For historical drilling, most core is in fresh competent rock and recoveries appear to be generally excellent. Database compilation is ongoing. For DD drilling, sample recovery is maximised in weathered and broken zones by the use of short drill runs (typically 1.5m). For Wiluna Mining RC drilling sample recovery is maximized by pulling back the drill hammer and blowing the entire sample through the rod string at the end of each metre. Where composite samples are taken, the sample spear is inserted diagonally through the sample bag from top to bottom to ensure a full cross-section of the sample is collected. To minimize contamination and ensure an even split, the cone splitter is cleaned with compressed air at the end of each rod, and the cyclone is cleaned every 50m and at the end of hole, and more often when wet samples are encountered. For historical drilling with dry samples it is unknown what methods were used to ensure sample recovery, though it is assumed that industry-standard protocols were used to maximize the representative nature of the samples, including dust-suppression and rod pull-back after each drilled interval. For wet samples, it is noted these were collected in polyweave bags to allow excess water to escape; this is standard practice though can lead to biased loss of sample material into the suspended fine sample fraction. For Wiluna Mining drilling, no such relationship was evaluated as sample recoveries were generally excellent.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource	Drill samples have been logged for geology, alteration, mineralisation, weathering, geotechnical properties and other

- estimation, mining studies and metallurgical studies.
- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.
- The total length and percentage of the relevant intersections logged.
- features to a level of detail considered appropriate for geological and resource modelling.
- Logging of geology and colour for example are interpretative and qualitative, whereas logging of mineral percentages is quantitative.
- All holes were logged in full. Check-logging was completed on historical intervals retrieved, with only minor edits required to historical logs.
- Core photography was taken for WMC diamond drilling.

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

- For core samples, Wiluna Mining uses half core cut with an automatic core saw. Samples have a minimum sample length of 0.1m and maximum of 1.2m, though typically 1m intervals were selected. A cut line is routinely drawn at an angle 10 degrees to the right of the orientation line. Where no orientation line can be drawn, where possible samples are cut down the axis of planar features such as veins, such that the two halves of core are mirror images.
- Historical core has been selectively sampled, with a minimum sample width of 0.1m and maximum of 1.1m, though typically 1m intervals were selected.
- RC sampling with cone splitting with 1m samples collected, or in the hangingwall 4m scoop composites compiled from individual 1m samples. RC sampling with riffle or cone splitting and spear compositing is considered standard industry practice.
- For historical samples the method of splitting the RC samples is not known. However, there is no evidence of bias in the results.
- Wiluna Mining drilling, 1m RC samples were split using a cone splitter. Most samples were dry; the moisture content data was logged and digitally captured. Where it proved impossible to maintain dry samples, at most three consecutive wet samples were obtained before drilling was abandoned, as per procedure. AC samples were 4m composites.
- Boyd <2mm crushing and splitting is considered to be standard industry practice; each sample particle has an equal chance of entering the split chute. At the laboratory, >3kg samples are split so they can fit into a LM5 pulveriser bowl. At the laboratory, >3kg samples are split 50:50 using a riffle splitter so they can fit into a LM5 pulveriser bowl.
- Field duplicates were collected approximately every 20m down hole for Wiluna Mining holes. With a minimum of one duplicate sample per hole. Analysis of results indicated good correlation between primary and duplicate samples. RC duplicates are taken using the secondary sample chute on the cone splitter. AC

	duplicates were scooped in the field. It is not clear how the historical field duplicates were taken for RC drilling.
	 Riffle splitting and half-core splitting are industry-standard techniques and considered to be appropriate. Where sampling occurred through back-filled 'stope' intervals, these samples don't represent the pre-mined grade in localized areas.
	 Sample sizes are considered appropriate for these rock types and style of mineralisation and are in line with standard industry practice.
 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Fire assay is a total digestion method. The lower detection limits of 0.01ppm is considered fit for purpose. For Wiluna Mining Exploration drilling, ALS completed the analyses using industry best-practice protocols described above. ALS is globally-recognized and highly-regarded in the industry. Historical assaying was undertaken at Genalysis, Amdel, SGS, and KalAssay laboratories, and by the on-site. The predominant assay method was by Fire Assay with AAS finish. The lower detection limit of 0.01ppm Au used is considered fit for purpose. Samples analysed at ALS and with Au > 0.3g/t are also assayed for As, S and Sb using ICPAES analysis ("ME-ICP41"). No geophysical tools were required as the assays directly measure gold mineralisation. For Wiluna Mining drilling, down-hole survey tools were checked for calibration at the start of the drilling programme and every two weeks. For Wiluna Mining drilling certified reference material, blanks and field duplicates were submitted at 1:20 ratios. Check samples are routinely submitted to an umpire lab at 1:20 ratio. Analysis of results confirms the accuracy and precision of the assay data. Blanks and quartz flushes are inserted after logged high grade core samples to minimise and check for smearing, analyses of these results typically shows no smearing has occurred. Results for WMC and historical QAQC show good correlation between original and repeat analyses with very few samples plotting outside acceptable ranges. For historical drilling, field duplicates, blank samples, umpire-lab samples, and certified reference standards were collected and inserted from at least the early 2000's. Investigation of results revealed sufficient quality control performance for lab duplicates, field duplicates and external laboratory checks.
• The verification of significant intersections by either independent or alternative Company personnel.	 Wiluna Mining's significant intercepts have been verified by several Company personnel, including the database manager and geologists.
 The use of twinned holes. Documentation of primary data, data entry procedures, data 	Twinned holes were not drilled in this programme, however, correlation between intercepts was generally poor when
	appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. • For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. • Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. • The verification of significant intersections by either independent or alternative Company personnel. • The use of twinned holes. • Documentation of primary data,

verification, data storage (physical and electronic) protocols.

• Discuss any adjustment to assay data.

intercepts were greater than 20m apart reflecting the short-range variability expected in gold deposits of this style.

- Wiluna data represents a portion of a large drilling database compiled since the 1930's by various project owners.
- Data is stored in Datashed SQL database. Internal Datashed validations and validations upon importing into Micromine were completed, as were checks on data location, logging and assay data completeness and down-hole survey information. QAQC and data validation protocols are contained within Wiluna Mining's manual "Wiluna Mining Geology Manual 2020". Historical procedures are not documented.
- There has been no adjustment to lab assay data.

Location of data points

- Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.
- Specification of the grid system used.
- Quality and adequacy of topographic control.
- All historical holes appear to have been accurately surveyed to centimetre accuracy. Wiluna Mining's drill collars are routinely surveyed using a DGPS with centimetre accuracy, though coordinates reported herein are GPS surveyed to metre-scale accuracy.
- Grid systems used in this report are GDA 94 Zone 51 S. Drilling collars were originally surveyed in either MGA grid or Mine Grid Wiluna 10 and converted in Datashed to MGA grid.
- An accurate topographical model covering the mine site has been obtained, drill collar surveys are closely aligned with this. Away from the mine infrastructure, drill hole collar surveys provide adequate topographical control.
- WMC drillholes are routinely surveyed using continuous north-seeking gyro at the end of hole, with 'sighter' surveys conducted while drilling. Historical diamond drill holes were surveyed downhole at close regular spacing using a Reflex or Eastman camera attached to a 6m aluminium extension to minimise magnetic interference, at 15m, 50m and every 50m thereafter. A selection of holes were subsequently gyro surveyed to confirm the single shot method has not been significantly affected by magnetic rocks.
- Survey tools are calibrated weekly.

Data spacing and distribution

- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
- Wiluna Mining's exploration holes are generally drilled 25m or 50m apart on sections spaced 25m apart along strike.
- Historical drill hole spacing is typically 25 x 25m in Indicated resource areas and 50 x 50m in Inferred areas.
- The mineralisation lodes show sufficient continuity of both geology and grade between holes to support the estimation of resources which comply with the 2012 JORC guidelines
- Samples have been composited only where mineralisation was not anticipated. Where composite samples returned significant gold

	Whether sample compositing has been applied.	values, the 1m samples were submitted for analysis and these results were prioritized over the 4m composite values.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Orientation of drilling to mineralisation ranges from 45 to 90 degrees to the strike of the lodes and 20 to 90 degrees to the dip of the lodes. RC drill holes were generally orientated perpendicular to targets to intersect predominantly steeply-dipping north-south or northeast-southwest striking mineralisation, though underground DD holes were in places drilled obliquely; true widths are shown in the significant intercepts table. The perpendicular orientation of the drill holes to the structures minimises the potential for sample bias.
Sample security	The measures taken to ensure sample security.	It is not known what measures were taken historically. For Wiluna Mining drilling, samples are stored in a gated yard until transported by truck to the laboratory in Perth. In Perth the samples are likewise held in a secure compound.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Wiluna Mining and historical drilling data has been validated in Datashed. Monthly validation checks are performed and minor adjustments made as required. QAQC results been evaluated and found to be satisfactory.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any 	 The drilling is located wholly within M53/6, M53/30, M53/40, M53/44, M53/95, M53/69, M53/468, M53/200 and M53/32. The tenements are owned 100% by Wiluna Operations Pty Ltd., a wholly owned subsidiary of Wiluna Mining Corporation Ltd, except for M53/30 which is owned 94/96 by Wiluna Operations Pty Ltd and 2/96 by James Murray Jackson. The tenements are in good standing and no impediments exist. Franco Nevada have royalty rights over the Wiluna leases of 3.6% of net gold revenue.
Exploration done by other parties	 known impediments to obtaining a license to operate in the area. Acknowledgment and appraisal of exploration by other parties. 	 Modern exploration has been conducted on the tenement intermittently since the mid-1980's by various parties as tenure changed hands many times. This work has included mapping and rock chip sampling, geophysical surveys and extensive RAB, RC

Geology	Deposit type, geological setting and style of mineralisation.	control purposes. This exploration is considered to have been successful as it led to the eventual economic exploitation of several open pits during the late 1980's / early 1990's, and underground mining to the present day. The deposits remain 'open' in various locations and opportunities remain to find extensions to the known potentially economic mineralisation. The gold deposits are categorized as orogenic gold deposits, with similarities to most other gold deposits in the Yilgarn region. The deposits are hosted within the Wiluna Domain of the Wiluna greenstone belt.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	See data table Appendix to this report.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	 o dip and azimuth of the hole o down hole length and interception depth o hole length. 	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure 	 In the significant intercepts are reported as length-weighted averages. For Wiluna: above a 1.0g/t cut-off and > 2.0 gram x metre cut off (to include narrow higher-grade zones) using a maximum 2m contiguous internal dilution. In places, broad widths of lower grade mineralisation are identified where the mineralised shear zone is wider and comprises multiple higher-grade zones within a broadly mineralised envelope, which may ultimately upon the completion of relevant mining studies (in progress) be amenable to bulk underground mining methods with lower cost and lower economic cut-off grades. Where this style of mineralisation exists,

	used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	broad 'bulk' or 'halo' intercepts are calculated by allowing no limit to internal dilution and no internal lower cut-off grade. E.g. BUUD0102 = 62.54m @ 1.76g/t from 0m (broad intercept), comprising 7.11m @ 4.57g/t from 0m, 0.3m @ 6.32g/t from 10.28m, 14.05m @ 4.09g/t, and 6.81m @ 2.34g/t. High-grade internal zones are reported above a 5g/t envelope, e.g. BUUD0102 contains 7.11m @ 4.57g/t from 0m including 1.25m @ 15.08g/t and 0.68m @ 6.44g/t. Ultra-high grades zones of >30g/t are additionally reported.
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• Lode geometries at Wiluna are generally steeply east or steeply west dipping. Generally the lodes strike north-northeast to northwest-southeast. Historical drilling was oriented vertically or at -60° west, the latter being close to optimal for the predominant steeply-east dipping orientation. At Golden Age, the lode strikes NW-SE, with drilling from underground oriented at various angles depending on available drill sites. Drill holes reported herein have been drilled as closed to perpendicular to mineralisation as possible. In some cases due to the difficulty in positioning the rig close to remnant mineralisation around open pits this is not possible. True widths are always included in the significant intercepts table when results are reported for the first time.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See diagrams in the body of this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	For Wiluna Mining drilling, either all significant assay results are reported or the hole is listed as 'no significant intercepts'. Full reporting of the historical drill hole database of over 80,000 holes is not feasible.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of	Other exploration tests are not the subject of this report.

	treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling 	 Follow-up resource definition drilling is likely, as mineralisation is interpreted to remain open in various directions. Refer to diagrams and discussion in the body of this report.
	areas, provided this information is not commercially sensitive.	